
Banach Algebras with an algebraic structure of
Kakutani-Kodaira flavour

Zhiguo Hu

University of Windsor

University of Leeds

May 24, 2010



Recall: Multipliers on Banach algebras

Let A be a Banach algebra with a faithful multiplication.

µ : A −→ A is a left multiplier if µ(ab) = µ(a)b,
a right multiplier if µ(ab) = aµ(b).

For a ∈ A, `a : x 7−→ ax is a left multiplier,
ra : x 7−→ xa is a right multiplier.

LM(A) := the left multiplier algebra of A (⊆ B(A)),

RM(A) := the right multiplier algebra of A (⊆ B(A)op).

Then LM(A) and RM(A) are Banach algebras.

The multiplier algebra M(A) of A is also defined.

a 7−→ `a and a 7−→ ra are injective and contractive.



Recall: Multipliers on Banach algebras

If A has a bounded approximate identity (BAI), then

‖ · ‖LM(A) ∼ ‖ · ‖A ∼ ‖ · ‖RM(A) on A.

In this case, A is identified with a left closed ideal in LM(A),
and a right closed ideal in RM(A).

For µ ∈ LM(A), we write µ ∈ A if µ = `a .

For µ ∈ RM(A), we write µ ∈ A if µ = ra .

Question: How can A be characterized inside LM(A), RM(A)?



Motivation – a range space problem
For G = L∞(G) , VN(G), in the representation

Θr : M r
cb(L1(G)) ∼= CB σ,L∞(G)

L∞(Ĝ)
(B(L2(G)))

by Neufang-Ruan-Spronk (08),

Θr (L1(G)) = CB σ, (L∞(G), ?)

L∞(Ĝ)
(B(L2(G))) ?

One may ask the same question for the representation of
general LCQGs by Junge-Neufang-Ruan (09).

Using a measure theoretic proof, N-R-S showed that

Θr (L1(G)) = CB σ, (L∞(G),Cb(G))
VN(G) (B(L2(G))) .

The question was open for G = VN(G) (N.-R.-S.).

We will consider a Banach algebraic approach to this
range space problem.



Banach algebraic approach

Any Banach algebra A is a right RM(A)-module via

A× RM(A) −→ A, (a, µ) 7−→ µ(a) .

Then A∗, A∗∗ are naturally left, right RM(A)-modules, resp.

〈AA∗〉 = span{a · f : a ∈ A, f ∈ A∗} ‖·‖ ⊆ 〈RM(A)·A∗〉 ⊆ A∗.

Recall: a Banach space X is weakly sequentially complete
(WSC) if every w-Cauchy sequence in X is w-convergent.

The predual of a von Neumann algebra is WSC.



Banach algebraic approach: WSC and sequential BAI

Proposition. (H.-N.-R.) Let A be a WSC Banach algebra
with a sequential BAI. Then for µ ∈ RM(A), T.F.A.E.

(i) µ ∈ A.
(ii) µ · A∗ ⊆ 〈AA∗〉.
(iii) ∃ m ∈ A∗∗ such that n · µ = n♦m (n ∈ A∗∗).

The left version also holds.

The following inequality is crucial in the proof:

card(BAI) ≤ a cardinal level of weak completeness of A.

However, A can have a BAI but without any sequential BAI.



Banach algebraic approach: More general situation

L1(G) has a sequential BAI⇐⇒ G is metrizable.

A(G) has a sequential BAI⇐⇒ G is amenable σ-compact.

More general, it can be shown that

min {card(J) : (ej)j∈J is a BAI of L1(G)}
= the local weight χ(G) of G.

min {card(J) : (ej)j∈J is a BAI of A(G)}
= the compact covering number κ(G) of G.

Our approach: Consider Banach algebras A with a “Large”
family of “Small” subalgebras. More precisely, A has a family
{Ai} of subalgebras such that each Ai is WSC with a sequential
BAI, and {Ai} is large so that each µ ∈ RM(A) is determined by
its behavior on these subalgebras.



Banach algebras of type (M) – definition

Definition. (H.-N.-R.) Let A be a Banach algebra with a BAI.
Suppose that for every µ ∈ RM(A), there is a closed
subalgebra B of A with a BAI satisfying the following conditions.

(1) µ|B ∈ RM(B).
(2) f |B ∈ BB∗ for all f ∈ AA∗.
(3) There is a family {Bj} of closed right ideals in B such that

(i) each Bj is WSC with a sequential BAI;
(ii) for all j , there is a left Bj -module projection from B onto Bj ;
(iii) µ ∈ A if µ|Bj ∈ Bj for all j .

Then A is said to be of type (RM).

Similarly, Banach algebras of type (LM) are defined.

A is of type (M) if A is both of type (LM) and of type (RM).



Banach algebras of type (M) – idea behind definition

The classical Kakutani-Kodaira theorem.

Let G be a σ-compact locally compact group. Then
∀ sequence (Un) of neighborhoods of e,
∃ a compact normal subgroup N of G such that

N ⊆
⋂

Un and G/N is metrizable.



A generalized Kakutani-Kodaira theorem

Theorem. (H. 05) Let G be a locally compact group. Then
∀ family (Uj)j∈J of neighborhoods of e with card(J) ≤ κ(G)ℵ0 ,
∃ a compact normal subgroup N of G such that

N ⊆
⋂

Uj and χ(G/N) ≤ κ(G)ℵ0 .

In fact, this generalized K-K theorem was motivated by its
dual version (H. 02), which was used to study the ENAR of
A(G) in the sense of Granirer (96). We give below a unified
K-K theorem in the setting of Kac algebras.

Recently, this generalized K-K theorem is used by
Filali-Neufang-SanganiMonfared (09) and
Losert-Neufang-Pachl-Steprāns in their study of
topological centres of A(G) and M(G), resp.



Recall: Kac algebras and reduced Kac algebras

Let K = (M, Γ, κ, ϕ) be a Kac algebra, where κ :M−→M is
an involutive anti-automorphism satisfying

(κ⊗ κ) ◦ Γ = Σ ◦ Γ ◦ κ .

Let p ∈M be a central projection such that

Γ(p) ≥ p ⊗ p and κ(p) = p .

Let r :M−→Mp be the canonical surjection x 7−→ xp. Then
Kp = (Mp, Γp, κp, ϕp) is a reduced Kac algebra of K, where

Γp(r(x)) = (r ⊗ r)Γ(x) and κp(r(x)) = r(κ(x)) ,

and ϕp is obtained by reduction from ϕ.



Recall: Kac algebras and reduced Kac algebras

L∞(G) and VN(G) are Kac algebras, and L̂∞(G) = VN(G).

It is known (Takesaki-Tatsuuma 71) that

For K = L∞(G),

KP is a reduced Kac algebra of L∞(G) iff

KP = L∞(H) for some open subgroup H of G.

For K = VN(G),

KP is a reduced Kac algebra of VN(G) iff

KP = VN(G/N) for some comp. normal subgroup N of G.



Recall: Decomposability number

For a von Neumann algebraM, the decomposability
number dec (M) ofM is the greatest carnality of a family
of pairwise orthogonal non-zero projections inM.

E.g., dec (B(H)) = dim (H) and dec (B(H)∗∗) = 2 2 dim(H)
.

Theorem. (H.-N. 06) Let G be an infinite LCG. Then

(i) dec (L∞(G)) = κ(G)ℵ0 .

(ii) dec (VN(G)) = χ(G)ℵ0 .



A Kac algebraic Kakutani-Kodaira theorem

Definition (H. 05) For a Kac algebra K and a cardinal α,
the αth Kakutani-Kodaira number δα(K) of K is the
least cardinal κ such that
∀ family (Ui)j∈J of w∗-nbhds of id K with card(J) ≤ α,
∃ a reduced Kac algebra Kp of K such that

p ∈
⋂
Uj and dec (Kp) ≤ κ .

Then δα(K) ≤ δβ(K) if α ≤ β . We denote δ1(K) by δ(K).

Theorem. (H. 05) If K = L∞(G) or VN(G) , then

δ(K) ≤ dec(K̂) ,

and the equality holds for many K with uncountable dec(K̂).

Equivalently, we have δdec(K̂)
(K) ≤ dec(K̂).



More on quantitative description of duality

More on dual relation between K and K̂ can be described
quantitatively in terms of these Kac algebraic invariants.
For example, we have the following.

Theorem. (H. 05) For K = L∞(G) or VN(G) , there exists
a one-to-one correspondence between the families

{maximally decomposable sub Kac algebras of K}

and

{norm closed K̂-invariant ∗-subalgebras A of L1(K̂)

with dense(A) = dec(K)} .



Banach algebras of type (M)

Using the Kac algebraic Kakutani-Kodaira theorem, we showed
that the class of Banach algebras of type (M) includes:

group algebras L1(G);

weighted convolution (Beurling) algebras L1(G, ω);

Fourier algebras A(G) of amenable G.

This class also includes:

WSC Banach algebras A with a central BAI and A being an
ideal in A∗∗ ;

WSC Banach algebras with a sequential BAI, in particular,
quantum group algebras L1(G) of co-amenable G with
L1(G) separable.



Banach algebras of type (M)

It turns out that Banach algebras A of type (M) behave well
regarding multipliers and structures on A∗∗.

Theorem. (H.-N.-R.) Let A be a Banach algebra of type (RM).
Then for µ ∈ RM(A), T.F.A.E.

(i) µ ∈ A.

(ii) µ · A∗ ⊆ 〈AA∗〉.

(iii) ∃ m ∈ A∗∗ such that n · µ = n♦m (n ∈ A∗∗).

The left version holds for A of type (LM) and µ ∈ LM(A).



A completely isometric representation of L1(G)

Theorem. (H.-N.-R.) Let G be a LCQG and let

Θr : M r
cb(L1(G)) ∼= CB σ,L∞(G)

L∞(Ĝ)
(B(L2(G)))

be the completely isometric representation by J.-N.-R.

If L1(G) is of type (M) (e.g., G is co-amenable and L1(G) is

separable), then

Θr (L1(G)) = CB σ, (L∞(G),RUC(G))

L∞(Ĝ )
(B(L2(G))) ,

where RUC(G) := 〈L1(G) ? L∞(G)〉.



A characterization of amenability

In particular, for every amenable LCG G, we have

Θ(A(G)) = CB σ, (VN(G),UC(Ĝ))
L∞(G) (B(L2(G))) .

where UC(Ĝ) = 〈VN(G) · A(G)〉 = 〈A(G) · VN(G)〉 .

This answers the open question by N.-R.-S. (08).

The converse of the above is also true. That is, if we let

AΘ(G) := {µ ∈ McbA(G) : µ · VN(G) ⊆ UC(Ĝ)},

then we have

Corollary. G is amenable ⇐⇒ AΘ(G) = A(G) .



Recall: Arens products

The left Arens product � on A∗∗ is naturally defined when
A is considered as a left A-module:
for a, b ∈ A, f ∈ A∗, and m, n ∈ A∗∗, we have

〈f ·a,b〉 = 〈f ,ab〉, 〈n�f ,a〉 = 〈n, f ·a〉, 〈m�n, f 〉 = 〈m,n�f 〉.

The right Arens product ♦ on A∗∗ is defined similarly.

Equivalently,

m�n = w∗-lim
α

lim
β

aαbβ and m♦n = w∗-lim
β

lim
α

aαbβ

whenever (aα), (bβ) are nets in A w∗-convergent to m, n.

Both � and ♦ extend the multiplication on A.



Recall: Arens regularity

A is said to be Arens regular if � and ♦ coincide.

Every operator algebra (in particular, every C∗-algebra)
and every quotient algebra thereof are Arens regular.

It is known that

(i) L1(G) is Arens regular⇐⇒ G is finite (Young 73).

(ii) for amenable G, A(G) is Arens regular⇐⇒ G is finite
(Lau 81).

(i) and (ii) can be seen dual to each in the setting of LCQG,
noticing that L∞(G) is always co-amenable, and VN(G) is
co-amenable iff G is amenable.

It is still open whether (ii) holds for all LCGs G.



Recall: Topological centres

(A∗∗,�) is a right topological semigroup under w∗-top:

for any fixed m ∈ A∗∗, n 7−→ n�m is w∗-w∗ cont.

Similarly, (A∗∗,♦) is a left topological semigroup.

The topological centres of (A∗∗,�) and (A∗∗,♦) are

Zt (A∗∗,�) = {m ∈ A∗∗ : n 7−→ m�n is w∗-w∗ cont.},

Zt (A∗∗,♦) = {m ∈ A∗∗ : n 7−→ n♦m is w∗-w∗ cont.},

simply called the left and right topological centres of A∗∗.



Recall: Topological centres

A ⊆ Zt (A∗∗,�) ⊆ A∗∗ ; A ⊆ Zt (A∗∗,♦) ⊆ A∗∗.

Zt (A∗∗,�) = A∗∗ ⇐⇒ A is AR ⇐⇒ Zt (A∗∗,♦) = A∗∗.

A is said to be left strongly Arens irregular (LSAI)
if Zt (A∗∗,�) = A (Dales-Lau 05).

Similarly, RSAI and SAI are defined.

Every group algebra L1(G) is SAI (Lau-Losert 88).



SAI of Banach algebras of type (M)

Theorem. (H.-N.-R.) Let A be a Banach algebra of type (M).
Then for m ∈ A∗∗, T.F.A.E.

(i) m ∈ A.

(ii) m ∈ Zt (A∗∗,�) and m · A ⊆ A .

(iii) m ∈ Zt (A∗∗,♦) and A ·m ⊆ A .

Corollary. Let A be a Banach algebra of type (M). Then

(1) A is LSAI ⇐⇒ Zt (A∗∗,�) · A ⊆ A ;

(2) A is RSAI ⇐⇒ A · Zt (A∗∗,♦) ⊆ A .



Recall: The left quotient algebra 〈A∗A〉∗ of A∗∗

〈A∗A〉 is an A-submodule of A∗ and is left introverted in
A∗ (i.e., a left (A∗∗,�)-submodule of A∗).

� on A∗∗ induces a product on 〈A∗A〉∗ such that the
canonical quotient map A∗∗ −→ 〈A∗A〉∗ yields

(〈A∗A〉∗,�) ∼= (A∗∗,�)/〈A∗A〉⊥ .

〈A∗A〉∗ is a also right topological semigroup under the
w∗-topology. Its topological centre is defined by

Zt (〈A∗A〉∗) = {m ∈ 〈A∗A〉∗ : n 7−→ m�n is w∗-w∗ cont.}.

For every LCG G, Zt (LUC(G)∗) = M(G) (Lau 86).



Some asymmetry phenomena

Let q : A∗∗ −→ 〈A∗A〉∗ be the canonical quotient. Then

q(Zt (A∗∗,�)) ⊆ Zt (〈A∗A〉∗) .

If A has a BRAI, then RM(A) ↪→ Zt (〈A∗A〉∗) ⊆ 〈A∗A〉∗.

Proposition. (H.-N.-R.) If A has a BRAI, then

Zt (〈A∗A〉∗) = RM(A) ⇐⇒ A · Zt (A∗∗,�) ⊆ A .

Recall from the above: If A is of type (M), then

Zt (A∗∗,�) = A ⇐⇒ Zt (A∗∗,�) · A ⊆ A .

In next lecture, we shall explain this asymmetry and show
what is missing here.



The answer to an open question by Lau-Ülger

For m ∈ A∗∗, let mR : A∗ −→ A∗ be the map f 7−→ f♦m .

Question (Lau-Ülger 96):

For a WSC Banach algebra A with a BAI, if m ∈ Zt (A∗∗,�),

are ker(mR) and mR(ball(A∗)) w∗-closed in A∗?

Answer: It can be negative for A of type (M) with
Property (X) (Godefroy-Talagrand 81).

A special case for the answer is as follows.

Proposition. (H.-N.-R.) LetM be a von Neumann algebra with
A =M∗ separable with a BAI. Then, for any m ∈ Zt (A∗∗,�) \A ,

either ker(mR) or mR(ball(A∗)) is not w∗-closed in A∗ .



The answer to an open question by Lau-Ülger

An outline of the proof:

A =M∗ is separable =⇒ A has the Mazur property

(i.e., for m ∈ A∗∗, we have m ∈ A if m is sequentially w∗-cont).

In this case,

ker(mR) and mR(ball(A∗)) are both w∗-closed in A∗

⇐⇒ mR : A∗ −→ A∗ is w∗-w∗ cont (Godefroy 89).

Let m ∈ Zt (A∗∗,�) \ A. By our characterization of A inside
Zt (A∗∗,�) given above, we have

m · A * A ; i.e., m∗R(A) * A .

Therefore, mR : A∗ −→ A∗ is not w∗-w∗ cont.



A question by the referee

Question: In the above Proposition, which of the sets ker(mR)

and mR(ball(A∗)) is not w∗-closed in A∗?

Answer: Both are possible.

Example. Let / be the multiplication on T (`2(Z)) induced by
the left fundamental unitary W of `∞(Z). Then (T (`2(Z)), /)op

is just the convolution algebra (T (`2(Z)), ∗) introduced by
Neufang (00). It is known from Auger-Neufang (07) the right
topological centre of (T (`2(Z)), ∗) is `1(Z)⊕ `∞(Z)⊥. Then

Zt (T (`2(Z))∗∗,�/) = `1(Z)⊕ `∞(Z)⊥ % T (`2(Z)) .

Let A be the unitization of (T (`2(Z)), /). Then

Zt (A∗∗,�) = `1(Z)⊕ `∞(Z)⊥ ⊕ C % A .



The answer to the question by the referee

Proposition. (H.-N.-R.) Let A be the same as above. Then A is
a unital Banach algebra with A∗ a von Neumann algebra.

Let s ∈ `∞(Z)⊥ \ `∞(Z)⊥ and m = (s, α) ∈ Zt (A∗∗,�) \ A.

(i) If α 6= 0, then ker(mR) = {0} is obviously w∗-closed in A∗,

but mR(ball(A∗)) is not w∗-closed in A∗.

(ii) If α = 0, then ker(mR) is not w∗-closed in A∗. In this case,

mR(ball(A∗)) is w∗-closed in A∗ iff ‖m‖ is attainable.


