Banach Algebras with an algebraic structure of Kakutani－Kodaira flavour

Zhiguo Hu

University of Windsor

University of Leeds
May 24， 2010

Let A be a Banach algebra with a faithful multiplication.

- $\mu: A \longrightarrow A$ is a left multiplier if $\mu(a b)=\mu(a) b$, a right multiplier if $\mu(a b)=a \mu(b)$.
- For $a \in A, \ell_{a}: x \longmapsto a x$ is a left multiplier, $r_{a}: x \longmapsto x a$ is a right multiplier.
- $L M(A):=$ the left multiplier algebra of $A(\subseteq B(A))$,
$R M(A):=$ the right multiplier algebra of $A\left(\subseteq B(A)^{\circ p}\right)$.
Then $L M(A)$ and $R M(A)$ are Banach algebras.
The multiplier algebra $M(A)$ of A is also defined.
- $a \longmapsto \ell_{a}$ and $a \longmapsto r_{a}$ are injective and contractive.
- If A has a bounded approximate identity (BAI), then

$$
\|\cdot\|_{L M(A)} \sim\|\cdot\|_{A} \sim\|\cdot\|_{R M(A)} \text { on } A \text {. }
$$

In this case, A is identified with a left closed ideal in $L M(A)$, and a right closed ideal in $R M(A)$.

- For $\mu \in L M(A)$, we write $\mu \in A$ if $\mu=\ell_{a}$.

For $\mu \in R M(A)$, we write $\mu \in A$ if $\mu=r_{\mathrm{a}}$.

Question: How can A be characterized inside $L M(A), R M(A)$?

For $\mathbb{G}=L_{\infty}(G), V N(G)$, in the representation

$$
\Theta^{r}: M_{c b}^{r}\left(L_{1}(\mathbb{G})\right) \cong C B_{L_{\infty}(\mathbb{G})}^{\sigma, L_{\infty}(\mathbb{G})}\left(B\left(L_{2}(\mathbb{G})\right)\right)
$$

by Neufang-Ruan-Spronk (08),

$$
\Theta^{r}\left(L_{1}(\mathbb{G})\right)=C B_{L_{\infty}(\mathbb{G})}^{\left.\sigma,\left(L_{\infty}\right),(\mathbb{G}), ?\right)}\left(B\left(L_{2}(\mathbb{G})\right)\right) ?
$$

One may ask the same question for the representation of general LCQGs by Junge-Neufang-Ruan (09).

- Using a measure theoretic proof, N-R-S showed that

$$
\Theta^{r}\left(L_{1}(G)\right)=C B_{V N(G)}^{\sigma,\left(L_{\infty}(G), C_{b}(G)\right)}\left(B\left(L_{2}(G)\right)\right) .
$$

- The question was open for $\mathbb{G}=V N(G)$ (N.-R.-S.).
- We will consider a Banach algebraic approach to this range space problem.
- Any Banach algebra A is a right $R M(A)$-module via

$$
A \times R M(A) \longrightarrow A,(a, \mu) \longmapsto \mu(a)
$$

Then $A^{*}, A^{* *}$ are naturally left, right $R M(A)$-modules, resp.

- $\left\langle A A^{*}\right\rangle=\overline{\operatorname{span}\left\{a \cdot f: a \in A, f \in A^{*}\right\}}{ }^{\|\cdot\|} \subseteq\left\langle R M(A) \cdot A^{*}\right\rangle \subseteq A^{*}$.
- Recall: a Banach space X is weakly sequentially complete (WSC) if every w-Cauchy sequence in X is w-convergent.
- The predual of a von Neumann algebra is WSC.

Banach algebraic approach：WSC and sequential BAI

Proposition．（H．－N．－R．）Let A be a WSC Banach algebra with a sequential BAI．Then for $\mu \in R M(A)$ ，T．F．A．E．
（i）$\mu \in A$ ．
（ii）$\mu \cdot A^{*} \subseteq\left\langle A A^{*}\right\rangle$ ．
（iii）$\exists m \in A^{* *}$ such that $n \cdot \mu=n \diamond m\left(n \in A^{* *}\right)$ ．
The left version also holds．
－The following inequality is crucial in the proof：
card（BAI）\leq a cardinal level of weak completeness of A ．
－However，A can have a BAI but without any sequential BAI．

- $L_{1}(G)$ has a sequential $\mathrm{BAI} \Longleftrightarrow G$ is metrizable.
- $A(G)$ has a sequential $\mathrm{BAI} \Longleftrightarrow G$ is amenable σ-compact.

More general, it can be shown that

- $\min \left\{\operatorname{card}(J):\left(e_{j}\right)_{j \in J}\right.$ is a BAI of $\left.L_{1}(G)\right\}$
$=$ the local weight $\chi(G)$ of G.
- $\min \left\{\operatorname{card}(J):\left(e_{j}\right)_{j \in J}\right.$ is a BAI of $\left.A(G)\right\}$
$=$ the compact covering number $\kappa(G)$ of G.
Our approach: Consider Banach algebras A with a "Large" family of "Small" subalgebras. More precisely, A has a family $\left\{A_{i}\right\}$ of subalgebras such that each A_{i} is WSC with a sequential BAI, and $\left\{A_{i}\right\}$ is large so that each $\mu \in R M(A)$ is determined by its behavior on these subalgebras.

Banach algebras of type (M) - definition

Definition. (H.-N.-R.) Let A be a Banach algebra with a BAI. Suppose that for every $\mu \in R M(A)$, there is a closed subalgebra B of A with a BAI satisfying the following conditions.
(1) $\left.\mu\right|_{B} \in R M(B)$.
(2) $\left.f\right|_{B} \in B B^{*}$ for all $f \in A A^{*}$.
(3) There is a family $\left\{B_{j}\right\}$ of closed right ideals in B such that
(i) each B_{j} is WSC with a sequential BAI;
(ii) for all j, there is a left B_{j}-module projection from B onto B_{j};
(iii) $\mu \in A$ if $\left.\mu\right|_{B_{j}} \in B_{j}$ for all j.

Then A is said to be of type ($R M$).
Similarly, Banach algebras of type (LM) are defined.

- A is of type (M) if A is both of type ($L M$) and of type ($R M$).

The classical Kakutani-Kodaira theorem.
Let G be a σ-compact locally compact group. Then
\forall sequence $\left(U_{n}\right)$ of neighborhoods of e,
\exists a compact normal subgroup N of G such that

$$
N \subseteq \cap U_{n} \quad \text { and } \quad G / N \text { is metrizable. }
$$

A generalized Kakutani-Kodaira theorem

Theorem. (H. 05) Let G be a locally compact group. Then \forall family $\left(U_{j}\right)_{j \in J}$ of neighborhoods of e with card $(J) \leq \kappa(G) \aleph_{0}$,
\exists a compact normal subgroup N of G such that

$$
N \subseteq \cap U_{j} \quad \text { and } \quad \chi(G / N) \leq \kappa(G) \aleph_{0} .
$$

- In fact, this generalized K-K theorem was motivated by its dual version (H. 02), which was used to study the ENAR of $A(G)$ in the sense of Granirer (96). We give below a unified $\mathrm{K}-\mathrm{K}$ theorem in the setting of Kac algebras.
- Recently, this generalized K-K theorem is used by Filali-Neufang-SanganiMonfared (09) and Losert-Neufang-Pachl-Steprāns in their study of topological centres of $A(G)$ and $M(G)$, resp.

Let $\mathbb{K}=(\mathcal{M}, \Gamma, \kappa, \varphi)$ be a Kac algebra, where $\kappa: \mathcal{M} \longrightarrow \mathcal{M}$ is an involutive anti-automorphism satisfying

$$
(\kappa \otimes \kappa) \circ \Gamma=\Sigma \circ \Gamma \circ \kappa
$$

Let $p \in \mathcal{M}$ be a central projection such that

$$
\Gamma(p) \geq p \otimes p \quad \text { and } \quad \kappa(p)=p
$$

Let $r: \mathcal{M} \longrightarrow \mathcal{M}_{p}$ be the canonical surjection $x \longmapsto x p$. Then $\mathbb{K}_{p}=\left(\mathcal{M}_{p}, \Gamma_{p}, \kappa_{p}, \varphi_{p}\right)$ is a reduced Kac algebra of \mathbb{K}, where

$$
\Gamma_{p}(r(x))=(r \otimes r) \Gamma(x) \quad \text { and } \quad \kappa_{p}(r(x))=r(\kappa(x)),
$$

and φ_{p} is obtained by reduction from φ.

- $L_{\infty}(G)$ and $V N(G)$ are Kac algebras, and $\widehat{L_{\infty}(G)}=V N(G)$.
- It is known (Takesaki-Tatsuuma 71) that
- For $\mathbb{K}=L_{\infty}(G)$,
\mathbb{K}_{P} is a reduced Kac algebra of $L_{\infty}(G)$ iff
$\mathbb{K}_{P}=L_{\infty}(H)$ for some open subgroup H of G.
- For $\mathbb{K}=V N(G)$,
\mathbb{K}_{P} is a reduced Kac algebra of $V N(G)$ iff
$\mathbb{K}_{P}=V N(G / N)$ for some comp. normal subgroup N of G.
- For a von Neumann algebra \mathcal{M}, the decomposability number $\operatorname{dec}(\mathcal{M})$ of \mathcal{M} is the greatest carnality of a family of pairwise orthogonal non-zero projections in \mathcal{M}.
E.g., $\operatorname{dec}(B(H))=\operatorname{dim}(H)$ and $\operatorname{dec}\left(B(H)^{* *}\right)=2^{2 \operatorname{dim}(H)}$.

Theorem. (H.-N. 06) Let G be an infinite LCG. Then
(i) $\operatorname{dec}\left(L_{\infty}(G)\right)=\kappa(G) \aleph_{0}$.
(ii) $\operatorname{dec}(V N(G))=\chi(G) \aleph_{0}$.

A Kac algebraic Kakutani-Kodaira theorem

Definition (H. 05) For a Kac algebra \mathbb{K} and a cardinal α, the $\alpha^{\text {th }}$ Kakutani-Kodaira number $\delta_{\alpha}(\mathbb{K})$ of \mathbb{K} is the least cardinal κ such that
\forall family $\left(\mathcal{U}_{i}\right)_{j \in \mathcal{J}}$ of w^{*}-nbhds of $i d_{\mathbb{K}}$ with $\operatorname{card}(J) \leq \alpha$,
\exists a reduced Kac algebra \mathbb{K}_{p} of \mathbb{K} such that

$$
p \in \bigcap \mathcal{U}_{j} \quad \text { and } \quad \operatorname{dec}\left(\mathbb{K}_{p}\right) \leq \kappa .
$$

Then $\delta_{\alpha}(\mathbb{K}) \leq \delta_{\beta}(\mathbb{K})$ if $\alpha \leq \beta$. We denote $\delta_{1}(\mathbb{K})$ by $\delta(\mathbb{K})$.
Theorem. (H. 05) If $\mathbb{K}=L_{\infty}(\mathbb{G})$ or $V N(G)$, then

$$
\delta(\mathbb{K}) \leq \operatorname{dec}(\widehat{\mathbb{K}}),
$$

and the equality holds for many \mathbb{K} with uncountable $\operatorname{dec}(\widehat{\mathbb{K}})$.
Equivalently, we have $\delta_{\operatorname{dec}(\widehat{\mathbb{K}})}(\mathbb{K}) \leq \operatorname{dec}(\widehat{\mathbb{K}})$.

More on quantitative description of duality

More on dual relation between \mathbb{K} and $\widehat{\mathbb{K}}$ can be described quantitatively in terms of these Kac algebraic invariants.
For example, we have the following.

Theorem. (H. 05) For $\mathbb{K}=L_{\infty}(\mathbb{G})$ or $V N(G)$, there exists a one-to-one correspondence between the families
\{maximally decomposable sub Kac algebras of \mathbb{K} \} and
\{norm closed $\widehat{\mathbb{K}}$-invariant $*$-subalgebras \mathcal{A} of $L_{1}(\widehat{\mathbb{K}})$ with $\operatorname{dense}(\mathcal{A})=\operatorname{dec}(\mathbb{K})\}$.

Using the Kac algebraic Kakutani-Kodaira theorem, we showed that the class of Banach algebras of type (M) includes:

- group algebras $L_{1}(G)$;
- weighted convolution (Beurling) algebras $L_{1}(G, \omega)$;
- Fourier algebras $A(G)$ of amenable G.

This class also includes:

- WSC Banach algebras A with a central BAI and A being an ideal in $A^{* *}$;
- WSC Banach algebras with a sequential BAI, in particular, quantum group algebras $L_{1}(\mathbb{G})$ of co-amenable \mathbb{G} with $L_{1}(\mathbb{G})$ separable.
- It turns out that Banach algebras A of type (M) behave well regarding multipliers and structures on $A^{* *}$.

Theorem. (H.-N.-R.) Let A be a Banach algebra of type (RM). Then for $\mu \in R M(A)$, T.F.A.E.
(i) $\mu \in A$.
(ii) $\mu \cdot A^{*} \subseteq\left\langle A A^{*}\right\rangle$.
(iii) $\exists m \in A^{* *}$ such that $n \cdot \mu=n \diamond m\left(n \in A^{* *}\right)$.

The left version holds for A of type ($L M$) and $\mu \in L M(A)$.

A completely isometric representation of $L_{1}(\mathbb{G})$

Theorem. (H.-N.-R.) Let \mathbb{G} be a LCQG and let

$$
\Theta^{r}: M_{c b}^{r}\left(L_{1}(\mathbb{G})\right) \cong C B_{L_{\infty}(\mathbb{\mathbb { G }})}^{\sigma, L_{\infty}(\mathbb{G})}\left(B\left(L_{2}(\mathbb{G})\right)\right)
$$

be the completely isometric representation by J.-N.-R.
If $L_{1}(\mathbb{G})$ is of type (M) (e.g., \mathbb{G} is co-amenable and $L_{1}(\mathbb{G})$ is separable), then

$$
\Theta^{r}\left(L_{1}(\mathbb{G})\right)=C B_{L_{\infty}(\mathbb{\mathbb { G }})}^{\sigma,\left(L_{\infty}(\mathbb{G}), R U C(\mathbb{G})\right)}\left(B\left(L_{2}(\mathbb{G})\right)\right)
$$

where $\operatorname{RUC}(\mathbb{G}):=\left\langle L_{1}(\mathbb{G}) \star L_{\infty}(\mathbb{G})\right\rangle$.

A characterization of amenability

- In particular, for every amenable LCG G, we have

$$
\Theta(A(G))=C B_{L_{\infty}(G)}^{\sigma,(V N(G), U C(\widehat{G}))}\left(B\left(L_{2}(G)\right)\right)
$$

where $U C(\widehat{G})=\langle V N(G) \cdot A(G)\rangle=\langle A(G) \cdot V N(G)\rangle$.
This answers the open question by N.-R.-S. (08).

- The converse of the above is also true. That is, if we let

$$
A_{\Theta}(G):=\left\{\mu \in M_{c b} A(G): \mu \cdot V N(G) \subseteq U C(\widehat{G})\right\}
$$

then we have

Corollary. $\quad G$ is amenable $\Longleftrightarrow A_{\Theta}(G)=A(G)$.

- The left Arens product \square on $A^{* *}$ is naturally defined when A is considered as a left A-module: for $a, b \in A, f \in A^{*}$, and $m, n \in A^{* *}$, we have $\langle f \cdot a, b\rangle=\langle f, a b\rangle,\langle n \square f, a\rangle=\langle n, f \cdot a\rangle,\langle m \square n, f\rangle=\langle m, n \square f\rangle$.
- The right Arens product \diamond on $A^{* *}$ is defined similarly.
- Equivalently,

$$
m \square n=w^{*}-\lim _{\alpha} \lim _{\beta} a_{\alpha} b_{\beta} \quad \text { and } \quad m \diamond n=w^{*}-\lim _{\beta} \lim _{\alpha} a_{\alpha} b_{\beta}
$$

whenever $\left(a_{\alpha}\right),\left(b_{\beta}\right)$ are nets in $A w^{*}$-convergent to m, n.

- Both \square and \diamond extend the multiplication on A.
- A is said to be Arens regular if \square and \diamond coincide.
- Every operator algebra (in particular, every C^{*}-algebra) and every quotient algebra thereof are Arens regular.

It is known that
(i) $L_{1}(G)$ is Arens regular $\Longleftrightarrow G$ is finite (Young 73).
(ii) for amenable $G, A(G)$ is Arens regular $\Longleftrightarrow G$ is finite (Lau 81).

- (i) and (ii) can be seen dual to each in the setting of LCQG, noticing that $L_{\infty}(G)$ is always co-amenable, and $\operatorname{VN}(G)$ is co-amenable iff G is amenable.
- It is still open whether (ii) holds for all LCGs G.
- $\left(A^{* *}, \square\right)$ is a right topological semigroup under w^{*}-top: for any fixed $m \in A^{* *}, n \longmapsto n \square m$ is $w^{*}-w^{*}$ cont.
- Similarly, $\left(A^{* *}, \diamond\right)$ is a left topological semigroup.
- The topological centres of $\left(A^{* *}, \square\right)$ and $\left(A^{* *}, \diamond\right)$ are

$$
\begin{aligned}
& \mathfrak{Z}_{t}\left(A^{* *}, \square\right)=\left\{m \in A^{* *}: n \longmapsto m \square n \text { is } w^{*}-w^{*} \text { cont. }\right\}, \\
& \mathfrak{J}_{t}\left(A^{* *}, \diamond\right)=\left\{m \in A^{* *}: n \longmapsto n \diamond m \text { is } w^{*}-w^{*} \text { cont. }\right\},
\end{aligned}
$$

simply called the left and right topological centres of $A^{* *}$.

- $A \subseteq \mathfrak{Z}_{t}\left(A^{* *}, \square\right) \subseteq A^{* *} ; \quad A \subseteq \mathfrak{Z}_{t}\left(A^{* *}, \diamond\right) \subseteq A^{* *}$.
- $\mathfrak{Z}_{t}\left(A^{* *}, \square\right)=A^{* *} \Longleftrightarrow A$ is $\mathrm{AR} \Longleftrightarrow \mathfrak{Z}_{t}\left(A^{* *}, \diamond\right)=A^{* *}$.
- A is said to be left strongly Arens irregular (LSAI) if $\beth_{t}\left(A^{* *}, \square\right)=A$ (Dales-Lau 05).

Similarly, RSAI and SAI are defined.

- Every group algebra $L_{1}(G)$ is SAI (Lau-Losert 88).

SAI of Banach algebras of type (M)

Theorem. (H.-N.-R.) Let A be a Banach algebra of type (M). Then for $m \in A^{* *}$, T.F.A.E.
(i) $m \in A$.
(ii) $m \in \mathfrak{Z}_{t}\left(A^{* *}, \square\right)$ and $m \cdot A \subseteq A$.
(iii) $m \in \mathfrak{Z}_{t}\left(A^{* *}, \diamond\right)$ and $A \cdot m \subseteq A$.

Corollary. Let A be a Banach algebra of type (M). Then
(1) A is LSAI $\Longleftrightarrow \mathfrak{Z}_{t}\left(A^{* *}, \square\right) \cdot A \subseteq A$;
(2) A is RSAI $\Longleftrightarrow A \cdot \mathfrak{Z}_{t}\left(A^{* *}, \diamond\right) \subseteq A$.

- $\left\langle A^{*} A\right\rangle$ is an A-submodule of A^{*} and is left introverted in A^{*} (i.e., a left ($A^{* *}, \square$)-submodule of A^{*}).
- \square on $A^{* *}$ induces a product on $\left\langle A^{*} A\right\rangle^{*}$ such that the canonical quotient map $A^{* *} \longrightarrow\left\langle A^{*} A\right\rangle^{*}$ yields

$$
\left(\left\langle A^{*} A\right\rangle^{*}, \square\right) \cong\left(A^{* *}, \square\right) /\left\langle A^{*} A\right\rangle^{\perp}
$$

- $\left\langle A^{*} A\right\rangle^{*}$ is a also right topological semigroup under the w^{*}-topology. Its topological centre is defined by

$$
\mathfrak{Z}_{t}\left(\left\langle A^{*} A\right\rangle^{*}\right)=\left\{m \in\left\langle A^{*} A\right\rangle^{*}: n \longmapsto m \square n \text { is } w^{*}-w^{*} \text { cont. }\right\} .
$$

- For every LCG $G, \mathfrak{Z}_{t}\left(L U C(G)^{*}\right)=M(G)$ (Lau 86).

Some asymmetry phenomena

- Let $q: A^{* *} \longrightarrow\left\langle A^{*} A\right\rangle^{*}$ be the canonical quotient. Then

$$
q\left(\mathfrak{Z}_{t}\left(A^{* *}, \square\right)\right) \subseteq \mathfrak{Z}_{t}\left(\left\langle A^{*} A\right\rangle^{*}\right)
$$

- If A has a BRAI, then $R M(A) \hookrightarrow \mathfrak{Z}_{t}\left(\left\langle A^{*} A\right\rangle^{*}\right) \subseteq\left\langle A^{*} A\right\rangle^{*}$.

Proposition. (H.-N.-R.) If A has a BRAI, then

$$
\mathfrak{Z}_{t}\left(\left\langle A^{*} A\right\rangle^{*}\right)=R M(A) \quad \Longleftrightarrow A \cdot \mathfrak{Z}_{t}\left(A^{* *}, \square\right) \subseteq A
$$

- Recall from the above: If A is of type (M), then

$$
\mathfrak{Z}_{t}\left(A^{* *}, \square\right)=A \quad \Longleftrightarrow \quad \mathfrak{Z}_{t}\left(A^{* *}, \square\right) \cdot A \subseteq A
$$

In next lecture, we shall explain this asymmetry and show what is missing here.

The answer to an open question by Lau-Ulger

For $m \in A^{* *}$, let $m_{R}: A^{*} \longrightarrow A^{*}$ be the map $f \longmapsto f \diamond m$.

- Question (Lau-Ülger 96):

For a WSC Banach algebra A with a BAI, if $m \in \mathfrak{Z}_{t}\left(A^{* *}, \square\right)$, are $\operatorname{ker}\left(m_{R}\right)$ and $m_{R}\left(\right.$ ball $\left.\left(A^{*}\right)\right) w^{*}$-closed in A^{*} ?

- Answer: It can be negative for A of type (M) with Property (X) (Godefroy-Talagrand 81).

A special case for the answer is as follows.
Proposition. (H.-N.-R.) Let \mathcal{M} be a von Neumann algebra with $A=\mathcal{M}_{*}$ separable with a BAI. Then, for any $m \in \mathfrak{Z}_{t}\left(A^{* *}, \square\right) \backslash A$, either $\operatorname{ker}\left(m_{R}\right)$ or $m_{R}\left(\operatorname{ball}\left(A^{*}\right)\right)$ is not w^{*}-closed in A^{*}.

The answer to an open question by Lau-Ulger

An outline of the proof:
$A=\mathcal{M}_{*}$ is separable $\Longrightarrow A$ has the Mazur property
(i.e., for $m \in A^{* *}$, we have $m \in A$ if m is sequentially w^{*}-cont).

In this case,
$\operatorname{ker}\left(m_{R}\right)$ and $m_{R}\left(\right.$ ball $\left.\left(\boldsymbol{A}^{*}\right)\right)$ are both w^{*}-closed in \boldsymbol{A}^{*}
$\Longleftrightarrow m_{R}: A^{*} \longrightarrow A^{*}$ is $w^{*}-w^{*}$ cont (Godefroy 89).
Let $m \in \mathfrak{Z}_{t}\left(A^{* *}, \square\right) \backslash A$. By our characterization of A inside $\beth_{t}\left(A^{* *}, \square\right)$ given above, we have

$$
m \cdot A \nsubseteq A ; \text { i.e., } m_{R}^{*}(A) \nsubseteq A .
$$

Therefore, $m_{R}: A^{*} \longrightarrow A^{*}$ is not $w^{*}-w^{*}$ cont.

A question by the referee

Question: In the above Proposition, which of the sets $\operatorname{ker}\left(m_{R}\right)$ and $m_{R}\left(\right.$ ball $\left.\left(A^{*}\right)\right)$ is not w^{*}-closed in A^{*} ?

Answer: Both are possible.
Example. Let \triangleleft be the multiplication on $T\left(\ell_{2}(\mathbb{Z})\right)$ induced by the left fundamental unitary W of $\ell_{\infty}(\mathbb{Z})$. Then $\left(T\left(\ell_{2}(\mathbb{Z})\right), \triangleleft\right)^{o p}$ is just the convolution algebra $\left(T\left(\ell_{2}(\mathbb{Z})\right), *\right)$ introduced by Neufang (00). It is known from Auger-Neufang (07) the right topological centre of $\left(T\left(\ell_{2}(\mathbb{Z})\right), *\right)$ is $\ell_{1}(\mathbb{Z}) \oplus \ell_{\infty}(\mathbb{Z})^{\perp}$. Then

$$
\mathfrak{Z}_{t}\left(T\left(\ell_{2}(\mathbb{Z})\right)^{* *}, \square_{4}\right)=\ell_{1}(\mathbb{Z}) \oplus \ell_{\infty}(\mathbb{Z})^{\perp} \supsetneqq T\left(\ell_{2}(\mathbb{Z})\right) .
$$

Let A be the unitization of $\left(T\left(\ell_{2}(\mathbb{Z})\right), \triangleleft\right)$. Then

$$
\mathfrak{Z}_{t}\left(A^{* *}, \square\right)=\ell_{1}(\mathbb{Z}) \oplus \ell_{\infty}(\mathbb{Z})^{\perp} \oplus \mathbb{C} \supsetneqq A .
$$

Proposition. (H.-N.-R.) Let A be the same as above. Then A is a unital Banach algebra with A^{*} a von Neumann algebra.

Let $s \in \ell_{\infty}(\mathbb{Z})^{\perp} \backslash \ell_{\infty}(\mathbb{Z})_{\perp}$ and $m=(s, \alpha) \in \mathfrak{Z}_{t}\left(A^{* *}, \square\right) \backslash A$.
(i) If $\alpha \neq 0$, then $\operatorname{ker}\left(m_{R}\right)=\{0\}$ is obviously w^{*}-closed in A^{*}, but $m_{R}\left(\right.$ ball $\left.\left(A^{*}\right)\right)$ is not w^{*}-closed in A^{*}.
(ii) If $\alpha=0$, then $\operatorname{ker}\left(m_{R}\right)$ is not w^{*}-closed in A^{*}. In this case, $m_{R}\left(\right.$ ball $\left.\left(A^{*}\right)\right)$ is w^{*}-closed in A^{*} iff $\|m\|$ is attainable.

