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Motivating problem

Let G be a locally compact group, with group

algebra L1(G).

Theorem - B. E. Johnson, 1972 The

Banach algebra L1(G) is amenable if and only

if the group G is amenable. 2

Theorem - Helemski, Johnson Let A be an

amenable Banach algebra. Then E′ is injective

for each Banach right A-module. 2

We do not know if the converse holds. If A is

a Banach algebra such that E′ is injective for

each, or some, Banach right A-module.

The Banach space Lp(G) is a Banach left L1(G)-

module in a canonical way.
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Some results

Theorem Suppose that G is an amenable
locally compact group. Then Lp(G) is an
injective Banach left L1(G)-module for each
p ∈ (1,∞). 2

We ask if the converse to this holds.

For partial results, see a paper of D and Polyakov
in Proc. London Math. Soc. Attempts on this
question led to a theory of multi-norms, which
may have a life of its own. See a proto-memoir
of 140 pages, and some Bangalore notes.

For a solution in the case where A is L1(G)
and the module is any Lp(G), and more, see
the second conference. (Work of Matt Daws,
Hung Le Pham, and Paul Ramsden.) Here
we give some background on multi-norms; the
connections with group algebras and new char-
acterizations of amenability for locally compact
groups will come in a talk at the second con-
ference.
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A second motivating problem

Again let G be a locally compact group, with

measure algebra (M(G), ?). For µ ∈M(G), set

Tµ(f) = µ ? f (f ∈ Lp(G)) .

(Here 1 < p <∞; usually, p = 2, so that L2(G)

is a Hilbert space.)

Then Tµ ∈ B(Lp(G)), and the map µ 7→ Tµ is a

representation of M(G).

Always σ(Tµ) ⊂ σ(µ), but maybe σ(Tµ) ( σ(µ),

which can be unfortunate - how can we cure

this?
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Basic definitions

Let (E, ‖ · ‖) be a normed space.

Definition A multi-norm on {En : n ∈ N} is a
sequence (‖ · ‖n) such that each ‖ · ‖n is a norm
on En, such that ‖x‖1 = ‖x‖ for each x ∈ E,
and such that the following hold for all n ∈ N
and all x1, . . . , xn ∈ E:

(A1)
∥∥∥(xσ(1), . . . , xσ(n))

∥∥∥
n

= ‖(x1, . . . , xn)‖n
for each permutation σ of {1, . . . , n};

(A2) ‖(α1x1, . . . , αnxn)‖n

≤ (maxi∈Nn |αi|) ‖(x1, . . . , xn)‖n

for each α1, . . . , αn ∈ C ;

(A3) ‖(x1, . . . , xn,0)‖n+1 = ‖(x1, . . . , xn)‖n ;

(A4) ‖(x1, . . . , xn, xn)‖n+1 = ‖(x1, . . . , xn)‖n.
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Another representation of multi-norms

Let Mm,n be the algebra of m×n-matrices over

C, and give it a norm by identifying it with

B(`∞n , `∞m ).

Let E be a normed space. Then Mm,n acts

from En to Em in the obvious way.

Consider a sequence (‖ · ‖n) such that each

‖ · ‖n is a norm on En and such that ‖x‖1 = ‖x‖
for each x ∈ E.

Theorem This sequence of norms is a multi-

norm if and only if

‖a · x‖m ≤ ‖a‖ ‖x‖n
for all m,n ∈ N, a ∈ Mm,n, and x ∈ En. 2
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Elementary consequences

The following hold for all x1, . . . , xn+1 ∈ E, etc:

1) ‖(x1, . . . , xn)‖n ≤
∥∥∥(x1, . . . , xn, xn+1)

∥∥∥
n+1

;

2) max ‖xi‖ ≤ ‖(x1, . . . , xn)‖n ≤
∑n
i=1 ‖xi‖ ;

3)

‖(x1, . . . , xn, y1, . . . , xm)‖m+n ≤
‖(x1, . . . , xn)‖n + ‖(y1, . . . , ym)‖m .
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Minimum and maximum multi-norms

Example 1 Set ‖(x1, . . . , xn)‖n = max ‖xi‖. This

gives the minimum multi-norm.

Example 2 It follows from 2) that there is also

a maximum multi-norm, say it is (‖ · ‖max
n ).

Note that it is not true that
∑n
i=1 ‖xi‖ gives

the maximum multi-norm — because it is not

a multi-norm. (It does fit into a more general

scenario.)
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Another characterization

Let (E, ‖ · ‖) be a normed space. Then a

c0-norm on c0 ⊗ E is a norm ‖ · ‖ such that

‖a⊗ x‖ ≤ ‖a‖ ‖x‖ for all a ∈ c0 and x ∈ E and

such that T ⊗ IE is a bounded linear operator

on (c0⊗E, ‖ · ‖) with ‖T ⊗ IE‖ = ‖T‖ whenever

T is a compact operator on c0.

Theorem (Daws) Multi-norms on {En : n ∈ N}
correspond to c0-norms on c0 ⊗E. The injec-

tive tensor product norm gives the minimum

multi-norm, and the projective tensor product

norm gives the maximum multi-norm 2

[Cf Alexander Helemskii’s abstract theory of

operator spaces.]
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And another characterization of
multi-norms

There is a paper ‘La structure des sous-espaces
de trellis’ by J. L. Marcolino Nhani, apparently
a student of a student of Pisier, in Disserta-
tiones Math., 2001.

He introduces ‘condition (P)’: for a normed
space E, there is a norm α on E ⊗ c0 such
that, for each T ∈ B(c0) and each x ∈ E ⊗ c0,

α((IE ⊗ T )(x)) ≤ ‖T‖α(x) .

This condition is equivalent to Daws’ condi-
tion, and so characterizes multi-norms.

A theorem of Pisier shows that, in this case, E
can be identified with a subspace of a certain
Banach lattice X. The structure on X gives
exactly what I had already called a Banach lat-
tice multi-norm; see below.

This relates our theory to that of operator se-
quence spaces of Volker Runde etc.
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An associated sequence

Let (‖ · ‖n) be a multi-norm on {En : n ∈ N}.

Define

ϕn(E) = sup {‖(x1, . . . , xn)‖n : ‖xi‖ ≤ 1} .
Trivially, 1 ≤ ϕn(E) ≤ n for all n ∈ N and

ϕm+n(E) ≤ ϕm(E) + ϕn(E)

for all m,n ∈ N. What is the sequence (ϕn(E))?

In particular (ϕmax
n (E)) is the sequence associ-

ated with the maximum multi-norm.

It can be shown quite easily that ϕmax
n (E) is

sup


n∑

j=1

∥∥∥λj∥∥∥
 ,

where λ1, . . . , λn ∈ E′ and

n∑
j=1

∣∣∣〈x, λj〉∣∣∣ ≤ 1 (x ∈ E[1]) .
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Summing norms - I

Let E be a normed space, and take p ∈ [1,∞).

For x1, . . . , xn ∈ E, set

µp,n(x1, . . . , xn) = sup
λ∈E′

[1]


 n∑
j=1

∣∣∣〈xj, λ〉∣∣∣p
1/p

 .

Then

µ1,n(x1, . . . , xn) = sup


∥∥∥∥∥∥
n∑

j=1

ζjxj

∥∥∥∥∥∥ : ζ1, . . . , ζn ∈ T

 .

For λ1, . . . , λn ∈ E′, we have

µ1,n(λ1, . . . , λn) = sup


n∑

j=1

∣∣∣〈x, λj〉∣∣∣ : x ∈ E[1]

 .

Let E and F be Banach spaces, and take

T ∈ B(E,F ) and n ∈ N. Then π
(n)
p (T ) is

sup


 n∑
j=1

∥∥∥Txj∥∥∥p
1/p

: µp,n(x1, . . . , xn) ≤ 1

 .
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Summing norms - II

Definition πp(T ) = limn→∞ π
(n)
p,n (T ) is the p-

summing norm of T .

The p-summing operators form an operator

ideal.

We write π
(n)
p (E) for π

(n)
p (IE) and πp(E) for

πp(IE).

Theorem Let E be a normed space, and let

n ∈ N. Then

ϕmax
n (E) = π

(n)
1 (E′) .

If E = F ′, then

ϕmax
n (E) = π

(n)
1 (F ) .

2
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Another constant

Let F be a normed space, and let SF be the
unit sphere of F . It is useful to define

cn(F ) = inf{µ1(λ1, . . . , λn) : λ1, . . . , λn ∈ SF} .

Easy fact: π(n)
1 (F )cn(F ) ≥ n. In fact

π
(n)
1 (F )cn(F ) = n ,

where π
(n)
1 (F ) is the version of π(n)

1 (F ) with
‖x1‖ = · · · = ‖xn‖ in the definition of
µ1(x1, . . . , xn).

Guess: I think that there should be a large
class of Banach spaces F with the property
that there is a constant CF such that

π
(n)
1 (F ) ≥ CFπ

(n)
1 (F )

for all n ∈ N. Is this correct? Is it true for
F = ` q whenever q ∈ [1,2]? In the latter case,
F is an Orlicz space, and there is a constant
Cq such that cn(` q) ≥ Cq

√
n (n ∈ N); what is

Cq in the complex case?
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A lower bound

We shall use the famous theorem of Dvoret-

zky, sometimes called the theorem on almost

spherical sections.

Theorem For each n ∈ N and ε > 0, there

exists m = m(n, ε) in N such that, for each

normed space E with dim E ≥ m, there is

an n-dimensional subspace L of E such that

d(L, `2
n ) < 1 + ε. 2

Theorem Let E be an infinite-dimensional normed

space. Then ϕmax
n (E) ≥

√
n for each n ∈ N. 2

Corollary Let E be an infinite-dimensional normed

space. Then ϕmax
n (E) → ∞, and there is a

multi-norm on E not equivalent to the

minimum multi-norm. 2

15



Special spaces

Take p with 1 ≤ p ≤ ∞, and write q for the
conjugate index to p. Take E = ` p. Thus

ϕmax
n (` p) = π

(n)
1 (` q) .

We write `
p
n for the n-dimensional space Cn

with the usual ` p-norm. Direct calculations of
ϕmax
n (` p) using Banach–Mazur distance give:

Theorem (i) For each p ∈ [1,2], we have

ϕmax
n (` pn) = ϕmax

n (` p) = n1/p (n ∈ N) .

(ii) For each p ∈ [2,∞], there is a constant Cp
such that
√
n ≤ ϕmax

n (` pn) ≤ ϕmax
n (` p) ≤ Cp

√
n (n ∈ N) .

2

In general, I do not know the best constant Cp
in the above inequality.
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Example 1 : Standard (p, q)-multi-norm

Let Ω be a measure space, and take p, q with
1 ≤ p ≤ q <∞. We consider the Banach space
E = Lp(Ω), with the usual Lp-norm ‖ · ‖.

For each family X = {X1, . . . , Xn} of pairwise-
disjoint measurable subsets of Ω such that
X1 ∪ · · · ∪Xn = Ω, we set

rX((f1, . . . , fn)) =

(∥∥∥PX1
f1

∥∥∥q + · · ·+
∥∥∥PXnfn∥∥∥q)1/q

where PX : Lp(Ω)→ Lp(X) is the natural
projection.

Finally, ‖(f1, . . . , fn)‖n = sup X rX((f1, . . . , fn)) .

This is the standard (p, q)-multi-norm.

Remark Let q = p.Then

‖(f1, . . . , fn)‖n = ‖ |f1| ∨ · · · ∨ |fn| ‖ .
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Example 2 : Measures

Let Ω be a non-empty, locally compact space.

Then M(Ω) is the Banach space of all regular

Borel measures on Ω. Take q ≥ 1.

For each partition X = {X1, . . . , Xn} of Ω into

measurable subsets and each µ1, . . . , µn ∈M(Ω),

take rX((µ1, . . . , µn)) to be

(‖µ1 | X1‖q + · · ·+ ‖µn | Xn‖q)1/q ,

so that rX is a seminorm on M(Ω)n Then de-

fine

‖(µ1, . . . , µn)‖(1,q)
n = sup

X
rX((µ1, . . . , µn)) ,

where the supremum is taken over all such fam-

ilies X. Then ‖ · ‖n is a norm on M(Ω)n, and

it is again easily checked that (‖ · ‖n : n ∈ N)

is a multi-norm on {M(Ω)n : n ∈ N}. It is the

standard (1, q)-multi-norm.
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Example 3 - Banach lattice multi-norms

Let (E, ‖ · ‖) be a complex Banach lattice.

[Thus there are lattice operations on ER, the
modulus |x| of an element x ∈ ER is defined,
and the norm is such that ‖x‖ ≤ ‖y‖ whenever
|x| ≤ |y| in E. Now E = ER ⊕ iER is a complex
Banach lattice.]

Example Lp(Ω), L∞(Ω), or C(Ω) with the
usual norms and the obvious lattice operations.

Definition Let (E, ‖ · ‖) be a Banach lattice.
For n ∈ N and x1, . . . , xn ∈ E, set

‖(x1, . . . , xn)‖n = ‖ |x1| ∨ · · · ∨ |xn| ‖ .

Then ((En, ‖ · ‖n) : n ∈ N) is a multi-Banach
space. It is the Banach lattice multi-norm.

It generalizes the standard (p, p)-multi-norm on
Lp(Ω) and the minimum multi-norms on L∞(Ω)
and C(Ω).
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Example 4 - The Schauder multi-norm

Let E be a Banach space with an unconditional

Schauder basis (en). Set∣∣∣∣∣∣
∣∣∣∣∣∣
∣∣∣∣∣∣
∞∑
n=1

αnen

∣∣∣∣∣∣
∣∣∣∣∣∣
∣∣∣∣∣∣ = sup


∥∥∥∥∥∥
∞∑
n=1

αnβnen

∥∥∥∥∥∥ : |βn| ≤ 1

 .

This norm is equivalent to the original one.

Let X = {X1, . . . , Xn} be a partition of N, and

define

rX((x1, . . . , xn)) =
∣∣∣∣∣∣∣∣∣PX1

x1 + · · ·+ PXnxn
∣∣∣∣∣∣∣∣∣ ,

where PXi are the obvious projections, and then

set

|||(x1, . . . , xn)|||n = sup
X

rX((x1, . . . , xn)) .

We again obtain a multi-norm (||| · |||n).
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Example 5 : The weak
(p1, p2) –multi-norm

Again E is a Banach space. Recall that the
weak p -summing norm is

µp,n(x1, . . . , xn) = sup
λ∈E′

[1]


 n∑
j=1

∣∣∣〈xj, λ〉∣∣∣p
1/p

 .

Here x1, . . . , xn ∈ E.

Now take p1, p2 with 1 ≤ p1 ≤ p2 <∞.

Define

‖x‖(p1,p2)
n = sup


 n∑
j=1

∣∣∣〈xj, λj〉∣∣∣p2

1/p2


taking the sup over all λ1, . . . , λn ∈ E′ with
µp1,n(λ1, . . . , λn) ≤ 1.

Fact {(En, ‖ · ‖(p1,p2)
n ) : n ∈ N} is a multi-normed

space.

It is the weak (p1, p2) –multi-norm over E.
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The weak (p1, p2) –multi-norm, continued

Fact The canonical embedding of E into E′′ is

a multi-isometry (see later) when we consider

the weak (p1, p2) –multi-norms over E and E′′.

Fact We can work out the dual of this multi-

norm quite explicitly; there is pleasing duality

theory.

Fact There are relations between these. For

example, take 1 ≤ p1 ≤ p2 < ∞ and 1 ≤ r1 ≤
r2 <∞. Suppose that p2 ≥ r2 and

1

p2
+

1

r1
≤

1

r2
+

1

p1
.

Then ‖ · ‖(p1,p2)
n ≤ ‖ · ‖(r1,r2)

n on En.
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The weak (p1, p2) –multi-norm,

connections with L1(Ω)

Fact For 1 ≤ q < ∞, the weak (1, q) –multi-

norm on the family {L1(Ω)n : n ∈ N} is the

same as the standard (1, q)–multi-norm described

above.

Fact There are several other useful identifica-

tions using measures and second duals.

Fact Various ‘nice’ multi-norms that I men-

tioned (and others) have ‘canonical extensions’

- and these we now know are suitable weak

(p1, p2) –multi-norms.
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Example 6 :The Hilbert multi-norm

Let H = `2(S) be a Hilbert space. For each

family H = {H1, . . . , Hn} of closed subspaces

of H such that H = H1 ⊥ · · · ⊥ Hn, set

rH((x1, . . . , xn)) =
(
‖P1x1‖2 + · · ·+ ‖Pnxn‖2

)1/2

where Pi : H → Hi for i = 1, . . . , n is the pro-

jection, and then set

|| (x1, . . . , xn)||Hn = sup
H

rH((x1, . . . , xn)) ;

we obtain multi-norms || · ||Hn . We immediately

have

||(x1, . . . , xn)||n ≤ ||(x1, . . . , xn)||Hn ,

where (‖ · ‖n) is the standard (2,2)-multi-norm

on `2(S).
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Maximality of the Hilbert multi-norm

Question Is the Hilbert multi-norm the maxi-

mum multi-norm on the family {Hn : n ∈ N}?
This seemed to be very likely because I could

not think of a bigger one. However it seems

to be rather a hard question.

In fact it can be reduced to a question about

Hilbert spaces that does not mention multi-

norms.

Let H be a Hilbert space. Then the closed unit

ball of the dual of (Hn, ‖ · ‖Hn ) is described as

follows. Set

S :=
⋃(α1e1, . . . , αnen) :

n∑
j=1

∣∣∣αj∣∣∣2 ≤ 1

 ,

where the union is taken over all orthonormal

subsets {e1, . . . , en} of H. The required unit

ball is the weak-∗-closed convex hull of S, call

it K.
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On the other hand, the closed unit ball of the

dual of (Hn, ‖ · ‖max
n ) is

{y = (y1, . . . , yn) ∈ Hn : µ1,n(y1, . . . , yn) ≤ 1} ;

this set, temporarily called L, is equal to the

set of y = (y1, . . . , yn) ∈ Hn such that

‖ζ1y1 + · · ·+ ζnyn‖ ≤ 1

for all ζ1, . . . , ζn ∈ T.

Since ‖ · ‖Hn ≤ ‖ · ‖
max
n , necessarily K ⊂ L.

To establish the equality of the two multi-

norms, we need to show that L ⊂ K for each

(implicit) n ∈ N. In fact, we need

exL ⊂ exK = S (n ∈ N) ,

where ‘ex ’ denotes the set of extreme points

of a convex set. Is this always the case?
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Towards this, I know the following.

Theorem Let H be a Hilbert space of dimen-

sion n.

(i) Suppose that n = 2. Then exL ⊂ S.

(ii) Suppose that n = 3 and H is a real Hilbert

space. Then this fails.

(iii) (Pham) Suppose that n = 3 and H is com-

plex. Then exL ⊂ S.

(iv) (Daws) There is a universal constant C

with C ‖ · ‖Hn ≥ ‖ · ‖
max
n , and so the Hilbert multi-

norm is equivalent to the maximum multi-norm.

[At present C is KG, Grothendieck’s constant.

Maybe we have C = 1.] 2
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Multi-topological linear spaces

Let E be a linear space, and let F be a sub-
space in EN such that, for each x ∈ E, we have
(x,0,0, . . . ) ∈ F . A subset B of F is basic if:

(1) for each permutation σ of N and (xn) ∈ B,
also (xσ(n)) ∈ B;

(2) for each (xn) ∈ B and αn with |αn| ≤ 1,
also (αnxn) ∈ B;

(3) for each (xn) ∈ B, also
(x1, x1, x2, x2, x3, . . . ) ∈ B;

(4) (xn) ∈ B if and only if (x1, . . . , xk,0, . . . ) ∈ B
for each k ∈ N.

Suppose that F has a basis (in the usual sense
of topological linear spaces) consisting of basic
sets. Then F is a multi-topological linear

space.
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Examples of multi-topological linear
spaces

(1) Let E be a multi-normed space. Set

F = {(xn) : ‖(x1, . . . , xk)‖k <∞ (k ∈ N)} .
Then F is a multi-topological linear space. The
basic sets are

{(xn) ∈ F : ‖(x1, . . . , xk)‖k ≤ C}.

(2) Let E be a topological linear space, and
set F = EN. Set

B = U1 × U2 × · · · ,
with Ui open in E, a basic set. Then F is a
multi-topological linear space. (Box topology.)

Definition Let F be a multi-topological linear
space. Then (xn) is multi-null if, for each
basic set B, there exists n0 ∈ N such that

(xn, xn+1, . . . ) ∈ B (n ≥ n0) .

There is a version of Kolmogorov’s theorem.
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Multi-convergence

Proposition Let ((En, ‖ · ‖n) : n ∈ N) be a

multi-normed space, and let (xi) be a sequence

in E. Then

Lim
i

xi = 0

if, for each ε > 0, there exists n0 ∈ N with∥∥(xn1, . . . , xnk)
∥∥
k < ε (n1, . . . , nk ≥ n0) .

2

These are exactly the multi-null sequences.

Theorem Multi-null sequences in a multi-normed

space (En, ‖ · ‖n) are the null sequences of some

topology on E if and only if the multi-norm is

equivalent to the minimum multi-norm. 2
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Multi-convergence - Examples

1) Let {En : n ∈ N} have the minimum multi-
norm. Then Lim i xi = 0 if and only if
limi xi = 0 in (E, ‖ · ‖).

2) Let E = ` p with the standard (p, q)-multi-
norm, and let

xi = αiδi (i ∈ N) .

Then Lim i xi = 0 if and only if
∑
|αi|q < ∞.

Here δi is the sequence (δi,j : j ∈ N).

3) Let E = Lp(Ω) with the standard (p, p)-
multi-norm. A sequence (fn) is multi-null iff
(fn) is order-bounded and fn → 0 almost
everywhere.

More generally

4) Let (E, ‖ · ‖) be an ‘order-continuous’ Ba-
nach lattice, and consider the Banach lattice
multi-norm on {En : n ∈ N}. Then a sequence
is a multi-null sequence if and only if it
converges to 0 ‘in order’.
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Multi-bounded sets and operators

Let (En, ‖ · ‖n) be a multi-normed space. A
subset B of E is multi-bounded if

cB := sup
n∈N
{‖(x1, . . . , xn)‖n : x1, . . . , xn ∈ B} <∞ .

Let (En, ‖ · ‖n) and (Fn, ‖ · ‖n) be multi-Banach
spaces. An operator T ∈ B(E,F ) is multi-
bounded if T (B) is multi-bounded in F when-
ever B is multi-bounded in E. The set of these
is a linear subspace M(E,F ) of B(E,F ).

For T ∈M(E,F ), set

‖T‖mb = sup {cT (B) : cB ≤ 1} .

Theorem Now ((M(E,F ), ‖ · ‖mb) is a Banach
space, and M(E) is a Banach operator alge-
bra. 2

[Recall that these depend on the multi-norm
structure, and not just on the Banach space,
despite the notation.]
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The multi-bounded norm

More generally, for n ∈ N and T1, . . . , Tn ∈M(E,F ),

set

‖(T1, . . . , Tn)‖mb,n = sup {cT1(B)∪···∪Tn(B) : cB ≤ 1} .

Theorem Now ((M(E,F )n, ‖ · ‖mb,n) : n ∈ N)

is a multi-Banach space. 2
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Examples of M(E,F ) - I

Throughout, {(En, ‖ · ‖n) : n ∈ N} and

{(Fn, ‖ · ‖n) : n ∈ N} are multi-normed spaces.

Fact Suppose that E and F are operator se-

quence spaces (see Lambert, Neufang, and Runde).

Then the multi-bounded operators are just the

sequentially bounded operators. 2

Theorem Always

N (E,F ) ⊂M(E,F ) ⊂ B(E,F ) ,

where N (E,F ) denotes the space of nuclear

operators. 2

Theorem Suppose that F has the minimum or

E the maximum multi-norm structure. Then

(M(E,F ), ‖ · ‖mb) = (B(E,F ), ‖ · ‖). 2

Question When exactly do we get the above

equality?
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Examples of M(E,F )

Theorem We can have M(E,F ) = B(E,F )

and M(F,E) = N (F,E). 2

Theorem Let E = ` p and F = ` q, where

p, q ≥ 1. Regard them as multi-normed spaces

with the standard (p, p) and (q, q) multi-norms,

respectively. Then M(E,F ) consists of the

regular operators. 2

[An operator is regular if it is the difference of

two positive operators.]
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Another example

Theorem We can have K(E) 6⊂ M(E).

Proof Let H be the Hilbert space `2(N), with

the standard (2,2)-multi-norm.

Consider the system of vectors

(xsr : r = 1, . . . s, s ∈ N)

defined as follows: xsr(k) = 0 except when

k ∈ {2s−1, . . . ,2s − 1} ;

at the 2s−1 numbers k in this set, xsr(k) =

±1/
√

2s−1, the values ±1 being chosen so that

[xsr1
, xsr2

] = 0 when r1, r2 = 1, . . . , s and r1 6= r2.

Such a choice is clearly possible. Then

S := {xsr : r = 1, . . . , s, s ∈ N}

is an orthonormal set in H. Order the set S

as (yn) by using the lexicographic order on the

pairs (s, r).
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Let (αi) ∈ `∞. We define T ∈ B(H) by setting

Txsr = αsδn when xsr = yn .

It is clear that, in the case where (αi) ∈ c0, we

have T ∈ K(H).

For k ∈ N, set Nk = k(k + 1)/2. We see that∥∥∥(y1, y2, . . . , yNk)
∥∥∥2

Nk
= k .

However
∥∥∥(Ty1, T y2, . . . , TyNk)

∥∥∥2

Nk
=
∑k
i=1 i |αi|

2.

Now take γ ∈ (0,1/2), and set αi = i−γ. Then∥∥∥(Ty1, T y2, . . . , TyNk)
∥∥∥
Nk∥∥∥(y1, y2, . . . , yNk)

∥∥∥
Nk

≥ ck(1−2γ)/2

for a constant c > 0. Since γ < 1/2, we have

T 6∈ M(H).

We have shown that K(H) 6⊂ M(H). 2
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M(E,F ) for Banach lattices

Let (E, ‖ · ‖) be a Banach lattice. Then E is

monotonically bounded if each increasing, ‖ · ‖-
bounded net in E has an (order) upper bound.

Thus each Banach lattice Lp(Ω) (for p ∈ [1,∞])

and C(Ω) (for Ω compact) is monotonically

bounded, but c0 is not monotonically bounded.

Theorem Let (E, ‖ · ‖) and (F, ‖ · ‖) be two

monotonically bounded Banach lattices, each

with the lattice multi-norms. Then M(E,F ) is

the space of all order-bounded operators from

E to F . 2
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Multi-bounded and multi-continuous

operators

Let E and F be multi-topological linear spaces.

An operator T : E → F is multi-continuous if

(Txi) is multi-null in F whenever (xi) is multi-

null in E.

Theorem Let (En, ‖ · ‖n) and (Fn, ‖ · ‖n) be

multi-normed spaces, and take T ∈ B(E,F ).

Then T is multi-continuous if and only if T is

multi-bounded. 2
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Banach lattices: examples

Return to the embedding µ 7→ Tµ of M(G)

into B(Lp(G)). In fact, it is a mapping into

M(Lp(G)), when Lp(G) has the standard (p, p)-

multi-norm, and now we do get σM(Tµ) = σ(µ)

always, where σM(Tµ) is the spectrum of Tµ in

the Banach algebra M(Lp(G)).

A failure of ‘Banach’s isomorphism theo-

rem:

Let E be a Banach lattice and consider the Ba-

nach lattice multi-norm. Then M(E) consists

of the regular operators; this Banach algebra

is Br(E). As mentioned, there are examples of

T ∈ Br(E) such that T is invertible in B(E),

but the inverse is not in Br(E).
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The problem of duality

Let E be a Banch space, and let (‖ · ‖n) be a
multi-norm on {En : n ∈ N}.

We might expect that the dual of the multi-
normed space is M(E,C). But this gives just
E′, and forgets the multi-norm structure.

We could try: ‖ · ‖′n is the norm on (E′)n which
is the dual of the norm ‖ · ‖n on En. We obtain
a sequence ‖ · ‖′n that satisfies (A1), (A2), and
(A3), but not (A4). Rather it satisfies:

(B4) ‖(x1, . . . , xn, xn)‖n+1 = ‖(x1, . . . , xn−1,2xn)‖n .

We have characterizations of these ‘dual multi-
norms’ analogous to the above – for example
we replace B(`∞n , `∞m ) by B(`1

n , `
1
m) and c0 ⊗ E

by `1 ⊗ E.

[The second duals of a multi-norm sequence
do give a multi-norm.]

So this does not work either.
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A consequence of duality

In fact we have a duality theory that involves

a long detour through an orthogonality theory

for multi-normed spaces that generalizes that

of Banach lattices. This gives the concepts of

multi-dual and multi-reflexive spaces.

We have the following, which was the point of

the definitions.

Theorem For 1 < p < ∞, let the families

{(`p)n : n ∈ N} have the standard (p, p)-multi-

norm. Then the multi-dual of the multi- normed

space {(`p)n : n ∈ N} is {(`q)n : n ∈ N} with the

standard (q, q)-multi-norm, where q is the con-

jugate index to p. Hence these multi-normed

spaces are multi-reflexive. 2
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Decompositions - definitions

Definition Let (E, ‖ · ‖) be a normed space. A

direct sum decomposition E = E1 ⊕ · · · ⊕Ek is

valid if

‖ζ1x1 + · · ·+ ζkxk‖ ≤ ‖x1 + · · ·+ xk‖

for all ζ1, . . . , ζk ∈ D and x1 ∈ E1, . . . , xk ∈ Ek.

Definition Let ((En, ‖ · ‖n) : n ∈ N) be a multi-

normed space, and let E = E1 ⊕ · · · ⊕ Ek be

a direct sum decomposition of E. Then the

decomposition is small if

‖P1x1 + · · ·+ Pkxk‖ ≤ ‖(x1, . . . , xk)‖k
for all x1, . . . , xk ∈ E.

Fact A small decomposition is valid.
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Orthogonality

Let (En, ‖ · ‖n) be a multi-normed space. A
family {E1, . . . , Ek} of linear subspaces of E is
orthogonal if, for each partition {S1, . . . , Sj}
of {1, . . . , k} and each xi ∈ Ei, we have

‖(x1, . . . , xk)‖k =
∥∥∥(y1, . . . , yj)

∥∥∥
j
,

where yi :=
∑
{xr : r ∈ Si} (i = 1, . . . , j).

In particular, we require that

‖(x1, . . . , xk)‖k = ‖x1 + · · ·+ xk‖
whenever xi ∈ Ei for i = 1, . . . , k.

A set {x1, . . . , xk} is orthogonal if the family
{Cx1, . . . ,Cxk} is orthogonal.

Remark It is possible that {x1, x2, x3} is not
orthogonal, but each of {x1, x2}, {x1, x3}, and
{x2, x3} is orthogonal.

Remark Every orthogonal decomposition is valid.
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Orthogonality - Examples

(1) Let H be a Hilbert space with the Hilbert

multi-norms Then subspaces are orthogonal if

and only if they are orthogonal in the classical

sense if and only if they give a valid decomp-

osition.

(2) Let E = ` p(S) have the standard (p, p)-

multi-norms. Then E has the orthogonal de-

composition E = E1 ⊕ · · · ⊕ Ek if and only if

there is a partition {S1, . . . , Sk} of S such that

Ej = ` p(Sj) (j = 1, . . . , k).

(3) Let E = ` p(S) have the standard (p, q)-

multi-norm, with q 6= p. Then there are no

non-trivial orthogonal decompositions of E.
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Continuous functions

Let E = C(Ω) for a compact space Ω, and let

{En : n ∈ N} have the minimum multi-norm.

Then the only orthogonal decompositions of

E have the form

C(Ω) = C(Ω1)⊕ · · · ⊕ C(Ωk)

for a partition {Ω1, . . . ,Ωk} of Ω into clopen

subspaces.
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Decompositions - some facts

Fact An orthogonal decomposition is valid.

Fact A small decomposition is not necessarily

orthogonal.

Fact An orthogonal decomposition is not nec-

essarily small.

[Maybe the definitions need tweaking to bring

‘small’ into the definition of ‘orthogonality’ ?]
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Orthogonality - Examples

(1) Let H be a Hilbert space with the Hilbert
multi-norms. Then subspaces are orthogonal
if and only if they are classically orthogonal if
and only if they give a valid decomposition.

(2) Let E = ` p(S) have the standard (p, p)-
multi-norms. Then E has the orthogonal de-
composition E = E1 ⊕ · · · ⊕ Ek if and only if
there is a partition {S1, . . . , Sk} of S such that
Ej = ` p(Sj) (j = 1, . . . , k).

(3) Let E = ` p(S) have the standard (p, q)-
multi-norm, with q 6= p. Then there are no
non-trivial orthogonal decompositions of E.

(4) Let E = C(Ω) for a compact space Ω, and
let {En : n ∈ N} have the minimum multi-norm.
Then the only orthogonal decompositions of E
have the form

C(Ω) = C(Ω1)⊕ · · · ⊕ C(Ωk)

for a partition {Ω1, . . . ,Ωk} of Ω into clopen
subspaces
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Decompositions and Banach lattices

Let E be a Banach lattice. Recall that the
lattice multi-norms are defined by

‖(x1, . . . , xn)‖n = ‖ |x1| ∨ · · · ∨ |xn| ‖
for x1, . . . , xn ∈ E.

Recall from that E = E1 ⊥ · · · ⊥ En is a classi-
cally orthogonal decomposition if |xi| ∧

∣∣∣xj∣∣∣ = 0
whenever xi ∈ Ei, xj ∈ Ej, and i 6= j.

Easy: a classically orthogonal decomposition
is orthogonal for the lattice multi-norm.

Let E = E1⊕· · ·⊕Ek be orthogonal with respect
to the lattice multi-norm. Then

‖ |x1| ∨ · · · ∨ |xk| ‖ = ‖x1 + · · ·+ xk‖
whenever x1 ∈ E1, . . . , xk ∈ Ek.

Theorem - Nigel Kalton This already implies
that the decomposition is classically orthogo-
nal, and so the new concept of ‘orthogonal’
coincides with the old one in this case. 2
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Families of decompositions

Definition Let (E, ‖ · ‖) be a normed space,

and consider a family

K = {(E1,α, . . . , Enα,α) : α ∈ A} ,

where A is an index set, nα ∈ N (α ∈ A), and

E = E1,α ⊕ · · · ⊕ Enα,α

is a direct sum decomposition of E for each

α ∈ A. The family K is closed provided that

the following conditions are satisfied:

(C1) (Eσ(1),α, . . . , Eσ(nα),α) ∈ K whenever

(E1,α, . . . , Enα,α) ∈ K and σ ∈ Snα;

(C2) (E1,α⊕E2,α, E3,α, . . . , Enα,α) ∈ K whenever

(E1,α, . . . , Enα,α) ∈ K and nα ≥ 2;

(C3) K contains all trivial direct sum decom-

positions.
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Orthogonal multi-norms

The families of all direct sum decompositions,

of all valid decompositions, of all small decom-

positions, and of all orthogonal decompositions

are closed families of decompositions.

Let (En, ‖ · ‖n) be a multi-normed space. Con-

sider a closed family

K = {{E1,α, . . . , Enα,α} : α ∈ A}

of orthogonal decompositions of E.

Definition Let (En, ‖ · ‖n) be a multi-normed

space. This space is orthogonal with respect

to K if

‖(x1, . . . , xn)‖n = sup
α

{∥∥∥(P1,αx1, . . . , Pn,αxn)
∥∥∥
n

}
,

for x1, . . . , xn ∈ E, where the supremum is taken

over all α ∈ A with nα = n.
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Multi-norms from families of

decompositions

Let (E, ‖ · ‖) be a normed space, and consider
a closed family K = {{E1,α, . . . , Enα,α} : α ∈ A}
of valid decompositions of E. For n ∈ N and
x1, . . . , xn ∈ E, set

‖(x1, . . . , xn)‖n,K

= sup
α∈A

{∥∥∥P1,αx1 + · · ·+ Pnα,αxn
∥∥∥ : nα = n

}
.

Then ((En, ‖ · ‖n,K) : n ∈ N) is a multi-normed
space, each member of K is an orthogonal de-
composition of E with respect to this multi-
norm, and the multi-normed space is orthogo-
nal with respect to K. This is the multi-norm
generated by K.

Query: what are the conditions on a multi-
norm that ensure that it is orthogonal with
respect to some closed family of valid decom-
positions?
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Duals of valid decompositions

Fact Let E = E1 ⊕ · · · ⊕ Ek be a valid decom-

position of a Banach space E. Then

E′ = E′1 ⊕ · · · ⊕ E
′
k

is a valid decomposition of the dual space E′.

Consider a closed family

K = {{E1,α, . . . , Enα,α} : α ∈ A}

of valid decompositions of E. The dual family

is

K′ = {{E′1,α, . . . , E
′
nα,α} : α ∈ A} ,

and it generates a multi-norm (‖ · ‖†n,K : n ∈ N)

on the family {(E′)n : n ∈ N}.
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Dual multi-norms

Definition Let (E, ‖ · ‖) be a normed space,

and let K be a closed family of valid decompo-

sitions of E. Then the multi-norm on

{(E′)n : n ∈ N} generated by K′ is denoted by

(‖ · ‖†n,K : n ∈ N) .

The multi-normed space

(((E′)n, ‖ · ‖†n,K) : n ∈ N)

is the multi-dual space with respect to K.

Orthogonal decompositions for Banach

lattices

For example, the family K of all orthogonal de-

compositions is closed, and the Banach lattice

multi-norm is orthogonal with respect to this

family. Moreover, if E is order-continuous, the

dual multi-norm is exactly the Banach lattice

multi-norm of the dual space E′.
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The theorem on duality

Theorem Let (E, ‖ · ‖) be a normed space, and

let K be a closed family of valid decompositions

of E. Then

(((E′)n, ‖ · ‖†n,K) : n ∈ N)

is a multi-normed space, each member of K′

is an orthogonal decomposition of E′, and this

multi-normed space is orthogonal with respect

to K′. 2

In very many (but not all) cases, the dual multi-

norms are independent of the defining family

K, as we would wish.

These definitions make the earlier theorems on

duality correct (I think!).

Is the above the ‘correct’ duality theory, or is

there a simpler one?
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Reduced valid decompositions I

Let (E, ‖ · ‖) be a normed space. A valid de-

composition

E = E1 ⊕ · · · ⊕ Ek
is reduced if there is a function θ : R+n → R+

such that

θ(‖x1‖ , . . . , ‖xk‖) =

∥∥∥∥∥∥
k∑
i=1

xi

∥∥∥∥∥∥
whenever xi ∈ Ei.

A closed family K of valid decompositions is

reduced if each member is reduced and the

corresponding θ depends only on the value of

k.
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Reduced valid decompositions II

Suppose that K is a closed family of valid de-

compositions which contains non-trivial decom-

positions of length at least 3.

For s, t ∈ R+, set s2 t = θ2(s, t).

Theorem (R+,2, · ,≤) is a topological ordered

semiring, and hence the only possibilities for

the binary operation 2 are

s2t = max{s, t} (s, t ∈ R+) ,

s2t = (sp + tp)1/p (s, t ∈ R+) ,

for some p ≥ 1. 2

The two possibilities are realised for the normed

spaces C(Ω) and ` p, respectively.
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Multi-Banach algebras

Let (A, ‖ · ‖) be a Banach algebra, and let

((An, ‖ · ‖n) : n ∈ N)

be a multi-normed space. Then (An, ‖ · ‖n) is
a multi-Banach algebra if multiplication is a
multi-bounded bilinear operator, and so

‖(a1b1, . . . , anbn)‖n ≤ ‖(a1, . . . , an)‖n ‖(b1, . . . , bn)‖n .

Examples (1) Each Banach algebra is a multi-
Banach algebra with respect to both the min-
imum and maximum multi-norms.

(2) Take 1 ≤ p ≤ q < ∞. Then (` p(S), · )
is a multi-Banach algebra with respect to the
standard (p, q)-multi-norm.

(3) Let G be a locally compact group. Then
the group algebra (L1(G), ?) with the standard
(1,1)-multi-norm is a multi-Banach algebra.

(4) For each multi-Banach space (En, ‖ · ‖n),
(M(E)n, ‖ · ‖mb,n) is a multi-Banach algebra.
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