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Motivating problem

Let G be a locally compact group, with group
algebra L1 (Q).

Theorem - B. E. Johnson, 1972 The
Banach algebra L1(G) is amenable if and only
if the group G is amenable. O

Theorem - Helemski, Johnson Let A be an
amenable Banach algebra. Then E’ is injective
for each Banach right A-module. O

We do not know if the converse holds. If A is
a Banach algebra such that E’ is injective for
each, or some, Banach right A-module.

The Banach space LP(Q) is a Banach left L1(G)-
module in a canonical way.



Some results

Theorem Suppose that G is an amenable
locally compact group. Then LP(G) is an
injective Banach left L1(G)-module for each
p € (1,00). O

We ask if the converse to this holds.

For partial results, see a paper of D and Polyakov
in Proc. London Math. Soc. Attempts on this
question led to a theory of multi-norms, which
may have a life of its own. See a proto-memoir
of 140 pages, and some Bangalore notes.

For a solution in the case where A is L1(G)
and the module is any LP(G), and more, see
the second conference. (Work of Matt Daws,
Hung Le Pham, and Paul Ramsden.) Here
we give some background on multi-norms; the
connections with group algebras and new char-
acterizations of amenability for locally compact
groups will come in a talk at the second con-
ference.



A second motivating problem

Again let G be a locally compact group, with
measure algebra (M(G),%). For p € M(G), set

Tu(f)=pn*f (feLP(G)).

(Here 1 < p < oo; usually, p = 2, so that L2(G)
is a Hilbert space.)

Then T, € B(LP(G)), and the map p+— T}, is a
representation of M(G).

Always o(T),) C o(u), but maybe o(7),) C o(p),
which can be unfortunate - how can we cure
this?



Basic definitions
Let (E,||-||]) be a normed space.
Definition A multi-norm on {E™ :n € N} is a
sequence (|| - ||,,) such that each ||-||,, is a norm
on E", such that ||z||; = ||«|| for each x € E,

and such that the following hold for all n € N
and all zq,...,xn € E:

(AD) o1y Zo(m)|,, = Iz1,- - za)ll,
for each permutation o of {1,...,n};

(A2) [[(a1mq,. .., anzn)ll,

< (Maxien, i) [(@1, - zn)lly,
for each aq,...,an € C;
(A3) [I(z1,...,2n, 01 = (21, .- 2n) ]y, ;

(A4) [(z1,-- s zn, zn)llpr1 = (@1, 20|,
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Another representation of multi-norms

Let My, n be the algebra of m xn-matrices over
C, and give it a norm by identifying it with
B(LR®, b))

Let £ be a normed space. Then My, acts
from E™ to E™ in the obvious way.

Consider a sequence (J|-]|,,) such that each
|- |l,, is @ norm on E™ and such that ||z||; = ||z||
for each z € E.

Theorem This sequence of norms is a multi-
norm if and only if

la - zll,, < llall l|zll,,

for all m,n € N, a € My, n, and x € E™. O



Elementary consequences

The following hold for all z1,...,z,41 € E, etc:
D @1, @)l < (@1 @n zg 1) |

2) max|lzi|| < [|(@1,...,2n)ll, < 37 [l

3)

||(CU1,...,CUn,y]_,...,J?m)Hm_l_n S
||(3317 < e 7In)||n _I_ ||(y17 < 7ym)||m .



Minimum and maximum multi-norms

Example 1 Set |[(z1,...,2n)|,, = max]||z;||. This
gives the minimum multi-norm.

Example 2 It follows from 2) that there is also
a maximum multi-norm, say it is (|| - [|1'®).

Note that it is not true that } ' , ||x;|| gives
the maximum multi-norm — because it is not
a multi-norm. (It does fit into a more general
scenario.)



Another characterization

Let (E,||-||]) be a normed space. Then a
co-norm on cg ® E is a norm ||-|| such that
|la ® x| < ||a]| ||z|| for all @ € cg and =z € E and
such that T'® Ig is a bounded linear operator
on (cog®E,||-]|) with || T ® Ig| = ||T|| whenever
T is a compact operator on cy.

Theorem (Daws) Multi-norms on {E™ : n € N}
correspond to cg-norms on cg ® E. The injec-
tive tensor product norm gives the minimum
multi-norm, and the projective tensor product
norm gives the maximum multi-norm O

[Cf Alexander Helemskii's abstract theory of
operator spaces.]



And another characterization of
multi-norms

Thereis a paper ‘La structure des sous-espaces
de trellis’ by J. L. Marcolino Nhani, apparently
a student of a student of Pisier, in Disserta-
tiones Math., 2001.

He introduces ‘condition (P)': for a normed
space FE, there is a norm o on E ® cg such
that, for each T € B(cg) and each x € F ® ¢,

a((Ug®@T)(z)) < T alz) .

This condition is equivalent to Daws’' condi-
tion, and so characterizes multi-norms.

A theorem of Pisier shows that, in this case, FE
can be identified with a subspace of a certain
Banach lattice X. The structure on X gives
exactly what I had already called a Banach lat-
tice multi-norm; see below.

This relates our theory to that of operator se-
quence spaces of Volker Runde etc.
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An associated sequence
Let (]| -]|,,) be a multi-norm on {E™ : n € N}.

Define

on(E) =sup{|[(z1,-..,zn)ll, : [|z;]] < 1}.
Trivially, 1 < pp(E) <n for all n € N and

Som—l—n(E) < om(E) + on(E)
for all m,n € N. What is the sequence (pn(E))?

In particular (pM3*(E)) is the sequence associ-
ated with the maximum multi-norm.

It can be shown quite easily that "¥*(F) is

n
o { 3 o}
1=1

where \q,...,\n € E' and
n

(2, M) <1 (z€ By,
=1

J
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Summing norms - I

Let £ be a normed space, and take p € [1,00).
For x1,...,xzn € E, set

n 1/p
ppn(x1,...,xn) = SUP (Z (zvj,wp)
[1]

Then

/,L]_,n(flf]_, cet 7xN) = Sup {

mn
> iy
j=1

For \1,...,\n € E/, we have

ICl,...,CnET}.

,ul,n()‘la-'-v)\n) — Sup {Z ’<$,)\j>‘ LT E E[l]} :

j=1
Let £ and F' be Banach spaces, and take
T € B(E,F) and n € N. Then 75"(T) is

n 1/p
sup (Z ‘T:cjp) Cppn(xl,..,xn) <1
j=1
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Summing norms - II

Definition m,(T) = liMp oo 754 (T) is the p-
summing norm of T.

The p-summing operators form an operator
ideal.

We write w](?”)(E) for wz(,")(IE) and m,(E) for
m(IE).

Theorem Let EF be a normed space, and let
n € N. Then

PT(E) = mi{"™(E")
If E=F’ then

PTX(E) = =" (F) . -
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Another constant

Let F' be a normed space, and let S be the
unit sphere of F'. It is useful to define

Cn(F) = iﬂf{,ul()\l,...,An) P A1, ..., An € SF}

Easy fact: Wgn)(F)cn(F) > n. In fact
7 (F)en(F) =n,

where ﬁgn)(F) is the version of wgn)(F) with
|z1|| = -+ = ||zn|| in the definition of
,U/]_(.CU]_, < 733?7/)-

Guess: I think that there should be a large
class of Banach spaces F' with the property
that there is a constant C'r such that

#(F) > Cpr{™(F)

for all n € N. Is this correct? 1Is it true for
F = ¢9 whenever q € [1,2]? In the latter case,
F is an Orlicz space, and there is a constant
Cyq such that c¢,(£9) > Cy/n (n € N); what is
Cq in the complex case?
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A lower bound

We shall use the famous theorem of Dvoret-
zky, sometimes called the theorem on almost
spherical sections.

Theorem For each n € N and ¢ > 0, there
exists m = m(n,e) in N such that, for each
normed space E with dim E > m, there is
an n-dimensional subspace L of E such that
d(L,£2) < 1+e. O

Theorem Let F be an infinite-dimensional normed
space. Then pM¥X(E) > /nforeachn € N. O

Corollary Let E be an infinite-dimensional normed
space. Then pM¥X(E) — oo, and there is a
multi-norm on E not equivalent to the

minimum multi-norm. O
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Special spaces

Take p with 1 < p < oo, and write ¢q for the
conjugate index to p. Take E = /¢P. Thus

pmax(ppy = 7{m g1y |

We write ¢} for the n-dimensional space C"
with the usual ZP-norm. Direct calculations of
EeMaxX(¢P) using Banach—Mazur distance give:

Theorem (i) For each p € [1,2], we have

P (LE) = e (eP) =nt/P (neN).

(ii) For each p € [2,00], there is a constant Cj
such that

Vv < o (F) < o' (eP) < Cpv/n (neN).
]

In general, I do not know the best constant C)
in the above inequality.
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Example 1 : Standard (p, ¢)-multi-norm

Let €2 be a measure space, and take p,q with
1 <p<g<oo. We consider the Banach space
E = LP(L2), with the usual LP-norm || -]||.

For each family X = {X1,..., X} of pairwise-
disjoint measurable subsets of {2 such that
Xq1U---UX, =2, we set

TX((fla . 7fn)> —

([ + -+ [ )

where Py : LP(2) — LP(X) is the natural
projection.

Finally, ||(f1,-.., fa)ll,, = supx rx((f1,.--,fn)).

This is the standard (p, g)-multi-norm.

Remark Let ¢q = p. Then
1CFs - )l = ALY -V Sl ]
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Example 2 : Measures

Let €2 be a non-empty, locally compact space.
Then M(€2) is the Banach space of all regular
Borel measures on 2. Take g > 1.

For each partition X = {Xq,...,X,} of Q into
measurable subsets and each uq, ..., un € M(£2),

take rx((u1,--.,un)) to be

(g | Xal|94 - =+ |ln | Xnl| DY

so that rx is @ seminorm on M(2)™ Then de-
fine

(s - o ) |59 = sup X (it - in))

where the supremum is taken over all such fam-
ilies X. Then ||-||,, is @ norm on M(£)", and
it is again easily checked that (||-||,, : n € N)
is @ multi-norm on {M(2)" : n € N}. It is the
standard (1, q)-multi-norm.
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Example 3 - Banach lattice multi-norms
Let (E,||-||]) be a complex Banach lattice.

[Thus there are lattice operations on Ep, the
modulus |z| of an element x € Ep is defined,
and the norm is such that ||z|| < ||ly|| whenever
lz| < |yl in E. Now E = Ep @ iER is a complex
Banach lattice.]

Example LP(Q2), L°°(£2), or C(2) with the
usual norms and the obvious lattice operations.

Definition Let (FE,|-||) be a Banach lattice.
Forne N and zq,...,xn € E, set

[z, .oy an)lly, = (o] V-V znl ]

Then ((E™]-]l,) : » € N) is a multi-Banach
space. It is the Banach lattice multi-norm.

It generalizes the standard (p, p)-multi-norm on
LP(2) and the minimum multi-norms on L% (2)
and C(L2).
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Example 4 - The Schauder multi-norm

Let £ be a Banach space with an unconditional
Schauder basis (e,). Set

©.@)
Z an€n = Sup
n=1

This norm is equivalent to the original one.

o0
Z Oénﬁnen

n=1

:|6n|§1}.

Let X ={X4,...,Xn} be a partition of N, and
define

rx((z1,...,2zn)) = H‘lewl +--+ PanL‘nH

where PXZ. are the obvious projections, and then
set

Y

|||(£C]_,. . ,In)|||n — SL}J(D TX((CCL‘ . 73371)) .

We again obtain a multi-norm (||| -1[],,)-
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Example 5 : The weak
(p1, po) —Multi-norm

Again E is a Banach space. Recall that the
weak p-summing norm is

)\EEI ]:1

n 1/p
ppn(T1,. .., Tn) = SUP (Z <a;j,A>\p>
[1]

Here z1,...,xn € E.
Now take pi1,po with 1 < p1 < poy < 0.

Define

n 1/p2
|72 72) = sup (Z <wj,Aj>p2)
j=1

taking the sup over all \1,...,\n € E’ with
Mp1,n()\1»---a>\n) S 1.

Fact {(E", | -||(P1P2)) : n € N} is a multi-normed
space.

It is the weak (p1,p>) —multi-norm over E.
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The weak (p1,p>) —multi-norm, continued

Fact The canonical embedding of E into E” is
a multi-isometry (see later) when we consider
the weak (p1,p>) —multi-norms over E and E”.

Fact We can work out the dual of this multi-
norm quite explicitly; there is pleasing duality
theory.

Fact There are relations between these. For
example, take 1 < p; <po <o and 1 <rq; <

ro < co. Suppose that po> > ro and
1 1 1 1
<
p2 "1 T2 p1

Then |- H%mmz) < ||7grl,r2) on E™
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The weak (p1,p>) —multi-norm,
connections with L1(Q)

Fact For 1 < g < oo, the weak (1,q)—multi-
norm on the family {L1(Q)” : n € N} is the
same as the standard (1, g)—multi-norm described
above.

Fact There are several other useful identifica-
tions using measures and second duals.

Fact Various ‘nice’ multi-norms that I men-
tioned (and others) have ‘canonical extensions’
- and these we now know are suitable weak
(p1, po) —multi-norms.
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Example 6 : The Hilbert multi-norm

Let H = ¢2(S) be a Hilbert space. For each
family H = {H;,...,Hp} of closed subspaces
of H such that H =H7 1L --- 1 Hy,, set

1/2
ra((@1, . 2n)) = ([Prza)® + - + || Paznl?)
where P, : H — H; for 1t = 1,...,n is the pro-
jection, and then set

H .
|| (ZU]_, s 7xn>||n — SlI{Ip TH((CU]_,. . e 75En)) '
we obtain multi-norms || - ||?[j. We immediately
have
H
||(£C177xn)||n S ||(£C177x7Z)||n ’

where (|| -|],,) is the standard (2,2)-multi-norm
on £2(S).
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Maximality of the Hilbert multi-norm

Question Is the Hilbert multi-norm the makxi-
mum multi-norm on the family {H™ : n € N}7
This seemed to be very likely because I could
not think of a bigger one. However it seems
to be rather a hard question.

In fact it can be reduced to a question about
Hilbert spaces that does not mention multi-
norms.

Let H be a Hilbert space. Then the closed unit
ball of the dual of (H”,||-||7Ij) is described as
follows. Set

n
S ::U{(alel,...,anen) ; Z ‘ozj‘Q < 1} :

J=1
where the union is taken over all orthonormal
subsets {eq1,...,en} of H. The required unit
ball is the weak-x-closed convex hull of S, call

it K.
25



On the other hand, the closed unit ball of the
dual of (H™, |- [|7%) is

{y=(1,--yn) € H" 1 p1n(ya,- - yn) < 175

this set, temporarily called L, is equal to the
set of y = (y1,...,yn) € H™ such that

IC1y1 + -+ Cnynll <1
for all {1,...,(n € T.

Since |- |7 < || - |, necessarily K C L.

To establish the equality of the two multi-
norms, we need to show that L C K for each
(implicit) n € N. In fact, we need

exLCexK=8 (neN),

where ‘ex’ denotes the set of extreme points
of a convex set. Is this always the case?
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Towards this, I know the following.

Theorem Let H be a Hilbert space of dimen-
sion n.

(i) Suppose that n =2. Then exL C S.

(ii) Suppose that n = 3 and H is a real Hilbert
space. Then this fails.

(iii) (Pham) Suppose that n = 3 and H is com-
plex. Then exL C S.

(iv) (Daws) There is a universal constant C
with C'|| - |2 > || - |3, and so the Hilbert multi-
norm is equivalent to the maximum multi-norm.
[At present C is K, Grothendieck’s constant.
Maybe we have C = 1.] O
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Multi-topological linear spaces

Let E be a linear space, and let F' be a sub-
space in EN such that, for each « € E, we have
(z,0,0,...) € F. A subset B of I' is basic if:

(1) for each permutation o of N and (z,) € B,
also (z4(n)) € B;

(2) for each (xp) € B and ap with |ap| < 1,
also (anzn) € B;

(3) for each (zy) € B, also
(%1,331,562,$2,£U3, . ) c B,

(4) (zp) € Bifandonly if (z1,...,24,0,...) € B
for each k € N.

Suppose that F' has a basis (in the usual sense
of topological linear spaces) consisting of basic
sets. Then F is a multi-topological linear
space.
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Examples of multi-topological linear
spaces

(1) Let E be a multi-normed space. Set

F={(n): (@1, . a)lly < oo (keN)}.

Then F'is a multi-topological linear space. The
basic sets are

() € F: [|(@1,. .., a0, < O}

(2) Let E be a topological linear space, and
set I = EN. Set

B=U1><U2><---,
with U; open in E, a basic set. Then F' is a
multi-topological linear space. (Box topology.)

Definition Let F' be a multi-topological linear
space. Then (xn) is multi-null if, for each
basic set B, there exists ng € N such that

(@npt1,---) EB (> np).

There is a version of Kolmogorov's theorem.
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Multi-convergence

Proposition Let ((E",|-|l,,) : n € N) be a
multi-normed space, and let (x;) be a sequence
in E. Then

Lim CU,L'ZO
)

if, for each € > 0, there exists ng € N with

[(Znyy .. yzn )|, <e  (n1,...,m >ng) . -

These are exactly the multi-null sequences.

Theorem Multi-null sequences in a multi-normed
space (£, || - ||,,) are the null sequences of some
topology on E if and only if the multi-norm is
equivalent to the minimum multi-norm. O
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Multi-convergence - Examples

1) Let {E™ : n € N} have the minimum multi-
norm. Then Lim;x; = 0 if and only if
im;z; =0 in (E,[-).

2) Let £ = /P with the standard (p, q)-multi-
norm, and let

Then Lim;xz; = 0 if and only if Y |¢;]? < .
Here §; is the sequence (9;; : j € N).

3) Let £ = LP(2) with the standard (p,p)-
multi-norm. A sequence (fn) is multi-null iff
(frn) is order-bounded and f;, — 0 almost
everywhere.

More generally

4) Let (E,|-||) be an ‘order-continuous’ Ba-
nach lattice, and consider the Banach lattice
multi-norm on {E™ : n € N}. Then a sequence
is a multi-null sequence if and only if it
converges to O ‘in order’.
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Multi-bounded sets and operators

Let (E™, | -]|,,) be a multi-normed space. A

subset B of E is multi-bounded if

cg :=sup{||[(z1,...,zn)l,, i x1,...,2n € B} < 00.
neN

Let (E™, | -]|,,) and (F™, ] -],,) be multi-Banach
spaces. An operator T € B(E,F) is multi-
bounded if T(B) is multi-bounded in F when-
ever B is multi-bounded in E. The set of these
is a linear subspace M(E,F) of B(E,F).

For T € M(E,F), set

|71l = SUP {erp) © e < 1}

Theorem Now ((M(E, F),||-|l,,,) is a Banach
space, and M(FE) is a Banach operator alge-
bra. []

[Recall that these depend on the multi-norm
structure, and not just on the Banach space,
despite the notation.]
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T he multi-bounded norm

More generally, forn € Nand Ty,...,T, € M(E, F),
set

||(T17 e 7Tn)||mb,n = Sup {CTl(B)U---UTn(B) cg < 1}.
Theorem Now ((M(E, F)", || |lpn) : n € N)
IS a multi-Banach space. O
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Examples of M(E,F) -1

Throughout, {(E™, | -|l,,) : n € N} and
{C(F™ | -1l,,) : » € N} are multi-normed spaces.

Fact Suppose that F and F' are operator se-
quence spaces (see Lambert, Neufang, and Runde).
Then the multi-bounded operators are just the
sequentially bounded operators. O

T heorem Always

N(E,F)c M(E,F) C B(E,F),

where N (E,F) denotes the space of nuclear
operators. O

Theorem Suppose that F' has the minimum or
E the maximum multi-norm structure. Then

(MCE, F), [ - [lp) = (BCE, F), |- 1) -

Question When exactly do we get the above
equality?
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Examples of M(FE,F)

Theorem We can have M(E,F) = B(E,F)
and M(F,E) =N (F,E). O

Theorem Let £ = /P and F = (¢4, where
p,q > 1. Regard them as multi-normed spaces
with the standard (p,p) and (q,q) multi-norms,

respectively. Then M(FE,F) consists of the
regular operators. O

[An operator is regular if it is the difference of
two positive operators.]
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Another example
Theorem We can have K(F) ¢ M(E).

Proof Let H be the Hilbert space ¢2(N), with
the standard (2,2)-multi-norm.

Consider the system of vectors

(z;:r=1,...8,s € N)

defined as follows: z;(k) = 0 except when

ke {2571 ..., 25—-1};

at the 2571 numbers k in this set, z3(k) =
+1/v25~1 the values +1 being chosen so that
[x7,,z7,] = 0whenry,ro =1,...,sand r; # ro.
Such a choice is clearly possible. Then

S:={x;:r=1,...,s,s € N}

is an orthonormal set in H. Order the set S
as (yn) by using the lexicographic order on the
pairs (s, 7).
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Let (o;) € £°°. We define T € B(H) by setting

It is clear that, in the case where («;) € ¢cg, we
have T € K(H).

For k e N, set N, = k(k+ 1)/2. We see that
2
| (w1, w2 yNk)HNk

However H(Ty]_,TyQ, . ’TyNk)H]Q\fk = Zle i |ai|2.

Now take v € (0,1/2), and set a; = ¢~ 7. Then

|(Ty1, Tyo, ..., Tyn,

)HNk > ok(1727)/2
H(ylayz,---,yNk)HNk B

for a constant ¢ > 0. Since v < 1/2, we have
T & M(H).

We have shown that K(H) ¢ M(H). O
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M(E, F) for Banach lattices

Let (E,||-]|) be a Banach lattice. Then E is
monotonically bounded if each increasing, || - |-
bounded net in E has an (order) upper bound.

Thus each Banach lattice LP(£2) (for p € [1, 00])
and C(€2) (for 2 compact) is monotonically
bounded, but cg is not monotonically bounded.

Theorem Let (E,|-||) and (F,|-]) be two
monotonically bounded Banach lattices, each
with the lattice multi-norms. Then M(E, F) is
the space of all order-bounded operators from
E to F. O

38



Multi-bounded and multi-continuous
operators

Let £ and F' be multi-topological linear spaces.
An operator T : E — F is multi-continuous if
(T'xz;) is multi-null in " whenever (x;) is multi-
null in E.

Theorem Let (E™, | -||,,) and (F", | -|],,) be

multi-normed spaces, and take T € B(E,F).
Then T is multi-continuous if and only if T is
multi-bounded. O
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Banach lattices: examples

Return to the embedding p — T, of M(G)
into B(LP(G)). In fact, it is a mapping into
M(LP(G)), when LP(G) has the standard (p, p)-
multi-norm, and now we do get o n(T,) = o(u)
always, where ox((T},) is the spectrum of 1), in
the Banach algebra M(LP(QG)).

A failure of ‘Banach’s isomorphism theo-
rem:

Let £ be a Banach lattice and consider the Ba-
nach lattice multi-norm. Then M(FE) consists
of the reqgular operators; this Banach algebra
is B-(E). As mentioned, there are examples of
T € Br(F) such that T is invertible in B(E),
but the inverse is not in B,.(F).
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The problem of duality

Let £ be a Banch space, and let (]|-||,,) be a
multi-norm on {E™ : n € N}.

We might expect that the dual of the multi-
normed space is M(E,C). But this gives just
E’, and forgets the multi-norm structure.

We could try: || -||}, is the norm on (E’)™ which
is the dual of the norm || - ||, on E™. We obtain
a sequence || -||;. that satisfies (A1), (A2), and
(A3), but not (A4). Rather it satisfies:

(84) ||($1, s 7xn7xn)||n—|—]_ — ||($1, s 7ajn—172$n)||n :

We have characterizations of these ‘dual multi-
norms’ analogous to the above — for example
we replace B(£°,£2°) by B¢}, ¢1) and co ® E
by ¢l E.

[The second duals of a multi-norm sequence
do give a multi-norm.]

So this does not work either.
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A consequence of duality

In fact we have a duality theory that involves
a long detour through an orthogonality theory
for multi-normed spaces that generalizes that
of Banach lattices. This gives the concepts of
multi-dual and multi-reflexive spaces.

We have the following, which was the point of
the definitions.

Theorem For 1 < p < oo, let the families
{(¢P)™ : n € N} have the standard (p,p)-multi-
norm. Then the multi-dual of the multi- normed
space {(/P)" :n € N} is {(#9)"™ : n € N} with the
standard (g, g)-multi-norm, where q is the con-
jugate index to p. Hence these multi-normed
spaces are multi-reflexive. O
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Decompositions - definitions

Definition Let (F,||-||) be a normed space. A
direct sum decomposition £E = FE1 ®--- P E; IS
valid if

[Crwy =+ -+ Gl < llzg + - - - + o]
for all Cl,...,Ckeﬁand x1 € B1,...,21 € Ey..

Definition Let ((E™, | -|,,) : » € N) be a multi-
normed space, and let £ = F{ & --- @ E, be
a direct sum decomposition of E. Then the
decomposition is small if

|P1z1 =+ - + Pragl|| < |[(x1,-..,21) ||

for all z1,...,z € E.

Fact A small decomposition is valid.
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Orthogonality

Let (E™, | -]|,,) be a multi-normed space. A
family {F4,..., E.} of linear subspaces of FE is
orthogonal if, for each partition {Sq,...,S,}
of {1,...,k} and each z; € E;, we have

|Gzl = [
where y; :=>{xr:re S;} (i =1,...,5).

In particular, we require that

whenever z; € £, for i =1,... k.

A set {xq1,...,x} is orthogonal if the family
{Cz1q,...,Cx;} is orthogonal.

Remark It is possible that {x1,z5,x3} is not
orthogonal, but each of {x1,z5}, {x1,x3}, and
{xo,x3} is orthogonal.

Remark Every orthogonal decomposition is valid.
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Orthogonality - Examples

(1) Let H be a Hilbert space with the Hilbert
multi-norms Then subspaces are orthogonal if
and only if they are orthogonal in the classical
sense if and only if they give a valid decomp-
osition.

(2) Let £ = ¢P(S) have the standard (p,p)-
multi-norms. Then E has the orthogonal de-
composition £ = E1 & --- @ Ep. if and only if
there is a partition {Sq1,...,S,} of S such that
E; =LP(S;) (=1,...,k).

(3) Let £ = ¢P(S) have the standard (p,q)-
multi-norm, with ¢ # p. Then there are no
non-trivial orthogonal decompositions of E.
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Continuous functions

Let £ = C(2) for a compact space €2, and let
{E™ : n € N} have the minimum multi-norm.
Then the only orthogonal decompositions of
E have the form

C(2) =C(21) ®--- & C(S2)

for a partition {€21,...,2.} of Q2 into clopen
subspaces.
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Decompositions - some facts
Fact An orthogonal decomposition is valid.

Fact A small decomposition is not necessarily
orthogonal.

Fact An orthogonal decomposition is not nec-
essarily small.

[Maybe the definitions need tweaking to bring
‘small’ into the definition of ‘orthogonality’ 7]
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Orthogonality - Examples

(1) Let H be a Hilbert space with the Hilbert
multi-norms. Then subspaces are orthogonal
if and only if they are classically orthogonal if
and only if they give a valid decomposition.

(2) Let E = ¢P(S) have the standard (p,p)-
multi-norms. Then E has the orthogonal de-
composition £ = FE1 & --- @ Ep if and only if
there is a partition {S1,...,S5,} of S such that
E; = ep(sj) (j=1,...,k).

(3) Let £ = ¢P(S) have the standard (p,q)-
multi-norm, with ¢ #= p. Then there are no
non-trivial orthogonal decompositions of E.

(4) Let £ = C(2) for a compact space €2, and
let {E™ : n € N} have the minimum multi-norm.
Then the only orthogonal decompositions of E
have the form

C(2) =C(21) &+ & C(8)

for a partition {21,...,2} of Q2 into clopen
subspaces
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Decompositions and Banach lattices

Let £ be a Banach lattice. Recall that the
lattice multi-norms are defined by

ICz1, s zn)lly, = 22 V-Vl |
for x1,...,xzn € E.

Recall from that E=F; 1 --- 1L Ey is a classi-
cally orthogonal decomposition if |x;| A ‘azj‘ =0
whenever z; € E;, x; € Ej, and i 7 j.

Easy: a classically orthogonal decomposition
is orthogonal for the lattice multi-norm.

Let £ = E1®---@E, be orthogonal with respect
to the lattice multi-norm. Then

Hzg| V-Vl [ = llzg + - 4 @
whenever 1 € Eq,...,x; € Ey.

Theorem - Nigel Kalton This already implies

that the decomposition is classically orthogo-

nal, and so the new concept of ‘orthogonal’

coincides with the old one in this case. O
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Families of decompositions

Definition Let (E,|-||) be a normed space,
and consider a family

IC et {(El’a,...,Ena,a) NN — A},

where A is an index set, no € N (o € A), and

E:Elya@"'@Ena,a

IS a direct sum decomposition of E for each
a € A. The family K is closed provided that
the following conditions are satisfied:

(C1) (Ey1).ar- - Eo(ng).a) € K Whenever
(E1.0)--sEnga) €K and o € Gy,

(C2) (BE1,0®E24,E34,---,FEn,a) € K whenever
(Elas- s Enga) €K and ng > 2;

(C3) K contains all trivial direct sum decom-
positions.
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Orthogonal multi-norms

The families of all direct sum decompositions,
of all valid decompositions, of all small decom-
positions, and of all orthogonal decompositions
are closed families of decompositions.

Let (E™, | -],,) be a multi-normed space. Con-
sider a closed family

IC p— {{El,CU « ey E’I’La,()é} . e A}

of orthogonal decompositions of E.

Definition Let (E", | -||,,) be a multi-normed
space. This space is orthogonal with respect
to Cif

[(z1,. .- zn)|l, = Slép {H(Pl,axla x -aPn,ozﬂUn)Hn} ;

forxq1,...,xn € E, where the supremum is taken
over all a € A with ng = n.
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Multi-norms from families of
decompositions

Let (E,||-||) be a normed space, and consider
a closed family K = {{E1.4,..., Eng,af - € A}
of valid decompositions of E. For n € N and
x1,...,Tn € B, set

(@1, zn)lln

— sup {le,ole + .-+ Pna,ozan R n} .
acA

Then ((E™ || ]I, ) : » € N) is a multi-normed
space, each member of K is an orthogonal de-
composition of E with respect to this multi-
norm, and the multi-normed space is orthogo-
nal with respect to K. This is the multi-norm
generated by K.

Query: what are the conditions on a multi-
norm that ensure that it is orthogonal with
respect to some closed family of valid decom-
positions?
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Duals of valid decompositions

Fact Let E=F{ & ---® E;. be a valid decom-
position of a Banach space E. Then

is a valid decomposition of the dual space E’.

Consider a closed family

IC m— {{El)a, « ey Ena)a} NG E A}

of valid decompositions of E. The dual family
IS

K'={{Ela - En o} e A},

and it generates a multi-norm (|| - HL,C :n € N)
on the family {(E')"™ : n € N}.
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Dual multi-norms

Definition Let (E,|-||) be a normed space,
and let IC be a closed family of valid decompo-
sitions of E. Then the multi-norm on

{(E")™ : n € N} generated by K’ is denoted by

(1] neN).
The multi-normed space

(B 0) s e N)
iIs the multi-dual space with respect to K.

Orthogonal decompositions for Banach
lattices

For example, the family IC of all orthogonal de-
compositions is closed, and the Banach lattice
multi-norm is orthogonal with respect to this
family. Moreover, if E is order-continuous, the
dual multi-norm is exactly the Banach lattice
multi-norm of the dual space E’.
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The theorem on duality

Theorem Let (E,||-||) be a normed space, and
let IC be a closed family of valid decompositions
of . Then

(Y I o) = e N)

is a multi-normed space, each member of K’
is an orthogonal decomposition of E/, and this
multi-normed space is orthogonal with respect
to K. O

In very many (but not all) cases, the dual multi-
norms are independent of the defining family
IC, as we would wish.

T hese definitions make the earlier theorems on
duality correct (I think!).

Is the above the ‘correct’ duality theory, or is
there a simpler one?
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Reduced valid decompositions 1

Let (E,||l-||) be a normed space. A valid de-
composition

is reduced if there is a function ¢ : RT" — Rt

such that
k

PR

1=1

whenever z; € E;.

A closed family K of valid decompositions is
reduced if each member is reduced and the
corresponding 6 depends only on the value of
k.
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Reduced valid decompositions II

Suppose that K is a closed family of valid de-
compositions which contains non-trivial decom-
positions of length at least 3.

For s,t € RT, set sOt = 05(s,t).
Theorem (R+, O, -,<) is a topological ordered

semiring, and hence the only possibilities for
the binary operation O are

sOt = max{s,t} (s,teRT),
sOt = (sP+")/P (s,t e RT),
for some p > 1. U

The two possibilities are realised for the normed
spaces C'(£2) and £P, respectively.
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Multi-Banach algebras

Let (A,]|-||]) be a Banach algebra, and let

(A% - 1l) :neN)

be a multi-normed space. Then (A", ] -],,) is
a multi-Banach algebra if multiplication is a
multi-bounded bilinear operator, and so

|(a1b1, ..., anbn)l,, < |[(a1,...,an), (b1, .., bn)ll,-

Examples (1) Each Banach algebra is a multi-
Banach algebra with respect to both the min-
Imum and maximum multi-norms.

(2) Take 1 < p < g < . Then (£P(S), )
IS a multi-Banach algebra with respect to the
standard (p, g)-multi-norm.

(3) Let G be a locally compact group. Then
the group algebra (L1(G®), ) with the standard
(1, 1)-multi-norm is a multi-Banach algebra.

(4) For each multi-Banach space (E",|-|],,),
(MCE)™ || llmp,n) is @ multi-Banach algebra.
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