ON MULTIPLIERS AND COMPLETELY BOUNDED MULTIPLIERS - THE CASE $S L(2, \mathbb{R})$

VIKTOR LOSERT

$A(G)$ Fourier algebra of a locally compact group $G . B(G)$ Fourier-Stieltjes algebra. $A(G)^{\prime \prime}$ bidual of $A(G)$ with (first) Arens product \odot.
$M(A(G))$ multipliers of $A(G)$ with norm $\left\|\|_{M}\right.$. Every $f \in M(A(G))$ is given by (and identified with) a bounded continuous function on G. It extends to $A(G)^{\prime \prime}$ and this is again denoted by $f \odot \xi$ for $\xi \in A(G)^{\prime \prime}$ (bidual mapping).
$M_{0}(A(G))$ completely bounded multipliers of $A(G)$ with norm $\left\|\|_{M_{0}}\right.$ (see [CH] for basic properties).
$V N(G)$ group von Neumann algebra (generated by the left regular representation on $L^{2}(G)$), we use the standard identification with the dual space $A(G)^{\prime}$.
$C_{0}(G)$ continuous functions on G vanishing at infinity.
$\mathcal{B}(\mathcal{H})$ bounded linear operators on a Hilbert space \mathcal{H}.
For $G=S L(2, \mathbb{R})$ (real 2 x2-matrices of determinant one), let K be the subgroup of rotations $k_{\varphi}=\left(\begin{array}{cc}\cos \varphi & -\sin \varphi \\ \sin \varphi & \cos \varphi\end{array}\right)$ and H the subgroup of matrices $\left(\begin{array}{cc}a & 0 \\ b & \frac{1}{a}\end{array}\right)$ with $a>0, b \in \mathbb{R}$. Recall (part of the Iwasawa decomposition) that $G=K H$, the decomposition of the elements $x=k h$ being unique. We parametrize the dual group \widehat{K} of the compact abelian group K by $\chi_{j}\left(k_{\varphi}\right)=e^{i j \varphi}(j \in \mathbb{Z}, \varphi \in \mathbb{R})$.

Theorem. For $G=S L(2, \mathbb{R})$ we have $M(A(G))=M_{0}(A(G))$. There exists $\zeta \in A(G)^{\prime \prime}$ with $\|\zeta\|=1$ such that

$$
\|f \odot \zeta\|=\|f\|_{M}=\|f\|_{M_{0}} \quad \text { holds for all } \quad f \in M(A(G)) .
$$

$A(G)$ is dense in $M(A(G)) \cap C_{0}(G)$ with respect to $\left\|\|_{M}\right.$. Put $f_{m n}=\chi_{m} * f * \chi_{n}$. For $f \in M(A(G)) \cap C_{0}(G)$, we have that $\left(f_{m n} \mid H\right)_{m, n \in \mathbb{Z}}$ defines an element of the predual of $V N(H) \bar{\otimes} \mathcal{B}\left(l^{2}(\mathbb{Z})\right)$ whose norm equals $\|f\|_{M}$.
For general $f \in M(A(G))$, we have that $\lambda=\lim _{x \rightarrow \infty} f(x)$ exists. Then $f-\lambda \in M(A(G)) \cap C_{0}(G)$ and $\|f\|_{M}=\|f-\lambda\|_{M}+|\lambda|$.

The Theorem holds similarly for all connected groups G that are locally isomorphic to $S L(2, \mathbb{R})$ and have finite centre. With some modifications, one can find

[^0]presumably also a version for the universal covering group of $S L(2, \mathbb{R})$. The state ζ will arise from a representation of the C^{*}-algebra $V N(G)$ on some ultraproduct of Hilbert spaces.

For general G, we have $A(G) \subseteq B(G) \subseteq M_{0}(A(G)) \subseteq M(A(G))$. When G is amenable (e.g. abelian or compact), $M(A(G))=B(G)$ holds. When G is nonamenable (e.g., $S L\left(2, \mathbb{R}\right.$) or the discrete free group F_{2}), it is known that $B(G)$ is a proper subspace of $M_{0}(A(G))$. For a general discrete group G, containing F_{2} as a subgroup, Bozejko (1981) has shown that $M_{0}(A(G))$ is a proper subspace of $M(A(G))$.

If K is a compact subgroup of some locally compact group G, a function f on G is called radial (with respect to K) or K-bi-invariant, if $f\left(k_{1} x k_{2}\right)=f(x)$ holds for all $x \in G, k_{1}, k_{2} \in K$. If there exists a closed amenable subgroup H of G such that $G=K H$ holds set-theoretically, then for a radial function f, Cowling and Haagerup $[\mathrm{CH}]$ have shown that the following conditions are equivalent:
(i) $f \in M(A(G))$
(ii) $f \in M_{0}(A(G))$
(iii) $f \mid H \in B(H)$
(with equality of norms). This applies, in particular, for a semisimple Lie group G with finite centre, K a maximal compact subgroup.

For $G=S L(2, \mathbb{R})$ and $m, n \in \mathbb{Z}$, using our notation above, we call f (m, n)-radial, if $f\left(k_{1} x k_{2}\right)=\chi_{m}\left(k_{1}\right) f(x) \chi_{n}\left(k_{2}\right)$ holds for all $x \in G, k_{1}, k_{2} \in K$. Then the same equivalence as above holds for (m, n)-radial functions f and for $(m, n) \neq(0,0)$ one even gets (by our Theorem) $f \mid H \in A(H)$.

On the following pages, we indicate the Proof of the Theorem:
In one direction, assume that $\left(f_{m n} \mid H\right)_{m, n \in \mathbb{Z}}$ defines an element of the predual of $V N(H) \bar{\otimes} \mathcal{B}\left(l^{2}(\mathbb{Z})\right)$ whose norm equals c. Then it is not so hard to show that $f \in M_{0}(A(G))$ and $\|f\|_{M_{0}} \leq c$ using that such a functional is represented by a trace class operator on $L^{2}(G) \otimes l^{2}(\mathbb{Z})$ and the following Proposition (compare condition (iv) in [CH] p. 508).

Proposition 1. Let G be a locally compact group, K a compact subgroup, \mathcal{H} a separable Hilbert space, $f: G \rightarrow \mathbb{C}$ continuous, $P, Q: G \rightarrow \mathcal{H}$ a.e. defined and Borel measurable.
Assume that $c_{P}=\underset{x \in G}{\operatorname{ess} \sup } \int_{K}\|P(k x)\|^{2} d k<\infty$ and similarly $c_{Q}<\infty$.
If $f\left(y^{-1} x\right)=(P(x) \mid Q(y))$ holds a.e. on $G \times G$, then $f \in M_{0}(A(G))$ and $\|f\|_{M_{0}} \leq \sqrt{c_{P} c_{Q}}$.
(a.e. refers to Haar measure on G or $G \times G, d k$ refers to normalized Haar measure on $K,(\mid)$ denotes the inner product of $\mathcal{H})$.

For the other direction, we start by recalling the description of the irreducible unitary representations (going back to Bargmann). For simplicity, we confine to representations of $P S L(2, \mathbb{R})=S L(2, \mathbb{R}) /\{ \pm I\}$ (projective special linear group; $\{ \pm I\}$ being the centre of $S L(2, \mathbb{R})$). We use (essentially) the notations (and parametrization) of Vilenkin [V].
Put $\mathcal{H}=L^{2}(\mathbb{R})$ (for ordinary Lebesgue measure), $g=\left(\begin{array}{ll}\alpha & \beta \\ \gamma & \delta\end{array}\right)$,

$$
\left(T_{l}(g) f\right)(x)=f\left(\frac{\alpha x+\gamma}{\beta x+\delta}\right)|\beta x+\delta|^{2 l} \quad \text { for } \quad f \in \mathcal{H}
$$

For $l=-\frac{1}{2}+i \lambda$ with $\lambda \in \mathbb{R}$ this gives unitary (strongly continuous, irreducible) representations of $S L\left(2, \mathbb{R}\right.$) (principal series). $-\frac{1}{2} \pm i \lambda$ gives equivalent representations, hence it will be enough to consider $\lambda \geq 0$.
For $l \in \mathbb{Z}$ one gets the discrete series (but here the inner product has to be changed to make T_{l} unitary, changing \mathcal{H} too; see below).
Further cases for unitary representations are $l \in]-1,0[$, which gives the complementary series (again with a different inner product) and, finally, there is also the trivial (one-dimensional) representation.
T_{l} arises from the right action of $S L(2, \mathbb{R})$ on \mathbb{R}^{2} (and the corresponding action on the projective line). In the notation of $[\mathrm{V}]$ this is T_{χ} with $\chi=(l, 0)$ (the second parameter can be used to describe further representations of $S L(2, \mathbb{R})$ and other covering groups). Integer case: for $l \geq 0$, we take T_{l} to be only the part T_{χ}^{-} (notation of $[\mathrm{V}]$) and for $l<0$ the part T_{χ}^{+}. Thus T_{-l-1} is (equivalent to) the conjugate representation of T_{l}.
Multiplication in $A(G)$ and $B(G)$ corresponds to tensor products of representations. For $S L(2, \mathbb{R})$ the decompositions have been determined by Pukanszky (1961). A completed and better accessible account has been given by Repka [R].

For $l_{j}=-\frac{1}{2}+i \lambda_{j}$

$$
\begin{aligned}
& T_{l_{1}} \otimes T_{l_{2}} \sim 2 \int_{\mathbb{R}^{+}}^{\oplus} T_{-\frac{1}{2}+i \lambda} d \lambda \oplus \sum_{l \in \mathbb{Z}} T_{l} . \\
& T_{l_{1}} \otimes T_{l_{2}} \sim \int_{\mathbb{R}^{+}}^{\oplus} T_{-\frac{1}{2}+i \lambda} d \lambda \oplus \sum_{l \geq 0} T_{l} . \\
& T_{l_{1}} \otimes T_{l_{2}} \sim \sum_{l>l_{1}+l_{2}} T_{l} .
\end{aligned}
$$

For $l_{1}=-\frac{1}{2}+i \lambda_{1}, l_{2} \in \mathbb{N}_{0}$
For $l_{j} \in \mathbb{N}_{0}$
Similarly in the remaining cases.
To get coefficients for the unitary representations, we use (corresponding to [V]) an orthonormal basis $\left(e_{m}^{l}\right)$ of the Hilbert space \mathcal{H}_{l} of T_{l}. For $l=-\frac{1}{2}+i \lambda$ (principal series), we have $\mathcal{H}_{l}=\mathcal{H}$ and the basis is indexed by $m \in \mathbb{Z}$. For $l \in \mathbb{N}_{0}$, the range is $m>l$ and for integers $l<0: m \leq l$.
The basis vectors satisfy $T_{l}\left(k_{\varphi}\right) e_{m}^{l}=e^{2 m i \varphi} e_{m}^{l}=\chi_{2 m}(\varphi) e_{m}^{l} \quad$ ("elliptic basis").

We put $t_{m n}^{l}(g)=\left(T_{l}(g) e_{n}^{l} \mid e_{m}^{l}\right)$. This gives the unitary matrix coefficients of $T_{l}(g)$. $t_{m n}^{l}$ is $(2 m, 2 n)$-radial (we get only even integers, since we restrict to representations of $\operatorname{PSL}(2, \mathbb{R})$).
For $l=-\frac{1}{2}+i \lambda$, we have $t_{m n}^{l} \in B(G)$ for all $m, n \in \mathbb{Z}$ (it even belongs to the reduced Fourier-Stieltjes algebra $B_{\rho}(G)$, i.e., the w*-closure of $A(G)$ in $B(G)$).
For $l \in \mathbb{Z}$, the representations T_{l} are square-integrable, thus $t_{m n}^{l} \in A(G) \cap L^{2}(G)$ for $l \in \mathbb{N}_{0}, m, n>l$ and for $l<0, m, n \leq l$.
For $l=-\frac{1}{2}+i \lambda$, the "non-radial component" of $t_{m n}^{l}$ is described by $\mathfrak{P}_{m n}^{l}(\operatorname{ch} 2 \tau)=$ $t_{m n}^{l}\left(\begin{array}{cc}e^{\tau} & 0 \\ 0 & e^{-\tau}\end{array}\right)$ for $\tau \geq 0$ (ch denoting the hyperbolic cosine). In $[\mathrm{V}]$ the functions $\mathfrak{P}_{m n}^{l}$ are defined (and investigated) for all $l \in \mathbb{C}$, but (apart of the principal series) using a non-normalized orthogonal basis for the matrix representation. For the discrete series, the corresponding functions arising from the unitary coefficients are denoted by $\mathcal{P}_{m n}^{l}$ in $[\mathrm{VK}](l \in \mathbb{Z})$. For $l \in \mathbb{N}_{0}, m, n>l$ they are related by $\mathfrak{P}_{m n}^{l}=\left(\frac{(m-l-1)!(n+l)!}{(m+l)!(n-l-1)!}\right)^{\frac{1}{2}} \mathcal{P}_{m n}^{l}$.

Technically, the continuous part in the decomposition of tensor products is more difficult to handle (and the appearance of multiplicities causes additional complications). Therefore we restrict to the discrete part.
For $l_{1}=-\frac{1}{2}+i \lambda, l_{2} \in \mathbb{N}_{0}$, we define the Clebsch-Gordan coefficients by

$$
e_{j}^{l_{1}} \otimes e_{m}^{l_{2}}=\sum_{l \geq 0} C\left(l_{1}, l_{2}, l ; j, m, j+m\right) e_{j+m}^{l}+\text { cont. part }
$$

The same for $l_{1} \in \mathbb{Z}$ with $l_{1} \geq-l_{2}-1$ (for $l_{1}<-l_{2}-1$ the discrete part of $T_{l_{1}} \otimes T_{l_{2}}$ contains only T_{l} with $\left.l<0\right)$. We put $C\left(l_{1}, l_{2}, l ; j, m, j+m\right)=0$ when $j+m \leq l$ (in addition, for $l_{1} \in \mathbb{Z}$, the coefficients will be 0 outside the range $l>l_{1}+l_{2}$ for $l_{1} \in \mathbb{N}_{0}$ and outside $0 \leq l \leq l_{1}+l_{2}$ for $\left.l_{1}<0\right)$. The isomorphism between T_{l} and a component of $T_{l_{1}} \otimes T_{l_{2}}$ is determined only up to a factor of modulus 1 . This is fixed by requiring that $C\left(l_{1}, l_{2}, l ; l-l_{2}, l_{2}+1, l+1\right)>0$ (of course, in the integer case this refers only to those l that have not been excluded above).
For l_{1}, l_{2} as above, this gives a decomposition of products in $B(G)$
(1) $t_{j j^{\prime}}^{l_{1}} t_{m m^{\prime}}^{l_{2}}=$

$$
\sum_{l \geq 0} \overline{C\left(l_{1}, l_{2}, l ; j, m, j+m\right)} C\left(l_{1}, l_{2}, l ; j^{\prime}, m^{\prime}, j^{\prime}+m^{\prime}\right) t_{j+m j^{\prime}+m^{\prime}}^{l}+\text { cont. part. }
$$

Now, we consider the behaviour for large l_{2}.

Proposition 2 (Asymptotics of CG-coefficients). For fixed $l_{1}=-\frac{1}{2}+i \lambda, j, s \in \mathbb{Z}$ and finite $\kappa \geq 1$, we have

$$
\lim _{\substack{l_{2} \rightarrow \infty \\ \frac{m}{m} \rightarrow \kappa}}^{l_{2} \rightarrow}<\left(l_{1}, l_{2}, l_{2}+s ; j, m, j+m\right)=\mathfrak{P}_{s j}^{l_{1}}(\kappa) .
$$

For $\kappa=1, j=s$, one has to add the restriction $m>l_{2}$. Corresponding results hold for $l_{1} \in \mathbb{Z}$ (discrete series), e.g., when $l_{1} \in \mathbb{N}_{0}, j, s>l_{1}$, the limit is $\mathcal{P}_{s j}^{l_{1}}(\kappa)$. Similarly for the complementary series and unitary representations of covering groups. This is the counterpart of a classical result of Brussaard, Tolhoek (1957) on the CG-coefficients of $S U(2)$.
Since $\left(\mathfrak{P}_{s j}^{l_{1}}(\kappa)\right)$ is the matrix of a unitary operator, its column vectors have norm 1 (in $l^{2}(\mathbb{Z})$). From $\left\|e_{j}^{l_{1}} \otimes e_{m}^{l_{2}}\right\|=1$, it follows by orthogonality that the norm of the continuous part in the decomposition of $e_{j}^{l_{1}} \otimes e_{m}^{l_{2}}$ tends to 0 for $l_{2} \rightarrow \infty$ (with l_{1}, j fixed, $\frac{m}{l_{2}} \rightarrow \kappa$). The same holds for the decomposition of $t_{j j^{\prime}}^{l_{1}} m_{m m^{\prime}}^{l_{2}}$ in (1).
It was already noted by Pukanszky that the densities arising in the continuous part are given by analytic functions. Thus (with at most contably many exceptions) all $\lambda \geq 0$ will appear in the decomposition of $e_{j}^{l_{1}} \otimes e_{m}^{l_{2}}$ (for $l_{1}=-\frac{1}{2}+i \lambda_{1}$). But from a more quantitative viewpoint, most of the product will be concentrated on the (positive part of the) discrete series when l_{2} is large.

Idea of Proof. Recall the Fourier inversion formula:

$$
h(e)=\int_{0}^{\infty} \operatorname{tr}\left(T_{-\frac{1}{2}+i \lambda}(h)\right) \lambda \operatorname{th}(\pi \lambda) d \lambda+\sum_{l \geq 0}\left(l+\frac{1}{2}\right)\left(\operatorname{tr}\left(T_{l}(h)\right)+\operatorname{tr}\left(T_{-l-1}(h)\right)\right) .
$$

for $h \in A(P S L(2, \mathbb{R})) \cap L^{1}(P S L(2, \mathbb{R}))$ and the extensions of the representations to $L^{1}(P S L(2, \mathbb{R}))$ for an appropriate choice of the Haar measure. This describes also the Plancherel measure.

On the level of coefficients, applied to ($2 m, 2 n$)-radial functions with $m, n \geq 0$, this gives a generalization of the Mehler-Fock transformation

$$
g(x)=\sum_{l=0}^{\min (m, n)-1}\left(l+\frac{1}{2}\right) b(l) \mathcal{P}_{m n}^{l}(x)+\int_{0}^{\infty} a(\lambda) \mathfrak{P}_{m n}^{-\frac{1}{2}+i \lambda}(x) \lambda \operatorname{th}(\pi \lambda) d \lambda
$$

with $b(l)=\int_{1}^{\infty} g(x) \mathcal{P}_{m n}^{l}(x) d x$ for $g \in L^{2}\left([1, \infty]\right.$) (convergence in L^{2}). Thus the discrete part is just the expansion with respect to the orthogonal system $\left(\mathcal{P}_{m n}^{l}\right) \subseteq$ $L^{2}([1, \infty])(m, n$ fixed $)$ and the coefficients are obtained from inner products.

We apply this to $g=\mathfrak{P}_{s s}^{l_{1}} \mathcal{P}_{l_{2}+1 l_{2}+1}^{l_{2}}$ and get for $l=l_{2}+s$ by (1)

$$
\begin{aligned}
& \left|C\left(l_{1}, l_{2}, l_{2}+s ; s, l_{2}+1, l_{2}+s+1\right)\right|^{2}= \\
& \quad\left(l_{2}+s+\frac{1}{2}\right) \int_{1}^{\infty} \mathfrak{P}_{s s}^{l_{1}}(x) \mathcal{P}_{l_{2}+1 l_{2}+1}^{l_{2}}(x) \mathcal{P}_{l_{2}+s+1 l_{2}+s+1}^{l_{2}+s}(x) d x
\end{aligned}
$$

By [V] we have $\mathcal{P}_{l+1 l+1}^{l}(x)=\mathfrak{P}_{l+1 l+1}^{l}(x)=\left(\frac{2}{x+1}\right)^{l+1}$. It follows easily that for $l_{2} \rightarrow \infty$ and $s \in \mathbb{Z}$ fixed, $\left(l_{2}+s+\frac{1}{2}\right) \mathcal{P}_{l_{2}+1 l_{2}+1}^{l_{2}} \mathcal{P}_{l_{2}+s+1 l_{2}+s+1}^{l_{2}+s} \rightarrow \delta_{1}$ (point measure) holds weakly with respect to bounded continuous functions on $[1, \infty[$. Since $\mathfrak{P}_{s s}^{l_{1}}(1)=1$, this gives $\left|C\left(l_{1}, l_{2}, l_{2}+s ; s, l_{2}+1, l_{2}+s+1\right)\right| \rightarrow 1\left(\right.$ when $l_{1}=-\frac{1}{2}+i \lambda$ is fixed) and by our choice of the phase, we get $C\left(l_{1}, l_{2}, l_{2}+s ; s, l_{2}+1, l_{2}+s+1\right) \rightarrow 1$. Next we take $g=\mathfrak{P}_{s j}^{l_{1}} \mathcal{P}_{l_{2}+1 m}^{l_{2}}$ and get for $l=l_{2}+s$ by (1)

$$
\begin{aligned}
& \overline{C\left(l_{1}, l_{2}, l_{2}+s ; s, l_{2}+1, l_{2}+s+1\right)} C\left(l_{1}, l_{2}, l_{2}+s ; j, m, j+m\right)= \\
& \rightarrow 1 \\
& \quad\left(l_{2}+s+\frac{1}{2}\right) \int_{1}^{\infty} \mathfrak{P}_{s j}^{l_{1}}(x) \mathcal{P}_{l_{2}+1 m}^{l_{2}}(x) \mathcal{P}_{l_{2}+s+1 j+m}^{l_{2}+s}(x) d x
\end{aligned}
$$

Let $\mu_{l_{2} m}$ be the measure on $[1, \infty]$ with density $\left(l_{2}+s+\frac{1}{2}\right) \mathcal{P}_{l_{2}+1 m}^{l_{2}} \mathcal{P}_{l_{2}+s+1 j+m}^{l_{2}+s}$. Again one can use the formulas of $[\mathrm{V}]$ for $\mathfrak{P}_{l+1 m}^{l}(x)$. With a slight change of coordinates, one gets that $\frac{\mu_{l_{2} m}}{\left\|\mu_{l_{2} m}\right\|}$ has a β^{\prime}-distribution and from the values of expectation and variance one can conclude that $\left\|\mu_{l_{2} m}\right\| \rightarrow 1$ and $\mu_{l_{2} m} \rightarrow \delta_{\kappa}$ for $l_{2} \rightarrow \infty, \frac{m}{l_{2}} \rightarrow \kappa$.

In the next step we use ultraproducts to work with these limit relations. Such constructions for group representations have been done by Cowling and Fendler.

We take some element $p \in \beta \mathbb{N} \backslash \mathbb{N}$ (Stone-Čech compactification). The ultraproduct of the Hilbert spaces $\left(\mathcal{H}_{l}\right)_{l>0}$ (with respect to p) is denoted by \mathcal{H}_{p}. It consists of equivalence classes of all sequences $\left(h_{l}\right) \in \prod \mathcal{H}_{l}$ such that $\lim _{l \rightarrow p}\left\|h_{l}\right\|<\infty$, factoring by the subspace of sequences with $\lim _{l \rightarrow p}\left\|h_{l}\right\|=0$. We use the notation $\lim _{l \rightarrow p} h_{l}$ to denote the equivalence class of $\left(h_{l}\right) . \mathcal{H}_{p}$ is again a Hilbert space and we get a representation T_{p} of the C^{*}-algebra $V N(G)$ on \mathcal{H}_{p} putting $T_{p}(S)\left(\lim _{l \rightarrow p} h_{l}\right)=\lim _{l \rightarrow p} T_{l}(S) h_{l}$ (for $S \in V N(G)$).
Each function $f: \mathbb{N} \rightarrow \mathbb{N}$ satisfying $f(l)>l \forall l$ (or more generally, $\lim _{l \rightarrow p} f(l)-l>0$) defines a unit vector in \mathcal{H}_{p} by $e(p, f)=\lim _{l \rightarrow p} e_{f(l)}^{l}$. Of course it is enough to require that f is defined for $l \geq l_{0}$. For functions f, f^{\prime} we get a coefficient functional by $\left(t_{f f^{\prime}}^{p}, S\right)=\left(T_{p}(S) e\left(p, f^{\prime}\right) \mid e(p, f)\right)$ for $S \in V N(G)$. Then $t_{f f^{\prime}}^{p} \in V N(G)^{\prime}$ (dual
space) and $t_{f f^{\prime}}^{p}=\lim _{l \rightarrow p} t_{f(l) f^{\prime}(l)}^{l}\left(\mathrm{w}^{*}\right.$-limit).
Recall that $\beta \mathbb{N} \backslash \mathbb{N}$ is a \mathbb{Z}-module under addition. Thus we get in the same way Hilbert spaces \mathcal{H}_{p+s} and representations T_{p+s} for all $s \in \mathbb{Z}$.
For f as above, put $\kappa_{p}(f)=\lim _{l \rightarrow p} \frac{f(l)}{l}$ (possibly infinite).
Write $\kappa=\kappa_{p}(f), \kappa^{\prime}=\kappa_{p}\left(f^{\prime}\right)$. Assuming, $1<\kappa, \kappa^{\prime}<\infty, l_{1}=-\frac{1}{2}+i \lambda$, we get from (1) and Proposition 2

$$
t_{j j^{\prime}}^{l_{1}} \odot t_{f f^{\prime}}^{p}=\lim _{l_{2} \rightarrow p} t_{j j^{\prime}}^{l_{1}} t_{f\left(l_{2}\right) f^{\prime}\left(l_{2}\right)}^{l_{2}}=\sum_{s \in \mathbb{Z}} \overline{\mathfrak{P}_{s j}^{l_{1}}(\kappa)} \mathfrak{P}_{s j^{\prime}}^{l_{1}}\left(\kappa^{\prime}\right) \lim _{l_{2} \rightarrow p} t_{f\left(l_{2}\right)+j}^{l_{2}+s} f^{\prime}\left(l_{2}\right)+j^{\prime}
$$

(note that $\left.\left(\overline{\mathfrak{P}_{s j}^{l_{1}}(\kappa)} \mathfrak{P}_{s j^{\prime}}^{l_{1}}\left(\kappa^{\prime}\right)\right)_{s \in \mathbb{Z}} \in l^{1}\right)$. Put $u(l)=l-1$ for $l \in \mathbb{Z}$, then $\lim _{l_{2} \rightarrow p} t_{f\left(l_{2}\right)+j f^{\prime}\left(l_{2}\right)+j^{\prime}}^{l_{2}+s}=t_{f o u^{s}+j f^{\prime} \circ u^{s}+j^{\prime}}^{p+s}$ and we arrive at

$$
\begin{equation*}
t_{j j^{\prime}}^{l_{1}} \odot t_{f f^{\prime}}^{p}=\sum_{s \in \mathbb{Z}} \overline{\mathfrak{P}_{s j}^{l_{1}}(\kappa)} \mathfrak{P}_{s j^{\prime}}^{l_{1}}\left(\kappa^{\prime}\right) t_{f \circ u^{s}+j f^{\prime} \circ u^{s}+j^{\prime}}^{p+s} . \tag{2}
\end{equation*}
$$

Next, we consider $\overline{\mathcal{H}}_{p}=\bigoplus_{s \in \mathbb{Z}} \mathcal{H}_{p+s} \quad\left(l^{2}\right.$-sum $)$ and the corresponding representation $\bar{T}_{p}=\bigoplus_{s \in \mathbb{Z}} T_{p+s}$ of $V N(G)$.
For $1<\kappa<\infty, \mathcal{K}_{\kappa}$ shall be the closed subspace of \mathcal{H}_{p} generated by the vectors $e(p, f)$, taking all functions f with $\kappa_{p}(f)=\kappa$. We put $\mathcal{K}=\underset{1<\kappa<\infty}{\bigoplus} \mathcal{K}_{\kappa}$.
$U\left(\lim _{l \rightarrow p+s} h_{l}\right)=\lim _{l \rightarrow p+s+1} h_{l-1}$ defines an isometric isomorphism of \mathcal{H}_{p+s} and \mathcal{H}_{p+s+1} and this extends to a unitary operator $U: \overline{\mathcal{H}}_{p} \rightarrow \overline{\mathcal{H}}_{p}$ (in particular $U(e(p+s, f))=$ $e(p+s+1, f \circ u))$. Let $\overline{\mathcal{K}}_{\kappa}$ be the closed U-invariant subspace of $\overline{\mathcal{H}}_{p}$ generated by \mathcal{K}_{κ} (it is generated by the vectors $e(p+s, f)$, taking all functions f with $\kappa_{p+s}(f)=\kappa$ for some $s \in \mathbb{Z}$). Clearly, $\overline{\mathcal{K}}_{\kappa} \perp \overline{\mathcal{K}}_{\kappa^{\prime}}$ holds for $\kappa \neq \kappa^{\prime}$ and we write $\overline{\mathcal{K}}=\underset{1<\kappa<\infty}{\bigoplus} \overline{\mathcal{K}}_{\kappa}$ (the closed U-invariant subspace of $\overline{\mathcal{H}}_{p}$ generated by $\left.\mathcal{K}\right) . V(e(p+s, f))=e(p+s, f+1)$ defines a unitary operator on $\overline{\mathcal{K}}_{\kappa}$ (for $1<\kappa<\infty$) and this extends to a unitary operator $V: \overline{\mathcal{K}} \rightarrow \overline{\mathcal{K}}$ satisfying $V U=U V$. (For $\kappa=1, V$ is no longer surjective).

For a fixed function f with $\kappa=\kappa_{p}(f)$ satisfying $1<\kappa<\infty$, it follows easily that $\left\{e\left(p+s, f \circ u^{s}+j\right)\right\}=\left\{U^{s} V^{j} e(p, f): s, j \in \mathbb{Z}\right\}$ defines an orthonormal system of vectors in $\overline{\mathcal{K}}_{\kappa}$.
A special case, used below, will be the functions $f_{\kappa}(l)=[\kappa l]$ (integer part), satisfying $\kappa_{p}\left(f_{\kappa}\right)=\kappa$ for each p and $1<\kappa<\infty$.

Lemma 1. For $\lambda \in \mathbb{R}, j \in \mathbb{Z}, 1<\kappa<\infty$ $A_{j}^{\lambda}=V^{j} \sum_{s \in \mathbb{Z}} \mathfrak{P}_{s j}^{-\frac{1}{2}+i \lambda}(\kappa)|2 s|^{i \lambda} U^{s}$ defines a bounded linear operator $\mathcal{K}_{\kappa} \rightarrow \overline{\mathcal{K}}_{\kappa}$.
Taking $A_{j}^{\lambda}=0$ on \mathcal{K}^{\perp} gives a bounded linear operator $A_{j}^{\lambda}: \overline{\mathcal{H}}_{p} \rightarrow \overline{\mathcal{H}}_{p}$.
(Here we adopt $0^{i \lambda}=1$).

Corollary. Given e, $e^{\prime} \in \mathcal{K}$ define $t \in V N(G)^{\prime}$ by $(t, S)=\left(T_{p}(S) e^{\prime} \mid e\right)$. Then for $l=-\frac{1}{2}+i \lambda(\lambda \in \mathbb{R})$ and $j, j^{\prime} \in \mathbb{Z}$ we have $\left(t_{j j^{\prime}}^{l} \odot t, S\right)=\left(\bar{T}^{p}(S) A_{j^{\prime}}^{\lambda} e^{\prime} \mid A_{j}^{\lambda} e\right)$ $(S \in V N(G))$.

Lemma 2. $\bar{T}_{p}(V N(G))$ is w^{*}-dense in $\prod_{s \in \mathbb{Z}} \mathcal{B}\left(\mathcal{H}_{p+s}\right)$.
In particular, this implies that T_{p} is irreducible and $\left(T_{p}, \mathcal{H}_{p}\right)$ is the cyclic representation for the state $t_{f f}^{p}$ (with cyclic vector $e(p, f)$) for every function f as above. Furthermore (slightly more general as in Lemma 2), one has $T_{p} \nsim T_{p^{\prime}}$ for $p \neq p^{\prime}$. Considering $L^{1}(G)$ as a (w ${ }^{*}$-dense) subalgebra of $V N(G)$, it is not hard to see that $T_{p}(h)=0$ for $h \in L^{1}(G)$, hence these are singular representations of $V N(G)$.

For the final step we need a refinement of Lemma 2. Although $\bar{T}_{p}(V N(G))$ is not a von Neumann algebra, the fact that $V N(G)$ is a von Neumann algebra allows to get a stronger result on the size of $\bar{T}_{p}(V N(G))$.
Recall that the representations T_{l} are square integrable for $l \in \mathbb{Z}$. Thus they are equivalent to subrepresentations of the left regular representation on $L^{2}(G)$ and we can consider $\prod_{l \geq 0} \mathcal{B}\left(\mathcal{H}_{l}\right)$ as a subalgebra of $V N(G)$.
For $1 \leq \alpha<\bar{\beta} \leq \infty$ let $P_{\alpha \beta} \in V N(G)$ be the orthogonal projection on the closed subspace of $\bigoplus_{l>0} \mathcal{H}_{l}$ generated by $\left\{e_{m}^{l}: \alpha<\frac{m}{l}<\beta, l>0\right\}$. For $\alpha<\beta \leq \alpha^{\prime}<\beta^{\prime}$, it follows that $P_{\alpha \beta} P_{\alpha^{\prime} \beta^{\prime}}=P_{\alpha^{\prime} \beta^{\prime}} P_{\alpha \beta}=0$. For $\alpha<\kappa<\beta$ we have $\overline{\mathcal{K}}_{\kappa} \subseteq \operatorname{im}\left(\bar{T}_{p}\left(P_{\alpha \beta}\right)\right)$.

Lemma 3. Assume that $\alpha_{n} \nearrow \infty$. For $n \geq 1$,
$E_{n}\left(\subseteq \overline{\mathcal{H}}_{p}\right)$ shall be a finite dimensional subspace of $\operatorname{im}\left(\bar{T}_{p}\left(P_{\alpha_{n} \alpha_{n+1}}\right)\right)$,
$S_{n} \in \mathcal{B}\left(\overline{\mathcal{H}}_{p}\right)$ such that $\left\|S_{n}\right\| \leq 1, \quad S_{n}\left(E_{n}\right) \subseteq \operatorname{im}\left(\bar{T}_{p}\left(P_{\alpha_{n} \alpha_{n+1}}\right)\right)$ and $S_{n}\left(\mathcal{H}_{p+s}\right) \subseteq \mathcal{H}_{p+s}$ for all $s \in \mathbb{Z}$.
Then there exists $S \in V N(G)$ such that $\bar{T}_{p}(S) \mid E_{n}=S_{n}$ for all n.

At the Harmonic Analysis Conference in Istanbul 2004, I talked about the case $G=S U(2)$. For that group, one could use a limit of averages of states $t_{f f}^{p}$ (for $f=f_{\kappa}$; approaching Lebesgue measure on $[-1,1]$) to get a singular state $\zeta \in V N(G)^{\prime}$ satisfying $\|f \odot \zeta\|=\|f\|$ for all $f \in A(G)$. This cannot exist for $G=S L(2, \mathbb{R})$, because of non-amenability. Instead of this, we will use another type of asymptotics.
Now, we fix $p \in \beta \mathbb{N} \backslash \mathbb{N}$ and write \bar{T} for \bar{T}_{p}. We choose $p_{1} \in \beta \mathbb{N} \backslash \mathbb{N}$ satisfying $\left(2^{n}\right) \in p_{1}$ (a sufficiently "thin" ultrafilter). $\left(\overline{\mathcal{H}}_{p}\right)_{p_{1}}$ shall denote the ultrapower of $\overline{\mathcal{H}}_{p}$ with respect to p_{1}. If $\left(h^{(n)}\right)$ is a bounded sequence in $\overline{\mathcal{H}}_{p}$, we write, as before,
$\lim _{n \rightarrow p_{1}} h^{(n)}$ for the corresponding equivalence class, defining an element of $\left(\overline{\mathcal{H}}_{p}\right)_{p_{1}}$. The representation \bar{T} of $V N(G)$ on $\overline{\mathcal{H}}_{p}$ defines a representation $\overline{\bar{T}}$ of $V N(G)$ on $\left(\overline{\mathcal{H}}_{p}\right)_{p_{1}}$. We define $\overline{\bar{e}} \in\left(\mathcal{H}_{p}\right)_{p_{1}} \subseteq\left(\overline{\mathcal{H}}_{p}\right)_{p_{1}}$ and $\zeta \in V N(G)^{\prime}$ by

$$
\overline{\bar{e}}=\lim _{n \rightarrow p_{1}} \frac{1}{n} \sum_{r=1}^{n^{2}-1} e\left(p, f_{\operatorname{ch}\left(n+\frac{r}{n}\right)}\right), \quad(\zeta, S)=(\overline{\bar{T}}(S) \overline{\bar{e}} \mid \overline{\bar{e}})
$$

For $g \in \mathcal{K}(\mathbb{R} \backslash\{0\} \times \mathbb{Z})(\mathcal{K}(\Omega):$ continuous functions with compact support), we put

$$
\varphi(g)=\lim _{n \rightarrow p_{1}} \frac{1}{n} \sum_{r=1}^{n^{2}-1} \sum_{j, s \in \mathbb{Z}} g\left(\frac{2 s}{e^{c}}, j\right)(-1)^{s} \frac{\sqrt{2}}{e^{c / 2}} U^{s} V^{j} e\left(p, f_{\mathrm{ch} c}\right) \quad \text { with } \quad c=n+\frac{r}{n}
$$

Note that the support condition makes the sum finite, furthermore, $s \neq 0$ implies $\varphi(g) \perp\left(\mathcal{H}_{p}\right)_{p_{1}}$.

Lemma 4. $\varphi(g) \in\left(\overline{\mathcal{H}}_{p}\right)_{p_{1}}, \quad\|\varphi(g)\|=\|g\|_{2}$.
Thus φ extends to an isometry $\varphi: L^{2}(\mathbb{R} \times \mathbb{Z}) \rightarrow\left(\overline{\mathcal{H}}_{p}\right)_{p_{1}}$.
Putting $\varphi_{1}(g+\lambda)=\varphi(g)+\lambda \overline{\bar{e}}$ defines an isometry $\varphi_{1}: L^{2}(\mathbb{R} \times \mathbb{Z}) \oplus \mathbb{C} \rightarrow\left(\overline{\mathcal{H}}_{p}\right)_{p_{1}}$.
Let $P \in \mathcal{B}\left(\left(\overline{\mathcal{H}}_{p}\right)_{p_{1}}\right)$ be the orthogonal projection to $\varphi\left(L^{2}(\mathbb{R} \times \mathbb{Z})\right)$. For $S \in V N(G), g, h \in L^{2}(\mathbb{R} \times \mathbb{Z})$ put $(\psi(S) g \mid h)=(\overline{\bar{T}}(S) \varphi(g) \mid \varphi(h))$. This defines a contractive linear mapping $\psi: V N(G) \rightarrow \mathcal{B}\left(L^{2}(\mathbb{R} \times \mathbb{Z})\right), \quad \psi(V N(G))$ being isometrically isomorphic to the dilation $P \overline{\bar{T}}(V N(G)) P$.
Similarly, for P_{1} the projection to $\varphi_{1}\left(L^{2}(\mathbb{R} \times \mathbb{Z})\right)$, one gets $\psi_{1}: V N(G) \rightarrow$ $\mathcal{B}\left(L^{2}(\mathbb{R} \times \mathbb{Z})\right) \oplus \mathbb{C} \quad\left(\right.$ note that $\left(\mathcal{H}_{p}\right)_{p_{1}}$ is invariant under $\left.\overline{\bar{T}}(V N(G))\right)$.

For $m=2^{n}, \alpha_{n}=\operatorname{ch} 2^{n}$, the m-th term in the limits defining $\overline{\bar{e}}$ and $\varphi(g)$ belong to $\operatorname{im}\left(\bar{T}_{p}\left(P_{\alpha_{n} \alpha_{n+1}}\right)\right)$. This makes it possible to apply Lemma 3 .

Lemma 5. $\psi(V N(G))$ is w^{*}-dense in $\left.\left.\mathcal{B}\left(L^{2}(]-\infty, 0\right] \times \mathbb{Z}\right)\right) \oplus \mathcal{B}\left(L^{2}([0, \infty[\times \mathbb{Z}))\right.$.
Similarly, for ψ_{1} one has to add a sum with \mathbb{C}. As above, the w*-closure of $\psi(V N(G))$ is isometrically isomorphic to $P \overline{\bar{T}}(V N(G))^{-} P \quad(-$ denoting the w^{*}-closure in $\left.\mathcal{B}\left(\left(\overline{\mathcal{H}}_{p}\right)_{p_{1}}\right)\right)$. Thus by Kaplansky's density theorem, corresponding density results hold for the image of the unit ball of $V N(G)$.

For the final step, we will use the Whittaker functions. They are defined by

$$
W_{\lambda, \mu}(z)=\frac{z^{\mu+\frac{1}{2}} e^{-\frac{z}{2}}}{\Gamma\left(\mu-\lambda+\frac{1}{2}\right)} \int_{0}^{\infty} e^{-z u} u^{\mu-\lambda-\frac{1}{2}}(1+u)^{\mu+\lambda-\frac{1}{2}} d u
$$

for $\operatorname{Re} z>0, \operatorname{Re}\left(\mu-\lambda+\frac{1}{2}\right)>0$ and then for all $\lambda, \mu \in \mathbb{C}$ by analytic continuation.

Proposition 3 (Approximation of coefficients). For $n \in \mathbb{Z}, l=-\frac{1}{2}+i \lambda$ fixed

$$
\lim _{m \rightarrow \infty}\left(\mathfrak{P}_{m n}^{l}(\operatorname{ch} \tau)-\frac{m^{-l-1}}{\Gamma(n-l)} W_{n, i \lambda}\left(\frac{4 m}{e^{\tau}}\right)\right) e^{\frac{\tau}{2}}=0
$$

holds uniformly for $\tau \geq 0$.
This complements classical results on the asymptotic behaviour of $\mathfrak{P}_{m n}^{l}$ for fixed l, m, n; e.g., if $m=n, \lambda \neq 0$ one has $\mathfrak{P}_{m m}^{l}(\operatorname{ch} \tau) e^{\frac{\tau}{2}}-\frac{2}{\sqrt{\pi \lambda \operatorname{th}(\pi \lambda)}} \cos (\lambda \tau+\eta) \rightarrow 0$ for $\tau \rightarrow \infty$ (where $\eta \in \mathbb{R}$ depends on λ). The approximation implies also that the row vector $\left(\mathfrak{P}_{m n}^{l}(\operatorname{ch} \tau)\right)_{m>0}$ can be approximated in l^{2} by $\left(\frac{m^{-l-1}}{\Gamma(n-l)} W_{n, i \lambda}\left(\frac{4 m}{e^{\tau}}\right)\right)$ for $\tau \rightarrow \infty$. An approximation for the "lower half" $\left(\mathfrak{P}_{m n}^{l}(\operatorname{ch} \tau)\right)_{m<0}$ is obtained using the identity $\mathfrak{P}_{m n}^{l}=\mathfrak{P}_{-m-n}^{l}$.
For $j \in \mathbb{Z}, \lambda \in \mathbb{R}, l=-\frac{1}{2}+i \lambda$, we put

$$
g_{j, \lambda}\left(x, j^{\prime}\right)=\left\{\begin{array}{cl}
0 & \text { for } j^{\prime} \neq j \\
\frac{(-1)^{j} 2^{i \lambda}}{\Gamma(j-l) \sqrt{x}} W_{j, i \lambda}(2 x) & \text { for } j^{\prime}=j, x>0 \\
\frac{(-1)^{j} 2^{i \lambda}}{\Gamma(-j-l) \sqrt{-x}} W_{-j, i \lambda}(-2 x) & \text { for } j^{\prime}=j, x<0
\end{array}\right.
$$

Then $g_{j, \lambda} \in L^{2}(\mathbb{R} \times \mathbb{Z})$.
$A_{j}^{\lambda} \in \mathcal{B}\left(\overline{\mathcal{H}}_{p}\right)$ defines a bounded operator on $\left(\overline{\mathcal{H}}_{p}\right)_{p_{1}}$, again denoted by A_{j}^{λ}.
Lemma 6. We have $A_{j}^{\lambda} \overline{\bar{e}}=\varphi\left(g_{j, \lambda}\right)$.
Corollary. $\left(t_{j j^{\prime}}^{l} \odot \zeta, S\right)=\left(\psi(S) g_{j^{\prime}, \lambda} \mid g_{j, \lambda}\right) \quad(S \in V N(G))$.

The basis of $L^{2}(\mathbb{R})$ used by [V] to define the coefficients of T_{l} for $l=-\frac{1}{2}+i \lambda$ is given by $e_{m}^{l}(x)=\frac{(-1)^{m}}{\sqrt{\pi}} e^{2 \pi i \arctan (x)}\left(1+x^{2}\right)^{l}$.
We consider the real Fourier transform $\hat{f}(y)=\frac{1}{\sqrt{2 \pi}} \int_{\mathbb{R}} e^{-i x y} f(x) d x$. Then we have

$$
\widehat{e_{m}^{l}}(y)=(-1)^{m} \frac{2^{i \lambda}|y|^{-\frac{1}{2}-i \lambda}}{\Gamma(\operatorname{sgn}(y) m-l)} W_{\operatorname{sgn}(y) m, i \lambda}(2|y|)=g_{m, \lambda}(y, m)|y|^{-i \lambda} .
$$

(The functions e_{m}^{l} are not integrable, so strictly speaking, this is the FourierPlancherel transform).
For $h=\left(\begin{array}{cc}a & 0 \\ b & \frac{1}{a}\end{array}\right) \in H$, we have $\left(T_{l}(h) f\right)(x)=|a|^{-2 l} f\left(a^{2} x+a b\right)$. Composition with Fourier transform defines equivalent representations (Whittaker model) $\pi_{\lambda}(g) \hat{f}=\left(T_{l}(g) f\right)^{\wedge}$. For $h \in H$ this gives $\left(\pi_{\lambda}(h) \eta\right)(y)=|a|^{-2 l-2} e^{i y \frac{b}{a}} \eta\left(\frac{y}{a^{2}}\right)$.
Put $\left(\rho_{\lambda} \eta\right)(y)=|y|^{i \lambda} \eta(y)$. Then $\rho_{\lambda}: L^{2}(\mathbb{R}) \rightarrow L^{2}(\mathbb{R})$ is an isometric isomorphism and $\pi_{\lambda}(h)=\rho_{\lambda}^{-1} \circ \pi_{0}(h) \circ \rho_{\lambda}$ (in particular, all T_{l} and π_{λ} define equivalent
representations of H). π_{0} splits into two irreducible representations (the restrictions to $\left.L^{2}(]-\infty, 0\right]$ and $L^{2}([0, \infty[)$ and these are the only infinite dimensional irreducible unitary representations of H (up to equivalence). Thus π_{0} defines a normal isomorphism of the von Neumann algebras $V N(H)$ and $\left.\left.\mathcal{B}\left(L^{2}(]-\infty, 0\right]\right)\right) \oplus$ $\mathcal{B}\left(L^{2}\left([0, \infty[))\right.\right.$ and this extends to a normal isomorphism $\tilde{\pi}_{0}$ of the von Neumann algebras $V N(H) \bar{\otimes} \mathcal{B}\left(l^{2}(2 \mathbb{Z})\right)$ and $\left.\left.\mathcal{B}\left(L^{2}(]-\infty, 0\right] \times \mathbb{Z}\right)\right) \oplus \mathcal{B}\left(L^{2}([0, \infty[\times \mathbb{Z}))\right.$.
We have $g_{j, \lambda}(\cdot, j)=\rho_{\lambda} \widehat{e_{j}^{l}}$, consequently $\pi_{0}(S) g_{j, \lambda}(\cdot, j)=\rho_{\lambda}\left(\pi_{\lambda}(S) \widehat{e_{j}^{l}}\right)=$ $\rho_{\lambda}\left(\left(T_{l}(S) e_{j}^{l}\right)^{\wedge}\right)$, resulting in

$$
\begin{equation*}
\left(\pi_{0}(S) g_{j^{\prime}, \lambda}\left(\cdot, j^{\prime}\right) \mid g_{j, \lambda}(\cdot, j)\right)=\left(S, t_{j j^{\prime}}^{l}\right) \quad \text { for } \quad S \in V N(H) \tag{3}
\end{equation*}
$$

For $f \in M(A(G)) \cap C_{0}(G)$ put $\Phi(f)=\left(f_{m n} \mid H\right)_{m, n \in \mathbb{Z}}$ with $f_{m n}=\chi_{m} * f * \chi_{n}$. For general $f \in M(A(G))$, put $\lambda=\lim _{x \rightarrow \infty} f(x), f_{0}=f-\lambda, \Phi_{1}(f)=\Phi_{0}(f)+\lambda$.

Lemma 7. For $f \in M(A(G)) \cap C_{0}(G), \Phi(f)$ defines an element of the predual of $V N(H) \bar{\otimes} \mathcal{B}\left(l^{2}(\mathbb{Z})\right)$ and we have

$$
(f \odot \zeta, S)=\left(\tilde{\pi}_{0}^{-1} \circ \psi(S), \Phi(f)\right) \text { for } S \in V N(G)
$$

For general $f \in M(A(G)), f_{0} \in C_{0}(G)$ holds and $\Phi_{1}(f)$ defines an element of the predual of $\left(V N(H) \bar{\otimes} \mathcal{B}\left(l^{2}(\mathbb{Z})\right)\right) \oplus \mathbb{C}$. We have

$$
(f \odot \zeta, S)=\left(\left(\tilde{\pi}_{0} \oplus 1\right)^{-1} \circ \psi_{1}(S), \Phi_{1}(f)\right) \text { for } S \in V N(G)
$$

Corollary. $\left\|\Phi_{1}(f)\right\|=\left\|\Phi\left(f_{0}\right)\right\|+|\lambda|=\|f \odot \zeta\| \quad$ holds for all $f \in M(A(G)) ;$:
As indicated earlier this supplies the remaining step for the proof of the Theorem.
Idea of Proof. Recall that the left and right actions of G on $A(G)$ are continuous and isometric. It follows easily that $f \in M(A(G))$ implies $\mu * f, f * \mu \in M(A(G))$ for every bounded measure μ on G, in particular, $f_{m n} \in M(A(G))$ for all $m, n \in \mathbb{Z}$. We will start with the K-finite case (i.e. when only finitely many $f_{m n}$ are non-zero).

For general $f \in M(A(G))$, the same argument as in [CH] gives $f \mid H \in B(H)$, in particular, $f \mid H$ is a weakly almost periodic function. In the case of the (m, n) radial functions $f_{m n}$, it follows easily (using $G=H K$) that $f_{m n}$ is weakly almost periodic and for $f K$-finite, this implies that f is weakly almost periodic. By the results of [Ve] it follows that $\lambda=\lim _{x \rightarrow \infty} f(x)$ exists and $f_{0} \in C_{0}(G)$. As mentioned before, the unitary dual of H ($a x+b$-group) has a very simple structure and this implies $B(H)=A(H)+B(H /[H, H])$. Thus for K-finite $f \in M(A(G)) \cap C_{0}(G)$, we get (since $[H, H]$ is not compact) $f \mid H \in A(H)$. For general $f \in M(A(G))$ this implies that $f_{m n} \mid H \in A(H)$ for $(m, n) \neq(0,0)$ and there exists $\lambda \in \mathbb{C}$ such that $(f-\lambda)_{00}\left|H=\left(f_{00}-\lambda\right)\right| H \in A(H)$.

For $f=t_{j j^{\prime}}^{l}$, with $l=-\frac{1}{2}+i \lambda$ the evaluation of $(f \odot \zeta, S)$ follows from (3) and the Corollary of Lemma 6. This works in a similar way for the coefficients of discrete series representations (as mentioned before we have restricted to representations of $\operatorname{PSL}(2, \mathbb{R})$ and this produces only (m, n)-radial functions with m, n even; the other representations of $S L(2, \mathbb{R})$ give odd values for m, n and this amounts to extend the definition of $\overline{\mathcal{H}}_{p}, \varphi, \ldots$ to half-integer j, s). Then (for f a linear combination of such coefficients) $\|\Phi(f)\|=\|f \odot \zeta\|$ follows from Lemma 2 and $\|\Phi(f)\| \geq\|f\|_{M_{0}}$ using Proposition 1. In particular, $\|f\|_{M}=\|\Phi(f)\|$. Using approximations (similar as below), the formula then follows for K-finite f belonging to $A(G)$ and further on for its norm closure in $M(A(G))$.
If $f_{n}(\subseteq B(G))$ are spherical functions from the complementary series (i.e. arising from representations $T_{l_{n}}$ with $\left.l_{n} \in\right]-1,0[)$, then $\left\|f_{n}\right\|_{M}=1$ and it was shown in $[\mathrm{DH}]$ that they belong to the norm closure of $A(G)$ in $M(A(G))$. Hence the same is true for $f f_{n}$ for any $f \in M(A(G))$. If $l_{n} \rightarrow 0$ (or -1) for $n \rightarrow \infty$, we have $f_{n} \rightarrow 1$ uniformly on compact sets in G and (see also [DH]) this implies that $\left(f_{n} \mid H\right)$ is an approximate unit in $A(H)$. Thus for K-finite $f \in M(A(G)) \cap C_{0}(G)$, we get that $\left(f f_{n}\right)$ is a Cauchy sequence in $M(A(G))$. Since it converges to f in the strong operator topology, we conclude that $\left\|f-f f_{n}\right\| \rightarrow 0$.
For general $f \in M(A(G))$ such that $f_{m n} \mid H \in A(H)$ for all $m, n \in \mathbb{Z}$, one can use approximations (e.g. by Fejer sums) to see that $\Phi(f)$ belongs to the predual. Then, as above, it follows that f belongs to the norm closure of $A(G)$ in $M(A(G))$ (which implies $f \in C_{0}(G)$).

References

[CH] Cowling, Haagerup, Inventiones Math. 96 (1989).
[DH] De Cannière, Haagerup, American J. Math. 107 (1985).
[R] Repka, American J. Math. 100 (1978).
[V] Vilenkin, Special Functions...,AMS Transl. 1968.
[VK] Vilenkin, Klimyk, Representation of Lie groups..., Vol.1, Kluwer 1991.
[Ve] Veech, Monatsh. Math. 88 (1979).
Fakultät für Mathematik, Universität Wien, Nordbergstr. 15, A 1090 Wien, AusTRIA
E-mail address: Viktor.Losert@UNIVIE.AC.AT

[^0]: Summary of talks given at the School of Mathematics, University of Leeds, 28 May- 2 June 2010.

