Multipliers of locally compact quantum groups and Hilbert C*-modules 2. Multipliers and Hilbert C*-modules

Matthew Daws

Leeds

June 2010

< ∃ >

Multipliers of Banach algebras

For a Banach algebra A, we always assume that A is *faithful*: if $a \in A$ and bac = 0 for all $b, c \in A$, then a = 0.

Recall that the *multiplier algebra* is M(A), consisting of pairs of maps (L, R) with aL(b) = R(a)b for $a, b \in A$. If A is Arens regular and has a bounded approximate identity,

$$M(A) = \{x \in A^{**} : xa, ax \in A \ (a \in A)\}.$$

Homework: Let $\theta : A \to B(A)$ be the left-regular representation, $\theta(a) : b \mapsto ab$. Show that we can identify M(A) with

$$\{T \in B(A) : T\theta(a), \theta(a)T \in \theta(A) \ (a \in A)\}.$$

For a locally compact group G, the algebra $L^1(G)$ always has a contractive approximate identity (so is faithful). The algebra A(G) has a bounded approximate identity only when G is amenable, but is always faithful.

Multipliers of $L^1(G)$

We identify M(G) with the dual of $C_0(G)$, and then our coproduct Δ induces a product on M(G):

$$\langle \mu * \lambda, f \rangle = \int_{G \times G} f(st) \ d\mu(s) \ d\lambda(t) \qquad (f \in C_0(G), \mu, \lambda \in M(G)).$$

Theorem

For any locally compact group G, we have an isometric isomorphism between $M(L^1(G))$ and M(G).

Proof.

We embed $L^1(G)$ into $C_0(G)^* = M(G)$ by integration. Then $L^1(G)$ is an ideal in M(G), so we get a contraction $M(G) \to M(L^1(G))$. Conversely, given $(L, R) \in M(L^1(G))$, let (e_α) be a cai for $L^1(G)$, and define $\mu \in M(G)$ to be the weak*-limit of $L(e_\alpha)$.

Multipliers of A(G)

Theorem

Let $A \subseteq C_0(G)$ be a sub-algebra such that:

- A is a Banach algebra for some norm such that the inclusion $A \to C_0(G)$ is continuous;
- for each $s \in G$ there exists $a \in A$ with a(s) = 1 and $||a|| \le 2$;
- for each $s \in G$ there is an open set U containing s, and $a \in A$ with $a|_U \equiv 1$.

Then we can identify M(A) with $\{f \in C^b(G) : fa \in A \ (a \in A)\}$.

Proof.

As A is commutative, $M(A) = \{T : A \rightarrow A : T(ab) = T(a)b \ (a, b \in A)\}$. The rest is homework.

Observe that A(G) satisfies all these conditions. Observe that $M(C_{00}(G)) = C(G)$, the algebra of all continuous functions.

Completely bounded multipliers of A(G)

We see that

$$M(A(G)) = \{ T \in B(A(G)) : T(ab) = T(a)b \ (a, b \in A(G)) \}$$

= $\{ f \in C^{b}(G) : fa \in A(G) \ (a \in A(G)) \}.$

Given $T \in M(A(G))$, we see that $T^* \in B(VN(G))$. Hence

$$I \otimes T^* : M_n \otimes VN(G) = M_n(VN(G)) \rightarrow M_n(VN(G)),$$

where $M_n(VN(G))$ is a von Neumann algebra acting on $\ell_n^2 \otimes L^2(G)$.

We say that T is completely bounded if $I \otimes T^*$ is bounded, uniformly in $n \in \mathbb{N}$. Write $M_{cb}A(G)$ for the algebra of such multipliers.

So, formally, $M_{cb}A(G)$ is a subalgebra of $C^b(G)$. Can we find a characterisation which doesn't involve maps on VN(G)?

- ・ 伺 ト ・ ヨ ト ・ ヨ ト ・ ヨ

Gilbert's Theorem

Theorem

Let $f \in C^{b}(G)$. The following are equivalent:

• $f \in M_{cb}A(G);$

2 there exists a Hilbert space K, and bounded continuous maps $\alpha, \beta : G \to K$, such that $f(st^{-1}) = (\alpha(s)|\beta(t))$ for $s, t \in G$.

Proof.

See Jolissaint, 1992. (History: Jolissaint points us to Cowling and Haagerup, Inventiones, 1989. They point us to Bozejko and Fendler, 1984, who attribute the result to Gilbert, unpublished, late 70s). $\hfill\square$

A D A D A D A

Completely bounded maps

Remember that a map T from a C*-algebra A to B(H) is completely bounded if and only if we can find a *-representation $\pi : A \to B(K)$ and bounded maps $P, Q : H \to K$ with

$$T(x) = Q^* \pi(x) P$$
 $(x \in A).$

So, suppose we have $\alpha,\beta: \mathcal{G} \to \mathcal{K}$ bounded and continuous with

$$f(st^{-1}) = (\alpha(s)|\beta(t))$$
 $(s, t \in G).$

Then define $\tilde{\alpha} : L^2(G) \to L^2(G, K) = L^2(G) \otimes K$ by $\tilde{\alpha}(\xi) = (\xi(r)\alpha(r))_{r \in G}$. Notice then that

$$(\lambda(s)\otimes 1)\widetilde{lpha}(\xi)=ig(\xi(s^{-1}r)lpha(s^{-1}r)ig)_{r\in \mathcal{G}}\qquad(s\in \mathcal{G}).$$

If we form $\tilde{\beta}$ similarly, then we can define a completely bounded map $T: VN(G) \to B(L^2(G))$ by

$$T(x) = \tilde{\beta}^*(x \otimes 1)\tilde{\alpha} \qquad (x \in VN(G)).$$

Notice that T is clearly normal.

イロト 不得下 イヨト イヨト 二日

Easy direction continued

Then for
$$\xi, \eta \in L^2(G)$$
 and $s \in G$,
 $(T(\lambda(s^{-1}))\xi|\eta) = (\tilde{\beta}^*(\lambda(s^{-1}) \otimes 1)\tilde{\alpha}\xi|\eta)$
 $= \int_G (\xi(sr)\alpha(sr)|\eta(r)\beta(r)) dr$
 $= \int_G \xi(sr)\overline{\eta(r)}(\alpha(sr)|\beta(r)) dr$
 $= f(srr^{-1}) \int_G \xi(sr)\overline{\eta(r)} dr = f(s)(\lambda(s^{-1})\xi|\eta).$

Thus $T(\lambda(s^{-1})) = f(s)\lambda(s^{-1})$. As T is normal, it follows that T maps into VN(G).

Remember that $A(G) \to C_0(G)$ is the map $\omega_{\xi,\eta} \mapsto ((\lambda(s^{-1})\xi|\eta))_{s\in G}$. It follows that T is the adjoint of the multiplier induced by f. Thus f is completely bounded.

The converse

Now suppose that f is completely bounded, say inducing $T : VN(G) \rightarrow VN(G)$ which has the form

$$T(x) = Q^* \pi(x) P$$
 $(x \in VN(G)),$

where $\pi : VN(G) \to B(K)$ is a *-representation. As T is normal, we may suppose that π is too. Notice that we may assume that $\pi(1) = 1$. Then the map $\sigma : G \to B(K); s \mapsto \pi(\lambda(s))$ is a continuous unitary representation. Now notice that for $s \in G$ and $\omega \in A(G)$,

$$f(s)\langle\lambda(s^{-1}),\omega\rangle=\langle\lambda(s^{-1}),f\omega\rangle=\langle T(\lambda(s^{-1})),\omega\rangle=\langle Q^*\pi(\lambda(s^{-1}))P,\omega\rangle,$$

and so $Q^*\sigma(s)P = f(s^{-1})\lambda(s)$. Pick $\xi_0 \in L^2(G)$ a unit vector, and define

$$\alpha(s) = \sigma(s^{-1}) P\lambda(s)\xi_0, \quad \beta(s) = \sigma(s^{-1}) Q\lambda(s)\xi_0 \qquad (s \in G).$$

Thus, for $s, t \in G$,

$$\begin{aligned} & (\alpha(s)|\beta(t)) = \left(Q^*\sigma(t^{-1})^*\sigma(s^{-1})P\lambda(s)\xi_0|\lambda(t)\xi_0\right) \\ & = f(st^{-1})(\lambda(ts^{-1})\lambda(s)\xi_0|\lambda(t)\xi_0) = f(st^{-1}). \end{aligned}$$

イロト 不得下 イヨト イヨト 二日

Hilbert C*-modules

We have seen that the space $C^{b}(G, K)$ is very useful. How can we think about this abstractly?

Let A be a C*-algebra. A *pre-Hilbert* C*-*module* over A is a *right* A-module E where E admits an A-valued sesquilinear map satisfying:

 $\ \, {\bf 0} \ \, (x|\cdot) \text{ is a } \textit{linear map } E \to A \text{ and } (x|y)^* = (y|x);$

2 $(x|x) \ge 0$ in the C*-algebra sense, and $(x|x) = 0 \implies x = 0$;

$$(x|y \cdot a) = (x|y)a.$$

Henceforth all inner-products will be linear on the right.

We can define a norm on *E* by $||x|| = ||(x|x)||_A^{1/2}$; this is a norm, which follows by first showing a Cauchy-Schwarz inequality for $(\cdot|\cdot)$. When *E* is complete, we say that *E* is *Hilbert C*^{*}-module.

Notice that

$$\|x \cdot a\|^2 = \|(x \cdot a|x)a\| = \|(x|x \cdot a)^*a\| = \|a^*(x|x)a\| \le \|(x|x)\|\|a^*a\| = \|x\|^2\|a\|^2$$

Examples

- If $A = \mathbb{C}$, then we just recover the notion of a Hilbert space.
- Given A, we can turn A into a Hilbert C*-module over itself by defining $(a|b) = a^*b$.
- Let K be a Hilbert space, and form the algebraic tensor product A ⊙ K. This becomes a pre-Hilbert C*-module for

$$(\mathbf{a}\otimes \xi | \mathbf{b}\otimes \eta) = \mathbf{a}^* \mathbf{b}(\xi|\eta),$$

with the module action $(a \otimes \xi) \cdot b = ab \otimes \xi$.

To show that this is positive definite, notice that we can write any tensor in $A \odot K$ as $\sum a_k \otimes \xi_k$ with the (ξ_k) being orthonormal. Then the inner-product is $\sum_k a_k^* a_k \ge 0$.

Let $A \otimes K$ be the completion of $A \odot K$.

Indeed, if (e_i) is an orthonormal basis for K, then $A \otimes K$ consists of those families (a_i) in A such that $\sum_i a_i^* a_i$ converges in A (notice that this is *weaker* than $\sum_i ||a_i||^2 < \infty$).

Morphisms

Let *E* and *F* be Hilbert C*-modules over *A*. A map $T : E \to F$ is *adjointable* if there exists a map $T^* : F \to E$ with

$$(T(x)|y) = (x|T^*(y))$$
 $(x \in E, y \in F).$

Homework: Show that T and T^* are linear, and using the Closed Graph Theorem, that T and T^* are bounded. Show furthermore that T and T^* are *A*-module maps.

Unlike for Hilbert spaces, if T is bounded and linear (and an A-module map) then we cannot always find T^* .

Clearly $T^{**} = T$, and it's easy to see that $||T^*T|| = ||T||^2$. We write $\mathcal{L}(E, F)$ for the collection of adjointable maps $E \to F$. Then $\mathcal{L}(E)$ is a C*-algebra.

Consider the "finite-rank" map

$$heta_{x,y}: E \to F; \ z \mapsto x \cdot (y|z) \qquad (z \in E),$$

where $x \in F$ and $y \in E$. This is adjointable, because $\theta_{x,y}^* = \theta_{y,x}$. Let $\mathcal{K}(E)$ be the closure of the linear span of such maps in $\mathcal{L}(E, F)$.

Links with multipliers

Theorem

Consider A as a module over itself. Then $\mathcal{K}(A) \cong A$ and $\mathcal{L}(A) \cong M(A)$.

Proof.

Let $a, b \in A$, so that $\theta_{a,b}(c) = a(b|c) = ab^*c$, and hence $\theta_{a,b}$ is left multiplication by ab^* . As A has an approximate identity, it's not hard to see that $\mathcal{K}(A) \cong A$. Given $T \in \mathcal{L}(A)$, define $(L, R) \in M(A)$ by

$$L(a) = T(a), \quad R(a) = T^*(a^*)^* \qquad (a \in A).$$

Then $a^*L(b) = (a|T(b)) = (T^*(a)|b) = T^*(a)^*b = R(a^*)b$. So we have a map $\mathcal{L}(A) \to \mathcal{M}(A)$. This is onto, as given $(L, R) \in \mathcal{M}(A)$, the map L is adjointable, with $L^*(a) = R(a^*)^*$.

For general E, we have that $\mathcal{K}(E)$ is an ideal in $\mathcal{L}(E)$, and, considering $\mathcal{K}(E)$ as a C*-algebra, we have that $M(\mathcal{K}(E)) \cong \mathcal{L}(E)$.

Links with continuous functions

Theorem

We can identify $C_0(G) \otimes K$ with $C_0(G, K)$.

Proof.

Algebraically, we identify $f \otimes \xi$ with $(f(s)\xi)_{s \in G}$. Then

$$\left\|\sum_{k} f_{k} \otimes \xi_{k}\right\|^{2} = \left\|\sum_{j,k} f_{j}^{*} f_{k}(\xi_{j}|\xi_{k})\right\|_{C_{0}(G)} = \sup_{s \in G} \left|\sum_{j,k} \overline{f_{j}(s)} f_{k}(s)(\xi_{j}|\xi_{k})\right|$$
$$= \sup_{s \in G} \left|\sum_{j,k} \left(f_{j}(s)\xi_{j}|f_{k}(s)\xi_{k}\right)\right| = \sup_{s \in G} \left\|\sum_{k} f_{k}(s)\xi_{k}\right\|^{2}.$$

Finally, a partition of unity argument shows that the image of $C_0(G) \odot K$ is dense in $C_0(G, K)$.

A (10) A (10) A (10)

For morphisms

Theorem

We can identify $\mathcal{L}(C_0(G), C_0(G) \otimes K)$ with $C^b(G, K)$.

Proof.

Given
$$F \in C^b(G, K)$$
, we define $T : C_0(G) \to C_0(G, K)$ by
 $T(f) = (f(s)F(s))_{s \in G}$. This is adjointable, with $T^*(g) = ((F(s)|g(s)))_{s \in G}$ for
 $g \in C_0(G, K)$.
Conversely, given $T : C_0(G) \to C_0(G, K)$ adjointable, notice that
 $T^*(g)(s)f(s) = (T^*(g)|f)(s) = (g|T(f))(s) = (g(s)|T(f)(s))$ $(s \in G)$.

It follows that if $f_1(s) = f_2(s) = 1$, then $(g(s)|T(f_1)(s)) = (g(s)|T(f_2)(s))$ for all g; thus $T(f_1)(s) = T(f_2)(s)$. Let this be F(s), so T(f) = fF. Similar arguments show that F is continuous, and bounded.

- 4 同 6 4 日 6 4 日 6

More links between multipliers and adjointable maps

Theorem

We have that $\mathcal{K}(A \otimes K) \cong A \otimes_{\min} B_0(K)$ as C^* -algebras, and thus $\mathcal{L}(A \otimes K) \cong M(A \otimes_{\min} B_0(K)).$

Proof.

Algebraically, we define

$$\Theta: \theta_{\mathbf{a}\otimes \xi, \mathbf{b}\otimes \eta} \mapsto \mathbf{a}\mathbf{b}^* \otimes \theta_{\xi, \eta},$$

where $\theta_{\xi,\eta}: K \to K; \gamma \mapsto \xi(\eta|\gamma)$, so $\theta_{\xi,\eta} \in B_0(K)$. It's easy to see that this defines a homomorphism between a dense subalgebra of $\mathcal{K}(A \otimes K)$ and a dense subalgebra of $A \otimes B_0(K)$.

So it remains to show that Θ is an isometry (or at least bounded) and so extends by continuity: this I believe is tricky! (See [Lance]).

Back to groups

Remember that we have $W \in M(C_0(G) \otimes B_0(H))$ for $H = L^2(G)$,

$$W\xi(s,t) = \xi(s,s^{-1}t) \qquad (s,t\in G).$$

Thus W induces some

$$\mathcal{W} \in \mathcal{L}(C_0(G) \otimes H) = \mathcal{L}(C_0(G, H)).$$

Homework: follow the isomorphisms through to show that

$$\mathcal{W}: f \mapsto (\lambda(s)f(s))_{s \in G} \qquad (f \in C_0(G, H)).$$

(Indeed, if *H* is any Hilbert space, and σ is a unitary representation of *G* on *H*, then we can define $\mathcal{V} \in \mathcal{L}(C_0(G, H))$ in the same way $f \mapsto (\sigma(s)f(s))_{s \in G}$. This induces a unitary $V \in M(C_0(G) \otimes B_0(H))$: this is the notion of a *corepresentation*.)

< 回 ト < 三 ト < 三 ト

Slicing

Given $\xi \in K$, we can define

$$\iota \otimes \xi : A \otimes K \to A; \quad a \otimes \eta \mapsto a(\xi|\eta).$$

This is adjointable with

$$(\iota \otimes \xi)^* : A \to A \otimes K; \quad a \mapsto a \otimes \xi.$$

(This requires a small amount of work: homework!)

Fix a unit vector $\xi_0 \in K$. Using these maps, we can view $\mathcal{L}(A, A \otimes K)$ as a complemented submodule of $\mathcal{L}(A \otimes K)$:

$$\begin{array}{ll} \mathcal{L}(A,A\otimes K)\to \mathcal{L}(A\otimes K); & \alpha\mapsto \alpha(\iota\otimes\xi_0),\\ \mathcal{L}(A\otimes K)\to \mathcal{L}(A,A\otimes K); & \mathcal{T}\mapsto \mathcal{T}(\iota\otimes\xi_0)^*, \end{array}$$

which follows, as $(\iota \otimes \eta)(\iota \otimes \xi)^* = (\eta|\xi) \operatorname{id}_A$.

A B A A B A

Applications

Let $\alpha \in \mathcal{L}(A, A \otimes K)$ and $\mathcal{T} \in \mathcal{L}(A \otimes K)$ be related by $\alpha = \mathcal{T}(\iota \otimes \xi_0)^*$. Let $A \subseteq B(H)$. As $\mathcal{L}(A \otimes K) \cong M(A \otimes B_0(K))$, let \mathcal{T} be related to $\mathcal{T} \in M(A \otimes B_0(K)) \subseteq B(H \otimes K)$.

- We can define an operator $\tilde{\alpha}: H \to H \otimes K$ by $\tilde{\alpha}(\xi) = T(\xi \otimes \xi_0)$. Then:
 - $\tilde{\alpha}$ only depends upon α (and not \mathcal{T}).
 - Infact, $\tilde{\alpha}^* \tilde{\alpha} = \alpha^* \alpha \in \mathcal{L}(A) \cong M(A) \subseteq B(H)$.
 - ► This is the generalisation of the way we moved from C^b(G, K) to B(L²(G), L²(G, K)).
- Given a non-degenerate *-homomorphism φ : A → B, we can extend φ ⊗ ι to multiplier algebras, and hence define S = (φ ⊗ ι)T ∈ M(B ⊗ B₀(K)). Form S using S, and let φ * α = S(ι ⊗ ξ₀)* ∈ L(B, B ⊗ K). Then:
 - $\phi * \alpha$ only depends upon α , not T.
 - indeed, for any $\xi \in K$, we have that $(\iota \otimes \xi)(\phi * \alpha) = \phi((\iota \otimes \xi)\alpha)$ in $\mathcal{L}(B)$.

イロト イポト イヨト イヨト 二日

Example

For example, we can apply the second construction to Δ to give a map

 $\mathcal{L}(C_0(G), C_0(G) \otimes K) \to \mathcal{L}(C_0(G \times G), C_0(G \times G) \otimes K); \quad \alpha \mapsto \Delta * \alpha.$

This is just the map

$$C^{b}(G, K) \to C^{b}(G \times G, K); \quad \alpha \mapsto (\alpha(st))_{(s,t) \in G \times G}.$$

Gilbert's theorem asks that

$$f(st^{-1}) = (\beta(t)|\alpha(s))$$
 $(s, t \in G).$

(Remember: inner-products are linear on the right now!) This is equivalent to

$$f(r) = (\beta(s)|\alpha(rs))$$
 $(s, r \in G).$

In our abstract language, we get

$$(1 \otimes \beta)^*(\Delta * \alpha) = f \otimes 1 \in M(C_0(G) \otimes C_0(G)) = C^b(G \times G).$$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 >