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Amenability of Groups

Let us first recall that a locally compact group G is amenable if there
exists a left invariant mean on L∞(G), i.e. there exists a positive linear
functional

m : L∞(G) → C
such that m(1) = 1 and m(sh) = m(h) for all s ∈ G and h ∈ L∞(G),
where we define sh(t) = h(st).

Theorem: The following are equivalent:

1. G is amenable;

2. G satisfies the Følner condition: for every ε > 0 and compact subset
C ⊆ G, there exists a compact subset K ⊆ G such that

|K∆sK|
µ(K)

< ε for all s ∈ C;

3. A(G) has a bounded (or contractive) approximate identity.
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Amenability of G is closely related to the Nuclearity of C∗λ(G) !
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Nuclear C*-algebras

A C*-algebra A is said to be nuclear if there exists two nets of completely

positive and contractive maps Sα : A→Mn(α) and Tα : Mn(α) → A such

that

Tα ◦ Sα → idA

in the point-norm topology.

A C*-algebra A is said to have the CPAP if there exists a net of comletely

positive and contractive finite rank maps Tα : A→ A such that Tα → idA
in the point-norm topology.

It is known that f. d. C*-algebras A = Mn1 ⊕ · · · ⊕Mnk, C(Ω), K(H),

inductive limit, c0-direct sum, .... are nulcear C*-algebras.
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Group C*-algebras

Let G be a discrete group. In this case, C∗λ(G) = span{λs : s ∈ G}‖·‖.

Theorem: Let G be a discrete group. Then the following are equiva-
lent:

1. G is amenable;

2. C∗λ(G) is nuclear;

3. C∗λ(G) has the CPAP;

4. there exists a net of positive and contractive elements fα ∈ A(G)
such that

fα(s) → 1

for all s ∈ G.
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Idea of Proof: 1. ⇒ 2. Suppose that G is discrete and amenable. It

is known from the Følner condition that for any finite set E in G and

ε > 0, there exists a finite subset Fα = F(E,ε) in G such that

|Fα∆s · Fα|
|Fα|

< ε

for all s ∈ E.

Let ια be the isometric inclusion of `2(Fα) into `2(G) and Pα be the con-

tractive projection from `2(G) onto `2(Fα). We can obtain a complete

contraction

Sα : x ∈ C∗λ(G) → Pαxια ∈ B(`2(Fα)) = Mn(α),

where n(α) = |Fα| is the cardinality of Fα.
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Let {eαs,t}s,t∈Fα be the matrix unit of B(`2(Fα)). We can define a linear
map

Tα : eαs,t ∈ B(`2(Fα)) = Mn(α) →
λst−1

n(α)
∈ C∗λ(G).

Now it is easy to verify that

eαs,sλp(g)e
α
t,t =

{
eαs,t if g = st−1

0 otherwise.

Therefore, for any g ∈ G, we have

Sα(λg) = Pαλgια =
∑

s,t∈Fα
eαs,sλge

α
t,t =

∑
s∈Fα∩gFα

eα
s,g−1s

,

and thus

Tα ◦ Sα(λg) =
|Fα ∩ gFα|
n(α)

λg.

It follows that

‖Tα ◦ Sα(λg)− λg‖ ≤
|Fα∆gFα|
n(α)

‖λg‖ < ε for all g ∈ E.

Therefore, we have ‖Tα ◦ Sα(x)− x‖ → 0 for every x ∈ C∗λ(G).

2. ⇒ 3. is obvious.
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3. ⇒ 4. Suppose that there is a net of c.p. finite rank contractions

Tα : C∗λ(G) → C∗λ(G) such that Tα → idC∗λ(G) in the point-norm topology.

Then we consider a net of functions {uα} on G defined by

uα(s) = 〈λ∗sTα(λs)δe|δe〉 = 〈Tα(λs)δe|λsδe〉.

Since Tα are completely positive maps, each uα is a positive definite

function contained in B(G) and we have

‖uα‖B(G) = uα(e) = 〈Tα(1)δe|δe〉 ≤ ‖Tα(1)‖ ≤ 1.

Moreover, it is known by Haagerup that since each Tα is finite rank,

then uα ∈ `2(G) ⊆ A(G) with ‖uα‖A(G) = ‖uα‖B(G) ≤ 1.

Finally, we see that for each s ∈ G, Tα(λs) → λs in norm-topology implies

that

uα(s) = 〈Tα(λs)δe|λsδe〉 → 〈λsδe|λsδe〉 = 1.
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4. ⇒ 1. If we have {uα} in A(G) such that ‖uα‖A(G) ≤ 1 and uα(s) → 1

for every s ∈ G. Then for each δs = ωδe,δs ∈ A(G), we have

‖uαδs − δs‖A(G) = ‖uα(s)δs − δs‖A(G) = |uα(s)− 1|‖δs‖A(G) → 0.

This implies that {uα} is a contractive approximate identity of A(G).
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cb-Fourier Algebra Acb(G)

Let McbA(G) be the space of all cb-multipliers of A(G). It is clear

that A(G) is a subalgebra of McbA(G). Since for every u ∈ A(G) and

[ωij] ∈Mn(A(G)),

‖[mu(ωij)]‖Mn(A(G)) = ‖[uωij]‖Mn(A(G)) ≤ ‖u‖A(G)‖[ωij]‖Mn(A(G)),

we get

‖u‖cb := ‖mu‖cb ≤ ‖u‖A(G).

With this new cb-norm on A(G), we can let Acb(G) to be the cb-norm

closure

Acb(G) = A(G)
‖·‖ ⊆McbA(G).

Then Acb(G) is a c.c. Banach subalgebra of McbA(G).
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Weak Amenability of Groups

A locally compact group G is weakly amenable if there exists a net of

elements {uα} in Ac(G) = A(G) ∩ Cc(G) such that

‖uα‖cb := ‖muα‖cb ≤ 1 (or ≤ k <∞)

and

‖uαω − ω‖A(G) → 0

for all ω ∈ A(G). This is equivalent to saying that Acb(G) has a CAI (or

has a BAI).

We let Λ(G) = inf{k : ‖uα‖cb ≤ k}.
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Amenability of Acb(G)

It is natural to consider the

amenability (or operator amenability) of Acb(G).

Theorem [FVS 2007]: The cb-Fourier algebra Acb(F2) is operator

amenable.

Mainly they prove that if G is a weakly amenable discrete group such

that C∗(G) is residually finite, then Acb(G) is operator amenable.
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CCAP and CBAP

An operator space V is to have the CBAP (resp. CCAP) if there exists
a net of comletely bounded (resp. completely contractive) finite rank
maps Tα : V → V such that Tα → idV in the point-norm topology.

Theorem [Haagerup]: Let G be a discrete group. Then the following
are equivalent:

1. G is weakly amenable with Λ(G) ≤ k;

2. C∗λ(G) has the CBAP with cb-norm ≤ k;

3. there exists a net of {uα} in Ac(G) such that ‖uα‖cb ≤ k and

uα(s) → 1

for all s ∈ G.

Proof of 2. ⇒ 3. Consider uα = 〈λ∗sTα(λs)δe|δe〉 with ‖uα‖cb ≤ ‖Tα‖cb.
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Predual of McbA(G)

Let us recall that

McbA(G) = {u : G→ C continuous such that mu is cb on A(G)}

with

‖u‖cb := ‖mu‖cb ≥ ‖u‖L∞(G).

Then each f ∈ L1(G) defines a bounded linear functional

τf(u) =
∫
G
f(s)u(s)ds

on McbA(G) with ‖τf‖ ≤ ‖f‖L1(G). Since τ : L1(G) → McbA(G)∗ is an
injection, we define

Qcb(G) = τ(L1(G))
‖·‖ ⊆McbA(G)∗.

It is known by H-K that we have the isometric isomorphism

Qcb(G)∗ = McbA(G).

Remark: It was shown by K-R in 1996 (for Kac algebras), and by H-N-
R in 2009 and Daws in 2010 (for LCQG) that McbA(G) is a dual Banach
algebra, i.e. multiplication is weak* continuous in each component.
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Elements in Qcb(G)

Let G be a discrete group and let u ∈McbA(G). Then

mu : ω ∈ A(G) → uω ∈ A(G)

is a cb-map. Its adjoint map

Mu = (mu)
∗ : λs ∈ L(G) → ψ(s)λs ∈ L(G)

is completely bounded and weak* continuous on the group von Neumann

algebra L(G). The restriction of Mu to C∗λ(G) defines a cb map

M̄ψ = Mψ|C∗λ(G) : λs ∈ C∗λ(G) → u(s)λs ∈ C∗λ(G)

on C∗λ(G) and we have

‖mu‖cb = ‖Mu‖cb = ‖M̄u‖cb.
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Given a = [aij] ∈ K∞(C∗λ(G)) ⊆ B(`2)⊗̌C∗λ(G) and u = [uij] ∈ K∞(C∗λ(G))∗

(or u = [uij] ∈ (B(`2)⊗̌C∗λ(G))∗), we obtain a linear functional ωa,ϕ on

McbA(G) given by

〈ωa,ϕ, u〉 = 〈[M̄u(aij)], [ϕij]〉 =
∑
ij

〈M̄u(aij), ϕij〉.

It is easy to see that ωa,ϕ is bounded on McbA(G) with

‖ωa,ϕ‖ ≤ ‖[aij]‖K∞(C∗λ(G))‖[ϕij]‖K∞(C∗λ(G))∗.

Theorem [H-K 1996]: Let G be a discrete group. We have

Qcb(G) = {ωa,ϕ : a ∈ K∞(C∗λ(G)) and ϕ ∈ (K∞(C∗λ(G)))∗}
= {ωa,ϕ : a ∈ B(`2)⊗̌C∗λ(G), and ϕ ∈ (B(`2)⊗̌C∗λ(G)∗)}.
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Groups with the AP

We say that a locally compat group has the AP if there exists a net of

(not necessarily bounded in A(G)-norm or cb-norm) elements {uα} in

Ac(G) such that

uα → 1 ⊆McbA(G)

in σ(McbA(G), Qcb(G))-topology.
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Examples

• It is clear that every amenable groups and weakly amenable groups

have the AP.

• If G has the AP, then closed subgroups has the AP.

• If H and K are locally compact groups with the AP, then their direct

product (or semi-direct product if action is continuous) has the AP.

• In particular, Z2 o SL(2,Z) has the AP, but not weakly amenable.
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Grothendick’s Approximation Property

A Banach space is said to have Grothendicks’ AP if there exists a net

of bounded finite rank maps Tα : V → V such that Tα → idV uniformly

on compact subsets of V.

We note that a subset K ⊆ V is compact if and only if there exists a

sequence (xn) ∈ c0(V ) such that

K ⊆ conv{xn}
‖·‖ ⊆ V.

Therefore, V has Grothendick’s AP if and only if there exists a net of

finite rank bounded maps Tα on V such that

‖(Tα(xn))− (xn)‖c0(V ) → 0

for all (xn) ∈ c0(V ).
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Operator Space Approximation Property

An operator space V is said to have the operator space approximation

property (or simply, OAP) if there exists a net of finite rank bounded

maps Tα on V such that

‖[Tα(xij)]− [xij]‖K∞(V ) → 0

for all [xij] ∈ K∞(V ), where we let K∞(V ) = ∪∞n=1Mn(V ). In this case,

we say that Tα → idV in the stable point-norm topology.

We say that V ⊆ B(H) has the strong OAP if we can replace K∞(V )

by B(`2)⊗̌V , which is the norm closure of B(`2)⊗ V in B(`2 ⊗ `2(G)).

Remark: For C*-algebras,

Nuclearity ⇒ CBAP ⇒ strong OAP ⇒ OAP ⇒ Grothendieck AP.
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Theorem [H-K 1994]: Let G be a discrete group. Then the following

are equivalent:

1. G has the AP;

2. C∗λ(G) has the OAP;

3. C∗λ(G) has the strong OAP.

Remark: For a discrete group C*-algebra C∗λ(G), it is an open question

whether Grothendick AP implies OAP.

It is also an open question whether there exists any discrete group such

that C∗λ(G) does not have Grothendick’s AP.

Proposition [J-R 2003]: A discrete group G has the AP if and only if

A(G) has the OAP (respectively, the strong OAP).

21



Proof of Theorem:

1. ⇒ 2. Suppose that G has the AP and suppose that {uα} is a net of

elements in Ac(G) such that

uα → 1 ⊆McbA(G)

in σ(McbA(G), Qcb(G))-topology. In this case, each muα is a finite rank

cb-map on A(G), and thus M̄uα is a finite rank map on C∗λ(G) such that

〈[M̄uα(aij)]− [aij], [ϕij]〉 = 〈uα − 1, ωa,ϕ〉 → 0

for all a = [aij] ∈ B(`2)⊗̌C∗λ(G) and ϕ = [ϕij] ∈ (B(`2)⊗̌C∗λ(G))∗.

Therefore, [M̄ψα(aij)] → [aij] in the weak topology on B(`2)⊗̌C∗λ(G).

Then by a convex argument, we can show that C∗λ(G) has the strong

OAP.

3. ⇒ 2. It is clear strong OAP implies OAP.
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2. ⇒ 1. We need to show that if C∗λ(G) has the OAP, then G has the

AP.

Suppose that Tα is a net of bounded finite rank maps on C∗λ(G) such

that Tα → id in the stable-point-norm toplogy on C∗λ(G). Then

uα(s) = 〈λ∗sTα(λs)δe|δe〉 = 〈Tα(λs)δe|λsδe〉

is a net of functions on G such that each uα is contained in `2(G) ⊆ A(G)

and we have

M̄uα(λs) = P (ι⊗ Tα) ◦ ΓG(λs) = P (λs ⊗ Tα(λs)) → λs

in the stable-point-norm topology on C∗λ(G), where P : C∗λ(G × G) →
ΓG(C∗λ(G)) is a canonical c.c. projection. It follows that uα → 1 in the

σ(McbA(G), Qcb(G)) topology, i.e. we have

〈uα − 1, ωa,ϕ〉 = 〈[M̄uα(aij)]− [aij], [ϕij]〉 → 0

for all a = [aij] ∈ K(`2)⊗̌C∗λ(G) and ϕ = [ϕij] ∈ (K(`2)⊗̌C∗λ(G))∗.
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