Banach Algebras with an algebraic structure of Kakutani-Kodaira flavour

Zhiguo Hu

University of Windsor

University of Leeds

May 24, 2010

▲口> ▲御> ▲注> ▲注> ……注

Recall: Multipliers on Banach algebras

Let *A* be a Banach algebra with a faithful multiplication.

•
$$\mu : A \longrightarrow A$$
 is a left multiplier if $\mu(ab) = \mu(a)b$,
a right multiplier if $\mu(ab) = a\mu(b)$.

- For $a \in A$, $\ell_a : x \mapsto ax$ is a left multiplier, $r_a : x \mapsto xa$ is a right multiplier.
- LM(A) := the left multiplier algebra of $A \ (\subseteq B(A))$, RM(A) := the right multiplier algebra of $A \ (\subseteq B(A)^{op})$. Then LM(A) and RM(A) are Banach algebras. The multiplier algebra M(A) of A is also defined.

• $a \mapsto \ell_a$ and $a \mapsto r_a$ are injective and contractive.

Recall: Multipliers on Banach algebras

• If A has a bounded approximate identity (BAI), then

$$\|\cdot\|_{LM(A)} \sim \|\cdot\|_A \sim \|\cdot\|_{RM(A)}$$
 on A.

In this case, A is identified with a left closed ideal in LM(A), and a right closed ideal in RM(A).

For µ ∈ LM(A), we write µ ∈ A if µ = ℓ_a.
For µ ∈ RM(A), we write µ ∈ A if µ = r_a.

Question: How can A be characterized inside LM(A), RM(A)?

Motivation – a range space problem

For $\mathbb{G} = L_{\infty}(G)$, VN(G), in the representation

$$\Theta^{r}: M^{r}_{cb}(L_{1}(\mathbb{G})) \cong CB^{\sigma,L_{\infty}(\mathbb{G})}_{L_{\infty}(\widehat{\mathbb{G}})}(B(L_{2}(\mathbb{G})))$$

by Neufang-Ruan-Spronk (08),

$$\Theta^{r}(L_{1}(\mathbb{G})) \ = \ CB^{\sigma, (L_{\infty}(\mathbb{G}), \, ?)}_{L_{\infty}(\widehat{\mathbb{G}})}(B(L_{2}(\mathbb{G}))) \ ?$$

One may ask the same question for the representation of general LCQGs by Junge-Neufang-Ruan (09).

Using a measure theoretic proof, N-R-S showed that

$$\Theta^{r}(L_{1}(G)) = CB^{\sigma,(L_{\infty}(G),C_{b}(G))}_{VN(G)}(B(L_{2}(G))).$$

- The question was open for $\mathbb{G} = VN(G)$ (N.-R.-S.).
- We will consider a **Banach algebraic** approach to this range space problem.

Banach algebraic approach

• Any Banach algebra A is a *right* RM(A)-module via $A \times RM(A) \longrightarrow A, (a, \mu) \longmapsto \mu(a).$

Then A^* , A^{**} are naturally left, right RM(A)-modules, resp.

•
$$\langle AA^* \rangle = \overline{\operatorname{span}\{a \cdot f : a \in A, f \in A^*\}}^{\|\cdot\|} \subseteq \langle RM(A) \cdot A^* \rangle \subseteq A^*.$$

 Recall: a Banach space X is weakly sequentially complete (WSC) if every w-Cauchy sequence in X is w-convergent.

◆□▶ ◆□▶ ◆□▶ ◆□▶ ●□ ● ●

• The predual of a von Neumann algebra is WSC.

Banach algebraic approach: WSC and sequential BAI

Proposition. (H.-N.-R.) Let *A* be a WSC Banach algebra with a sequential BAI. Then for $\mu \in RM(A)$, T.F.A.E.

(i)
$$\mu \in A$$
.
(ii) $\mu \cdot A^* \subseteq \langle AA^* \rangle$.
(iii) $\exists m \in A^{**}$ such that $n \cdot \mu = n \Diamond m$ $(n \in A^{**})$.

The left version also holds.

• The following inequality is crucial in the proof:

 $card(BAI) \leq a cardinal level of weak completeness of A.$

• However, A can have a BAI but without any sequential BAI.

Banach algebraic approach: More general situation

- $L_1(G)$ has a sequential BAI $\iff G$ is metrizable.
- A(G) has a sequential BAI \iff G is amenable σ -compact.

More general, it can be shown that

• min {card(J) : $(e_j)_{j \in J}$ is a BAI of $L_1(G)$ }

= the local weight $\chi(G)$ of G.

- min {card(J) : $(e_j)_{j \in J}$ is a BAI of A(G)}
 - = the compact covering number $\kappa(G)$ of G.

Our approach: Consider Banach algebras *A* with a "Large" family of "Small" subalgebras. More precisely, *A* has a family $\{A_i\}$ of subalgebras such that each A_i is WSC with a sequential BAI, and $\{A_i\}$ is large so that each $\mu \in RM(A)$ is determined by its behavior on these subalgebras.

Banach algebras of type (M) – definition

Definition. (H.-N.-R.) Let *A* be a Banach algebra with a BAI. Suppose that for every $\mu \in RM(A)$, there is a closed subalgebra *B* of *A* with a BAI satisfying the following conditions.

- (1) $\mu|_{B} \in RM(B)$.
- (2) $f|_B \in BB^*$ for all $f \in AA^*$.
- (3) There is a family $\{B_i\}$ of closed right ideals in B such that

(i) each B_j is WSC with a sequential BAI;

(ii) for all *j*, there is a left B_j -module projection from *B* onto B_j ; (iii) $\mu \in A$ if $\mu|_{B_j} \in B_j$ for all *j*.

Then A is said to be of type (RM).

Similarly, Banach algebras of type (*LM*) are defined.

• A is of type (M) if A is both of type (LM) and of type (RM).

The classical Kakutani-Kodaira theorem.

Let *G* be a σ -compact locally compact group. Then

- \forall sequence (U_n) of neighborhoods of e,
- \exists a compact normal subgroup N of G such that

 $N \subseteq \bigcap U_n$ and G/N is metrizable.

A generalized Kakutani-Kodaira theorem

Theorem. (H. 05) Let *G* be a locally compact group. Then \forall family $(U_j)_{j \in J}$ of neighborhoods of *e* with card $(J) \leq \kappa(G) \aleph_0$, \exists a compact normal subgroup *N* of *G* such that

 $N \subseteq \bigcap U_j$ and $\chi(G/N) \leq \kappa(G) \aleph_0$.

In fact, this generalized K-K theorem was motivated by its dual version (H. 02), which was used to study the ENAR of A(G) in the sense of Granirer (96). We give below a unified K-K theorem in the setting of Kac algebras.

◆□▶ ◆御▶ ◆臣▶ ◆臣▶ 三臣 - のへで

 Recently, this generalized K-K theorem is used by Filali-Neufang-SanganiMonfared (09) and Losert-Neufang-Pachl-Steprāns in their study of topological centres of A(G) and M(G), resp.

Recall: Kac algebras and reduced Kac algebras

Let $\mathbb{K} = (\mathcal{M}, \Gamma, \kappa, \varphi)$ be a **Kac algebra**, where $\kappa : \mathcal{M} \longrightarrow \mathcal{M}$ is an involutive anti-automorphism satisfying

$$(\kappa \otimes \kappa) \circ \Gamma = \Sigma \circ \Gamma \circ \kappa$$
.

Let $p \in \mathcal{M}$ be a central projection such that

$$\Gamma(p) \geq p \otimes p$$
 and $\kappa(p) = p$.

Let $r : \mathcal{M} \longrightarrow \mathcal{M}_p$ be the canonical surjection $x \longmapsto xp$. Then $\mathbb{K}_p = (\mathcal{M}_p, \Gamma_p, \kappa_p, \varphi_p)$ is a **reduced Kac algebra** of \mathbb{K} , where $\Gamma_p(r(x)) = (r \otimes r)\Gamma(x)$ and $\kappa_p(r(x)) = r(\kappa(x))$,

and φ_p is obtained by reduction from φ .

Recall: Kac algebras and reduced Kac algebras

• $L_{\infty}(G)$ and VN(G) are Kac algebras, and $\widehat{L_{\infty}(G)} = VN(G)$.

It is known (Takesaki-Tatsuuma 71) that

For K = L_∞(G),
 K_P is a reduced Kac algebra of L_∞(G) iff
 K_P = L_∞(H) for some open subgroup H of G.

• For $\mathbb{K} = VN(G)$,

 \mathbb{K}_P is a reduced Kac algebra of VN(G) iff

 $\mathbb{K}_{P} = VN(G/N)$ for some comp. normal subgroup N of G.

Recall: Decomposability number

For a von Neumann algebra *M*, the decomposability number dec (*M*) of *M* is the greatest carnality of a family of pairwise orthogonal non-zero projections in *M*.

E.g., dec $(B(H)) = \dim(H)$ and dec $(B(H)^{**}) = 2^{2^{\dim(H)}}$

▲ロト ▲団ト ▲ヨト ▲ヨト 三ヨー わらぐ

Theorem. (H.-N. 06) Let G be an infinite LCG. Then

(i)
$$\operatorname{dec}(L_{\infty}(G)) = \kappa(G) \aleph_0$$
.

(ii) $\operatorname{dec}(VN(G)) = \chi(G) \aleph_0$.

A Kac algebraic Kakutani-Kodaira theorem

Definition (H. 05) For a Kac algebra \mathbb{K} and a cardinal α , the α th **Kakutani-Kodaira number** $\delta_{\alpha}(\mathbb{K})$ of \mathbb{K} is the least cardinal κ such that

- \forall family $(\mathcal{U}_i)_{i \in J}$ of *w*^{*}-nbhds of *id*_K with card $(J) \leq \alpha$,
- \exists a reduced Kac algebra \mathbb{K}_p of \mathbb{K} such that

 $p \in \bigcap \mathcal{U}_j$ and dec $(\mathbb{K}_p) \leq \kappa$.

Then $\delta_{\alpha}(\mathbb{K}) \leq \delta_{\beta}(\mathbb{K})$ if $\alpha \leq \beta$. We denote $\delta_{1}(\mathbb{K})$ by $\delta(\mathbb{K})$.

Theorem. (H. 05) If $\mathbb{K} = L_{\infty}(\mathbb{G})$ or VN(G), then

 $\delta(\mathbb{K}) \leq \mathsf{dec}(\widehat{\mathbb{K}}),$

and the equality holds for many \mathbb{K} with uncountable dec($\widehat{\mathbb{K}}$).

Equivalently, we have $\delta_{dec(\widehat{\mathbb{K}})}(\mathbb{K}) \leq dec(\widehat{\mathbb{K}})$.

More on dual relation between \mathbb{K} and $\widehat{\mathbb{K}}$ can be described quantitatively in terms of these Kac algebraic invariants. For example, we have the following.

Theorem. (H. 05) For $\mathbb{K} = L_{\infty}(\mathbb{G})$ or VN(G), there exists a one-to-one correspondence between the families

{maximally decomposable sub Kac algebras of \mathbb{K} }

and

{norm closed $\widehat{\mathbb{K}}$ -invariant *-subalgebras \mathcal{A} of $L_1(\widehat{\mathbb{K}})$ with dense $(\mathcal{A}) = dec(\mathbb{K})$ }.

◆□▶ ◆御▶ ◆臣▶ ◆臣▶ 三臣 - のへで

Using the Kac algebraic Kakutani-Kodaira theorem, we showed that the class of Banach algebras of type (M) includes:

- group algebras L₁(G);
- weighted convolution (Beurling) algebras $L_1(G, \omega)$;
- Fourier algebras A(G) of amenable G.

This class also includes:

- WSC Banach algebras A with a central BAI and A being an ideal in A^{**};
- WSC Banach algebras with a sequential BAI, in particular, quantum group algebras L₁(G) of co-amenable G with L₁(G) separable.

Banach algebras of type (M)

 It turns out that Banach algebras A of type (M) behave well regarding multipliers and structures on A**.

Theorem. (H.-N.-R.) Let *A* be a Banach algebra of type (*RM*). Then for $\mu \in RM(A)$, T.F.A.E.

(i)
$$\mu \in A$$
.

(ii)
$$\mu \cdot A^* \subseteq \langle AA^* \rangle$$
.

(iii) $\exists m \in A^{**}$ such that $n \cdot \mu = n \diamondsuit m$ $(n \in A^{**})$.

The left version holds for *A* of type (*LM*) and $\mu \in LM(A)$.

A completely isometric representation of $L_1(\mathbb{G})$

Theorem. (H.-N.-R.) Let G be a LCQG and let

$$\Theta^{r}: M^{r}_{cb}(L_{1}(\mathbb{G})) \cong CB^{\sigma,L_{\infty}(\mathbb{G})}_{L_{\infty}(\widehat{\mathbb{G}})}(B(L_{2}(\mathbb{G})))$$

be the completely isometric representation by J.-N.-R.

If $L_1(\mathbb{G})$ is of type (*M*) (e.g., \mathbb{G} is co-amenable and $L_1(\mathbb{G})$ is separable), then

$$\Theta^{r}(L_{1}(\mathbb{G})) = CB^{\sigma,(L_{\infty}(\mathbb{G}), RUC(\mathbb{G}))}_{L_{\infty}(\widehat{\mathbb{G}})}(B(L_{2}(\mathbb{G}))),$$

▲ロト ▲団ト ▲ヨト ▲ヨト 三ヨー わらぐ

where $RUC(\mathbb{G}) := \langle L_1(\mathbb{G}) \star L_{\infty}(\mathbb{G}) \rangle$.

A characterization of amenability

• In particular, for every amenable LCG *G*, we have $\Theta(A(G)) = CB_{L_{\infty}(G)}^{\sigma, (VN(G), UC(\widehat{G}))}(B(L_{2}(G))).$

where $UC(\widehat{G}) = \langle VN(G) \cdot A(G) \rangle = \langle A(G) \cdot VN(G) \rangle$. This answers the open question by N.-R.-S. (08).

The converse of the above is also true. That is, if we let

$$oldsymbol{A}_{\Theta}(oldsymbol{G}) \, := \, \{ \mu \in M_{\! {\it cb}} {\it A}(oldsymbol{G}) \, : \, \mu \cdot {\it VN}(oldsymbol{G}) \subseteq {\it UC}(\widehat{oldsymbol{G}}) \},$$

◆□▶ ◆□▶ ◆□▶ ◆□▶ ●□ ● ●

then we have

Corollary. G is amenable $\iff A_{\Theta}(G) = A(G)$.

Recall: Arens products

The left Arens product
 On A** is naturally defined when A is considered as a left A-module:

for $a, b \in A, f \in A^*$, and $m, n \in A^{**}$, we have

$$\langle f \cdot a, b \rangle = \langle f, ab \rangle, \langle n \Box f, a \rangle = \langle n, f \cdot a \rangle, \langle m \Box n, f \rangle = \langle m, n \Box f \rangle.$$

- Equivalently,

 $m\Box n = w^*-\lim_{\alpha}\lim_{\beta}a_{\alpha}b_{\beta}$ and $m\Diamond n = w^*-\lim_{\beta}\lim_{\alpha}a_{\alpha}b_{\beta}$ whenever (a_{α}) , (b_{β}) are nets in *A* w*-convergent to *m*, *n*.

Both □ and ◊ extend the multiplication on A.

- *A* is said to be **Arens regular** if \Box and \Diamond coincide.
- Every operator algebra (in particular, every *C**-algebra) and every quotient algebra thereof are Arens regular.

It is known that

- (i) $L_1(G)$ is Arens regular $\iff G$ is finite (Young 73).
- (ii) for amenable G, A(G) is Arens regular $\iff G$ is finite (Lau 81).
 - (i) and (ii) can be seen dual to each in the setting of LCQG, noticing that L_∞(G) is always co-amenable, and VN(G) is co-amenable iff G is amenable.

▲ロト ▲団ト ▲ヨト ▲ヨト 三ヨー わらぐ

• It is still open whether (ii) holds for all LCGs G.

Recall: Topological centres

- (A**,□) is a right topological semigroup under w*-top:
 for any fixed m ∈ A**, n → n□m is w*-w* cont.
- Similarly, (A^{**}, \diamondsuit) is a left topological semigroup.
- The topological centres of (A^{**}, \Box) and (A^{**}, \diamondsuit) are

$$\mathfrak{Z}_t(A^{**},\Box) = \{m \in A^{**} : n \longmapsto m\Box n \text{ is } w^* \cdot w^* \text{ cont.}\},\$$

$$\mathfrak{Z}_t(A^{**},\diamondsuit) = \{m \in A^{**}: n \longmapsto n \diamondsuit m \text{ is } w^* \cdot w^* \text{ cont.}\},\$$

simply called the **left** and **right** topological centres of A^{**}.

•
$$A \subseteq \mathfrak{Z}_t(A^{**}, \Box) \subseteq A^{**}; \quad A \subseteq \mathfrak{Z}_t(A^{**}, \diamondsuit) \subseteq A^{**}.$$

•
$$\mathfrak{Z}_t(A^{**},\Box) = A^{**} \iff A \text{ is AR } \iff \mathfrak{Z}_t(A^{**},\diamondsuit) = A^{**}.$$

• A is said to be **left strongly Arens irregular** (LSAI) if $\mathfrak{Z}_t(A^{**}, \Box) = A$ (Dales-Lau 05).

Similarly, RSAI and SAI are defined.

• Every group algebra $L_1(G)$ is SAI (Lau-Losert 88).

◆□▶ ◆□▶ ◆□▶ ◆□▶ ●□ ● ●

SAI of Banach algebras of type (M)

Theorem. (H.-N.-R.) Let *A* be a Banach algebra of type (*M*). Then for $m \in A^{**}$, T.F.A.E.

(i) $m \in A$.

(ii) $m \in \mathfrak{Z}_t(A^{**}, \Box)$ and $m \cdot A \subseteq A$.

(iii) $m \in \mathfrak{Z}_t(A^{**}, \diamondsuit)$ and $A \cdot m \subseteq A$.

Corollary. Let A be a Banach algebra of type (M). Then

(1) A is LSAI $\iff \mathfrak{Z}_t(A^{**},\Box) \cdot A \subseteq A$;

(2) A is RSAI $\iff A \cdot \mathfrak{Z}_t(A^{**}, \diamondsuit) \subseteq A$.

Recall: The left quotient algebra $\langle A^*A \rangle^*$ of A^{**}

- ⟨A*A⟩ is an A-submodule of A* and is left introverted in A* (i.e., a left (A**, □)-submodule of A*).
- □ on A^{**} induces a product on ⟨A^{*}A⟩^{*} such that the canonical quotient map A^{**} → ⟨A^{*}A⟩^{*} yields

$$(\langle A^*A \rangle^*, \Box) \cong (A^{**}, \Box) / \langle A^*A \rangle^{\perp}.$$

 (A*A)* is a also right topological semigroup under the w*-topology. Its topological centre is defined by

 $\mathfrak{Z}_t(\langle A^*A\rangle^*) = \{ m \in \langle A^*A\rangle^* : n \longmapsto m \Box n \text{ is } w^* \text{-} w^* \text{ cont.} \}.$

◆□▶ ◆□▶ ◆□▶ ◆□▶ ●□ ● ●

• For every LCG G, $\mathfrak{Z}_t(LUC(G)^*) = M(G)$ (Lau 86).

Some asymmetry phenomena

• Let $q : A^{**} \longrightarrow \langle A^*A \rangle^*$ be the canonical quotient. Then $q(\mathfrak{Z}_t(A^{**}, \Box)) \subseteq \mathfrak{Z}_t(\langle A^*A \rangle^*).$

• If *A* has a BRAI, then $RM(A) \hookrightarrow \mathfrak{Z}_t(\langle A^*A \rangle^*) \subseteq \langle A^*A \rangle^*$.

Proposition. (H.-N.-R.) If A has a BRAI, then

$$\mathfrak{Z}_t(\langle A^*A\rangle^*)=RM(A) \iff A\cdot\mathfrak{Z}_t(A^{**},\Box)\subseteq A.$$

• Recall from the above: If A is of type (M), then

$$\mathfrak{Z}_t(A^{**},\Box)=A \iff \mathfrak{Z}_t(A^{**},\Box)\cdot A\subseteq A.$$

In next lecture, we shall explain this asymmetry and show what is missing here.

◆□▶ ◆御▶ ◆臣▶ ◆臣▶ 三臣 - のへで

The answer to an open question by Lau-Ülger

For $m \in A^{**}$, let $m_R : A^* \longrightarrow A^*$ be the map $f \longmapsto f \diamondsuit m$.

• Question (Lau-Ülger 96):

For a WSC Banach algebra *A* with a BAI, if $m \in \mathfrak{Z}_t(A^{**}, \Box)$, are ker(m_R) and $m_R(\text{ball}(A^*))$ *w*^{*}-closed in *A*^{*}?

• Answer: It can be **negative** for *A* of type (*M*) with **Property (X)** (Godefroy-Talagrand 81).

A special case for the answer is as follows.

Proposition. (H.-N.-R.) Let \mathcal{M} be a von Neumann algebra with $A = \mathcal{M}_*$ separable with a BAI. Then, for any $m \in \mathfrak{Z}_t(A^{**}, \Box) \setminus A$,

either ker(m_R) or $m_R(\text{ball}(A^*))$ is not w^* -closed in A^* .

The answer to an open question by Lau-Ülger

An outline of the proof:

 $A = \mathcal{M}_*$ is separable $\implies A$ has the Mazur property

(i.e., for $m \in A^{**}$, we have $m \in A$ if *m* is sequentially *w*^{*}-cont).

In this case,

ker(m_R) and m_R (ball(A^*)) are both w^* -closed in A^* $\iff m_R : A^* \longrightarrow A^*$ is $w^* \cdot w^*$ cont (Godefroy 89).

Let $m \in \mathfrak{Z}_t(A^{**}, \Box) \setminus A$. By our characterization of A inside $\mathfrak{Z}_t(A^{**}, \Box)$ given above, we have

$$m \cdot A \nsubseteq A$$
; i.e., $m_R^*(A) \nsubseteq A$.

▲ロト ▲御 ▶ ▲ 善 ▶ ▲ ● ● ● ● ● ● ● ●

Therefore, $m_R : A^* \longrightarrow A^*$ is not $w^* \cdot w^*$ cont.

A question by the referee

Question: In the above Proposition, which of the sets ker(m_R) and $m_R(\text{ball}(A^*))$ is not w^* -closed in A^* ?

Answer: Both are possible.

Example. Let \triangleleft be the multiplication on $T(\ell_2(\mathbb{Z}))$ induced by the left fundamental unitary W of $\ell_{\infty}(\mathbb{Z})$. Then $(T(\ell_2(\mathbb{Z})), \triangleleft)^{op}$ is just the convolution algebra $(T(\ell_2(\mathbb{Z})), *)$ introduced by Neufang (00). It is known from Auger-Neufang (07) the right topological centre of $(T(\ell_2(\mathbb{Z})), *)$ is $\ell_1(\mathbb{Z}) \oplus \ell_{\infty}(\mathbb{Z})^{\perp}$. Then

 $\mathfrak{Z}_{l}(T(\ell_{2}(\mathbb{Z}))^{**}, \Box_{\triangleleft}) = \ell_{1}(\mathbb{Z}) \oplus \ell_{\infty}(\mathbb{Z})^{\perp} \ \supseteq \ T(\ell_{2}(\mathbb{Z})).$

Let *A* be the unitization of $(T(\ell_2(\mathbb{Z})), \triangleleft)$. Then

$$\mathfrak{Z}_t(\mathcal{A}^{**},\Box) = \ell_1(\mathbb{Z}) \oplus \ell_\infty(\mathbb{Z})^\perp \oplus \mathbb{C} \ \supseteq \atop_{\neq} \mathcal{A}.$$

Proposition. (H.-N.-R.) Let *A* be the same as above. Then *A* is a unital Banach algebra with A^* a von Neumann algebra.

Let $s \in \ell_{\infty}(\mathbb{Z})^{\perp} \setminus \ell_{\infty}(\mathbb{Z})_{\perp}$ and $m = (s, \alpha) \in \mathfrak{Z}_{t}(A^{**}, \Box) \setminus A$.

(i) If α ≠ 0, then ker(m_R) = {0} is obviously w*-closed in A*,
 but m_R(ball(A*)) is not w*-closed in A*.

(ii) If $\alpha = 0$, then ker(m_R) is not w^* -closed in A^* . In this case, $m_R(\text{ball}(A^*))$ is w^* -closed in A^* iff ||m|| is attainable.

◆□▶ ◆御▶ ◆臣▶ ◆臣▶ 三臣 - のへで