Lecture 4: Local Properties of Group C*-Algebras

Zhong-Jin Ruan

at Leeds, Thursday, 20 May , 2010

Local Property of Banach Spaces

It is known from the Hahn-Banach theorem that given any Banach space V, there exists an index set I such that we have the isometric inclusion

 $V \hookrightarrow \ell_{\infty}(I).$

Usually I is an infinite index (even V is finite dimensional).

Question: If V is finite dimensinal, can we

"approximately embed" V into a finite dimensional $\ell_{\infty}(n)$

for some positive integer $n \in \mathbb{N}$?

Finite Representability in $\{\ell_{\infty}(n)\}$

Theorem: Let *E* be a f.d. Banach space. For any $\varepsilon > 0$, there exsit $n(\varepsilon) \in \mathbb{N}$ and $F \subseteq \ell^{\infty}(n(\varepsilon))$ such that

$$E \stackrel{1+\varepsilon}{\cong} F,$$

i.e., there exists a linear isomorphism $T: E \to F$ such that $\|T\| \|T^{-1}\| < 1 + \varepsilon.$

Therefore, we say that

• every f.d. Banach space E is representable in $\{\ell_{\infty}(n)\}$;

• every Banach space V is finitely representable in $\{\ell_{\infty}(n)\}$.

Proof: Since E^* is finite dim, the closed unit ball E_1^* is totally bounded. For arbitrary $1 > \varepsilon > 0$, there exists finitely many functionals $f_1, \dots, f_n \in E_1^*$ such that for every $f \in E_1^*$, there exists some f_j such that

$$\|f - f_j\| < \frac{\varepsilon}{1 + \varepsilon}$$

Then we obtain a linear contraction

$$T: x \in E \to (f_1(x), \cdots, f_n(x_n)) \in \ell_n^\infty.$$

For any $f \in E_1^*$, we let f_j such that $||f - f_j|| < \frac{\varepsilon}{1 + \varepsilon}$. Then we get

$$||T(x)|| \ge |f_j(x)| \ge |f(x)| - |f(x) - f_j(x)| \ge |f(x)| - \frac{\varepsilon ||x||}{1 + \varepsilon}.$$

This shows that

$$|T(x)|| \ge ||x|| - \frac{\varepsilon ||x||}{1+\varepsilon} = \frac{||x||}{1+\varepsilon}$$

Therefore, $||T^{-1}|| < 1 + \varepsilon$.

Finite Representatility of Operator Spaces in $\{M_n\}$

An operator space V is called finitely representable in $\{M_n\}$ if for every f.d. subspace E and $\varepsilon > 0$, there exist $n(\varepsilon) \in \mathbb{N}$ and $F \subseteq M_{n(\varepsilon)}$ such that

$$E \stackrel{1+\varepsilon}{\cong}_{cb} F_{s}$$

i.e., there exists a linear isomorphism $T: E \to F$ such that

$$||T||_{cb} ||T^{-1}||_{cb} < 1 + \varepsilon.$$

It is natural to ask whether every finite dim operator space is representable in $\{M_n\}$, or whether every operator space is finitely representable in $\{M_n\}$?

Theorem: Let $A \subseteq B(H)$ be a C*-algebra. Then A is finitely representable in $\{M_n\}$ if and only if there exists two nets of completely contractive maps

 $S_{\alpha}: A \to M_{n(\alpha)}$ and $T_{\alpha}: M_{n(\alpha)} \to B(H)$

such that $||T_{\alpha} \circ S_{\alpha}(x) - x|| \to 0$ for all $x \in A$.

Exact C*-algebras

We recall from Kirchberg that a C*-algebra A is an exact C*-algebra if we have the short exact sequence

 $0 \to K(\ell_2) \check{\otimes} A \hookrightarrow B(\ell_2) \check{\otimes} A \to Q(\ell_2) \check{\otimes} A \to 0,$

where $Q(H) = B(\ell_2)/K(\ell_2)$.

Theorem [Kirchberg (Pisier) 1995]: A C*-algebra A is exact if and only if there exists two nets of completely positive and contractive maps (complete contractions)

 $S_{\alpha}: A \to M_{n(\alpha)}$ and $T_{\alpha}: M_{n(\alpha)} \to B(H)$

such that $||T_{\alpha} \circ S_{\alpha}(x) - x|| \to 0$ for all $x \in A$.

Therefore, A is finitely representable in $\{M_n\}$ iff A is exact.

Theorem (Pisier 1995): Let $\ell_1(n)$ be the operator dual of $\ell_{\infty}(n)$. If

$$T: \ell_1(n) \to F \subseteq M_k$$

is a linear isomorphism, then for $n\geq {\bf 3}$

$$||T||_{cb}||T^{-1}||_{cb} \ge n/2\sqrt{n-1}.$$

Hence for $n \geq 3$,

$$\ell_1(n) \hookrightarrow C^*(\mathbb{F}_{n-1}) \subseteq B(H_\pi)$$

are note finitely representable in $\{M_n\}$.

So $C^*(\mathbb{F}_{n-1})$ and $B(H_{\pi})$ are examples of non-exact C*-algebras.

Examples of Exact C^* -algebras

• For C*-algebras, we have

Nulcearity \Rightarrow CBAP \Rightarrow Strong OAP \Rightarrow Exactness

• For any discrete group G, we have

Nuclearity \Rightarrow Weakly Amenable \Rightarrow AP \Rightarrow Exact, i.e. $C^*_{\lambda}(G)$ is exact

• Groups like $G = \mathbb{F}_n, \mathbb{Z}^2 \rtimes SL(2,\mathbb{Z}), G = SL(3,\mathbb{Z})$ are exact.

Some Interesting Theorems

It is easy to see that if A is an exact C*-algebra, then any C*-subalgebra or subspace of A is also exact. Therefore, every C*-subalgebra of nuclear C*-algebra is exact.

Theorem [Kirchberg and Phillips 2000]: If A is a separable exact C*-algebra, then A is *-isomorphic to a C*-subalgebra of O_2 .

How about group C*-algebras ?

Now let G be a discrete group. Then

$$\mathcal{UC}(G) = \overline{span}\{f\lambda_s : f \in \ell_{\infty}(G), s \in G\}^{\|\cdot\|} \subseteq B(\ell_2(G))$$

is a unital C*-algebra, which is called uniform algebra, or uniform Roe algebra. In fact, $\mathcal{UC}(G) = \ell_{\infty}(G) \rtimes G$.

The following theorem was first observed by Guentner and Kaminker, but was finally proved by Ozawa.

Theorem [Ozawa]: Let G be a discrete group. Then TFAE:

1. G is exact;

2. for any finite subset $E \subseteq G$ and $\varepsilon > 0$, there exists a subset $F \subseteq G$ and a positive definite kernel $u : G \times G \to \mathbb{C}$ such that

 $|u(s,t)-1| < \varepsilon$ if $st^{-1} \in E$ and u(s,t) = 0 if $st^{-1} \notin F$.

3. $\mathcal{UC}(G) = \ell_{\infty}(G) \rtimes C^*_{\lambda}(G)$ is nuclear.

Finite Representability in $\{\ell_n^1\}$

In Banach space theory it is known that a Banach space V is finitely represebtable in $\{\ell_n^1\}$ if and only

 $V \hookrightarrow L_1(\mu)$

is isometric to a closed subspace of some $L_1(\mu)$ space.

Finite Representability in $\{T_n\}$

An operator space V is finitely representable in $\{T_n\}$ if for any f.d. subspace E and $\varepsilon > 0$, there exist $n(\varepsilon) \in \mathbb{N}$ and $F \subseteq T_{n(\varepsilon)}$ such that

$$E \stackrel{1+\varepsilon}{\cong}_{cb} F,$$

i.e., there exists a linear isomorphism $T: E \to F$ such that

$$||T||_{cb} ||T^{-1}||_{cb} < 1 + \varepsilon.$$

• If A is a nuclear C*-algebra, then A^* and A^{***} are finitely representable in $\{T_n\}$. For example

$$C(X)^*, \quad T(\ell_2), \quad , B(\ell_2)^*.$$

• $C^*_{\lambda}(\mathbb{F}_2)^*$ is finitely representable in $\{T_n\}$.

Question: Is the predual M_* of a von Neumann algebra is finitely representable in $\{T_n\}$?

Theorem [E-J-R 2000]: Let M be a von Neumann algebra. Then M_* is finitely representable in $\{T_n\}$ if and only if M has the QWEP, i.e. M is a quotient of a C*-algebra with Lance's weak expectation proeprty.

A C*-algebra has the WEP if for the universal representation $\pi : A \to B(H)$, there exists a completely positive and contraction $P : B(H) \to A^{**}$ such that $P \circ \pi = id_A$.

A. Connes' conjecture 1976: Every finite von Neumann algebra with separable predual is *-isomorphic to a von Neumann subalgebra of the ultrapower of the hyperfinite II_1 factor

$$M \hookrightarrow \prod_{\mathcal{U}} R_0.$$

E. Kirchberg 's conjecture 1993: Every C^* -algebra has QWEP.

Residually Finite Groups

Let G be a discrete group. We say that G is residually finite if for any finitely many distinct elements s_1, \dots, s_n in G there exists a group homomorphism θ from G into a finite group H such that $\theta(s_1), \dots, \theta(s_n)$ are distinct in H.

Theorem [Kirchberg 1993, Wassermann 1994]: If a discrete group G is residually finite, then G has property (F) and thus L(G) has the QWEP.

More Examples

For the following groups G, $C^*_{\lambda}(G)$ are exact C*-algebras, i.e. finitely representable in $\{M_n\}$, and $A(G) = L(G)_*$ and $B_{\lambda}(G) = (C^*_{\lambda}(G))^*$ are finitely representable in $\{T_n\}$.

• For $n \ge 2$, $G = SL(n,\mathbb{Z})$ is residually finite since for any distinct $s_1, \dots s_n$ in G, we can find a sufficiently large prime numbers p such that the homomorphism

$$\theta_p: SL(n,\mathbb{Z}) \to SL(n,\mathbb{Z}_p)$$

with disctinct image $\theta_p(s_1), \dots, \theta_p(s_n)$ in finite group $SL(n, \mathbb{Z}_p)$.

• $G = \mathbb{Z}^2 \rtimes SL(2,\mathbb{Z})$ is residually. We can consider

$$heta_p: \mathbb{Z}^2
times SL(2,\mathbb{Z})
ightarrow \mathbb{Z}_p^2
times SL(2,\mathbb{Z}_p)$$