Multipliers of locally compact quantum groups and Hilbert C*-modules 3. Quantum groups

Matthew Daws

Leeds

June 2010

Matthew Daws (Leeds)

Locally compact groups and duality

June 2010 1 / 16

• = • •

Locally compact quantum groups

Such a thing is a von Neumann algebra $L^{\infty}(\mathbb{G})$ together with a unital, injective, normal *-homomorphism $\Delta : L^{\infty}(\mathbb{G}) \to L^{\infty}(\mathbb{G}) \overline{\otimes} L^{\infty}(\mathbb{G})$ such that $(\Delta \otimes \iota)\Delta = (\iota \otimes \Delta)\Delta$.

The pre-adjoint Δ_* induces an associative product on $L^1(\mathbb{G}) = L^{\infty}(\mathbb{G})_*$. Then $L^1(\mathbb{G})$ becomes a (completely contractive) Banach algebra.

We assume the existence of left and right normal, faithful, semifinite weights. Using the left weight, we construct a Hilbert space $L^2(\mathbb{G})$ upon which $L^{\infty}(\mathbb{G})$ acts in standard position. There is a unitary map W (whose existence proof needs the right weight!) such that

$$\Delta(x) = W^*(1 \otimes x)W$$
 $(x \in L^{\infty}(\mathbb{G})).$

If we define $C_0(\mathbb{G})$ to be the norm closure of

$$\{(\iota\otimes\omega)W:\omega\in B(L^2(\mathbb{G}))_*\}$$

then $C_0(\mathbb{G})$ is a C*-algebra with $C_0(\mathbb{G})'' = L^{\infty}(\mathbb{G})$, and such that Δ restricts to a map $C_0(\mathbb{G}) \to M(C_0(\mathbb{G}) \otimes C_0(\mathbb{G}))$. Furthermore, the weights restrict to "nice" weights on $C_0(\mathbb{G})$. We think of $(C_0(\mathbb{G}), \Delta)$ as being the C*-algebraic counterpart to $L^{\infty}(\mathbb{G})$.

Duality

If we let $C_0(\hat{\mathbb{G}})$ be the norm closure of

$$\{(\omega \otimes \iota)W : \omega \in B(L^2(\mathbb{G}))_*\}$$

then this is a C*-algebra; let $L^{\infty}(\hat{\mathbb{G}}) = C_0(\hat{\mathbb{G}})''$. There exists a coassociative $\hat{\Delta} : L^{\infty}(\hat{\mathbb{G}}) \to L^{\infty}(\hat{\mathbb{G}}) \boxtimes L^{\infty}(\hat{\mathbb{G}})$. Also $L^{\infty}(\hat{\mathbb{G}})$ admits left and right invariant weights, and so becomes a locally compact quantum group in its own right. We have that $\hat{\mathbb{G}} = \mathbb{G}$ canonically.

In fact, the map

$$\lambda: L^1(\mathbb{G}) \to C_0(\hat{\mathbb{G}}); \quad \omega \mapsto (\omega \otimes \iota)W,$$

makes sense, and is a (completely) contractive homomorphism. We have that:

$$W \in L^{\infty}(\mathbb{G}) \overline{\otimes} L^{\infty}(\widehat{\mathbb{G}})$$
$$W \in M(C_{0}(\mathbb{G}) \otimes B_{0}(L^{2}(\mathbb{G})))$$
$$W \in M(B_{0}(L^{2}(\mathbb{G})) \otimes C_{0}(\widehat{\mathbb{G}}))$$
$$W \in M(C_{0}(\mathbb{G}) \otimes C_{0}(\widehat{\mathbb{G}})).$$

Multipliers: from abstract to concrete

Theorem

Let $(L, R) \in M_{cb}(L^1(\hat{\mathbb{G}}))$. There exists $a \in M(C_0(\mathbb{G}))$ such that

$$\hat{\lambda}(L(\hat{\omega})) = a\hat{\lambda}(\hat{\omega}), \quad \hat{\lambda}(R(\hat{\omega})) = \hat{\lambda}(\hat{\omega})a \qquad (\hat{\omega} \in L^1(\hat{\mathbb{G}})).$$

Proof.

Kraus and Ruan showed this for Kac algebras; not so hard to adapt the ideas to locally compact quantum groups.

Idea is to firstly define a as a (possibly unbounded) densely defined operator:

$$a\hat{\lambda}(\hat{\omega})\xi = \hat{\lambda}(L(\hat{\omega}))\xi \qquad (\xi \in L^2(\mathbb{G}), \hat{\omega} \in L^1(\hat{\mathbb{G}})).$$

That this is well-defined needs the existence of R (and doesn't use any complete boundedness).

You then show that $(R^* \otimes \iota)(\hat{W}) = \hat{W}(1 \otimes a)$ on some dense subspace of $L^2(\mathbb{G}) \otimes L^2(\mathbb{G})$. As \hat{W} is unitary, it follows that a must be bounded.

イロト イヨト イヨト イヨト

One-sided Multipliers: from abstract to concrete

A corollary of the Junge, Neufang, Ruan representation result is:

Theorem (JNR)

Let $R \in M^{r}_{cb}(L^{1}(\hat{\mathbb{G}}))$. Then there exists $a \in L^{\infty}(\mathbb{G})$ such that

$$\hat{\lambda}(R(\hat{\omega})) = \hat{\lambda}(\hat{\omega})a \qquad (\hat{\omega} \in L^1(\hat{\mathbb{G}})).$$

Here $M'_{cb}(L^1(\hat{\mathbb{G}}))$ is the space of completely bounded right multipliers. That is, bounded maps $R: L^1(\hat{\mathbb{G}}) \to L^1(\hat{\mathbb{G}})$ such that R(ab) = aR(b) and with $R^*: L^{\infty}(\hat{\mathbb{G}}) \to L^{\infty}(\hat{\mathbb{G}})$ being completely bounded.

Towards a quantum version of Gilbert's Theorem

Theorem

Let $f \in C^{b}(G)$. The following are equivalent:

• $f \in M_{cb}A(G);$

exists a Hilbert space K, and bounded continuous maps α, β : G → K, such that f(st⁻¹) = (α(s)|β(t)) for s, t ∈ G.

Remember that when $A = C_0(G)$,

$$C_0(G, K) = A \otimes K, \quad C^b(G, K) = \mathcal{L}(A, A \otimes K).$$

In the previous talk, given $\alpha \in \mathcal{L}(A, A \otimes K)$, we constructed $\Delta * \alpha$ (somehow analogous to "applying Δ pointwise") in $\mathcal{L}(A \otimes A, A \otimes A \otimes K)$. Then we get:

Theorem

Let $f \in M(A)$. The following are equivalent:

• $f \in M_{cb}A(G);$

2 there exists a Hilbert space K and α, β ∈ L(A, A ⊗ K) with (1 ⊗ β)*(Δ * α) = f ⊗ 1 in L(A ⊗ A) = M(A ⊗ A).

On the left

Theorem

Let $a \in M(C_0(\mathbb{G}))$, and let $L \in CB(L^1(\hat{\mathbb{G}}))$ be defined by $L^*(\cdot) = \tilde{\beta}^*(\cdot \otimes 1)\tilde{\alpha}$, for some $\alpha, \beta \in \mathcal{L}(C_0(\mathbb{G}), C_0(\mathbb{G}) \otimes K)$. Then following are equivalent:

 $(1 \otimes \beta)^* (\Delta * \alpha) = a \otimes 1;$

2 L is a left multiplier, represented by a in the sense that $\hat{\lambda}(L(\hat{\omega})) = a\hat{\lambda}(\hat{\omega})$.

Proof.

As $\Delta(\cdot) = W^*(1 \otimes \cdot)W$, we can recast the first condition as

$$(1\otimes \tilde{eta}^*)W^*_{12}(1\otimes \tilde{lpha})W={\sf a}\otimes 1.$$

Then use that $\hat{W} = \sigma W^* \sigma$ to show that

$$(L\otimes\iota)(\hat{W})=(1\otimes a)\hat{W},$$

which is equivalent to the second condition. (And then reverse the argument).

(日) (同) (三) (三)

On the left, harder

Theorem

Let $L \in M'_{cb}(L^1(\hat{\mathbb{G}}))$ be represented by $a \in L^{\infty}(\mathbb{G})$. (Always true by [JNR].) Then there exist $\alpha, \beta \in \mathcal{L}(C_0(\mathbb{G}), C_0(\mathbb{G}) \otimes K)$ with $(1 \otimes \beta)^*(\Delta * \alpha) = a \otimes 1$. So $a \in M(C_0(\mathbb{G}))$, and $L^*(x) = \tilde{\beta}^*(x \otimes 1)\tilde{\alpha}$.

Proof.

Basic idea is as in Jolissaint's proof of Gilbert's Theorem. We replace a unitary representation of G by a unitary corepresentation of $C_0(\mathbb{G})$. The complication comes that we need to use "universal quantum groups", see the paper of Kustermans. (For example, for non-amenable G, we really need to work with $C^*(G)$ and not $C_r^*(G)$).

- 4 週 ト - 4 三 ト - 4 三 ト

On the right

There exists an antilinear isometry $J: L^2(\mathbb{G}) \to L^2(\mathbb{G})$ connected to the Tomita-Takesaki theory of $L^{\infty}(\mathbb{G})$. Remarkably, this gives a map

$$\hat{\kappa}: L^{\infty}(\hat{\mathbb{G}}) \to L^{\infty}(\hat{\mathbb{G}}); \quad x \mapsto Jx^*J$$

which restricts to $C_0(\hat{\mathbb{G}})$, and satisfies $\hat{\Delta}\hat{\kappa} = \sigma(\hat{\kappa} \otimes \hat{\kappa})\hat{\Delta}$. So the pre-adjoint $\hat{\kappa}_* : L^1(\hat{\mathbb{G}}) \to L^1(\hat{\mathbb{G}})$ is an anti-homomorphism. Furthermore,

$$\hat{\lambda} \circ \hat{\kappa}_* = \kappa \circ \hat{\lambda}.$$

Theorem (Really, a lemma!)

Let L be a map on $L^1(\hat{\mathbb{G}})$, and let $R = \hat{\kappa}_* L \hat{\kappa}_*$. Then the following are equivalent:

- L is a completely bounded left multiplier represented by a ∈ L[∞](G) (or in M(C₀(G)));
- ② R is a completely bounded right multiplier represented by κ(a) ∈ L[∞](G) (or in M(C₀(G)));

So, end of story for right multipliers?

・ロン ・四 ・ ・ ヨン ・ ヨン

Using the oppposite algebra

Let $\hat{\mathbb{G}}^{op}$ be the locally compact quantum group which has $L^{\infty}(\hat{\mathbb{G}}^{op}) = L^{\infty}(\hat{\mathbb{G}})$ but with $\hat{\Delta}^{op} = \sigma \hat{\Delta}$. We swap the left and right invariant weights.

We have that $L^1(\hat{\mathbb{G}}^{op})$ is just the *opposite* Banach algebra to $L^1(\hat{\mathbb{G}})$. So left and right multipliers get swapped.

But what is the dual of $\hat{\mathbb{G}}^{op}$? It is \mathbb{G}' , where $L^{\infty}(\mathbb{G}') = L^{\infty}(\mathbb{G})'$, the commutant. Tomita theory tells us that $L^{\infty}(\mathbb{G}') = JL^{\infty}(\mathbb{G})J$. We can similarly build a coproduct and weights. The multiplicative unitary is

$$W' = (J \otimes J)W(J \otimes J),$$

from which it follows that also $C_0(\mathbb{G}') = JC_0(\mathbb{G})J$.

There is a bijection between $\alpha' \in \mathcal{L}(C_0(\mathbb{G}'), C_0(\mathbb{G}') \otimes K)$ and

 $\alpha \in \mathcal{L}(C_0(\mathbb{G}), C_0(\mathbb{G}) \otimes K)$ (we need to pick an "involution" J_K on K, so this isn't totally canonical).

Then $(1 \otimes \beta')^*(\Delta' * \alpha') = JaJ \otimes 1$ if and only if $(1 \otimes \beta)^*(\Delta * \alpha) = a \otimes 1$.

Swapping things about

Pick $R \in M_{cb}^{r}(L^{1}(\hat{\mathbb{G}}))$, and consider $R^{op} \in M_{cb}^{l}(L^{1}(\hat{\mathbb{G}}^{op}))$. Let *a* and *JbJ* "represent" R and R^{op} :

$$\hat{\lambda}(R(\hat{\omega})) = \hat{\lambda}(\hat{\omega})a, \quad \hat{\lambda}^{\mathsf{op}}(R^{\mathsf{op}}(\hat{\omega})) = JbJ\hat{\lambda}^{\mathsf{op}}(\hat{\omega}).$$

We can find α', β' associated to $R^{\rm op}$; this leads to α, β with

$$b \otimes 1 = (1 \otimes \beta)^* (\Delta * \alpha).$$

It turns out that

$$\kappa(a) \otimes 1 = (1 \otimes \alpha)^* (\Delta * \beta).$$

We call a pair (α, β) "invariant" if $(1 \otimes \beta)^* (\Delta * \alpha) \in M(C_0(\mathbb{G})) \otimes 1$.

So we've naturally found that (α, β) is invariant (say for b) if and only if (β, α) is invariant (say for $\kappa(a)$). What's the relationship between a and b?

(人間) とうき くうとう う

The (unbounded) antipode

The antipode S on \mathbb{G} is an unbounded operator: it plays the role of the inverse in quantum group theory. For Kac algebras, we have that $S = \kappa$, but even for compact quantum groups, S may be unbounded and only densely defined. For example, we have

$$S((\iota\otimes\omega)(W))=(\iota\otimes\omega)(W^*)\qquad (\omega\in B(H)_*).$$

We can "split off" the unbounded part of *S*. There is a strong*-continuous automorphism group $(\sigma_t)_{t\in\mathbb{R}}$ of $L^{\infty}(\mathbb{G})$ (which restricts to a norm continuous automorphism group of $C_0(\mathbb{G})$). You can analytically extend this to unbounded maps; then

$$S = \kappa \tau_{-i/2}.$$

Then, if $(\alpha, \beta) \to b$ and $(\beta, \alpha) \to \kappa(a)$, then $b = \tau_{-i/2}(a^*)$.

イロト 不得下 イヨト イヨト 二日

Taking a coordinate approach

Let (e_i) be an orthonormal basis for K. Recall that we can view $C_0(\mathbb{G}) \otimes K$ as being those families (a_i) in $C_0(\mathbb{G})$ with $\sum_i a_i^* a_i$ converging in norm. Similarly, we can view $\mathcal{L}(C_0(\mathbb{G}), C_0(\mathbb{G}) \otimes K)$ as being those families (a_i) in $\mathcal{L}(C_0(\mathbb{G})) = M(C_0(\mathbb{G}))$ with $\sum_i a_i^* a_i$ converging in the *strict* topology. So let α be associated to (α_i) , and similarly for β . Then (α, β) is invariant for bif and only if

$$\sum_i (1 \otimes \beta_i^*) \Delta(\alpha_i) = b \otimes 1.$$

Theorem

Let \overline{S} be the strict extension of S to $M(C_0(\mathbb{G}))$. If $a \in M(C_0(\mathbb{G}))$ and we have families (α_i) , (β_i) with

$$a\otimes 1=\sum_i\Delta(lpha_i)(1\otimeseta_i),$$

then $a \in D(\overline{S})$ and

$$\overline{S}(a)\otimes 1=\sum_i(1\otimes lpha_i)\Delta(eta_i).$$

Universal quantum groups

For a group G, we let $C^*(G)$ be the universal (or full) group C*-algebra: this is the completion of $L^1(G)$ under the largest C*-norm.

We can do a similar thing for quantum groups: but firstly we need to turn $L^1(\mathbb{G})$ into a *-algebra. The standard way to do this is to use the involution, so we need to restrict to a subalgebra $L^1_{\sharp}(\mathbb{G})$ of $L^1(\mathbb{G})$ where this is bounded. This then leads to $C_u(\hat{\mathbb{G}})$. Denote the *-representation by

$$\lambda_u: L^1_{\sharp}(\mathbb{G}) \to C_u(\hat{\mathbb{G}}).$$

The dual of $C_u(\hat{\mathbb{G}})$ is a dual Banach algebra (follow an argument of [Runde]) which contains $L^1(\hat{\mathbb{G}})$ as an ideal. So we get an inclusion $C_u(\hat{\mathbb{G}})^* \to M_{cb}(L^1(\hat{\mathbb{G}}))$. **Aside:** If $\hat{\mathbb{G}}$ is *co-amenable* $(L^1(\hat{\mathbb{G}})$ has a bai) then $C_u(\hat{\mathbb{G}}) = C_0(\hat{\mathbb{G}})$ and $M_{cb}(L^1(\hat{\mathbb{G}})) = C_0(\hat{\mathbb{G}})^*$. Is the converse true? (This is Losert's Theorem for A(G).)

◆□▶ ◆圖▶ ◆圖▶ ◆圖▶ ─ 圖

Universal quantum groups: in our framework

Pick $\mu \in C_u(\hat{\mathbb{G}})^*$ and choose a representation $\theta : C_u(\hat{\mathbb{G}}) \to B(K)$ and $\xi, \eta \in K$ with

$$\mu(a) = (\xi | \theta(a)\eta) \qquad (a \in C_u(\hat{\mathbb{G}})).$$

[Kustermans] \Rightarrow there is a unitary $U \in M(C_0(\mathbb{G}) \otimes B_0(K))$ with

$$heta(\lambda_u(\omega)) = (\omega \otimes \iota)(U), \quad (\Delta \otimes \iota)(U) = U_{13}U_{23}.$$

Associate U with $\mathcal{U} \in \mathcal{L}(C_0(\mathbb{G}) \otimes K)$, and let

$$\alpha = \mathcal{U}^*(\iota \otimes \xi)^*, \quad \beta = \mathcal{U}^*(\iota \otimes \eta)^*.$$

Then (α, β) induces the left multiplier induced by μ . (Indeed, if μ were actually in $L^1(\hat{\mathbb{G}})$ already, we could take U = W.)

- 4 同 6 4 日 6 4 日 6

Double multipliers

Theorem

Let $(L, R) \in M_{cb}(L^1(\hat{\mathbb{G}}))$. There exists a Hilbert space K with an involution J_K , $\mathcal{T} \in \mathcal{L}(C_0(\mathbb{G}) \otimes K)$ and $\xi, \eta \in K$ such that:

• with $\alpha = \mathcal{T}(\iota \otimes \xi)^*$ and $\beta = \mathcal{T}(\iota \otimes \eta)^*$, we have that (α, β) induces L;

• with $\alpha = \mathcal{T}(\iota \otimes J_K \eta)^*$ and $\beta = \mathcal{T}(\iota \otimes J_K \xi)^*$, we have that (α, β) induces $\hat{\kappa}_* R \hat{\kappa}_*$ (and thus R).

Proof.

The proof "glues" two Hilbert spaces together, but this isn't entirely trivial: you definitely need that (L, R) is a double multiplier (and not just unconnected left and right multipliers)..

If (L, R) is induced by $C_u(\hat{\mathbb{G}})^*$, then we can take \mathcal{T} to be unitary. Is the converse true? (Probably equivalent to my earlier question!)

イロト 不得下 イヨト イヨト 二日