Topological centres and SIN quantum groups

Zhiguo Hu

University of Windsor

University of Leeds

May 25, 2010

Recall: Topological centres

Let *A* be a Banach algebra with a faithful multiplication. Left and right Arens products on A^{**} extend the multiplication on *A*.

• The left and right topological centres of A** are

$$\mathfrak{Z}_t(A^{**},\Box) = \{m \in A^{**}: n \longmapsto m\Box n \text{ is } w^* \cdot w^* \text{ cont.}\},\$$

$$\mathfrak{Z}_t(A^{**},\diamondsuit) = \{m \in A^{**}: n \longmapsto n \diamondsuit m \text{ is } w^* \text{-} w^* \text{ cont.}\}.$$

• The canonical quotient map $q: A^{**} \longrightarrow \langle A^*A \rangle^*$ yields

$$(\langle A^*A\rangle^*,\Box) \cong (A^{**},\Box)/\langle A^*A\rangle^{\perp}.$$

• The topological centre of $\langle A^*A \rangle^*$ is

$$\mathfrak{Z}_t(\langle A^*A\rangle^*) = \{ m \in \langle A^*A\rangle^* : n \longmapsto m \Box n \text{ is } w^* \text{-} w^* \text{ cont.} \}.$$

▲ロト ▲団ト ▲ヨト ▲ヨト 三ヨー わらぐ

Algebraic descriptions of topological centres

We have

$$\mathfrak{Z}_t(A^{**}, \Box) = \{ m \in A^{**} : m \Box n = m \diamondsuit n \ \forall \ n \in A^{**} \},$$
$$\mathfrak{Z}_t(A^{**}, \diamondsuit) = \{ m \in A^{**} : n \Box m = n \diamondsuit m \ \forall \ n \in A^{**} \}.$$

If ⟨A*A⟩ is two-sided introverted in A*, then ◊ is also defined on ⟨A*A⟩*. In this case,

 $\mathfrak{Z}_t(\langle A^*A\rangle^*) = \{m \in \langle A^*A\rangle^* : m \Box n = m \Diamond n \ \forall \ n \in \langle A^*A\rangle^* \}.$

◆□▶ ◆□▶ ◆□▶ ◆□▶ ●□ ● ●

 Question: In general, can 3_t(⟨A^{*}A⟩^{*}) also be described in terms of TWO products?

Right-left subalgebras and quotient algebras

We define $A_R^{**} := \{ m \in A^{**} : \langle A^*A \rangle \Diamond m \subseteq \langle A^*A \rangle \}.$

•
$$A_R^{**}$$
 is a subalgebra of (A^{**}, \diamondsuit) .

• Let $\langle A^*A \rangle_R^* := q(A_R^{**}) = \{ m \in \langle A^*A \rangle^* : \langle A^*A \rangle \diamondsuit m \subseteq \langle A^*A \rangle \}.$ Then

$$(\langle {oldsymbol A}^* {oldsymbol A}
angle_R, \diamondsuit) \ \cong \ ({oldsymbol A}^{**}, \diamondsuit) / \langle {oldsymbol A}^* {oldsymbol A}
angle^\perp$$
 .

 $\langle A^*A \rangle_R^* = \langle A^*A \rangle^*$ iff $\langle A^*A \rangle$ is two-sided introverted in A^* .

- Both A^{**}_R and (A^{*}A)^{*}_R are left topological semigroups.
 We can also consider 3_t(A^{**}_R) and 3_t((A^{*}A)^{*}_R).
- More general, for any left introverted subspace X of A*, the algebra X^{*}_B can be defined.

An algebraic description of $\mathfrak{Z}_t(\langle A^*A\rangle^*)$

Proposition. (H.-N.-R.) Let A be a Banach algebra. Then

$$\mathfrak{Z}_t(\langle A^*A\rangle^*) = \{m \in \langle A^*A\rangle_R^* : m \Box n = m \Diamond n \quad \forall n \in \langle A^*A\rangle^*\}.$$

Corollary. If $m \in \langle A^*A \rangle^*$, then

$$m \in \mathfrak{Z}_t(\langle A^*A \rangle^*) \iff A \cdot m \subseteq \mathfrak{Z}_t(A^{**}, \Box).$$

Corollary. If $\langle A^2 \rangle = A$ (e.g., $A = L_1(\mathbb{G})$), then

 $A \cdot \mathfrak{Z}_t(A^{**}, \Box) \subseteq A \iff A \cdot \mathfrak{Z}_t(\langle A^*A \rangle^*) \subseteq A.$

Strong identity of $\langle A^*A \rangle^*$

• Recall: If $\langle A^2 \rangle = A$, then A has a BRAI iff $\langle A^*A \rangle^*$ is unital (Grosser-Losert 84).

So, a LCQG \mathbb{G} is co-amenable iff $(LUC(\mathbb{G})^*, \Box)$ is unital, where $LUC(\mathbb{G}) = \langle L_{\infty}(\mathbb{G}) \star L_1(\mathbb{G}) \rangle$.

- If *e* is an identity of $(\langle A^*A \rangle^*, \Box)$, then *e* is a left identity of $(\langle A^*A \rangle_R^*, \diamondsuit)$.
- *e* ∈ ⟨*A***A*⟩* is called a strong identity if *e* is an identity of (⟨*A***A*⟩*, □) and an identity of (⟨*A***A*⟩*, ◊).

When does $\langle A^*A \rangle^*$ have a strong identity?

Proposition. (H.-N.-R.) Suppose that $\langle A^2 \rangle = A$. T.F.A.E.

- (i) $\langle A^*A \rangle^*$ has a strong identity;
- (ii) $\langle A^*A \rangle_B^*$ is right unital;
- (iii) *A* has a BRAI and $\langle A^*A \rangle = \langle AA^*A \rangle$;
- (iv) $id \in \mathfrak{Z}_t(\langle A^*A \rangle_R^*),$

where $\langle A^*A \rangle^* \subseteq B(A^*)$ canonically.

SIN quantum groups

 Recall: A LCG G is SIN if e_G has a basis of compact sets invariant under inner automorphisms.

It is known that G is SIN iff LUC(G) = RUC(G) (Milnes 90).

• A LCQG \mathbb{G} is called **SIN** if $LUC(\mathbb{G}) = RUC(\mathbb{G})$.

This class includes: discrete, compact, co-commutative \mathbb{G} , and \mathbb{G} with $L_1(\mathbb{G})$ having a central approximate identity.

▲ロト ▲団ト ▲ヨト ▲ヨト 三ヨー わらぐ

Corollary. T.F.A.E.

- (i) G is a co-amenable SIN quantum group;
- (ii) $LUC(\mathbb{G})^*_R$ is right unital;
- (iii) $LUC(\mathbb{G})^*$ has a strong identity;

```
(iv) id \in \mathfrak{Z}_t(LUC(\mathbb{G})^*_R).
```

The commutative quantum group case

Let *G* be a locally compact group.

• Recall: For $m \in LUC(G)^*$ and $f \in LUC(G)$,

$$m_r(f)(s) := \langle m, f_s \rangle \quad (s \in G).$$

 $Z_U(G) := \{m \in LUC(G)^* : m_r(f) \in LUC(G) \ \forall \ f \in LUC(G)\}.$

• For $f \in LUC(G)$, $m \in Z_U(G)$, and $n \in LUC(G)^*$, let

$$\langle f, m * n \rangle := \langle m_r(f), n \rangle.$$

◆□▶ ◆□▶ ◆□▶ ◆□▶ ●□ ● ●

Then $(Z_U(G), *)$ is a Banach algebra.

The commutative quantum group case

• $\mathfrak{Z}_t(LUC(G)^*) = \{m \in Z_U(G) : m \Box n = m * n \ \forall n \in LUC(G)^*\}$ (Lau 86).

By our algebraic description of $\mathfrak{Z}_t(\langle A^*A \rangle^*)$, we obtained

 $\mathfrak{Z}_t(LUC(G)^*) = \{ m \in LUC(G)_R^* : m \Box n = m \Diamond n \ \forall n \in LUC(G)^* \}.$

• Question: Do we have $(LUC(G)_R^*, \Diamond) = (Z_U(G), *)$?

• Answer: They are equal iff G is SIN.

The commutative quantum group case

 Note that for any Banach algebra A and any left introverted subspace X of A*, the algebra X^{*}_R can be defined.

We shall see that $Z_U(G)$ has the form X_R^* .

- $LUC_{\ell_{\infty}}(G) := LUC(G)$ as a subspace of $\ell_{\infty}(G)$.
- $LUC_{\ell_{\infty}}(G)$ is left introverted in $\ell_{\infty}(G) = \ell_1(G)^*$.

Then $(LUC_{\ell_{\infty}}(G)^*, \Box_{\ell_1})$ and $(LUC_{\ell_{\infty}}(G)^*_R, \diamondsuit_{\ell_1})$ are defined.

So, there are five Banach algebras associated with LUC(G) · · ·

The five Banach algebras associated with LUC(G)

In general, we have $(LUC_{\ell_{\infty}}(G)^*, \Box_{\ell_1}) = (LUC(G)^*, \Box);$

$$(Z_U(G),*) = (LUC_{\ell_{\infty}}(G)^*_R,\diamondsuit_{\ell_1}) \neq (LUC(G)^*_R,\diamondsuit).$$

• So, $(Z_U(G), *)$ has the form (X_R^*, \diamondsuit) .

It can be seen that T.F.A.E.

(i)
$$LUC(G)^* = LUC(G)^*_R$$
;

(ii) G is SIN;

(iii)
$$LUC_{\ell_\infty}(G)^* = LUC_{\ell_\infty}(G)^*_R$$
.

Note that the equalities in (i) and (iii) are equalities of SPACES.

▲ロト ▲団ト ▲ヨト ▲ヨト 三ヨー わらぐ

Some algebraic characterizations of SIN groups

Theorem. (H.-N.-R.) Let G be a locally compact group. T.F.A.E.

- (i) G is SIN;
- (ii) $(LUC(G)_{R}^{*}, \diamondsuit) = (Z_{U}(G), *);$
- (iii) $LUC(G)_R^*$ is a subalgebra of $Z_U(G)$;
- (iv) $\delta_e \in \mathfrak{Z}_t(LUC(G)_R^*)$;
- (v) $(LUC(G)_R^*, \diamondsuit)$ is unital;
- (vi) $LUC(G)^*$ has a strong identity.
 - In (iv), (v), LUC(G)^{*}_R cannot be replaced by Z_U(G),
 since δ_e is always an identity of (Z_U(G), *).

Compact and discrete groups

- In general, the three algebras $(LUC(G)^*, \Box)$, $(LUC(G)^*_R, \diamondsuit)$, and $(Z_U(G), *)$ are different.
- G is compact $\iff (LUC(G)^*, \Box) = (LUC(G)^*_R, \diamondsuit)$.

In this case, $(LUC(G)^*, \Box) = (LUC(G)^*_R, \diamondsuit) = (Z_U(G), *)$.

- *G* is discrete $\iff (UC(\widehat{G})^*, \Box) = (UC(\widehat{G})^*_R, \diamondsuit).$
- The equivalence holds for some general quantum groups.

An auxiliary topological centre of $\langle A^*A \rangle^*$ – motivation

• Some asymmetry phenomena (Lau-Ülger 96; H.-N.-R.):

$$\mathfrak{Z}_t(\langle A^*A\rangle^*)=RM(A) \quad \Longleftrightarrow \quad A\cdot\mathfrak{Z}_t(A^{**},\Box)\subseteq A;$$

$$\mathfrak{Z}_t(A^{**},\Box)=A \quad \Longleftrightarrow \quad \mathfrak{Z}_t(A^{**},\Box)\cdot A\subseteq A.$$

Interrelationship between topological centre problems:

$$m \in \mathfrak{Z}_t(\langle A^*A \rangle^*) \quad \Longleftrightarrow \quad A \cdot m \subseteq \mathfrak{Z}_t(A^{**}, \Box);$$

$$m \in ? \quad \iff A \cdot m \subseteq \mathfrak{Z}_t(A^{**}, \diamondsuit).$$

▲ロト ▲団ト ▲ヨト ▲ヨト 三ヨー わらぐ

• Automatic normality problem for certain right *A*-module maps on *A**.

An auxiliary topological centre of $\langle A^*A \rangle^*$

One subspace of $\langle A^*A \rangle^*$ can help for all of these problems.

Definition. (H.-N.-R.) For a Banach algebra *A*, the **auxiliary topological centre** of $\langle A^*A \rangle^*$ is defined by

$$\mathfrak{Z}_t(\langle A^*A\rangle^*)_{\diamondsuit} = \{m \in \langle A^*A\rangle^* : n \diamondsuit m = n \Box m \text{ in } A^{**} \forall n \in \langle A^{**}A\rangle\}.$$

Similarly, $\mathfrak{Z}_t(\langle AA^* \rangle^*)_{\square}$ can be defined.

•
$$\mathfrak{Z}_t(\langle A^*A\rangle^*)_{\diamondsuit} = \mathfrak{Z}_t(\langle A^*A\rangle^*)$$
 if $\mathfrak{Z}_t(A^{**},\Box) = \mathfrak{Z}_t(A^{**},\diamondsuit)$.

• Under the canonical quotient map $q: A^{**} \longrightarrow \langle A^*A \rangle^*$,

$$\mathfrak{Z}_t(A^{**},\Box)\longrightarrow\mathfrak{Z}_t(\langle A^*A\rangle^*),\quad\mathfrak{Z}_t(A^{**},\diamondsuit)\longrightarrow\mathfrak{Z}_t(\langle A^*A\rangle^*)_\diamondsuit.$$

$\mathfrak{Z}_t(\langle A^*A\rangle^*)_{\diamondsuit}$ – some applications

• For $m \in \langle A^*A \rangle^*$, we have

$$m \in \mathfrak{Z}_t(\langle A^*A \rangle^*) \iff A \cdot m \subseteq \mathfrak{Z}_t(A^{**}, \Box);$$
$$m \in \mathfrak{Z}_t(\langle A^*A \rangle^*)_{\diamondsuit} \iff A \cdot m \subseteq \mathfrak{Z}_t(A^{**}, \diamondsuit).$$

• If
$$\langle A^2 \rangle = A$$
 (e.g., $A = L_1(\mathbb{G})$), then
 $A \cdot \mathfrak{Z}_t(A^{**}, \square) \subseteq A \iff A \cdot \mathfrak{Z}_t(\langle A^*A \rangle^*) \subseteq A$;
 $A \cdot \mathfrak{Z}_t(A^{**}, \diamondsuit) \subseteq A \iff A \cdot \mathfrak{Z}_t(\langle A^*A \rangle^*)_{\diamondsuit} \subseteq A$.

◆□▶ ◆御▶ ◆臣▶ ◆臣▶ 三臣 - のへで

$\mathfrak{Z}_t(\langle A^*A\rangle^*)_{\Diamond}$ – some applications

Proposition. (H.-N.-R.) If A is of type (M), then

 $\mathfrak{Z}_{t}(\mathcal{A}^{**},\Box) = \mathcal{A} \iff \mathfrak{Z}_{t}(\langle \mathcal{A}\mathcal{A}^{*}\rangle^{*})_{\Box} = \mathcal{L}\mathcal{M}(\mathcal{A});$

 $\mathfrak{Z}_t(A^{**},\diamondsuit) = A \quad \Longleftrightarrow \quad \mathfrak{Z}_t(\langle A^*A \rangle^*)_\diamondsuit = RM(A).$

Surprisingly, LSAI and RSAI of A are not related to the usual topo centres 3_t(⟨A*A⟩*) and 3_t(⟨AA*⟩*), but related to auxiliary topo centres 3_t(⟨AA*⟩*)_□ and 3_t(⟨A*A⟩*)_◊.

$(\mathcal{J}_t(\langle A^*A \rangle^*)_{\Diamond} - \text{some applications})$

Corollary. If *A* is of type (*M*) with $\mathfrak{Z}_t(A^{**}, \Box) = \mathfrak{Z}_t(A^{**}, \diamondsuit)$ (e.g., *A* is commutative), then

$$A \text{ is SAI} \iff \mathfrak{Z}_t(\langle A^*A \rangle^*) = RM(A).$$

- "⇐" was shown by Lau-Losert (93) for A(G) with G amenable.
- There exist unital WSC Banach algebras *A* such that $\mathfrak{Z}_t(A^{**}, \Box) = A \subsetneq \mathfrak{Z}_t(A^{**}, \diamondsuit)$. In this case, the above equivalence does not hold.

Module homomorphisms on A*

 $B_A(A^*)$:= bounded right A-module maps on A^* .

 $B^{\sigma}_{A}(A^{*}) :=$ normal bounded right A-module maps on A^{*} .

 $B_{A^{**}}(A^*) :=$ bounded right (A^{**}, \diamondsuit) -module maps on A^* .

•
$$RM(A) \cong B^{\sigma}_{A}(A^*) \subseteq B_{A^{**}}(A^*) \subseteq B_{A}(A^*)$$
.

In fact, we have

$$B_{A^{**}}(A^*) = \{T \in B_A(A^*) : T^*(A) \subseteq \mathfrak{Z}_t(A^{**}, \diamondsuit)\}.$$

◆□▶ ◆御▶ ◆臣▶ ◆臣▶ 三臣 - のへで

The canonical representation of $\langle A^*A \rangle^*$ on A^*

• Let $\Phi : \langle A^*A \rangle^* \longrightarrow B_A(A^*)$ be the contractive and injective algebra homo $m \longmapsto m_L$, where $m_L(f) = m \Box f$.

Then Φ is surjective if *A* has a BRAI.

• Let A be a completely contractive Banach algebra. Then

$$\Phi: \langle A^*A \rangle^* \longrightarrow CB_A(A^*)$$

is a c.c. algebra homomorphism. If A has a BRAI, then

$$\Phi(\langle A^*A\rangle^*) \subseteq CB_A(A^*) \subseteq B_A(A^*) = \Phi(\langle A^*A\rangle^*);$$

in this case, we have

 $B_A(A^*) = CB_A(A^*)$ and $RM(A) = RM_{cb}(A)$.

Using the canonical repn Φ : $\langle A^*A \rangle^* \longrightarrow B_A(A^*)$, we can study Arens irregularity properties of *A* through module maps on A^* .

For example, we have the following generalization of a result by Neufang (00) on $L_1(G)$.

▲ロト ▲団ト ▲ヨト ▲ヨト 三ヨー わらぐ

Proposition. (H.-N.-R.) If A is of type (M). T.F.A.E.

(i)
$$\mathfrak{Z}_t(A^{**}, \diamondsuit) = A$$
;

(ii) $B_{A^{**}}(A^*) = B_A^{\sigma}(A^*)$.

Commutation relations

Consider the two sequences:

$$egin{array}{rcl} B^\sigma_A(A^*) &\subseteq& B_{A^{**}}(A^*) &\subseteq& B_A(A^*)\,; \ &_AB(A^*)^c &\subseteq& _{A^{**}}B(A^*)^c &\subseteq& _AB^\sigma(A^*)^c\,, \end{array}$$

where "c" denotes commutant in $B(A^*)$.

• If
$$\langle A^2 \rangle = A$$
, then
 $B^{\sigma}_A(A^*) \subseteq {}_A B(A^*)^c \subseteq B_{A^{**}}(A^*) \subseteq B_A(A^*)$
 $= {}_{A^{**}} B(A^*)^c = {}_A B^{\sigma}(A^*)^c$.

• If A has a BLAI, then

$$egin{aligned} B^\sigma_{\mathcal{A}}(\mathcal{A}^*) &\subseteq {}_{\mathcal{A}}B(\mathcal{A}^*)^c = B_{\mathcal{A}^{**}}(\mathcal{A}^*) \subseteq B_{\mathcal{A}}(\mathcal{A}^*) \ &= {}_{\mathcal{A}^{**}}B(\mathcal{A}^*)^c = {}_{\mathcal{A}}B^\sigma(\mathcal{A}^*)^c \,. \end{aligned}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

SAI and bicommutant theorem

In the following, LM(A), $RM(A) \subseteq B(A^*)$.

Proposition. (H.-N.-R.) Let A be a Banach algebra of type (M).

- (i) A is LSAI $\iff LM(A)^{cc} = LM(A)$;
- (ii) A is RSAI $\iff RM(A)^{cc} = RM(A)$.
 - There is even a unital WSC *A* which is LSAI but not RSAI. So, the above bicommutation relations are not equivalent.

Corollary. Let *A* be a unital WSC involutive Banach algebra (e.g., $A = L_1(\mathbb{G})$ of discrete \mathbb{G}). Then

$$A ext{ is SAI} \iff A^{cc} = A.$$

The convolution quantum group algebra case

Let \mathbb{G} be a LCQG. In the following, "c" is taken in $B(L_{\infty}(\mathbb{G}))$.

Corollary. If $L_1(\mathbb{G})$ separable, T.F.A.E.

(i) $M(\mathbb{G})^{cc} = M(\mathbb{G});$

(ii) \mathbb{G} is co-amenable and $L_1(\mathbb{G})$ is SAI.

Proposition. (H.-N.-R.)

 \mathbb{G} is compact $\iff RM(L_1(\mathbb{G}))^c = LM(L_1(\mathbb{G})).$

Corollary. Let *G* be a locally compact group.

- (i) $B(G)^{cc} = B(G) \iff G$ is amenable and A(G) is SAI.
- (ii) $A(G)^{cc} = A(G) \iff G$ is compact and A(G) is SAI.
- (1) $B(G)^c = B(G) \iff G$ is amenable and discrete.
- (2) $A(G)^c = A(G) \iff G$ is finite.
 - The above B(G) can also be replaced by $B_{\lambda}(G)$.