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Operator Spaces

A Natural Quantization of Banach Spaces
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Banach Spaces

A Banach space is a complete normed space (V/C, ‖ · ‖).

In Banach spaces, we consider

Norms and Bounded Linear Maps.

Classical Examples:

C0(Ω), M(Ω) = C0(Ω)∗, `p(I), Lp(X,µ), 1 ≤ p ≤ ∞.
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Hahn-Banach Theorem: Let V ⊆W be Banach spaces. We have

W

↑ ↘ ϕ̃

V
ϕ−−−→ C

with ‖ϕ̃‖ = ‖ϕ‖.

It follows from the Hahn-Banach theorem that for every Banach space

(V, ‖ · ‖) we can obtain an isometric inclusion

(V, ‖ · ‖) ↪→ (`∞(I), ‖ · ‖∞)

where we may choose I = V ∗1 to be the closed unit ball of V ∗.

So we can regard `∞(I) as the home space of Banach spaces.
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Classical Theory Noncommutative Theory

`∞(I) B(H)

Banach Spaces Operator Spaces
(V, ‖ · ‖) ↪→ `∞(I) (V, ??) ↪→ B(H)

norm closed subspaces of B(H)?
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Matrix Norm and Concrete Operator Spaces [Arveson 1969]

Let B(H) denote the space of all bounded linear operators on H. For

each n ∈ N,

Hn = H ⊕ · · · ⊕H = {[ξj] : ξj ∈ H}

is again a Hilbert space. We may identify

Mn(B(H)) ∼= B(H ⊕ . . .⊕H)

by letting [
Tij

] [
ξj

]
=

∑
j

Ti,jξj

 ,
and thus obtain an operator norm ‖ · ‖n on Mn(B(H)).

A concrete operator space is norm closed subspace V of B(H) together

with the canonical operator matrix norm ‖ · ‖n on each matrix space

Mn(V ).
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Examples of Operator Spaces

• Every C*-algebra A, i.e. norm closed *-subalgebra of some B(H), is

an operator space.

• A = C0(Ω) or A = Cb(Ω) for locally compact space.

• Every operator algebra, i.e. norm closed subalgebra of some B(H), is

an operator space.

• Every von Neumann algebra M , i.e. a strong operator topology (resp.

w,o.t , weak* topology) closed *-subalgebra of B(H).

• L∞(X,µ) for some measure space (X,µ).

• Weak* closed operator algebras of some B(H).
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Completely Bounded Maps

Let ϕ : V → W be a bounded linear map. For each n ∈ N, we can define

a linear map

ϕn : Mn(V ) →Mn(W )

by letting

ϕn([vij]) = [ϕ(vij)].

The map ϕ is called completely bounded if

‖ϕ‖cb = sup{‖ϕn‖ : n ∈ N} <∞.

We let CB(V,W ) denote the space of all completely bounded maps from

V into W .

In general ‖ϕ‖cb 6= ‖ϕ‖. Let t be the transpose map on Mn(C). Then

‖t‖cb = n, but ‖t‖ = 1.
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Theorem: If ϕ : V → W = Cb(Ω) is a bounded linear map, then ϕ is

completely bounded with

‖ϕ‖cb = ‖ϕ‖.

Proof: Given any contractive [vij] ∈Mn(V ), [ϕ(vij)] is an element in

Mn(Cb(Ω)) = Cb(Ω,Mn) = {[fij] : x ∈ Ω → [fij(x)] ∈Mn}.

Then we have

‖[ϕ(vij)]‖Cb(Ω,Mn) = sup{‖[ϕ(vij)(x)]‖Mn : x ∈ Ω}

= sup{|
n∑

i,j=1

αiϕ(vij)(x)βj| : x ∈ Ω, ‖α‖2 = ‖β‖2 = 1}

= sup{|ϕ(
n∑

i,j=1

αivijβj)(x)| : x ∈ Ω, ‖α‖2 = ‖β‖2 = 1}

≤ ‖ϕ‖ sup{‖[αi][vij][βj]‖ : ‖α‖2 = ‖β‖2 = 1}
≤ ‖ϕ‖‖[vij]‖ ≤ ‖ϕ‖.

This shows that ‖ϕn‖ ≤ ‖ϕ‖ for all n = 1,2, · · · . Therefore, we have

‖ϕ‖ = ‖ϕ2‖ = · · · = ‖ϕn‖ = · · · = ‖ϕ‖cb.
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Arveson-Wittstock-Hahn-Banach Theorem

Let V ⊆W ⊆ B(H) be operator spaces.

W

↑ ↘ ϕ̃

V
ϕ−−−→ B(H)

with ‖ϕ̃‖cb = ‖ϕ‖cb.

In particular, if B(H) = C, we have ‖ϕ‖cb = ‖ϕ‖. This, indeed, is a

generalization of the classical Hahn-Banach theorem.
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Operator Space Structure on Banach Spaces

Let V be a Banach space. Then there are many different operator space

structures on V .

Min(V): We may obtain a minimal operator space structure on V given

by

x ∈ V ↪→ x̂ ∈ `∞(I) =
∏
ϕ∈I

Cϕ.

Max(V): We may obtain a maximal operator space structure on V given

by

x ∈ V ↪→ x̃ ∈ `∞(Ĩ, B(`2(N))) =
∏

ϕ∈B(V,Ĩ)

B(`2(N))ϕ,

where Ĩ = B(`2(N))1 and for each ϕ ∈ Ĩ, we get

x̃ : ϕ ∈ Ĩ → ϕ(x) ∈ B(`2(N).
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Column and Row Hilbert Spaces

Let H = Cm be an m-dimensional Hilbert space .

Hc: There is a natural column operator space structure on H given by

Hc = Mm,1(C) ⊆Mm(C).

Hr: Similarly, there is a row operator space structure given by

Hr = M1,m(C) ⊆Mm(C).

Moreover, Pisier introduced an OH structure on H by considering the

complex interperlation over the matrix spaces

Mn(OH) = (Mn(Hc),Mn(Hr))1
2
= (Mn(MAX(H)),Mn(MIN(H)))1

2
.

All these matrix norm structures are distinct from MIN(H) and MAX(H).
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Abstract Operator Spaces

Theorem [R 1988]: Let V be a Banach space with a norm ‖ · ‖n on

each matrix space Mn(V ). Then V is completely isometrically isometric

to a concrete operator space if and only it satisfies

M1.

∥∥∥∥∥
[
x 0
0 y

]∥∥∥∥∥
n+m

= max{‖x‖n, ‖y‖m}

M2. ‖αxβ‖n ≤ ‖α‖‖x‖n‖β‖

for all x ∈Mn(V ), y ∈Mm(V ) and α, β ∈Mn(C).
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Dual Operator Spaces

Let V and W be operator spaces. Then the space CB(V,W ) of all

completely bounded maps from V into W is an operator space with a

canonical operator space matrix norm given by

Mn(CB(V,W )) = CB(V,Mn(W )).

In particular, if we let W = C, then the dual space V ∗ = CB(V,C) has

a natural operator space matrix norm given by

Mn(V
∗) = CB(V,Mn(C)).

We call V ∗ the operator dual of V .

More Examples

• T (`2(N)) = K(`2(N))∗ = B(`2(N))∗;

• M(Ω) = C0(Ω)∗, operator dual of C*-algebras A∗;
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Operator Preduals

Let V be a dual space with a predual V∗ and let V be an operator space.

Then V ∗ is an operator space (with the natural dual operator space

structure).

Due to the Hahn-Banach theorem, we have the isometric inclusion

V∗ ↪→ V ∗.

This defines an operator space structure on V∗, called the dual operator

space structure on V∗.

Question: Do we the complete isometry (V∗)∗ = V ? More precisely,

can we guarantee that we have the isometric isomorphism

Mn((V∗)∗) = Mn(V ) for each n ∈ N?

Answer: No. Excercise.

15



Theorem [E-R 1990]: Let M be a von Neumann algebra and M∗ the

unique predual of M . With the dual operator space strucutre M∗ ↪→M∗

on M∗, we have the complete isometry

(M∗)∗ = M.

Therefore, we can say that M∗ is the operator predual of M.

Qurstion: What can we say if M = V is not a von Neumann algebra ?
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Quotient Operator Spaces

Let V ↪→ W be operator spaces. Then there exists a natural quotient

operator space structure on W/V given by the isometric identification

Mn(W/V ) = Mn(W )/Mn(V ) = {x+Mn(V ) : x = [xij] ∈Mn(W )}.

We call W/V the quotient operator space.

Now let M ⊆ B(H) be a von Neumann algebra. Then M is a weak*

closed subsapce of B(H). Its predual M∗ can be isometrically identified

with the quotient space T (H)/M⊥. Then we can also obtain a quotient

operator space strucutre on M∗

Theorem: Let M ⊆ B(H) be a von Neumann algebra. We have the

complete isometry

T (H)/M⊥ = M∗.
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Proof: Since the restriction map ω ∈ T (H) → f = ω|M ∈ M∗ is a

complete contraction with kernel M⊥, it induces a complete contraction

π : T (H)/M⊥ →M∗

On the other hand, let us assume that Φ = [fij] ∈Mn(M∗) = CBσ(M,Mn).

It is known from von Neumann algebra theory that every normal cb

map has a norm preserving mornal cb extension Φ̃ ∈ CBσ(B(H),Mn) =

Mn(T (H)).

Therefore, π : T (H)/M⊥ → M∗ must be a completely isometric isomor-

phism
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Theorem [P-B 1990]: If V has MIN (respectively, MAX) operator

space structure, then V ∗ has MAX (respectively, MIN) operator space

structure, , i.e. we have the complete isometries

MIN(V )∗ = MAX(V ∗) and MAX(V )∗ = MIN(V ∗).

If G is a locally compact group, then

• C0(G) and L∞(G) have the MIN operator space structure, and

• M(G) and L1(G) have the natural MAX operator space structure.
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Banach Algebras Associated with Locally Compact Groups
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Let G be a locally compact group with a left Haar measure ds.

Then we have commutative C*-algebras and von Neumann algebras

C0(G) ⊆ Cb(G) ⊆ L∞(G)

with pointwise multiplication.

Moreover, we have a natural Banach algebra structure on the convolu-

tion algebra L1(G) = L∞(G)∗ and the measure algebra M(G) = C0(G)∗

given by

f ? g(t) =
∫
G
f(s)g(s−1t)ds

and

〈µ ? ν, h〉 =
∫
G
h(st)dµ(s)dν(t)

for all h ∈ L∞(G).
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Group C*-algebras and Group von Neumann Algebras

For each s ∈ G, there exists a unitary λs on L2(G) given by

λsξ(t) = ξ(s−1t)

Then λ induces a contractive *-representation λ : L1(G) → B(L2(G))

given by

λ(f) =
∫
G
f(s)λsds.

We let C∗λ(G) = λ(L1(G))
‖·‖

denote the reduced group C*-algebra of G.

We let L(G) = λ(L1(G))
s.o.t

= {λs : s ∈ G}′′ ⊆ B(L2(G)) be the left

group von Neumann algebra of G.
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If G is an abelian group, then L1(G) is commutative. Therefore, C∗λ(G)

and L(G) are commutative and we have

C∗λ(G) = C0(Ĝ) and L(G) = L∞(Ĝ),

where Ĝ = {χ : G→ T : continuous homo} is the dual group of G.

Example: Let G = Z. Then `1(Z) is unital commutative. In this case,

we have

C∗λ(Z) = C(T) and L(Z) = L∞(T).

Therefore, for a general group G, we can regard C∗λ(G) and L(G) as the

dual object of C0(G) and L∞(G), respectively.
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Fall Group C*-algebra

Let πu : G → B(Hu) be the universal representation of G. Then πu

induces a contractive *-representation πu : L1(G) → B(Hu) given by

πu(f) =
∫
G
f(s)πu(s)ds.

We let C∗(G) = πu(L1)
‖·‖

denote the full group C*-algebra of G.

It is known that we have a canonical C*-algebra quotient

πλ : C∗(G) → C∗λ(G).
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Fourier Algebra A(G)

Let

A(G) = {f : G→ C : f(s) = 〈λsξ|η〉}

be the space of all coeffient of regular representation λ. It was shown

by Eymard in 1964 that A(G) with the norm

‖f‖A(G) = inf{‖ξ‖‖η‖ : f(s) = 〈λsξ|η〉}

and pointwise publication is a commutative Banach algebra, i.e. we

have

‖fg‖A(G) ≤ ‖f‖A(G)‖g‖A(G).

We call A(G) the Fourier algebra of G.

We note that A(G) with the above norm is isometrically isomorphic to

the predual L(G)∗. More over, if G is an abelian group, we have

A(G) = L1(Ĝ).

Therefore, we can regard A(G) as the natural dual of L1(G).
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Operator Space Structure on A(G)

It is known that we can isometrically identify A(G) with the predual

L(G)∗ of the group von Neumann algebra. Then we can obtain a natural

operator space structure on A(G) given by the canonical inclusion

A(G) ↪→ A(G)∗∗ = L(G)∗.

With this operator space structure, we have the complete isometry

A(G)∗ = L(G).

We also have canonical operator space structures on

Bλ(G) = C∗λ(G)∗ and B(G) = C∗(G)∗.

We have the completely isometric inclusion

A(G) ↪→ Bλ(G) ↪→ B(G).
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A continuous function ϕ : G → C is called a multiplier of A(G) if the

multiplication map mϕ defines a map on A(G), i.e. we have

mϕ : ψ ∈ A(G) → ϕψ ∈ A(G).

We let MA(G) denote the space of all multipliers of A(G).

We let McbA(G) denote the space of all completely bounded multipliers

of A(G), i.e. ‖mϕ‖cb <∞.

There exists a natural operator space structure on

McbA(G) ⊆ CB(A(G), A(G)).
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Classical Case Noncommutative Case

L∞(G) L(G)

C0(G) C∗λ(G)

L1(G) A(G)

M(G) Bλ(G) ⊆ B(G) ⊆McbA(G) ⊆MA(G).

If G is amenable, we have

Bλ(G) = B(G) = McbA(G) = MA(G).
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Amenability of G

A locally compact group G is called amenable if there exists a left
invariant mean on L∞(G), i.e. there exists a positive linear functional

m : L∞(G) → C
such that m(1) = 1 and m(sh) = m(h) for all s ∈ G and h ∈ L∞(G),
where we define sh(t) = h(st).

Theorem: The following are equivalent:

1. G is amenable;

2. G satisfies the Følner condition: for every ε > 0 and compact subset
C ⊆ G, there exists a compact subset K ⊆ G such that

|K∆sK|
µ(K)

< ε for all s ∈ C;

3. A(G) has a bounded (or contractive) approximate identity.
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Applications to Related Areas

• C*-algebras and von Neumann algebras

• Non-self-adjoint operator algebras

• Abstract harmonic analysis/locally compact quantum groups

• Non-commutative Lp-spaces

• Non-commutative probablilty/non-commutative matingale theory

• Non-commutative harmonic analysis

• Quantum information theory
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