ON MULTIPLIERS AND COMPLETELY BOUNDED MULTIPLIERS – THE CASE $SL(2,\mathbb{R})$

VIKTOR LOSERT

- A(G) Fourier algebra of a locally compact group G. B(G) Fourier-Stieltjes algebra. A(G)'' bidual of A(G) with (first) Arens product \odot .
- M(A(G)) multipliers of A(G) with norm $|| ||_M$. Every $f \in M(A(G))$ is given by (and identified with) a bounded continuous function on G. It extends to A(G)''and this is again denoted by $f \odot \xi$ for $\xi \in A(G)''$ (bidual mapping).
- $M_0(A(G))$ completely bounded multipliers of A(G) with norm $|| ||_{M_0}$ (see [CH] for basic properties).
- VN(G) group von Neumann algebra (generated by the left regular representation on $L^2(G)$), we use the standard identification with the dual space A(G)'.
- $C_0(G)$ continuous functions on G vanishing at infinity.
- $\mathcal{B}(\mathcal{H})$ bounded linear operators on a Hilbert space \mathcal{H} .

For $G = SL(2, \mathbb{R})$ (real 2x2-matrices of determinant one), let K be the subgroup of rotations $k_{\varphi} = \begin{pmatrix} \cos \varphi & -\sin \varphi \\ \sin \varphi & \cos \varphi \end{pmatrix}$ and H the subgroup of matrices $\begin{pmatrix} a & 0 \\ b & \frac{1}{a} \end{pmatrix}$ with $a > 0, \ b \in \mathbb{R}$. Recall (part of the Iwasawa decomposition) that G = KH, the decomposition of the elements x = kh being unique. We parametrize the dual group \widehat{K} of the compact abelian group K by $\chi_j(k_{\varphi}) = e^{ij\varphi}$ $(j \in \mathbb{Z}, \ \varphi \in \mathbb{R})$.

Theorem. For $G = SL(2, \mathbb{R})$ we have $M(A(G)) = M_0(A(G))$. There exists $\zeta \in A(G)''$ with $\|\zeta\| = 1$ such that

$$||f \odot \zeta|| = ||f||_M = ||f||_{M_0} \quad holds for all \ f \in M(A(G))$$

A(G) is dense in $M(A(G)) \cap C_0(G)$ with respect to $|| ||_M$. Put $f_{mn} = \chi_m * f * \chi_n$. For $f \in M(A(G)) \cap C_0(G)$, we have that $(f_{mn} | H)_{m,n \in \mathbb{Z}}$ defines an element of the predual of $VN(H) \bar{\otimes} \mathcal{B}(l^2(\mathbb{Z}))$ whose norm equals $||f||_M$.

For general $f \in M(A(G))$, we have that $\lambda = \lim_{x\to\infty} f(x)$ exists. Then $f - \lambda \in M(A(G)) \cap C_0(G)$ and $||f||_M = ||f - \lambda||_M + |\lambda|$.

The Theorem holds similarly for all connected groups G that are locally isomorphic to $SL(2,\mathbb{R})$ and have finite centre. With some modifications, one can find

Summary of talks given at the School of Mathematics, University of Leeds, 28 May– 2 June 2010.

presumably also a version for the universal covering group of $SL(2,\mathbb{R})$. The state ζ will arise from a representation of the C*-algebra VN(G) on some ultraproduct of Hilbert spaces.

For general G, we have $A(G) \subseteq B(G) \subseteq M_0(A(G)) \subseteq M(A(G))$. When G is amenable (e.g. abelian or compact), M(A(G)) = B(G) holds. When G is nonamenable (e.g., $SL(2,\mathbb{R})$ or the discrete free group F_2), it is known that B(G) is a proper subspace of $M_0(A(G))$. For a general discrete group G, containing F_2 as a subgroup, Bozejko (1981) has shown that $M_0(A(G))$ is a proper subspace of M(A(G)).

If K is a compact subgroup of some locally compact group G, a function f on G is called *radial* (with respect to K) or K-bi-invariant, if $f(k_1xk_2) = f(x)$ holds for all $x \in G$, $k_1, k_2 \in K$. If there exists a closed amenable subgroup H of G such that G = KH holds set-theoretically, then for a radial function f, Cowling and Haagerup [CH] have shown that the following conditions are equivalent:

(i) $f \in M(A(G))$ (ii) $f \in M_0(A(G))$ (iii) $f \mid H \in B(H)$

(with equality of norms). This applies, in particular, for a semisimple Lie group G with finite centre, K a maximal compact subgroup.

For $G = SL(2, \mathbb{R})$ and $m, n \in \mathbb{Z}$, using our notation above, we call f(m, n)-radial, if $f(k_1 x k_2) = \chi_m(k_1) f(x) \chi_n(k_2)$ holds for all $x \in G$, $k_1, k_2 \in K$. Then the same equivalence as above holds for (m, n)-radial functions f and for $(m, n) \neq (0, 0)$ one even gets (by our Theorem) $f \mid H \in A(H)$.

On the following pages, we indicate the PROOF of the Theorem:

In one direction, assume that $(f_{mn} | H)_{m,n\in\mathbb{Z}}$ defines an element of the predual of $VN(H)\bar{\otimes}\mathcal{B}(l^2(\mathbb{Z}))$ whose norm equals c. Then it is not so hard to show that $f \in M_0(A(G))$ and $||f||_{M_0} \leq c$ using that such a functional is represented by a trace class operator on $L^2(G) \otimes l^2(\mathbb{Z})$ and the following Proposition (compare condition (iv) in [CH] p. 508).

Proposition 1. Let G be a locally compact group, K a compact subgroup, \mathcal{H} a separable Hilbert space, $f: G \to \mathbb{C}$ continuous, $P,Q: G \to \mathcal{H}$ a.e. defined and Borel measurable.

Assume that $c_P = \operatorname{ess\,sup}_{x \in G} \int_K \|P(kx)\|^2 dk < \infty$ and similarly $c_Q < \infty$. If $f(y^{-1}x) = (P(x) \mid Q(y))$ holds a.e. on $G \times G$, then $f \in M_0(A(G))$ and $\|f\|_{M_0} \leq \sqrt{c_P c_Q}$.

(a.e. refers to Haar measure on G or $G \times G$, dk refers to normalized Haar measure on K, (|) denotes the inner product of \mathcal{H}).

For the other direction, we start by recalling the description of the irreducible unitary **representations** (going back to Bargmann). For simplicity, we confine to representations of $PSL(2,\mathbb{R}) = SL(2,\mathbb{R})/\{\pm I\}$ (projective special linear group; $\{\pm I\}$ being the centre of $SL(2,\mathbb{R})$). We use (essentially) the notations (and parametrization) of Vilenkin [V].

Put $\mathcal{H} = L^2(\mathbb{R})$ (for ordinary Lebesgue measure), $g = \begin{pmatrix} \alpha & \beta \\ \gamma & \delta \end{pmatrix}$,

$$(T_l(g)f)(x) = f\left(\frac{\alpha x + \gamma}{\beta x + \delta}\right) |\beta x + \delta|^{2l} \quad \text{for} \quad f \in \mathcal{H}.$$

For $l = -\frac{1}{2} + i\lambda$ with $\lambda \in \mathbb{R}$ this gives unitary (strongly continuous, irreducible) representations of $SL(2, \mathbb{R})$ (*principal series*). $-\frac{1}{2} \pm i\lambda$ gives equivalent representations, hence it will be enough to consider $\lambda \geq 0$.

For $l \in \mathbb{Z}$ one gets the *discrete series* (but here the inner product has to be changed to make T_l unitary, changing \mathcal{H} too; see below).

Further cases for unitary representations are $l \in]-1, 0[$, which gives the complementary series (again with a different inner product) and, finally, there is also the trivial (one-dimensional) representation.

 T_l arises from the right action of $SL(2, \mathbb{R})$ on \mathbb{R}^2 (and the corresponding action on the projective line). In the notation of [V] this is T_{χ} with $\chi = (l, 0)$ (the second parameter can be used to describe further representations of $SL(2, \mathbb{R})$ and other covering groups). Integer case: for $l \geq 0$, we take T_l to be only the part T_{χ}^- (notation of [V]) and for l < 0 the part T_{χ}^+ . Thus T_{-l-1} is (equivalent to) the conjugate representation of T_l .

Multiplication in A(G) and B(G) corresponds to **tensor products** of representations. For $SL(2,\mathbb{R})$ the decompositions have been determined by Pukanszky (1961). A completed and better accessible account has been given by Repka [R].

For
$$l_j = -\frac{1}{2} + i\lambda_j$$

For $l_1 = -\frac{1}{2} + i\lambda_1$, $l_2 \in \mathbb{N}_0$
For $l_j \in \mathbb{N}_0$
 $T_{l_1} \otimes T_{l_2} \sim 2 \int_{\mathbb{R}^+}^{\oplus} T_{-\frac{1}{2} + i\lambda} d\lambda \oplus \sum_{l \geq 0} T_l$.
 $T_{l_1} \otimes T_{l_2} \sim \int_{\mathbb{R}^+}^{\oplus} T_{-\frac{1}{2} + i\lambda} d\lambda \oplus \sum_{l \geq 0} T_l$.

Similarly in the remaining cases.

To get **coefficients** for the unitary representations, we use (corresponding to [V]) an ortho*normal* basis (e_m^l) of the Hilbert space \mathcal{H}_l of T_l . For $l = -\frac{1}{2} + i\lambda$ (principal series), we have $\mathcal{H}_l = \mathcal{H}$ and the basis is indexed by $m \in \mathbb{Z}$. For $l \in \mathbb{N}_0$, the range is m > l and for integers l < 0: $m \leq l$.

The basis vectors satisfy $T_l(k_{\varphi}) e_m^l = e^{2mi\varphi} e_m^l = \chi_{2m}(\varphi) e_m^l$ ("elliptic basis").

We put $t_{mn}^{l}(g) = (T_{l}(g)e_{n}^{l} | e_{m}^{l})$. This gives the unitary matrix coefficients of $T_{l}(g)$. t_{mn}^{l} is (2m, 2n)-radial (we get only even integers, since we restrict to representations of $PSL(2, \mathbb{R})$).

For $l = -\frac{1}{2} + i\lambda$, we have $t_{mn}^l \in B(G)$ for all $m, n \in \mathbb{Z}$ (it even belongs to the reduced Fourier-Stieltjes algebra $B_{\rho}(G)$, i.e., the w*-closure of A(G) in B(G)).

For $l \in \mathbb{Z}$, the representations T_l are square-integrable, thus $t_{mn}^l \in A(G) \cap L^2(G)$ for $l \in \mathbb{N}_0$, m, n > l and for $l < 0, m, n \le l$.

For $l = -\frac{1}{2} + i\lambda$, the "non-radial component" of t_{mn}^{l} is described by $\mathfrak{P}_{mn}^{l}(\operatorname{ch} 2\tau) = t_{mn}^{l} \begin{pmatrix} e^{\tau} & 0\\ 0 & e^{-\tau} \end{pmatrix}$ for $\tau \geq 0$ (ch denoting the hyperbolic cosine). In [V] the functions \mathfrak{P}_{mn}^{l} are defined (and investigated) for all $l \in \mathbb{C}$, but (apart of the principal series) using a non-normalized orthogonal basis for the matrix representation. For the discrete series, the corresponding functions arising from the *unitary* coefficients are denoted by \mathcal{P}_{mn}^{l} in [VK] $(l \in \mathbb{Z})$. For $l \in \mathbb{N}_{0}$, m, n > l they are related by $\mathfrak{P}_{mn}^{l} = \left(\frac{(m-l-1)!(n+l)!}{(m+l)!(n-l-1)!}\right)^{\frac{1}{2}} \mathcal{P}_{mn}^{l}$.

Technically, the continuous part in the decomposition of tensor products is more difficult to handle (and the appearance of multiplicities causes additional complications). Therefore we restrict to the discrete part.

For $l_1 = -\frac{1}{2} + i\lambda$, $l_2 \in \mathbb{N}_0$, we define the *Clebsch-Gordan coefficients* by

$$e_j^{l_1} \otimes e_m^{l_2} = \sum_{l \ge 0} C(l_1, l_2, l; j, m, j + m) e_{j+m}^l + \text{ cont. part }$$

The same for $l_1 \in \mathbb{Z}$ with $l_1 \geq -l_2 - 1$ (for $l_1 < -l_2 - 1$ the discrete part of $T_{l_1} \otimes T_{l_2}$ contains only T_l with l < 0). We put $C(l_1, l_2, l; j, m, j + m) = 0$ when $j + m \leq l$ (in addition, for $l_1 \in \mathbb{Z}$, the coefficients will be 0 outside the range $l > l_1 + l_2$ for $l_1 \in \mathbb{N}_0$ and outside $0 \leq l \leq l_1 + l_2$ for $l_1 < 0$). The isomorphism between T_l and a component of $T_{l_1} \otimes T_{l_2}$ is determined only up to a factor of modulus 1. This is fixed by requiring that $C(l_1, l_2, l; l - l_2, l_2 + 1, l + 1) > 0$ (of course, in the integer case this refers only to those l that have not been excluded above).

For l_1, l_2 as above, this gives a decomposition of products in B(G)

(1)
$$t_{jj'}^{l_1} t_{mm'}^{l_2} = \sum_{l \ge 0} \overline{C(l_1, l_2, l; j, m, j + m)} C(l_1, l_2, l; j', m', j' + m') t_{j+mj'+m'}^l + \text{ cont. part.}$$

Now, we consider the behaviour for large l_2 .

Proposition 2 (Asymptotics of CG-coefficients). For fixed $l_1 = -\frac{1}{2} + i\lambda$, $j, s \in \mathbb{Z}$ and finite $\kappa \geq 1$, we have

$$\lim_{\substack{l_2 \to \infty \\ \frac{m}{l_2} \to \kappa}} C(l_1, l_2, l_2 + s; j, m, j + m) = \mathfrak{P}_{sj}^{l_1}(\kappa) .$$

For $\kappa = 1$, j = s, one has to add the restriction $m > l_2$. Corresponding results hold for $l_1 \in \mathbb{Z}$ (discrete series), e.g., when $l_1 \in \mathbb{N}_0$, $j, s > l_1$, the limit is $\mathcal{P}_{sj}^{l_1}(\kappa)$. Similarly for the complementary series and unitary representations of covering groups. This is the counterpart of a classical result of Brussaard, Tolhoek (1957) on the CG-coefficients of SU(2).

Since $(\mathfrak{P}_{sj}^{l_1}(\kappa))$ is the matrix of a unitary operator, its column vectors have norm 1 (in $l^2(\mathbb{Z})$). From $||e_j^{l_1} \otimes e_m^{l_2}|| = 1$, it follows by orthogonality that the norm of the continuous part in the decomposition of $e_j^{l_1} \otimes e_m^{l_2}$ tends to 0 for $l_2 \to \infty$ (with l_1, j fixed, $\frac{m}{l_2} \to \kappa$). The same holds for the decomposition of $t_{jj'}^{l_1} t_{mm'}^{l_2}$ in (1).

It was already noted by Pukanszky that the densities arising in the continuous part are given by analytic functions. Thus (with at most contably many exceptions) all $\lambda \geq 0$ will appear in the decomposition of $e_j^{l_1} \otimes e_m^{l_2}$ (for $l_1 = -\frac{1}{2} + i\lambda_1$). But from a more quantitative viewpoint, most of the product will be concentrated on the (positive part of the) discrete series when l_2 is large.

Idea of Proof. Recall the Fourier inversion formula:

$$h(e) = \int_{0}^{\infty} \operatorname{tr}(T_{-\frac{1}{2}+i\lambda}(h)) \lambda \, \operatorname{th}(\pi\lambda) \, d\lambda + \sum_{l \ge 0} (l + \frac{1}{2}) \big(\operatorname{tr}(T_{l}(h)) + \operatorname{tr}(T_{-l-1}(h)) \big) \, .$$

for $h \in A(PSL(2,\mathbb{R})) \cap L^1(PSL(2,\mathbb{R}))$ and the extensions of the representations to $L^1(PSL(2,\mathbb{R}))$ for an appropriate choice of the Haar measure. This describes also the Plancherel measure.

On the level of coefficients, applied to (2m, 2n)-radial functions with $m, n \ge 0$, this gives a generalization of the Mehler-Fock transformation

$$g(x) = \sum_{l=0}^{\min(m,n)-1} \left(l + \frac{1}{2}\right) b(l) \mathcal{P}_{mn}^{l}(x) + \int_{0}^{\infty} a(\lambda) \mathfrak{P}_{mn}^{-\frac{1}{2}+i\lambda}(x) \lambda \operatorname{th}(\pi\lambda) d\lambda$$

with $b(l) = \int_{1}^{\infty} g(x) \mathcal{P}_{mn}^{l}(x) dx$ for $g \in L^{2}([1,\infty])$ (convergence in L^{2}). Thus the discrete part is just the expansion with respect to the orthogonal system $(\mathcal{P}_{mn}^{l}) \subseteq L^{2}([1,\infty])$ (*m*, *n* fixed) and the coefficients are obtained from inner products.

$$|C(l_1, l_2, l_2 + s; s, l_2 + 1, l_2 + s + 1)|^2 = (l_2 + s + \frac{1}{2}) \int_{1}^{\infty} \mathfrak{P}_{ss}^{l_1}(x) \,\mathcal{P}_{l_2+1 \, l_2+1}^{l_2}(x) \,\mathcal{P}_{l_2+s+1 \, l_2+s+1}^{l_2+s}(x) \, dx$$

By [V] we have $\mathcal{P}_{l+1l+1}^{l}(x) = \mathfrak{P}_{l+1l+1}^{l}(x) = \left(\frac{2}{x+1}\right)^{l+1}$. It follows easily that for $l_2 \to \infty$ and $s \in \mathbb{Z}$ fixed, $(l_2 + s + \frac{1}{2}) \mathcal{P}_{l_2+1l_2+1}^{l_2} \mathcal{P}_{l_2+s+1l_2+s+1}^{l_2+s} \to \delta_1$ (point measure) holds weakly with respect to bounded continuous functions on $[1, \infty[$. Since $\mathfrak{P}_{ss}^{l_1}(1) = 1$, this gives $|C(l_1, l_2, l_2+s; s, l_2+1, l_2+s+1)| \to 1$ (when $l_1 = -\frac{1}{2} + i\lambda$ is fixed) and by our choice of the phase, we get $C(l_1, l_2, l_2+s; s, l_2+1, l_2+s+1) \to 1$. Next we take $g = \mathfrak{P}_{sj}^{l_1} \mathcal{P}_{l_2+1m}^{l_2}$ and get for $l = l_2 + s$ by (1)

$$\overline{C(l_1, l_2, l_2 + s; s, l_2 + 1, l_2 + s + 1)} C(l_1, l_2, l_2 + s; j, m, j + m) =$$

$$\rightarrow 1$$

$$(l_2 + s + \frac{1}{2}) \int_{1}^{\infty} \mathfrak{P}_{sj}^{l_1}(x) \mathcal{P}_{l_2 + 1m}^{l_2}(x) \mathcal{P}_{l_2 + s + 1j + m}^{l_2 + s}(x) dx$$

Let $\mu_{l_{2m}}$ be the measure on $[1, \infty]$ with density $(l_2 + s + \frac{1}{2}) \mathcal{P}_{l_2+1m}^{l_2} \mathcal{P}_{l_2+s+1j+m}^{l_2+s}$. Again one can use the formulas of [V] for $\mathfrak{P}_{l+1m}^l(x)$. With a slight change of coordinates, one gets that $\frac{\mu_{l_{2m}}}{\|\mu_{l_{2m}}\|}$ has a β' -distribution and from the values of expectation and variance one can conclude that $\|\mu_{l_{2m}}\| \to 1$ and $\mu_{l_{2m}} \to \delta_{\kappa}$ for $l_2 \to \infty, \frac{m}{l_2} \to \kappa$.

In the next step we use **ultraproducts** to work with these limit relations. Such constructions for group representations have been done by Cowling and Fendler.

We take some element $p \in \beta \mathbb{N} \setminus \mathbb{N}$ (Stone-Čech compactification). The ultraproduct of the Hilbert spaces $(\mathcal{H}_l)_{l>0}$ (with respect to p) is denoted by \mathcal{H}_p . It consists of equivalence classes of all sequences $(h_l) \in \prod \mathcal{H}_l$ such that $\lim_{l \to p} ||h_l|| < \infty$, factoring by the subspace of sequences with $\lim_{l \to p} ||h_l|| = 0$. We use the notation $\lim_{l \to p} h_l$ to denote the equivalence class of (h_l) . \mathcal{H}_p is again a Hilbert space and we get a representation T_p of the C*-algebra VN(G) on \mathcal{H}_p putting $T_p(S)(\lim_{l \to p} h_l) = \lim_{l \to p} T_l(S)h_l$ (for $S \in VN(G)$).

Each function $f: \mathbb{N} \to \mathbb{N}$ satisfying $f(l) > l \forall l$ (or more generally, $\lim_{l \to p} f(l) - l > 0$) defines a unit vector in \mathcal{H}_p by $e(p, f) = \lim_{l \to p} e_{f(l)}^l$. Of course it is enough to require that f is defined for $l \ge l_0$. For functions f, f' we get a coefficient functional by $(t_{ff'}^p, S) = (T_p(S) e(p, f') \mid e(p, f))$ for $S \in VN(G)$. Then $t_{ff'}^p \in VN(G)'$ (dual space) and $t_{ff'}^p = \lim_{l \to p} t_{f(l)f'(l)}^l$ (w*-limit).

Recall that $\beta \mathbb{N} \setminus \mathbb{N}$ is a \mathbb{Z} -module under addition. Thus we get in the same way Hilbert spaces \mathcal{H}_{p+s} and representations T_{p+s} for all $s \in \mathbb{Z}$.

For f as above, put $\kappa_p(f) = \lim_{l \to p} \frac{f(l)}{l}$ (possibly infinite). Write $\kappa = \kappa_p(f), \ \kappa' = \kappa_p(f')$. Assuming, $1 < \kappa, \kappa' < \infty, \ l_1 = -\frac{1}{2} + i\lambda$, we get from (1) and Proposition 2

$$t_{jj'}^{l_1} \odot t_{ff'}^p = \lim_{l_2 \to p} t_{jj'}^{l_1} t_{f(l_2)f'(l_2)}^{l_2} = \sum_{s \in \mathbb{Z}} \overline{\mathfrak{P}_{sj}^{l_1}(\kappa)} \,\mathfrak{P}_{sj'}^{l_1}(\kappa') \lim_{l_2 \to p} t_{f(l_2)+j\,f'(l_2)+j}^{l_2+s} t_{f(l_2)+j}^{l_2+s} t_{f(l_2)+j\,f'(l_2)+j}^{l_2+s} t_{f(l_2)+j}^{l_2+s} t_{f(l_2)+j}^{l_2$$

(note that $\left(\overline{\mathfrak{P}_{sj}^{l_1}(\kappa)} \mathfrak{P}_{sj'}^{l_1}(\kappa')\right)_{s\in\mathbb{Z}} \in l^1$). Put u(l) = l-1 for $l \in \mathbb{Z}$, then $\lim_{l_2\to p} t_{f(l_2)+j\,f'(l_2)+j'}^{l_2+s} = t_{f\circ u^s+j\,f'\circ u^s+j'}^{p+s}$ and we arrive at

(2)
$$t_{jj'}^{l_1} \odot t_{ff'}^p = \sum_{s \in \mathbb{Z}} \overline{\mathfrak{P}}_{sj}^{l_1}(\kappa) \mathfrak{P}_{sj'}^{l_1}(\kappa') t_{f \circ u^s + j f' \circ u^s + j'}^{p+s}$$

Next, we consider $\overline{\mathcal{H}}_p = \bigoplus_{s \in \mathbb{Z}} \mathcal{H}_{p+s}$ (l²-sum) and the corresponding representation $\overline{T}_p = \bigoplus_{s \in \mathbb{Z}} T_{p+s}$ of VN(G).

For $1 < \kappa < \infty$, \mathcal{K}_{κ} shall be the closed subspace of \mathcal{H}_p generated by the vectors e(p, f), taking all functions f with $\kappa_p(f) = \kappa$. We put $\mathcal{K} = \bigoplus_{1 < \kappa < \infty} \mathcal{K}_{\kappa}$.

 $U(\lim_{l\to p+s} h_l) = \lim_{l\to p+s+1} h_{l-1} \text{ defines an isometric isomorphism of } \mathcal{H}_{p+s} \text{ and } \mathcal{H}_{p+s+1}$ and this extends to a unitary operator $U: \overline{\mathcal{H}}_p \to \overline{\mathcal{H}}_p$ (in particular $U(e(p+s, f)) = e(p+s+1, f \circ u)$). Let $\overline{\mathcal{K}}_{\kappa}$ be the closed U-invariant subspace of $\overline{\mathcal{H}}_p$ generated by \mathcal{K}_{κ} (it is generated by the vectors e(p+s, f), taking all functions f with $\kappa_{p+s}(f) = \kappa$ for some $s \in \mathbb{Z}$). Clearly, $\overline{\mathcal{K}}_{\kappa} \perp \overline{\mathcal{K}}_{\kappa'}$ holds for $\kappa \neq \kappa'$ and we write $\overline{\mathcal{K}} = \bigoplus_{1 < \kappa < \infty} \overline{\mathcal{K}}_{\kappa}$ (the closed U-invariant subspace of $\overline{\mathcal{H}}_p$ generated by \mathcal{K}). V(e(p+s, f)) = e(p+s, f+1)defines a unitary operator on $\overline{\mathcal{K}}_{\kappa}$ (for $1 < \kappa < \infty$) and this extends to a unitary operator $V: \overline{\mathcal{K}} \to \overline{\mathcal{K}}$ satisfying VU = UV. (For $\kappa = 1$, V is no longer surjective).

For a fixed function f with $\kappa = \kappa_p(f)$ satisfying $1 < \kappa < \infty$, it follows easily that $\{e(p+s, f \circ u^s + j)\} = \{U^s V^j e(p, f) : s, j \in \mathbb{Z}\}$ defines an orthonormal system of vectors in $\overline{\mathcal{K}}_{\kappa}$.

A special case, used below, will be the functions $f_{\kappa}(l) = [\kappa l]$ (integer part), satisfying $\kappa_p(f_{\kappa}) = \kappa$ for each p and $1 < \kappa < \infty$.

Lemma 1. For $\lambda \in \mathbb{R}$, $j \in \mathbb{Z}$, $1 < \kappa < \infty$ $A_j^{\lambda} = V^j \sum_{s \in \mathbb{Z}} \mathfrak{P}_{sj}^{-\frac{1}{2} + i\lambda}(\kappa) |2s|^{i\lambda} U^s$ defines a bounded linear operator $\mathcal{K}_{\kappa} \to \overline{\mathcal{K}}_{\kappa}$. Taking $A_j^{\lambda} = 0$ on \mathcal{K}^{\perp} gives a bounded linear operator $A_j^{\lambda} : \overline{\mathcal{H}}_p \to \overline{\mathcal{H}}_p$. (Here we adopt $0^{i\lambda} = 1$). **Corollary.** Given $e, e' \in \mathcal{K}$ define $t \in VN(G)'$ by $(t, S) = (T_p(S)e' | e)$. Then for $l = -\frac{1}{2} + i\lambda$ ($\lambda \in \mathbb{R}$) and $j, j' \in \mathbb{Z}$ we have $(t_{jj'}^l \odot t, S) = (\overline{T}^p(S)A_{j'}^{\lambda}e' | A_j^{\lambda}e)$ $(S \in VN(G)).$

Lemma 2. $\overline{T}_p(VN(G))$ is w*-dense in $\prod_{s\in\mathbb{Z}} \mathcal{B}(\mathcal{H}_{p+s})$.

In particular, this implies that T_p is irreducible and (T_p, \mathcal{H}_p) is the cyclic representation for the state t_{ff}^p (with cyclic vector e(p, f)) for every function f as above. Furthermore (slightly more general as in Lemma 2), one has $T_p \approx T_{p'}$ for $p \neq p'$. Considering $L^1(G)$ as a (w*-dense) subalgebra of VN(G), it is not hard to see that $T_p(h) = 0$ for $h \in L^1(G)$, hence these are singular representations of VN(G).

For the final step we need a refinement of Lemma 2. Although $\overline{T}_p(VN(G))$ is not a von Neumann algebra, the fact that VN(G) is a von Neumann algebra allows to get a stronger result on the size of $\overline{T}_p(VN(G))$.

Recall that the representations T_l are square integrable for $l \in \mathbb{Z}$. Thus they are equivalent to subrepresentations of the left regular representation on $L^2(G)$ and we can consider $\prod \mathcal{B}(\mathcal{H}_l)$ as a subalgebra of VN(G).

For $1 \leq \alpha < \beta \leq \infty$ let $P_{\alpha\beta} \in VN(G)$ be the orthogonal projection on the closed subspace of $\bigoplus_{l>0} \mathcal{H}_l$ generated by $\{e_m^l : \alpha < \frac{m}{l} < \beta, l>0\}$. For $\alpha < \beta \leq \alpha' < \beta'$, it follows that $P_{\alpha\beta}P_{\alpha'\beta'} = P_{\alpha'\beta'}P_{\alpha\beta} = 0$. For $\alpha < \kappa < \beta$ we have $\overline{\mathcal{K}}_{\kappa} \subseteq \operatorname{im}(\overline{T}_p(P_{\alpha\beta}))$.

Lemma 3. Assume that $\alpha_n \nearrow \infty$. For $n \ge 1$,

 $E_n \ (\subseteq \overline{\mathcal{H}}_p) \ shall \ be \ a \ finite \ dimensional \ subspace \ of \ \operatorname{im}\left(\overline{T}_p(P_{\alpha_n\alpha_{n+1}})\right),$ $S_n \ \in \ \mathcal{B}(\overline{\mathcal{H}}_p) \ such \ that \ \|S_n\| \ \le \ 1, \ S_n(E_n) \ \subseteq \ \operatorname{im}\left(\overline{T}_p(P_{\alpha_n\alpha_{n+1}})\right) \ and$ $S_n(\mathcal{H}_{p+s}) \subseteq \mathcal{H}_{p+s} \ for \ all \ s \in \mathbb{Z}.$

Then there exists $S \in VN(G)$ such that $\overline{T}_p(S) \mid E_n = S_n$ for all n.

At the Harmonic Analysis Conference in Istanbul 2004, I talked about the case G = SU(2). For that group, one could use a limit of averages of states t_{ff}^p (for $f = f_{\kappa}$; approaching Lebesgue measure on [-1,1]) to get a singular state $\zeta \in VN(G)'$ satisfying $||f \odot \zeta|| = ||f||$ for all $f \in A(G)$. This cannot exist for $G = SL(2,\mathbb{R})$, because of non-amenability. Instead of this, we will use another type of asymptotics.

Now, we fix $p \in \beta \mathbb{N} \setminus \mathbb{N}$ and write \overline{T} for \overline{T}_p . We choose $p_1 \in \beta \mathbb{N} \setminus \mathbb{N}$ satisfying $(2^n) \in p_1$ (a sufficiently "thin" ultrafilter). $(\overline{\mathcal{H}}_p)_{p_1}$ shall denote the ultrapower of $\overline{\mathcal{H}}_p$ with respect to p_1 . If $(h^{(n)})$ is a bounded sequence in $\overline{\mathcal{H}}_p$, we write, as before,

 $\lim_{n\to p_1} h^{(n)} \text{ for the corresponding equivalence class, defining an element of } (\overline{\mathcal{H}}_p)_{p_1}.$ The representation \overline{T} of VN(G) on $\overline{\mathcal{H}}_p$ defines a representation $\overline{\overline{T}}$ of VN(G) on $(\overline{\mathcal{H}}_p)_{p_1}$. We define $\overline{\overline{e}} \in (\mathcal{H}_p)_{p_1} \subseteq (\overline{\mathcal{H}}_p)_{p_1}$ and $\zeta \in VN(G)'$ by

$$\bar{\bar{e}} = \lim_{n \to p_1} \frac{1}{n} \sum_{r=1}^{n^2 - 1} e(p, f_{\operatorname{ch}(n + \frac{r}{n})}) , \qquad (\zeta, S) = (\overline{\overline{T}}(S) \,\bar{\bar{e}} \mid \bar{\bar{e}})$$

For $g \in \mathcal{K}(\mathbb{R} \setminus \{0\} \times \mathbb{Z})$ ($\mathcal{K}(\Omega)$: continuous functions with compact support), we put

$$\varphi(g) = \lim_{n \to p_1} \frac{1}{n} \sum_{r=1}^{n^2 - 1} \sum_{j, s \in \mathbb{Z}} g\left(\frac{2s}{e^c}, j\right) (-1)^s \frac{\sqrt{2}}{e^{c/2}} U^s V^j e(p, f_{\mathrm{ch}\,c}) \qquad \text{with} \quad c = n + \frac{r}{n}$$

Note that the support condition makes the sum finite, furthermore, $s \neq 0$ implies $\varphi(g) \perp (\mathcal{H}_p)_{p_1}$.

Lemma 4. $\varphi(g) \in (\overline{\mathcal{H}}_p)_{p_1}$, $\|\varphi(g)\| = \|g\|_2$. Thus φ extends to an isometry $\varphi \colon L^2(\mathbb{R} \times \mathbb{Z}) \to (\overline{\mathcal{H}}_p)_{p_1}$. Putting $\varphi_1(g + \lambda) = \varphi(g) + \lambda \bar{e}$ defines an isometry $\varphi_1 \colon L^2(\mathbb{R} \times \mathbb{Z}) \oplus \mathbb{C} \to (\overline{\mathcal{H}}_p)_{p_1}$.

Let $P \in \mathcal{B}((\overline{\mathcal{H}}_p)_{p_1})$ be the orthogonal projection to $\varphi(L^2(\mathbb{R} \times \mathbb{Z}))$. For $S \in VN(G), g, h \in L^2(\mathbb{R} \times \mathbb{Z})$ put $(\psi(S)g \mid h) = (\overline{\overline{T}}(S)\varphi(g) \mid \varphi(h))$. This defines a contractive linear mapping $\psi : VN(G) \to \mathcal{B}(L^2(\mathbb{R} \times \mathbb{Z})), \psi(VN(G))$ being isometrically isomorphic to the dilation $P\overline{\overline{T}}(VN(G)) P$.

Similarly, for P_1 the projection to $\varphi_1(L^2(\mathbb{R} \times \mathbb{Z}))$, one gets $\psi_1 : VN(G) \to \mathcal{B}(L^2(\mathbb{R} \times \mathbb{Z})) \oplus \mathbb{C}$ (note that $(\mathcal{H}_p)_{p_1}$ is invariant under $\overline{\overline{T}}(VN(G))$).

For $m = 2^n$, $\alpha_n = \operatorname{ch} 2^n$, the *m*-th term in the limits defining $\overline{\overline{e}}$ and $\varphi(g)$ belong to $\operatorname{im}(\overline{T}_p(P_{\alpha_n\alpha_{n+1}}))$. This makes it possible to apply Lemma 3.

Lemma 5. $\psi(VN(G))$ is w*-dense in $\mathcal{B}(L^2(]-\infty,0]\times\mathbb{Z}))\oplus \mathcal{B}(L^2([0,\infty[\times\mathbb{Z})))$.

Similarly, for ψ_1 one has to add a sum with \mathbb{C} . As above, the w*-closure of $\psi(VN(G))$ is isometrically isomorphic to $P\overline{\overline{T}}(VN(G))^-P$ (⁻ denoting the w*-closure in $\mathcal{B}((\overline{\mathcal{H}}_p)_{p_1})$). Thus by Kaplansky's density theorem, corresponding density results hold for the image of the unit ball of VN(G).

For the final step, we will use the *Whittaker functions*. They are defined by

$$W_{\lambda,\mu}(z) = \frac{z^{\mu+\frac{1}{2}} e^{-\frac{z}{2}}}{\Gamma(\mu-\lambda+\frac{1}{2})} \int_{0}^{\infty} e^{-zu} u^{\mu-\lambda-\frac{1}{2}} (1+u)^{\mu+\lambda-\frac{1}{2}} du$$

for $\operatorname{Re} z > 0$, $\operatorname{Re}(\mu - \lambda + \frac{1}{2}) > 0$ and then for all $\lambda, \mu \in \mathbb{C}$ by analytic continuation.

Proposition 3 (Approximation of coefficients). For $n \in \mathbb{Z}$, $l = -\frac{1}{2} + i\lambda$ fixed

$$\lim_{m \to \infty} \left(\mathfrak{P}_{mn}^{l}(\operatorname{ch} \tau) - \frac{m^{-l-1}}{\Gamma(n-l)} W_{n,i\lambda}\left(\frac{4m}{e^{\tau}}\right) \right) e^{\frac{\tau}{2}} = 0$$

holds uniformly for $\tau \geq 0$.

This complements classical results on the asymptotic behaviour of \mathfrak{P}_{mn}^l for fixed l, m, n; e.g., if m = n, $\lambda \neq 0$ one has $\mathfrak{P}_{mm}^l(\operatorname{ch} \tau) e^{\frac{\tau}{2}} - \frac{2}{\sqrt{\pi\lambda \operatorname{th}(\pi\lambda)}} \cos(\lambda\tau + \eta) \to 0$ for $\tau \to \infty$ (where $\eta \in \mathbb{R}$ depends on λ). The approximation implies also that the row vector $\left(\mathfrak{P}_{mn}^l(\operatorname{ch} \tau)\right)_{m>0}$ can be approximated in l^2 by $\left(\frac{m^{-l-1}}{\Gamma(n-l)}W_{n,i\lambda}\left(\frac{4m}{e^{\tau}}\right)\right)$ for $\tau \to \infty$. An approximation for the "lower half" $\left(\mathfrak{P}_{mn}^l(\operatorname{ch} \tau)\right)_{m<0}$ is obtained using the identity $\mathfrak{P}_{mn}^l = \mathfrak{P}_{-m-n}^l$.

For $j \in \mathbb{Z}$, $\lambda \in \mathbb{R}$, $l = -\frac{1}{2} + i\lambda$, we put

$$g_{j,\lambda}(x,j') = \begin{cases} 0 & \text{for } j' \neq j \\ \frac{(-1)^j 2^{i\lambda}}{\Gamma(j-l)\sqrt{x}} W_{j,i\lambda}(2x) & \text{for } j' = j , x > 0 \\ \frac{(-1)^j 2^{i\lambda}}{\Gamma(-j-l)\sqrt{-x}} W_{-j,i\lambda}(-2x) & \text{for } j' = j , x < 0 \end{cases}$$

Then $g_{j,\lambda} \in L^2(\mathbb{R} \times \mathbb{Z}).$

 $A_j^{\lambda} \in \mathcal{B}(\overline{\mathcal{H}}_p)$ defines a bounded operator on $(\overline{\mathcal{H}}_p)_{p_1}$, again denoted by A_j^{λ} .

Lemma 6. We have $A_j^{\lambda} \bar{\bar{e}} = \varphi(g_{j,\lambda})$.

Corollary. $(t_{jj'}^l \odot \zeta, S) = (\psi(S) g_{j',\lambda} \mid g_{j,\lambda}) \quad (S \in VN(G)).$

The basis of $L^2(\mathbb{R})$ used by [V] to define the coefficients of T_l for $l = -\frac{1}{2} + i\lambda$ is given by $e_m^l(x) = \frac{(-1)^m}{\sqrt{\pi}} e^{2\pi i \arctan(x)} (1+x^2)^l$.

We consider the real Fourier transform $\hat{f}(y) = \frac{1}{\sqrt{2\pi}} \int_{\mathbb{R}} e^{-ixy} f(x) dx$. Then we have

$$\widehat{e_m^l}(y) = (-1)^m \frac{2^{i\lambda} |y|^{-\frac{1}{2} - i\lambda}}{\Gamma(\operatorname{sgn}(y)m - l)} W_{\operatorname{sgn}(y)m, i\lambda}(2|y|) = g_{m,\lambda}(y,m) |y|^{-i\lambda}$$

(The functions e_m^l are not integrable, so strictly speaking, this is the Fourier-Plancherel transform).

For $h = \begin{pmatrix} a & 0 \\ b & \frac{1}{a} \end{pmatrix} \in H$, we have $(T_l(h)f)(x) = |a|^{-2l}f(a^2x + ab)$. Composition with Fourier transform defines equivalent representations (Whittaker model) $\pi_{\lambda}(g)\hat{f} = (T_l(g)f)^{\widehat{}}$. For $h \in H$ this gives $(\pi_{\lambda}(h)\eta)(y) = |a|^{-2l-2}e^{iy\frac{b}{a}}\eta(\frac{y}{a^2})$. Put $(\rho_{\lambda}\eta)(y) = |y|^{i\lambda}\eta(y)$. Then $\rho_{\lambda} : L^2(\mathbb{R}) \to L^2(\mathbb{R})$ is an isometric isomorphism and $\pi_{\lambda}(h) = \rho_{\lambda}^{-1} \circ \pi_0(h) \circ \rho_{\lambda}$ (in particular, all T_l and π_{λ} define equivalent representations of H). π_0 splits into two irreducible representations (the restrictions to $L^2(] - \infty, 0]$ and $L^2([0, \infty[)$ and these are the only infinite dimensional irreducible unitary representations of H (up to equivalence). Thus π_0 defines a normal isomorphism of the von Neumann algebras VN(H) and $\mathcal{B}(L^2(] - \infty, 0])) \oplus$ $\mathcal{B}(L^2([0, \infty[)))$ and this extends to a normal isomorphism $\tilde{\pi}_0$ of the von Neumann algebras $VN(H)\bar{\otimes}\mathcal{B}(l^2(2\mathbb{Z}))$ and $\mathcal{B}(L^2(] - \infty, 0] \times \mathbb{Z})) \oplus \mathcal{B}(L^2([0, \infty[\times\mathbb{Z}])).$ We have $g_{j,\lambda}(\cdot, j) = \rho_{\lambda} \hat{e}_j^l$, consequently $\pi_0(S) g_{j,\lambda}(\cdot, j) = \rho_{\lambda}(\pi_{\lambda}(S) \hat{e}_j^l) =$ $\rho_{\lambda}((T_l(S) e_j^l)^{\widehat{}})$, resulting in

(3)
$$(\pi_0(S) g_{j',\lambda}(\cdot, j') \mid g_{j,\lambda}(\cdot, j)) = (S, t^l_{jj'}) \text{ for } S \in VN(H) .$$

For $f \in M(A(G)) \cap C_0(G)$ put $\Phi(f) = (f_{mn} \mid H)_{m,n \in \mathbb{Z}}$ with $f_{mn} = \chi_m * f * \chi_n$. For general $f \in M(A(G))$, put $\lambda = \lim_{x \to \infty} f(x)$, $f_0 = f - \lambda$, $\Phi_1(f) = \Phi_0(f) + \lambda$.

Lemma 7. For $f \in M(A(G)) \cap C_0(G)$, $\Phi(f)$ defines an element of the predual of $VN(H)\bar{\otimes}\mathcal{B}(l^2(\mathbb{Z}))$ and we have

$$(f \odot \zeta, S) = \left(\tilde{\pi}_0^{-1} \circ \psi(S), \Phi(f) \right) \text{ for } S \in VN(G) .$$

For general $f \in M(A(G))$, $f_0 \in C_0(G)$ holds and $\Phi_1(f)$ defines an element of the predual of $(VN(H)\bar{\otimes}\mathcal{B}(l^2(\mathbb{Z}))) \oplus \mathbb{C}$. We have

$$(f \odot \zeta, S) = \left(\left(\tilde{\pi}_0 \oplus 1 \right)^{-1} \circ \psi_1(S), \Phi_1(f) \right) \text{ for } S \in VN(G) .$$

Corollary. $\|\Phi_1(f)\| = \|\Phi(f_0)\| + |\lambda| = \|f \odot \zeta\|$ holds for all $f \in M(A(G))$;

As indicated earlier this supplies the remaining step for the proof of the Theorem.

Idea of Proof. Recall that the left and right actions of G on A(G) are continuous and isometric. It follows easily that $f \in M(A(G))$ implies $\mu * f$, $f * \mu \in M(A(G))$ for every bounded measure μ on G, in particular, $f_{mn} \in M(A(G))$ for all $m, n \in \mathbb{Z}$. We will start with the K-finite case (i.e. when only finitely many f_{mn} are non-zero).

For general $f \in M(A(G))$, the same argument as in [CH] gives $f \mid H \in B(H)$, in particular, $f \mid H$ is a weakly almost periodic function. In the case of the (m, n)radial functions f_{mn} , it follows easily (using G = HK) that f_{mn} is weakly almost periodic and for f K-finite, this implies that f is weakly almost periodic. By the results of [Ve] it follows that $\lambda = \lim_{x\to\infty} f(x)$ exists and $f_0 \in C_0(G)$. As mentioned before, the unitary dual of H (ax + b-group) has a very simple structure and this implies B(H) = A(H) + B(H/[H, H]). Thus for K-finite $f \in M(A(G)) \cap C_0(G)$, we get (since [H, H] is not compact) $f \mid H \in A(H)$. For general $f \in M(A(G))$ this implies that $f_{mn} \mid H \in A(H)$ for $(m, n) \neq (0, 0)$ and there exists $\lambda \in \mathbb{C}$ such that $(f - \lambda)_{00} \mid H = (f_{00} - \lambda) \mid H \in A(H)$. For $f = t_{jj'}^l$, with $l = -\frac{1}{2} + i\lambda$ the evaluation of $(f \odot \zeta, S)$ follows from (3) and the Corollary of Lemma 6. This works in a similar way for the coefficients of discrete series representations (as mentioned before we have restricted to representations of $PSL(2, \mathbb{R})$ and this produces only (m, n)-radial functions with m, n even; the other representations of $SL(2, \mathbb{R})$ give odd values for m, n and this amounts to extend the definition of $\overline{\mathcal{H}}_p$, φ, \ldots to half-integer j, s). Then (for f a linear combination of such coefficients) $\|\Phi(f)\| = \|f \odot \zeta\|$ follows from Lemma 2 and $\|\Phi(f)\| \ge \|f\|_{M_0}$ using Proposition 1. In particular, $\|f\|_M = \|\Phi(f)\|$. Using approximations (similar as below), the formula then follows for K-finite f belonging to A(G) and further on for its norm closure in M(A(G)).

If $f_n (\subseteq B(G))$ are spherical functions from the complementary series (i.e. arising from representations T_{l_n} with $l_n \in]-1, 0[$), then $||f_n||_M = 1$ and it was shown in [DH] that they belong to the norm closure of A(G) in M(A(G)). Hence the same is true for ff_n for any $f \in M(A(G))$. If $l_n \to 0$ (or -1) for $n \to \infty$, we have $f_n \to 1$ uniformly on compact sets in G and (see also [DH]) this implies that $(f_n \mid H)$ is an approximate unit in A(H). Thus for K-finite $f \in M(A(G)) \cap C_0(G)$, we get that (ff_n) is a Cauchy sequence in M(A(G)). Since it converges to f in the strong operator topology, we conclude that $||f - ff_n|| \to 0$.

For general $f \in M(A(G))$ such that $f_{mn} \mid H \in A(H)$ for all $m, n \in \mathbb{Z}$, one can use approximations (e.g. by Fejer sums) to see that $\Phi(f)$ belongs to the predual. Then, as above, it follows that f belongs to the norm closure of A(G) in M(A(G))(which implies $f \in C_0(G)$).

References

- [CH] Cowling, Haagerup, Inventiones Math. 96 (1989).
- [DH] De Cannière, Haagerup, American J. Math. 107 (1985).
- [R] Repka, American J. Math. 100 (1978).
- [V] Vilenkin, Special Functions..., AMS Transl. 1968.
- [VK] Vilenkin, Klimyk, Representation of Lie groups..., Vol.1, Kluwer 1991.
- [Ve] Veech, Monatsh. Math. 88 (1979).

FAKULTÄT FÜR MATHEMATIK, UNIVERSITÄT WIEN, NORDBERGSTR. 15, A 1090 WIEN, AUS-TRIA *E-mail address*: Viktor.Losert@UNIVIE.AC.AT