Locally compact groups

Multipliers of locally compact quantum groups and Hilbert C*-modules

1. Locally compact groups, duality, and multiplier algebras

Matthew Daws

Leeds

June 2010

Let G be a locally compact group, and consider $C_{0}(G), C^{b}(G)$ and $L^{\infty}(G)$.
These are two C^{*}-algebras and a von Neumann algebra: they depend only on the topological and measure space properties of G.
We turn $L^{1}(G)$ into a Banach algebra for the convolution product:

$$
(f * g)(s)=\int_{G} f(t) g\left(t^{-1} s\right) d t
$$

This does remember the structure of G, in the following sense: if $L^{1}(G)$ and $L^{1}(H)$ are isometrically isomorphic as Banach algebras, then G is, as a topological group, isomorphic to H.

At the Operator algebra level

Define a map $\Delta: L^{\infty}(G) \rightarrow L^{\infty}(G \times G)$ by

$$
\Delta(F)(s, t)=F(s t) \quad\left(F \in L^{\infty}(G), s, t \in G\right) .
$$

This is a unital, injective, $*$-homomorphism which is normal (weak*-continuous). The pre-adjoint is a map $L^{1}(G \times G) \rightarrow L^{1}(G)$. As $L^{1}(G) \otimes L^{1}(G)$ embeds into $L^{1}(G \times G)$, we get a bilinear map on $L^{1}(G)$. This is actually the convolution product, as

$$
\begin{aligned}
\left\langle F, \Delta_{*}(f \otimes g)\right\rangle & =\langle\Delta(F), f \otimes g\rangle=\int_{G \times G} F(s t) f(s) g(t) d s d t \\
& =\int_{G} F(t) \int_{G} f(s) g\left(s^{-1} t\right) d s d t=\langle F, f * g\rangle
\end{aligned}
$$

For the C*-algebra

Notice that we can also interpret Δ as a $*$-homomorphism $C_{0}(G) \rightarrow C^{b}(G \times G)$,

$$
\Delta(F)(s, t)=F(s t) \quad\left(F \in C_{0}(G), s, t \in G\right)
$$

but not as a map into $C_{0}(G \times G)$.
The map $\Delta: C_{0}(G) \rightarrow C^{b}(G \times G)$ "almost" maps into $C_{0}(G \times G)$. Indeed, for $f, g \in C_{0}(G)$,

$$
((f \otimes 1) \Delta(g))(s, t)=f(s) g(s t) \rightarrow 0 \text { as }(s, t) \rightarrow \infty
$$

So $(f \otimes 1) \Delta(g) \in C_{0}(G \times G)$, and similarly $(1 \otimes f) \Delta(g) \in C_{0}(G \times G)$.
Notice also that the linear span of elements of the form $(f \otimes 1) \Delta(g)$ is dense in $C_{0}(G \times G)$.

Multiplier algebras

For a C^{*}-algebra A, we can regard A as being a self-adjoint closed subalgebra of $B(H)$; or as A being a subalgebra of its bidual $A^{* *}$. If A acts non-degenerately on $H($ so $\operatorname{lin}\{a(\xi): a \in A, \xi \in H\}$ is dense in H) then the multiplier algebra of A is

$$
\begin{aligned}
M(A) & =\{T \in \mathcal{B}(H): T a, a T \in A(a \in A)\} \\
& =\left\{x \in A^{* *}: x a, a x \in A(a \in A)\right\}
\end{aligned}
$$

These are seen to be closed self-adjoint algebras containing A as an ideal.
An abstract way to think of $M(A)$ is as the pairs of maps (L, R) from A to A with $a L(b)=R(a) b$. A little closed graph argument shows that L and R are bounded, and that

$$
L(a b)=L(a) b, \quad R(a b)=a R(b) \quad(a, b \in A)
$$

The involution in this picture is $(L, R)^{*}=\left(R^{*}, L^{*}\right)$ where $R^{*}(a)=R\left(a^{*}\right)^{*}$,
$L^{*}(a)=L\left(a^{*}\right)^{*}$. You can move between these pictures by a bounded approximate identity argument.
$M(A)$ is the largest C^{*}-algebra containing A as an essential ideal: if $x \in M(A)$ and $a x b=0$ for all $a, b \in A$, then $x=0$.

Group C*-algebras

We let G act on $L^{2}(G)$ by the left-regular representation:

$$
(\lambda(s) f)(t)=f\left(s^{-1} t\right) \quad\left(f \in L^{2}(G), s, t \in G\right)
$$

The s^{-1} arises to make $G \mapsto B(H) ; s \mapsto \lambda(s)$ a group homomorphism.
We can integrate this to get a contractive homomorphism
$\tilde{\lambda}: L^{1}(G) \rightarrow B\left(L^{2}(G)\right)$. The action of $L^{1}(G)$ on $L^{2}(G)$ is just convolution. Let the norm closure of $L^{1}(G)$ in $B\left(L^{2}(G)\right)$ be $C_{r}^{*}(G)$, the (reduced) group C^{*}-algebra. The weak-operator closure is $V N(G)$, the group von Neumann algebra. Equivalently, $V N(G)$ is $\{\lambda(s): s \in G\}^{\prime \prime}$.
We claim that there is a normal, unital injective $*$-homomorphism
$\Delta: V N(G) \rightarrow V N(G \times G)$ satisfying

$$
\Delta(\lambda(s))=\lambda(s) \otimes \lambda(s)=\lambda(s, s)
$$

Here we identify $V N(G) \bar{\otimes} V N(G)$ with $V N(G \times G)$. If Δ exists, then it's uniquely defined by this property.

Back to groups

We have that $M\left(C_{0}(G)\right)=C^{b}(G)=C(\beta G)$ (homework!)
Notice then that $\Delta: C_{0}(G) \rightarrow M\left(C_{0}(G \times G)\right)$ (actually stronger, as $\left.(f \otimes 1) \Delta(g) \in C_{0}(G \times G).\right)$
A useful topology to put on $M(A)$ is the strict topology:

$$
x_{i} \rightarrow x \quad \Leftrightarrow \quad x_{i} a \rightarrow x a, x_{i}^{*} a \rightarrow x^{*} a \quad(a \in A)
$$

Theorem

Let $\theta: A \rightarrow M(B)$ be a $*$-homomorphism. Then the following are equivalent:
(1) θ is non-degenerate: $\operatorname{lin}\{\theta(a) b: a \in A, b \in B\}$ is dense in B;
(2) $\theta\left(e_{i}\right) \rightarrow 1$ strictly for some (or all) bai's $\left(e_{i}\right)$ in A;
(3) there is an extension $\tilde{\theta}: M(A) \rightarrow M(B)$ which is unital, and strictly continuous on bounded sets.
Notice that Δ is non-degenerate.

Construction of Δ

Define $\hat{W}: L^{2}(G \times G) \rightarrow L^{2}(G \times G)$ by

$$
\hat{W} \xi(s, t)=\xi(t s, t) \quad\left(\xi \in L^{2}(G \times G), \xi, \eta \in G\right)
$$

Then \hat{W} is unitary, and

$$
\begin{aligned}
\left(\hat{W}^{*}(1 \otimes \lambda(r)) \hat{W} \xi\right)(s, t) & =((1 \otimes \lambda(r)) \hat{W} \xi)\left(t^{-1} s, t\right) \\
& =(\hat{W} \xi)\left(t^{-1} s, r^{-1} t\right)=\xi\left(r^{-1} s, r^{-1} t\right) \\
& =(\lambda(r) \otimes \lambda(r)) \xi(s, t)
\end{aligned}
$$

So we could define Δ by

$$
\Delta(x)=\hat{W}^{*}(1 \otimes x) \hat{W} \quad(x \in V N(G))
$$

Then obviously Δ is an injective, unital, normal $*$-homomorphism, and $\Delta(\lambda(s))=\lambda(s) \otimes \lambda(s)$, so by normality, Δ must map into $\operatorname{VN}(G \times G)$.

At the C^{*}-algebra level

We expect that Δ should restrict to give a non-degenerate map $C_{r}^{*}(G) \rightarrow M\left(C_{r}^{*}(G \times G)\right)$. This is indeed so:

- Notice that $\lambda(s) f * \xi=(s \cdot f) * \xi$ for $\left.s \in G, f \in L^{1}(G), \xi \in L^{2}(G)\right)$, where $(s \cdot f)(t)=f\left(s^{-1} t\right)$. So $\lambda(s) \tilde{\lambda}\left(L^{1}(G)\right) \subseteq \tilde{\lambda}\left(L^{1}(G)\right)$.
- By density, $\lambda(s) \in M\left(C_{r}^{*}(G)\right)$ for all s.
- So also $\lambda(s, s) \in M\left(C_{r}^{*}(G \times G)\right)$, and we can integrate the map $G \rightarrow M\left(C_{r}^{*}(G \times G)\right) ; s \mapsto \lambda(s, s)$ to get a homomorphism $L^{1}(G) \rightarrow M\left(C_{r}^{*}(G \times G)\right)$.
- This "is" the map Δ, so by density, we're done.

Checking that Δ is non-degenerate is a touch more work:

- We can find "nice" bai's in $L^{1}(G)$, and then Δ takes these to a strict bai in $M\left(C_{r}^{*}(G \times G)\right)$;
- It's not too hard to check that for $f \in L^{1}(G)$ and $h \in L^{1}(G \times G)$, we have that $\Delta\left(\tilde{\lambda}_{G}(f)\right) \tilde{\lambda}_{G \times G}(h)=\tilde{\lambda}_{G \times G}(g)$ for some $g \in L^{1}(G \times G)$. Then Δ is non-degenerate by density

Do the calculation!

$$
\begin{aligned}
\left(\left(\omega_{\xi, \eta} \otimes \iota\right) W \gamma \mid \delta\right) & =(W(\xi \otimes \gamma) \mid \eta \otimes \delta) \\
& =\int_{G \times G} \xi(s) \gamma\left(s^{-1} t\right) \overline{\eta(s) \delta(t)} d s d t=(f * \gamma \mid \delta)
\end{aligned}
$$

Thus indeed $\left(\omega_{\xi, \eta} \otimes \iota\right) W=\tilde{\lambda}(f)$ where $f=\xi \bar{\eta}$.
Similarly, we calculate $\left(\iota \otimes \omega_{\xi, \eta}\right) W$:

$$
\begin{aligned}
\left(\left(\iota \otimes \omega_{\xi, \eta}\right) W \gamma \mid \delta\right) & =(W(\gamma \otimes \xi) \mid \delta \otimes \eta) \\
& =\int_{G \times G} \gamma(s) \xi\left(s^{-1} t\right) \overline{\delta(s) \eta(t)} d s d t=(f \gamma \mid \delta) .
\end{aligned}
$$

Here $f \in C_{0}(G)$ is the map $f(s)=\int_{G} \xi\left(s^{-1} t\right) \overline{\eta(t)} d t$. Such f are linearly dense in $C_{0}(G)$.
So W determines Δ, the algebra $C_{0}(G)$, and the map $\tilde{\lambda}$. In this sense, W completely determines G.

Back to $C_{0}(G)$

There is a unitary W associated to $C_{0}(G)$ and $L^{\infty}(G)$, given by $W \xi(s, t)=\xi\left(s, s^{-1} t\right)$, and which satisfies

$$
\Delta(x)=W^{*}(1 \otimes x) W \quad\left(x \in L^{\infty}(G) \text { or } x \in C_{0}(G)\right)
$$

The map $\tilde{\lambda}: L^{1}(G) \rightarrow C_{r}^{*}(G)$ is actually

$$
\tilde{\lambda}(f)=(f \otimes \iota) W \quad\left(f \in L^{1}(G)\right) .
$$

This needs some explanation!

- Given $\xi, \eta \in L^{2}(G)$, we define $\left(\omega_{\xi, \eta} \otimes \iota\right) W \in B\left(L^{2}(G)\right)$ by

$$
\left(\left(\omega_{\xi, \eta} \otimes \iota\right) W \gamma \mid \delta\right)=(W(\xi \otimes \gamma) \mid \eta \otimes \delta) \quad\left(\gamma, \delta \in L^{2}(G)\right)
$$

- We let $f=\xi \bar{\eta} \in L^{1}(G)$ (pointwise product). Then part of the claim is that $\left(\omega_{\xi, \eta} \otimes \iota\right) W$ depends only on f.

What happens for $V N(G)$?

Using the coproduct Δ, we can turn the predual of $V N(G)$ into a Banach algebra.
This is the Fourier algebra $A(G)$: for the moment, we just view this abstract as the predual of $V N(G)$.
Given $\xi, \eta \in L^{2}(G)$, let $\omega_{\xi, \eta} \in A(G)$ be the normal functional

$$
V N(G) \rightarrow \mathbb{C} ; \quad x \mapsto(x(\xi) \mid \eta)
$$

As $V N(G)$ is in standard position (big von Neumann algebra machinery) on $L^{2}(G)$, it follows that actually every member of $A(G)$ takes this form.
Let's try to define $\hat{\lambda}: A(G) \rightarrow C_{0}(G)$ by

$$
\omega_{\xi, \eta} \mapsto\left(\omega_{\xi, \eta} \otimes \iota\right) \hat{W}
$$

The Fourier algebra $A(G)$

$$
\left(\left(\omega_{\xi, \eta} \otimes \iota\right) \hat{W} \gamma \mid \delta\right)=\int_{G \times G} \xi(t s) \gamma(t) \overline{\eta(s) \delta(t)} d s d t=(f \gamma \mid \delta)
$$

where $f \in C_{0}(G)$ is the map $f(t)=\int_{G} \xi(t s) \overline{\eta(s)} d s=\left(\lambda\left(t^{-1}\right) \xi \mid \eta\right)$. As λ is weak-operator continuous, it follows immediately that f is continuous, and it's easy to see that actually $f \in C_{0}(G)$. So

$$
\hat{\lambda}\left(\omega_{\xi, \eta}\right)=\left(\omega_{\xi, \eta} \otimes \iota\right) \hat{W}=f, \quad f(t)=\left\langle\lambda\left(t^{-1}\right), \omega_{\xi, \eta}\right\rangle
$$

As $\left\{\lambda\left(t^{-1}\right): t \in G\right\}$ generates $\operatorname{VN}(G)$, we see that $\hat{\lambda}$ is injective.
For $\omega_{1}, \omega_{2} \in A(G)$, we have that

$$
\begin{aligned}
\hat{\lambda}\left(\omega_{1} \omega_{2}\right)(t) & =\left\langle\lambda\left(t^{-1}\right), \omega_{1} \omega_{2}\right\rangle=\left\langle\Delta\left(\lambda\left(t^{-1}\right)\right), \omega_{1} \otimes \omega_{2}\right\rangle \\
& =\left\langle\lambda\left(t^{-1}\right) \otimes \lambda\left(t^{-1}\right), \omega_{1} \otimes \omega_{2}\right\rangle=\hat{\lambda}\left(\omega_{1}\right)(t) \hat{\lambda}\left(\omega_{2}\right)(t) .
\end{aligned}
$$

Thus $\hat{\lambda}$ is a homomorphism. It is usual to identify $A(G)$ with it's image in $C_{0}(G)$; so $A(G)$ is a commutative Banach algebra, dense in $C_{0}(G)$ (and actually with spectrum G).

Where does W live?

We have been considering W as a unitary in $B\left(L^{2}(G \times G)\right)$; however, right slices of W land in $C_{0}(G)$, and left slices in $C_{r}^{*}(G)$.
Set $H=L^{2}(G)$. The C^{*}-algebra $C_{0}(G) \otimes B_{0}(H)$ is the closure of the algebraic tensor product $C_{0}(G) \odot B_{0}(H)$ acting on $L^{2}(G \times G)$; here $B_{0}(H)$ is the compact operators on H. We can thus identify $M\left(C_{0}(G) \otimes B_{0}(H)\right)$ with a subalgebra of $B\left(L^{2}(G \times G)\right)$.

Theorem

We can identify $C_{0}(G) \otimes B_{0}(H)$ with $C_{0}\left(G, B_{0}(H)\right)$, the (norm) continuous functions $f: G \rightarrow B_{0}(H)$ which vanish at infinity. This identifies $a \otimes T$ with f where $f(s)=a(s) T$.

Proof.

Consider $L^{2}(G \times G)$ as the vector-valued $L^{2}(G, H)$. Then $C_{0}\left(G, B_{0}(H)\right)$ acts on $L^{2}(G, H)$ pointwise: $(f \xi)(s)=f(s) \xi(s)$. It follows that $C_{0}\left(G, B_{0}(H)\right)$ is isometrically represented on $L^{2}(G \times G)$, in a way compatible with the action of $C_{0}(G) \odot B_{0}(H)$. It remains to show that $C_{0}(G) \odot B_{0}(H)$ is dense in $C_{0}\left(G, B_{0}(H)\right)$: this follows by a partition of unity argument.

Finishing the duality picture

We perform a similar calculation:

$$
\begin{aligned}
\left(\left(\iota \otimes \omega_{\xi, \eta}\right) \hat{W} \gamma \mid \delta\right) & =(\hat{W}(\gamma \otimes \xi) \mid \delta \otimes \eta)=\int_{G \times G} \gamma(t s) \xi(t) \overline{\delta(s) \eta(t)} d s d t \\
& =\int_{G \times G} \gamma\left(t^{-1} s\right) \xi\left(t^{-1}\right) \nabla\left(t^{-1}\right) \overline{\delta(s) \eta\left(t^{-1}\right)} d s d t \\
& =\int_{G} \int_{G} \xi\left(t^{-1}\right) \nabla\left(t^{-1}\right) \overline{\eta\left(t^{-1}\right)} \gamma\left(t^{-1} s\right) d t \overline{\delta(s)} d s \\
& =(f * \gamma \mid \delta),
\end{aligned}
$$

where $f \in L^{1}(G)$ is the function $f(t)=\xi\left(t^{-1}\right) \nabla\left(t^{-1}\right) \overline{\eta\left(t^{-1}\right)}$. Here ∇ is the group modular function.
So we have that operators of the form $\left(\iota \otimes \omega_{\xi, \eta}\right) \hat{W}$ are linearly dense in $C_{r}^{*}(G)$.
Again, \hat{W} allows us to build the algebra $C_{r}^{*}(G)$, the coproduct Δ and the map $\hat{\lambda}$.
In fact, $\hat{W}=\sigma W^{*} \sigma$, where $\sigma \in B\left(L^{2}(G \times G)\right)$ is the swap map $\sigma \xi(s, t)=\xi(t, s)$.

Where does W live? (continued)

Recall that we identified $M\left(C_{0}(G)\right)$ with $C^{b}(G)$. The multiplier algebra of $B_{0}(H)$ is simply $B(H)$.
Similarly, we can identify $M\left(C_{0}\left(G, B_{0}(H)\right)\right)$ with $C_{s t r}^{b}(G, B(H))$, the bounded functions $F: G \rightarrow B(H)$ which are strictly continuous. Such a function F acts on $L^{2}(G, H)$ by $(F \xi)(s)=F(s) \xi(s)$.

Theorem

The operator W is a member of $M\left(C_{0}(G) \otimes B_{0}(H)\right)=C_{\text {str }}^{b}(G, B(H))$.

Proof.

Under the identification $L^{2}(G \times G)=L^{2}(G, H), W$ acts as $(W \xi)(s)=\lambda(s) \xi(s)$. Thus $W \in C_{s t r}^{b}(G, B(H))$ is the map $s \mapsto \lambda(s)$; we simply check that this is strictly continuous.

Where does \hat{W} live?

```
Theorem
The operator \(\hat{W}\) is a member of \(M\left(C_{r}^{*}(G) \otimes B_{0}(H)\right)\).
```


Proof.

Homework! (Actually, I know of no particularly nice proof).
Theorem
The operator W is a member of $M\left(C_{0}(G) \otimes C_{r}^{*}(G)\right)$.

Proof.

Again, $C_{0}(G) \otimes C_{r}^{*}(G)=C_{0}\left(G, C_{r}^{*}(G)\right)$ and the multiplier algebra is
$C_{s t r}^{b}\left(G, M\left(C_{r}^{*}(G)\right)\right)$. Then check that $s \mapsto \lambda(s)$ does map into $M\left(C_{r}^{*}(G)\right)$, and is strictly continuous.

