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Amenability of Groups

Let us first recall that a locally compact group G is amenable if there
exists a left invariant mean on L∞(G), i.e. there exists a positive linear
functional

m : L∞(G) → C
such that m(1) = 1 and m(sh) = m(h) for all s ∈ G and h ∈ L∞(G),
where we define sh(t) = h(st).

Theorem: The following are equivalent:

1. G is amenable;

2. G satisfies the Følner condition: for every ε > 0 and compact subset
C ⊆ G, there exists a compact subset K ⊆ G such that

|K∆sK|
µ(K)

< ε for all s ∈ C;

3. A(G) has a bounded (or contractive) approximate identity.
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Amenability of Banach Algebras

In the early 1970’s, B. Johnson introduced the bounded Hochschild

cohomology and the amenability for Banach algebras.

A Banach algebra A is called amenable if for every bounded A-bimodule

V , every bounded derivation D : A → V ∗ is inner, i.e. there exists f ∈ V ∗

such that

D(a) = a · f − f · a.

A linear map D : A → V ∗ is a derivation if it satisfies

D(ab) = D(a) · b + a ·D(b) for all a, b ∈ A.

Theorem [B. Johnson 1972] : A locally compact group G is amenable

if and only if L1(G) is an amenable Banach algebra.
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Amenability of A(G)

Question: Since A(G) is the natural dual object of L1(G), it is natural

to ask whether G is amenable if and only if A(G) is amenable ??

B. Johnson studied this problem for compact groups in 1994. If G is

a compact group, it is known that its irreducible representations are all

finite dimensional, i.e.

π : G → Mdπ,

where we let dπ denote the dimension of the matrix. We let Ĝ denote

the set of all (non-equivalent class of) irreducible represetations of G.

Let t to be the characteristic function on the diagonal of G×G. Johnson

showed that if G is a finite group, then the diagonal element t has norm

‖t‖A(G)⊗γA(G) =
∑

π∈Ĝ

d3
π/

∑
π∈Ĝ

d2
π

in A(G)⊗γ A(G)
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This suggests that if G is an infinite group and {dπ : π ∈ Ĝ} is un-

bounded, then there would be no bounded approximate diagonal in

A(G)⊗γ A(G).

Theorem [B. Johnson 1984]: If G is a compact group with sup{dπ :

π ∈ Ĝ} < ∞, then A(G) is amenable.

Therefore, if a group G is almost abelian, i.e., it has an abelian subgroup

H such that |G/H| < ∞, then A(G) is amenable.

Theorem [B. Johnson 1984]: Let G be a compact non-discrete group

for which {π ∈ Ĝ : dπ = n} is finite for each n ∈ N. Then Banach algebra

A(G) is not amenable.

As examples, A(G) is not amenable if G = SU(2, C)
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Recent Results on Amenability of A(G)

It is known that the check mapˇ: f ∈ A(G) → f̌ ∈ A(G) is an isometric
isomorphism. However, it is not necessarily completely bounded.

Theorem [F-R 2005]: Let G be a locally compact group.

• The check mapˇis cb on A(G) if and only if G is almost abelian.

• The check mapˇis a c. isometry on A(G) if and only if G is abelian

Then considering the anti-diagonal Γ = {(s, s−1) : s ∈ G} and the char-
acteristic function χΓ on Gd ×Gd, they proved that

Theorem [F-R]: Let G be a locally compact group.

• A(G) is amenable if and only if G is almost abelian if and only if
χΓ ∈ B(Gd ×Gd)

• A(G) is 1-amenable if and only if G is abelian if and only if χΓ has
norm 1 in B(Gd ×Gd)
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We see that the amenability of A(G) is closely related to the abelian,

or alsmost abelian structure of G.

To consider the amenability of A(G) for general groups G, we should

study this in the category of operator spaces, replacing boundedness by

completely boundedness, ......
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Tensor Products

In Banach space theory, there are two very useful tensor products, the

injective tensor product ⊗λ and the projective tensor product ⊗γ, on

Banach spaces.

Let us recall that for u ∈ V ⊗W , we define

‖u‖γ = inf{
∑

‖vi‖‖wi‖ : u =
∑

vi ⊗ wi}.

This defines a norm on V ⊗W and we let V ⊗γ W denote the completion.

The projective tensor product satisfies some functorial properties such

as

B(V ⊗γ W, Z) = B(V, B(W, Z)).

In particular, if Z = C, we have

(V ⊗γ W )∗ = B(V, W ∗).
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Projective tensor product is very useful in Banach algebra theory. For

instance, the multiplication m on a Banach algebra A satisifes

‖xy‖ ≤ ‖x‖‖y‖

if and only if it extends to a contractive linear map

m : x⊗ y ∈ A⊗γ A → xy ∈ A.

Gven two locally compact groups G1 and G2, we have the isometric

isomorphism

L1(G1)⊗γ L1(G2) = L1(G1 ×G2).

However, in general, we can only have a contraction

A(G1)⊗γ A(G2) → A(G1 ×G2).

Theorem [Losert 1984]: We have the linear isomorphism

A(G1)⊗γ A(G2)
∼= A(G1 ×G2)

if and only if either G1 or G2 is almost abelian, i.e. there exists an

abelian subgroup with finitely many distinct cosets.
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Operator Space Projective Tensor Product

Correspondingly, we can define the the operator space projective tensor

product ⊗̂. Given u ∈ V ⊗W , we can write

u = [αik]([xij]⊗ [ykl])[βjl] = α(x⊗ y)β

with α = [αik] ∈ M1,nm, x = [xij] ∈ Mn(V ), y = [ykl] ∈ Mm(W ), and

β = [βjl] ∈ Mnm,1. So we let

‖u‖∧,1 = inf{‖α‖‖x‖‖y‖‖β‖ : u = α(x⊗ y)β}.

This defines a norm on V ⊗W we let V ⊗̂W denote the completion.

Now we can define an operator space matrix norm for u ∈ Mn(V ⊗ W )

by letting

‖u‖∧,k = inf{‖α‖‖x‖‖y‖‖β‖ : u = α(x⊗ y)β},

where the infimum is taken for α ∈ Mk,nm, x ∈ Mn(V ), y ∈ Mm(W ), and

β ∈ Mnm,k.
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We also have some functorial properties such as

CB(V ⊗̂W, Z) = CB(V, CB(W, Z)).

In particular, if Z = C, we have

(V ⊗̂W )∗ = CB(V, W ∗).

We also have V ⊗̂W = W ⊗̂V .

If V or W has the MAX matrix norm, then we have thsi isometry

V ⊗γ W = V ⊗̂W.

In particular, if W is an operator space, we have the isometric isomor-

phism

L1(X, µ)⊗γ W = L1(X, µ)⊗̂W.
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Theorem [E-R 1990]: Let M and N are von Neumann algebras. Then

we have the completely isometric isomorphism

(M⊗̄N)∗ = M∗⊗̂N∗.

As a consequence, we get hte completely isometric isomorphisms

L1(G1 ×G1) = L1(G1)⊗̂L1(G2)

and

A(G1 ×G2) = A(G1)⊗̂A(G2).

Remark: If G1 is abelian, then A(G1) = L1(Ĝ1) has the MAX structure.

In this case, we have

A(G1 ⊗G2) = A(G1)⊗̂A(G2) = A(G1)⊗γ A(G2).
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Completely Contractive Banach Algebras

We say that A is a completely contractive Banach algebra or simply c.c

Banach algebra if 1) A is a Banach algebra; 2) A has an operator space

structure; 3) the multiplication extends to a complete contraction

m : x⊗ y ∈ A⊗̂A → xy ∈ A,

i.e. we have

‖[xijykl]‖nm ≤ ‖[xij]‖n‖[ykl]‖m

for all [xij] ∈ Mn(A) and [ykl] ∈ Mm(A).

Remark 1: If the multiplication is completely bounded with ‖m‖cb ≤
K < ∞, then an equivalent operator space matrix norm ‖|[xij]‖|n =

K‖[xij]‖n, we define a completely contractive Banach algebra structure.

Remark 2: Every C*-algebra, or operator algebra is a c.c. Banach

algebra.
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L1(G)

Since L1(G) is equipped a natural MAX structure, we have

MAX(L1(G))⊗̂MAX(L1(G)) = MAX(L1(G)⊗γ L1(G)).

Since the multiplication m on L1(G) is contractive with respect to ⊗γ,

and thus completely contractive with respect to ⊗̂. So L1(G) is a c.c.

Banach algebra.
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Co-multiplication on L∞(G)

Except the pointwise multiplication on L∞(G), we have a natural co-

multiplication

Γa : h ∈ L∞(G) → Γa(h) ∈ L∞(G)⊗̄L∞(G) = L∞(G×G)

which is given by Γa(h)(s, t) = h(st).

• This co-multiplication Γa is a unital weak* continuous (normal) iso-

metric *-homomorphism from L∞(G) into L∞(G×G).

• Γa is associated with the multiplication of the group G. Since mul-

tiplication of G is associative, then Γa is co-associative in the sense

that

(Γa ⊗ ι) ◦ Γa = (ι⊗ Γa) ◦ Γa.

We call (L∞(G),Γa) a commutative Hopf von Neumann algebra.
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Fundamental Unitary

Moreover, there exists a unitary operator W on L2(G × G) = L2(G) ⊗
L2(G) defined by

Wξ(s, t) = ξ(s, s−1t)

such that Γ(h) = W ∗(1⊗ h)W for all h ∈ L∞(G) since

W ∗(1⊗ h)Wξ(s, t) = (1⊗ h)Wξ(s, st) = h(st)Wξ(s, st) = h(st)ξ(s, t).

The co-multiplication

Γa : h ∈ L∞(G) → Γa(h) ∈ L∞(G)⊗̄L∞(G) = L∞(G×G)

is a unital weak* continuous (completely) isometric *-homomorphism
from L∞(G) into L∞(G×G).

Taking the pre-adjoint, we get an associative (completely) contractive
multiplication

? = (Γa)∗ : L1(G)⊗̂L1(G) = L1(G)⊗γ L1(G) → L1(G),

which is just the convolution on L1(G). This shows that L1(G) is a c.c.
Banach algebra.
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Co-multiplication on L(G)

We have a natural co-associative co-multiplication on L(G) given by

ΓG : λs ∈ L(G) → ΓG(λs) = λs ⊗ λs ∈ L(G)⊗̄L(G) = L(G×G).

In fact, we can write

ΓG(λs) = W (λs ⊗ 1)W ∗ = ΣWΣ(1⊗ λs)ΣW ∗Σ = Ŵ (1⊗ λs)Ŵ
∗.

Here Σ is the flip operator on L2(G)⊗L2(G), and we let Ŵ = ΣWΣ to
be the fundamental unitary operator for L(G) = “L∞(Ĝ)′′.

Therefore, (L(G),ΓG) is a co-commutative Hopf von Neumann algebra.

In fact, every co-commutative Hopf von Neumann algebra has such a
form.

Taking the pre-adjoint, we obtain the completely contractive pointwise
multiplication

m = (ΓG)∗ : u⊗ v ∈ A(G)⊗̂A(G) → u · v ∈ A(G).

Therefore, A(G) is also a c.c. Banach algebra.
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Operator A-bimodules

Let A be a c.c. Banach algebra and V be an operator space. We say

that V is an operator A-bimodule if V is an A-bimodule such that the

bimodule operation

πl : a⊗ x ∈ A⊗̂V → a · x ∈∈ V and πr : x⊗ a ∈ V ⊗̂A → x · a ∈ V

are completely bounded.

If V is an operator A-bimodule, then its operator dual V ∗ is also an

operator A-bimodule with A-bimodule operation given by

〈a · f, x〉 = 〈f, x · a〉 and 〈f · a, x〉 = 〈f, a · x〉.
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Operator Amenability of C.C. Banach Algebras

Motivated by Johnson’s definition for Banach algebras, a C.C. Banach

algebra A is called operator amenable if for every operator A-bimodule

V , every completely bounded derivation D : A → V ∗ is inner, i.e. there

exists f ∈ V ∗ such that

D(a) = a · f − f · a.

Theorem [R 1995]: Let A be a c.c. Banach algebra. Then A is

operator amenable if and only if there exists a net of bounded elements

uα ∈ A⊗̂A such that for every a ∈ A,

1) a · uα − uα · a → 0 in A⊗̂A

2) m(uα) is a bounded approximate identity for A.
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Theorem [R 1995]: Let G be a locally compact group. Then

(1) G is amenable if and only if L1(G) is operator amenable.

(2) G is amenable if and only if A(G) is operator amenable.

Proof: Accoring to the previous theorem, if A(G) is operator amenable,

then A(G)⊗̂A(G) has a bounded approximate diagonal, and thus A(G)

has a BAI. Therefore, G is amenable.

The difficult part is to show that the amenability of G implies the op-

erator amenability of A(G).
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Look at Compact Group Case:

Suppose that G is a compact group. Then there exists a base of open

nbhds {Uα} at e with compact closure such that sUαs−1 = Uα.

Let ξα = χUα/µ(Uα)
1
2. Then {ξα} is a net of unit vectors in L2(G) such

that

ξα(st) = ξα(ts) for all s, t ∈ G.

We note that

πλ,ρ : (s, t) ∈ G×G → λsρt ∈ B(L2(G))

is a continuous unitary representation of G. Then the coefficient func-

tions

uα(s, t) = 〈λsρtξα|ξα〉

are contractive elements in B(G×G) = A(G×G) = A(G)⊗̂A(G).

Finally, we show that {uα} is a contractive approximate diagonal in

A(G)⊗̂A(G). Therefore, A(G) is operator amenable.
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Comparing this with Johnson’s Result

If G is a finite group, then

ue(s, t) = 〈λsρtδe|δe〉 = 〈λsδ|ρ(t−1)δe〉 = 〈δs|δt〉

is just the characteristic function t on the diagonal of G × G. It has

norm

‖t‖A(G)⊗̂A(G) = 1

in A(G)⊗̂A(G).

Comparing Johnson’s calculation

‖t‖A(G)⊗γA(G) =
∑

π∈Ĝ

d3
π/

∑
π∈Ĝ

d2
π

in A(G)⊗γ A(G)
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Weak Amenability

A Banach algebra A is called weakly amenable if every bounded deriva-
tion D : A → A∗ is inner.

Theorem [Johnson 1991]: Let G be a locally compact group. Then
L1(G) is weakly amenable.

However, Johnson observed that there exist some compact Lie group G
such that A(G) is not weakly amenable.

A c.c. Banach algebra A is called weakly operator amenable if every
completely bounded derivation D : A → A∗ is inner.

Since every bounded derivation D : L1(G) → L∞(G) is completely
bounded with ‖D‖ = ‖D‖cb, it is easy to see that L1(G) is weakly
operator amenable.

Theorem [Spronk 2002]: Let G be a locally compact group. Then
A(G) is weakly operator amenable .

Question: Let G be a LCQG, can we prove that L1(G) is weakly
operator amenable ?
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