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Recall: Multipliers on Banach algebras

Let A be a Banach algebra with a faithful multiplication.

@ i : A— Ais aleft multiplier if u(ab) = u(a)b,
a right multiplier if p(ab) = au(b).

@ Forae A, /5: x — ax is a left multiplier,
ra : X — xa is a right multiplier.

@ LM(A) := the left multiplier algebra of A (C B(A)),
RM(A) := the right multiplier algebra of A (C B(A)°P).
Then LM(A) and RM(A) are Banach algebras.

The multiplier algebra M(A) of A is also defined.

@ ar— (4 and ar~— ry are injective and contractive.



Recall: Multipliers on Banach algebras

@ If A has a bounded approximate identity (BAl), then
|- lemeay ~ I -1la ~ Il - llameay on A.
In this case, A is identified with a left closed ideal in LM(A),
and a right closed ideal in RM(A).
@ Forpe LM(A), wewrite pc Aif p=14,.
For u € RM(A), we write p € A'if = rs.

Question: How can A be characterized inside LM(A), RM(A)?



Motivation — a range space problem

For G = Lo(G), VN(G), in the representation
O : My(Ls(G)) = CB" =" (B(L2(©))
by Neufang-Ruan-Spronk (08),

o' (L4(G)) = cB7=OD(B(Ly(G))) ?
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One may ask the same question for the representation of
general LCQGs by Junge-Neufang-Ruan (09).

@ Using a measure theoretic proof, N-R-S showed that
(G),C
O (L1(G)) = CBYN g PPV (B(L2(G))).
@ The question was open for G = VN(G) (N.-R.-S.).

@ We will consider a Banach algebraic approach to this
range space problem.



Banach algebraic approach

@ Any Banach algebra A is a right RM(A)-module via
Ax RM(A) — A, (a,n) — p(a).

Then A*, A** are naturally left, right RM(A)-modules, resp.

o (AA*)=spania f: ac A fe A1l c (RM(A) A% C A,

@ Recall: a Banach space X is weakly sequentially complete
(WSC) if every w-Cauchy sequence in X is w-convergent.

@ The predual of a von Neumann algebra is WSC.



Banach algebraic approach: WSC and sequential BAI

Proposition. (H.-N.-R.) Let Abe a WSC Banach algebra
with a sequential BAI. Then for . € RM(A), T.EA.E.

(i) peA
(i) p-A* C (AA%).
(i) 3me A suchthat n-u = nOm (n e A*).

The left version also holds.

@ The following inequality is crucial in the proof:

card(BAIl) < a cardinal level of weak completeness of A.

@ However, A can have a BAI but without any sequential BAI.



Banach algebraic approach: More general situation

@ L4(G) has a sequential BAl <= G is metrizable.

@ A(G) has a sequential BAl <= G is amenable o-compact.

More general, it can be shown that
@ min {card(J) : (&;)jcy is @a BAl of L1(G)}
= the local weight x(G) of G.

@ min {card(J) : (&)jcy is a BAl of A(G)}
= the compact covering number x(G) of G.

Our approach: Consider Banach algebras A with a “Large”
family of “Small” subalgebras. More precisely, A has a family
{A;} of subalgebras such that each A; is WSC with a sequential
BAI, and {A;} is large so that each . € RM(A) is determined by
its behavior on these subalgebras.



Banach algebras of type (M) — definition

Definition. (H.-N.-R.) Let A be a Banach algebra with a BAI.
Suppose that for every © € RM(A), there is a closed
subalgebra B of A with a BAI satisfying the following conditions.
(1) u|lg € RM(B).

(2) flg € BB* for all f € AA*.

(8) There is a family {B;} of closed right ideals in B such that

(i) each B;is WSC with a sequential BAI;
(i) for all j, there is a left Bi-module projection from B onto B;;
(i) pe Aif u|g € B;forall j.

Then Ais said to be of type (RM).
Similarly, Banach algebras of type (LM) are defined.

@ Ais of type (M) if Ais both of type (LM) and of type (RM).



Banach algebras of type (M) — idea behind definition

The classical Kakutani-Kodaira theorem.

Let G be a o-compact locally compact group. Then
vV sequence (U,) of neighborhoods of e,
3 a compact normal subgroup N of G such that

NCU, and G/N is metrizable.



A generalized Kakutani-Kodaira theorem

Theorem. (H. 05) Let G be a locally compact group. Then
v family (U;)ey of neighborhoods of e with card(J) < x(G)Ro,
3 a compact normal subgroup N of G such that

NSNU and x(G/N) < x(G)Xo.

@ In fact, this generalized K-K theorem was motivated by its
dual version (H. 02), which was used to study the ENAR of
A(G) in the sense of Granirer (96). We give below a unified
K-K theorem in the setting of Kac algebras.

@ Recently, this generalized K-K theorem is used by
Filali-Neufang-SanganiMonfared (09) and
Losert-Neufang-Pachl-Steprans in their study of
topological centres of A(G) and M(G), resp.



Recall: Kac algebras and reduced Kac algebras

Let K = (M, T, k, ») be a Kac algebra, where x : M — M is
an involutive anti-automorphism satisfying

(k®K)ol = Tolok.

Let p € M be a central projection such that

Fp) > pep and k(p) = p.

Let r : M — M), be the canonical surjection x — xp. Then
Kp = (Mp, Tp, kp, ¢p) is a reduced Kac algebra of K, where

p(r(x)) = (r@nf(x) and rp(r(x)) = r(x(x)),

and ¢, is obtained by reduction from .



Recall: Kac algebras and reduced Kac algebras

@ L (G) and VN(G) are Kac algebras, and L (G) VN(G).

@ Itis known (Takesaki-Tatsuuma 71) that

e For K= L(G),
Kp is a reduced Kac algebra of L..(G) iff
Kp = Lo (H) for some open subgroup H of G.

e For K= VN(G),
Kp is a reduced Kac algebra of VN(G) iff
Kp = VN(G/N) for some comp. normal subgroup N of G.



Recall: Decomposability number

@ For a von Neumann algebra M, the decomposability
number dec (M) of M is the greatest carnality of a family
of pairwise orthogonal non-zero projections in M.

E.g., dec(B(H)) = dim (H) and dec (B(H)**) = 22"™" .

Theorem. (H.-N. 06) Let G be an infinite LCG. Then
(i) dec(Lo(G)) = r(G)Ng.

(i) dec(VN(G)) = x(G)Xo.



A Kac algebraic Kakutani-Kodaira theorem

Definition (H. 05) For a Kac algebra K and a cardinal «,
the o' Kakutani-Kodaira number 4,(K) of K is the
least cardinal x such that
Vv family (U;)jey of w*-nbhds of id, with card(J) < a,
3 areduced Kac algebra K, of K such that

peNY; and dec(Kp) < k.
Then 0,(K) < §3(K) if a < 3. We denote §1(K) by §(K).
Theorem. (H. 05) If K= L(G) or VN(G), then
§(K) < dec(K),
and the equality holds for many K with uncountable dec(K).

Equivalently, we have 5dec(ﬁ)(K) < dec(K).



More on quantitative description of duality

More on dual relation between K and K can be described
quantitatively in terms of these Kac algebraic invariants.
For example, we have the following.

Theorem. (H. 05) For K = L(G) or VN(G), there exists
a one-to-one correspondence between the families

{maximally decomposable sub Kac algebras of K}
and

{norm closed K-invariant «-subalgebras A of L (K)
with dense(A) = dec(K)}.



Banach algebras of type (M)

Using the Kac algebraic Kakutani-Kodaira theorem, we showed
that the class of Banach algebras of type (M) includes:

@ group algebras L{(G);
@ weighted convolution (Beurling) algebras L{(G,w);

@ Fourier algebras A(G) of amenable G.

This class also includes:
@ WSC Banach algebras A with a central BAl and A being an
ideal in A**;

@ WSC Banach algebras with a sequential BAI, in particular,
quantum group algebras L{(G) of co-amenable G with
L{(G) separable.



Banach algebras of type (M)

@ It turns out that Banach algebras A of type (M) behave well
regarding multipliers and structures on A**.

Theorem. (H.-N.-R.) Let A be a Banach algebra of type (RM).
Then for n € RM(A), T.FA.E.

(i) peA.
(i) p-A* C (AAY).
(iliy 3me A suchthat n-u = nOm (n e A*).

The left version holds for A of type (LM) and . € LM(A).



A completely isometric representation of L{(G)

Theorem. (H.-N.-R.) Let G be a LCQG and let
~ 0,Loo (G
" My(L1(G)) = B (B(Ly(©))
be the completely isometric representation by J.-N.-R.

If L1(G) is of type (M) (e.g., G is co-amenable and L{(G) is

separable), then

O(Ly(@)) = B = TN (B(Ly(6))),

where RUC(G) := (L1(G) x L (G)).



A characterization of amenability

@ In particular, for every amenable LCG G, we have
o, G), UC(G
O(A(G)) = cB (G D (B(La(G))).

~

where UC(G) = (VN(G) - A(G)) = (A(G) - VN(G)) .
This answers the open question by N.-R.-S. (08).

@ The converse of the above is also true. That is, if we let
Ao(G) = {n € MxpA(G) : - VN(G) C UC(@‘)},

then we have

Corollary. Gisamenable < Ao(G) = A(G).



Recall: Arens products

@ The left Arens product J on A** is naturally defined when
A is considered as a left A-module:

fora, bc A, f € A*, and m, n € A**, we have
(f-a,b) = (f,ab), (nOf,a) = (n,f-a), (mOn, f) = (m, nOf).
@ The right Arens product <) on A** is defined similarly.

@ Equivalently,
mn = w -|I2’I|I2’1 a,bg and moén =w -|Ig’]|l2’1 a.bs

whenever (a,), (bg) are nets in A w*-convergent to m, n.

@ Both OO and < extend the multiplication on A.



Recall: Arens regularity

@ Ais said to be Arens regular if (] and <) coincide.

@ Every operator algebra (in particular, every C*-algebra)
and every quotient algebra thereof are Arens regular.

It is known that
(i) L1(G) is Arens regular <= G is finite (Young 73).

(i) for amenable G, A(G) is Arens regular <= G is finite
(Lau 81).

@ (i) and (ii) can be seen dual to each in the setting of LCQG,
noticing that L., (G) is always co-amenable, and VN(G) is
co-amenable iff G is amenable.

@ It is still open whether (ii) holds for all LCGs G.



Recall: Topological centres

e (A*,0) is a right topological semigroup under w*-top:

for any fixed m € A**, n—— nOm is w*-w* cont.
@ Similarly, (A**, ) is a left topological semigroup.
@ The topological centres of (A**,[0) and (A**, {) are
3(A,0) = {me A*: n— mOn is w*-w* cont.},
(A, O) = {me A n— ndm is w*-w* cont.},

simply called the left and right topological centres of A**.



Recall: Topological centres

© AC 3(A™.0) C A", A C (A", Q) C A
@ 3i(A™,0) = A" < AisAR < 3;(A™, ) = A™.

@ Ais said to be left strongly Arens irregular (LSAI)
if 3¢(A**,00) = A (Dales-Lau 05).

Similarly, RSAI and SAl are defined.

@ Every group algebra L;(G) is SAl (Lau-Losert 88).



SAl of Banach algebras of type (M)

Theorem. (H.-N.-R.) Let A be a Banach algebra of type (M).
Then for m e A**, TFA.E.

(i) me A.
(i) me 3:(A*,0)and m-ACA.
(i) me 3(A*,$)and A-mCA.

Corollary. Let A be a Banach algebra of type (M). Then
(1) AisLSAl = 3;A™,0)-A C A;

(2) AisRSAl < A-3;(A™, ) C A.



Recall: The left quotient algebra (A*A)* of A**

@ (A*A) is an A-submodule of A* and is left introverted in
A* (i.e., a left (A**,0)-submodule of A*).

@ [0 on A* induces a product on (A*A)* such that the
canonical quotient map A** — (A*A)* yields

(A*A*,0) = (A™,0)/(A*A)L.

@ (A*A)* is a also right topological semigroup under the
w*-topology. Its topological centre is defined by

3t((A*A)*) = {me (A*A)* : n— mOnis w*-w* cont.}.

@ For every LCG G, 3:(LUC(G)*) = M(G) (Lau 86).



Some asymmetry phenomena

@ Letg: A — (A*A)* be the canonical quotient. Then

q(3:(A™,0)) € 3((A"A)).
@ If Ahas a BRAI then RM(A) — 3:((A*A)*) C (A*A)*.
Proposition. (H.-N.-R.) If A has a BRAI, then
3t((A*A)") = AM(A) = A -3(A™,0)CA.
@ Recall from the above: If Ais of type (M), then
(A", 0)=A <= 3(A™,0)-ACA.

In next lecture, we shall explain this asymmetry and show
what is missing here.



The answer to an open question by Lau-Ulger

For m e A**,let mg: A* — A* bethemap f+— fOm.

@ Question (Lau-Ulger 96):
For a WSC Banach algebra A with a BAI, if m € 3;(A*,0),

are ker(mg) and mpg(ball(A*)) w*-closed in A*?

@ Answer: It can be negative for A of type (M) with
Property (X) (Godefroy-Talagrand 81).

A special case for the answer is as follows.

Proposition. (H.-N.-R.) Let M be a von Neumann algebra with
A = M, separable with a BAI. Then, for any m € 3;(A**,0)\ A,

either ker(mg) or mpg(ball(A*)) is not w*-closed in A*.



The answer to an open question by Lau-Ulger

An outline of the proof:
A= M, is separable = A has the Mazur property

(i.e., for m € A**, we have m € A if mis sequentially w*-cont).

In this case,
ker(mg) and mg(ball(A*)) are both w*-closed in A*

<= mpgp: A" — A"is w*-w* cont (Godefroy 89).

Let m € 3;(A**,0) \ A. By our characterization of A inside
3:(A**,0) given above, we have

m-A ¢ A; ie., miA) ¢ A.

Therefore, mg : A* — A* is not w*-w* cont.



A question by the referee

Question: In the above Proposition, which of the sets ker(mg)
and mpg(ball(A*)) is not w*-closed in A*?

Answer: Both are possible.

Example. Let < be the multiplication on T(¢2(Z)) induced by
the left fundamental unitary W of ((Z). Then (T (¢2(Z)), <)%
is just the convolution algebra (T (¢2(Z)), «) introduced by
Neufang (00). It is known from Auger-Neufang (07) the right
topological centre of (T ((2(Z)), *) is ¢1(Z) ® eo(Z)*. Then

3(T((2)), 00 = L(Z) @ t(Z)- 2 T(t(2)).
Let A be the unitization of (T(¢2(Z)),<). Then

3(A™,0) = H(Z)® leo(Z) - aC 2 A.



The answer to the question by the referee

Proposition. (H.-N.-R.) Let A be the same as above. Then Ais
a unital Banach algebra with A* a von Neumann algebra.

Let s € loo(Z)F \ €oo(Z) L and m = (s,a) € 34(A*,0) \ A.

(i) If a # 0, then ker(mg) = {0} is obviously w*-closed in A*,
but mg(ball(A*)) is not w*-closed in A*.

(i) If « =0, then ker(mg) is not w*-closed in A*. In this case,

mg(ball(A*)) is w*-closed in A* iff ||m|| is attainable.



