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Locally compact quantum groups
Such a thing is a von Neumann algebra L∞(G) together with a unital, injective,
normal ∗-homomorphism ∆ : L∞(G)→ L∞(G)⊗L∞(G) such that
(∆⊗ ι)∆ = (ι⊗∆)∆.

The pre-adjoint ∆∗ induces an associative product on L1(G) = L∞(G)∗. Then
L1(G) becomes a (completely contractive) Banach algebra.

We assume the existence of left and right normal, faithful, semifinite weights.
Using the left weight, we construct a Hilbert space L2(G) upon which L∞(G)
acts in standard position. There is a unitary map W (whose existence proof needs
the right weight!) such that

∆(x) = W ∗(1⊗ x)W (x ∈ L∞(G)).

If we define C0(G) to be the norm closure of

{(ι⊗ ω)W : ω ∈ B(L2(G))∗}

then C0(G) is a C∗-algebra with C0(G)′′ = L∞(G), and such that ∆ restricts to a
map C0(G)→ M

(
C0(G)⊗ C0(G)

)
. Furthermore, the weights restrict to “nice”

weights on C0(G). We think of (C0(G),∆) as being the C∗-algebraic counterpart
to L∞(G).
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Duality
If we let C0(Ĝ) be the norm closure of

{(ω ⊗ ι)W : ω ∈ B(L2(G))∗}

then this is a C∗-algebra; let L∞(Ĝ) = C0(Ĝ)′′. There exists a coassociative
∆̂ : L∞(Ĝ)→ L∞(Ĝ)⊗L∞(Ĝ). Also L∞(Ĝ) admits left and right invariant
weights, and so becomes a locally compact quantum group in its own right.

We have that ˆ̂G = G canonically.

In fact, the map
λ : L1(G)→ C0(Ĝ); ω 7→ (ω ⊗ ι)W ,

makes sense, and is a (completely) contractive homomorphism.

We have that:

W ∈ L∞(G)⊗L∞(Ĝ)

W ∈ M
(
C0(G)⊗ B0(L2(G))

)
W ∈ M

(
B0(L2(G))⊗ C0(Ĝ)

)
W ∈ M

(
C0(G)⊗ C0(Ĝ)

)
.
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Multipliers: from abstract to concrete

Theorem

Let (L,R) ∈ Mcb(L1(Ĝ)). There exists a ∈ M(C0(G)) such that

λ̂(L(ω̂)) = aλ̂(ω̂), λ̂(R(ω̂)) = λ̂(ω̂)a (ω̂ ∈ L1(Ĝ)).

Proof.
Kraus and Ruan showed this for Kac algebras; not so hard to adapt the ideas to
locally compact quantum groups.
Idea is to firstly define a as a (possibly unbounded) densely defined operator:

aλ̂(ω̂)ξ = λ̂(L(ω̂))ξ (ξ ∈ L2(G), ω̂ ∈ L1(Ĝ)).

That this is well-defined needs the existence of R (and doesn’t use any complete
boundedness).
You then show that (R∗ ⊗ ι)(Ŵ ) = Ŵ (1⊗ a) on some dense subspace of
L2(G)⊗ L2(G). As Ŵ is unitary, it follows that a must be bounded.
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One-sided Multipliers: from abstract to concrete

A corollary of the Junge, Neufang, Ruan representation result is:

Theorem (JNR)

Let R ∈ M r
cb(L1(Ĝ)). Then there exists a ∈ L∞(G) such that

λ̂(R(ω̂)) = λ̂(ω̂)a (ω̂ ∈ L1(Ĝ)).

Here M r
cb(L1(Ĝ)) is the space of completely bounded right multipliers. That is,

bounded maps R : L1(Ĝ)→ L1(Ĝ) such that R(ab) = aR(b) and with
R∗ : L∞(Ĝ)→ L∞(Ĝ) being completely bounded.
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Towards a quantum version of Gilbert’s Theorem

Theorem

Let f ∈ C b(G ). The following are equivalent:

1 f ∈ McbA(G );

2 there exists a Hilbert space K , and bounded continuous maps α, β : G → K ,
such that f (st−1) = (α(s)|β(t)) for s, t ∈ G .

Remember that when A = C0(G ),

C0(G ,K ) = A⊗ K , C b(G ,K ) = L(A,A⊗ K ).

In the previous talk, given α ∈ L(A,A⊗ K ), we constructed ∆ ∗ α (somehow
analogous to “applying ∆ pointwise”) in L(A⊗ A,A⊗ A⊗ K ). Then we get:

Theorem

Let f ∈ M(A). The following are equivalent:

1 f ∈ McbA(G );

2 there exists a Hilbert space K and α, β ∈ L(A,A⊗ K ) with
(1⊗ β)∗(∆ ∗ α) = f ⊗ 1 in L(A⊗ A) = M(A⊗ A).
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On the left

Theorem

Let a ∈ M(C0(G)), and let L ∈ CB(L1(Ĝ)) be defined by L∗(·) = β̃∗(· ⊗ 1)α̃, for
some α, β ∈ L(C0(G),C0(G)⊗ K ). Then following are equivalent:

1 (1⊗ β)∗(∆ ∗ α) = a⊗ 1;

2 L is a left multiplier, represented by a in the sense that λ̂(L(ω̂)) = aλ̂(ω̂).

Proof.

As ∆(·) = W ∗(1⊗ ·)W , we can recast the first condition as

(1⊗ β̃∗)W ∗
12(1⊗ α̃)W = a⊗ 1.

Then use that Ŵ = σW ∗σ to show that

(L⊗ ι)(Ŵ ) = (1⊗ a)Ŵ ,

which is equivalent to the second condition. (And then reverse the argument).
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On the left, harder

Theorem

Let L ∈ M l
cb(L1(Ĝ)) be represented by a ∈ L∞(G). (Always true by [JNR].) Then there

exist α, β ∈ L(C0(G),C0(G)⊗ K ) with (1⊗ β)∗(∆ ∗ α) = a⊗ 1. So
a ∈ M(C0(G)), and L∗(x) = β̃∗(x ⊗ 1)α̃.

Proof.
Basic idea is as in Jolissaint’s proof of Gilbert’s Theorem. We replace a unitary
representation of G by a unitary corepresentation of C0(G). The complication
comes that we need to use “universal quantum groups”, see the paper of
Kustermans. (For example, for non-amenable G , we really need to work with
C∗(G ) and not C∗r (G )).
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On the right
There exists an antilinear isometry J : L2(G)→ L2(G) connected to the
Tomita-Takesaki theory of L∞(G). Remarkably, this gives a map

κ̂ : L∞(Ĝ)→ L∞(Ĝ); x 7→ Jx∗J

which restricts to C0(Ĝ), and satisfies ∆̂κ̂ = σ(κ̂⊗ κ̂)∆̂. So the pre-adjoint
κ̂∗ : L1(Ĝ)→ L1(Ĝ) is an anti-homomorphism. Furthermore,

λ̂ ◦ κ̂∗ = κ ◦ λ̂.

Theorem (Really, a lemma!)

Let L be a map on L1(Ĝ), and let R = κ̂∗Lκ̂∗. Then the following are equivalent:

1 L is a completely bounded left multiplier represented by a ∈ L∞(G) (or in
M(C0(G)));

2 R is a completely bounded right multiplier represented by κ(a) ∈ L∞(G) (or
in M(C0(G)));

So, end of story for right multipliers?
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Using the oppposite algebra

Let Ĝop be the locally compact quantum group which has L∞(Ĝop) = L∞(Ĝ) but
with ∆̂op = σ∆̂. We swap the left and right invariant weights.

We have that L1(Ĝop) is just the opposite Banach algebra to L1(Ĝ). So left and
right multipliers get swapped.

But what is the dual of Ĝop? It is G′, where L∞(G′) = L∞(G)′, the commutant.
Tomita theory tells us that L∞(G′) = JL∞(G)J. We can similarly build a
coproduct and weights. The multiplicative unitary is

W ′ = (J ⊗ J)W (J ⊗ J),

from which it follows that also C0(G′) = JC0(G)J.

There is a bijection between α′ ∈ L(C0(G′),C0(G′)⊗ K ) and
α ∈ L(C0(G),C0(G)⊗K ) (we need to pick an “involution” JK on K , so this isn’t
totally canonical).

Then (1⊗ β′)∗(∆′ ∗ α′) = JaJ ⊗ 1 if and only if (1⊗ β)∗(∆ ∗ α) = a⊗ 1.
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Swapping things about

Pick R ∈ M r
cb(L1(Ĝ)), and consider Rop ∈ M l

cb(L1(Ĝop)). Let a and JbJ
“represent” R and Rop:

λ̂(R(ω̂)) = λ̂(ω̂)a, λ̂op(Rop(ω̂)) = JbJλ̂op(ω̂).

We can find α′, β′ associated to Rop; this leads to α, β with

b ⊗ 1 = (1⊗ β)∗(∆ ∗ α).

It turns out that
κ(a)⊗ 1 = (1⊗ α)∗(∆ ∗ β).

We call a pair (α, β) “invariant” if (1⊗ β)∗(∆ ∗ α) ∈ M(C0(G))⊗ 1.

So we’ve naturally found that (α, β) is invariant (say for b) if and only if (β, α) is
invariant (say for κ(a)). What’s the relationship between a and b?
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The (unbounded) antipode

The antipode S on G is an unbounded operator: it plays the role of the inverse in
quantum group theory. For Kac algebras, we have that S = κ, but even for
compact quantum groups, S may be unbounded and only densely defined. For
example, we have

S
(
(ι⊗ ω)(W )

)
= (ι⊗ ω)(W ∗) (ω ∈ B(H)∗).

We can “split off” the unbounded part of S . There is a strong∗-continuous
automorphism group (σt)t∈R of L∞(G) (which restricts to a norm continuous
automorphism group of C0(G)). You can analytically extend this to unbounded
maps; then

S = κτ−i/2.

Then, if (α, β)→ b and (β, α)→ κ(a), then b = τ−i/2(a∗).
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Taking a coordinate approach
Let (ei ) be an orthonormal basis for K . Recall that we can view C0(G)⊗ K as
being those families (ai ) in C0(G) with

∑
i a∗i ai converging in norm.

Similarly, we can view L(C0(G),C0(G)⊗ K ) as being those families (ai ) in
L(C0(G)) = M(C0(G)) with

∑
i a∗i ai converging in the strict topology.

So let α be associated to (αi ), and similarly for β. Then (α, β) is invariant for b
if and only if ∑

i

(1⊗ β∗i )∆(αi ) = b ⊗ 1.

Theorem

Let S be the strict extension of S to M(C0(G)). If a ∈ M(C0(G)) and we have
families (αi ), (βi ) with

a⊗ 1 =
∑

i

∆(αi )(1⊗ βi ),

then a ∈ D(S) and

S(a)⊗ 1 =
∑

i

(1⊗ αi )∆(βi ).
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Universal quantum groups

For a group G , we let C∗(G ) be the universal (or full) group C∗-algebra: this is
the completion of L1(G ) under the largest C∗-norm.

We can do a similar thing for quantum groups: but firstly we need to turn L1(G)
into a ∗-algebra. The standard way to do this is to use the involution, so we need
to restrict to a subalgebra L1

](G) of L1(G) where this is bounded. This then leads

to Cu(Ĝ). Denote the ∗-representation by

λu : L1
](G)→ Cu(Ĝ).

The dual of Cu(Ĝ) is a dual Banach algebra (follow an argument of [Runde])
which contains L1(Ĝ) as an ideal. So we get an inclusion Cu(Ĝ)∗ → Mcb(L1(Ĝ)).

Aside: If Ĝ is co-amenable (L1(Ĝ) has a bai) then Cu(Ĝ) = C0(Ĝ) and
Mcb(L1(Ĝ)) = C0(Ĝ)∗. Is the converse true? (This is Losert’s Theorem for
A(G ).)
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Universal quantum groups: in our framework

Pick µ ∈ Cu(Ĝ)∗ and choose a representation θ : Cu(Ĝ)→ B(K ) and ξ, η ∈ K
with

µ(a) =
(
ξ
∣∣θ(a)η

)
(a ∈ Cu(Ĝ)).

[Kustermans]⇒ there is a unitary U ∈ M(C0(G)⊗ B0(K )) with

θ(λu(ω)) = (ω ⊗ ι)(U), (∆⊗ ι)(U) = U13U23.

Associate U with U ∈ L(C0(G)⊗ K ), and let

α = U∗(ι⊗ ξ)∗, β = U∗(ι⊗ η)∗.

Then (α, β) induces the left multiplier induced by µ. (Indeed, if µ were actually
in L1(Ĝ) already, we could take U = W .)
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Double multipliers

Theorem

Let (L,R) ∈ Mcb(L1(Ĝ)). There exists a Hilbert space K with an involution JK ,
T ∈ L(C0(G)⊗ K ) and ξ, η ∈ K such that:

with α = T (ι⊗ ξ)∗ and β = T (ι⊗ η)∗, we have that (α, β) induces L;

with α = T (ι⊗ JKη)∗ and β = T (ι⊗ JK ξ)∗, we have that (α, β) induces
κ̂∗Rκ̂∗ (and thus R).

Proof.
The proof “glues” two Hilbert spaces together, but this isn’t entirely trivial: you
definitely need that (L,R) is a double multiplier (and not just unconnected left
and right multipliers)..

If (L,R) is induced by Cu(Ĝ)∗, then we can take T to be unitary. Is the converse
true? (Probably equivalent to my earlier question!)
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