Dual Banach algebras: an overview

Volker Runde

Amenability

Connesamenability

Dual Banach algebras

Connesamenability Normal virtua diagonals

Representation theory

Open questions

Dual Banach algebras: an overview

Volker Runde

University of Alberta

Leeds, June 2, 2010

Banach \mathfrak{A} -bimodules and derivations

Dual Banach algebras: an overview

Volker Runde

Amenability

Connesamenability

Dual Banach algebras Connes-

amenability Normal virtua diagonals

Representation theory

Open questions

Definition

Let \mathfrak{A} be a Banach algebra, and let E be a Banach \mathfrak{A} -bimodule. A bounded linear map $D : \mathfrak{A} \to E$ is called a derivation if

$$D(ab) := a \cdot Db + (Da) \cdot b$$
 $(a, b \in \mathfrak{A}).$

If there is $x \in E$ such that

$$Da = a \cdot x - x \cdot a$$
 $(a \in \mathfrak{A}),$

we call D an inner derivation.

Amenable Banach algebras

Dual Banach algebras: an overview

Volker Runde

Amenability

Connesamenability

Dual Banach algebras

Connesamenability Normal virtua diagonals

Representation theory

Open questions

Remark

If *E* is a Banach \mathfrak{A} -bimodule, then so is E^* :

$$\langle x, a \cdot \phi \rangle := \langle x \cdot a, \phi \rangle$$
 $(a \in \mathfrak{A}, \phi \in E^*, x \in E)$

and

$$\langle x, \phi \cdot a \rangle := \langle a \cdot x, \phi \rangle$$
 $(a \in \mathfrak{A}, \phi \in E^*, x \in E).$

We call E^* a dual Banach \mathfrak{A} -bimodule.

Definition (B. E. Johnson, 1972)

 \mathfrak{A} is called amenable if, for every dual Banach \mathfrak{A} -bimodule E, every derivation $D : \mathfrak{A} \to E$, is inner.

Amenability for groups and Banach algebras

Dual Banach algebras: an overview

Volker Runde

Amenability

Connesamenability

Dual Banach algebras

Connesamenability Normal virtua diagonals

Representation theory

Open questions

Theorem (B. E. Johnson, 1972)

The following are equivalent for a locally compact group G: **1** $L^1(G)$ is an amenable Banach algebra;

2 the group G is amenable.

Theorem (H. G. Dales, F. Ghahramani, & A. Ya. Helemskiĭ, 2002)

The following are equivalent:

1 M(G) is amenable;

2 *G* is amenable and discrete.

Virtual digaonals

Dual Banach algebras: an overview

Volker Runde

Amenability

Connesamenability

Dual Banach algebras

Connesamenability Normal virtua diagonals

Representation theory

Open questions

Definition (B. E. Johnson, 1972)

An element $\mathbf{D} \in (\mathfrak{A} \hat{\otimes} \mathfrak{A})^{**}$ is called a virtual diagonal for \mathfrak{A} if

$$a \cdot \mathbf{D} = \mathbf{D} \cdot a \qquad (a \in \mathfrak{A})$$

and

$$a\Delta^{**}\mathbf{D} = a$$
 $(a \in \mathfrak{A}),$

where $\Delta : \mathfrak{A} \hat{\otimes} \mathfrak{A} \to \mathfrak{A}$ denotes multiplication.

Theorem (B. E. Johnson, 1972)

 \mathfrak{A} is amenable if and only if \mathfrak{A} has a virtual diagonal.

Amenable C*-algebras

Dual Banach algebras: an overview

Volker Runde

Amenability

Connesamenability

Dual Banach algebras Connesamenability

Normal virtua diagonals

Representation theory

Open questions

Theorem (A. Connes, U. Haagerup, et al.)

The following are equivalent for a C^* -algebra \mathfrak{A} :

1 \mathfrak{A} is nuclear;

2 \mathfrak{A} is amenable.

Theorem (S. Wasserman, 1976)

The following are equivalent for a von Neumann algebra \mathfrak{M} :

1 M is nuclear;

2 \mathfrak{M} is subhomogeneous, i.e.,

 $\mathfrak{M}\cong M_{n_1}(\mathfrak{M}_1)\oplus\cdots\oplus M_{n_k}(\mathfrak{M}_k)$

with $n_1, \ldots, n_k \in \mathbb{N}$ and $\mathfrak{M}_1, \ldots, \mathfrak{M}_k$ abelian.

Normality

Dual Banach algebras: an overview

Volker Runde

Amenability

Connesamenability

Dual Banach algebras

Connesamenability Normal virtua diagonals

Representation theory

Open question

Theorem (S. Sakai, 1956)

A C^{*}-algebra can be faithfully represented on a Hilbert space as a von Neumann algebra if and only if it is the dual space of some Banach space. The predual space is unique.

Definition (R. Kadison, BEJ, & J. Ringrose, 1972)

Let \mathfrak{M} be a von Neumann algebra, and let E be a dual Banach \mathfrak{M} -bimodule. Then E is called normal if the module actions

$$\mathfrak{M} imes E o E, \quad (a, x) \mapsto \left\{ egin{array}{c} a \cdot x \ x \cdot a \end{array}
ight.$$

are separately weak*-weak* continuous.

Connes-amenability of von Neumann algebras

Dual Banach algebras: an overview

Volker Runde

Amenability

Connesamenability

Dual Banach algebras

Connesamenability Normal virtua diagonals

Representation theory

Open questions

Definition

Let \mathfrak{M} a von Neumann algebra, and let E be a normal Banach \mathfrak{M} -bimodule. We call a derivation $D : \mathfrak{M} \to E$ normal if it is weak*-weak* continuous.

Theorem (R. Kadison, BEJ, & J. Ringrose, 1972)

Suppose that \mathfrak{M} is a von Neumann algebra containing a weak^{*} dense amenable C^{*}-subalgebra. Then, for every normal Banach \mathfrak{M} -bimodule E, every normal derivation $D : \mathfrak{M} \to E$ is inner.

Definition (A. Connes, 1976; A. Ya. Helemskiĭ, 1991)

 \mathfrak{M} is Connes-amenable if for every normal Banach \mathfrak{M} -bimodule every normal derivation $D: \mathfrak{M} \to E$ is inner.

Injectivity, semidiscreteness, and hyperfiniteness

Dual Banach algebras: an overview

Definition

Volker Runde

Amenability

Connesamenability

Dual Banacl algebras

Connesamenability Normal virtua diagonals

Representation theory

Open questions

A von Neumann algebra $\mathfrak{M} \subset \mathcal{B}(\mathfrak{H})$ is called

- injective if there is a norm one projection E : B(𝔅) → 𝔐' (this property is independent of the representation of 𝔐 on 𝔅);
- 2 semidiscrete if there is a net $(S_{\lambda})_{\lambda}$ of unital, weak*-weak* continuous, completely positive finite rank maps such that

$$S_{\lambda}a \stackrel{\mathsf{weak}^*}{\longrightarrow} a \qquad (a \in \mathfrak{M});$$

3 hyperfinite if there is a directed family (𝔐_λ)_λ of finite-dimensional *-subalgebras of 𝔐 such that U_λ 𝔐_λ is weak* dense in 𝔐.

Connes-amenability, and injectivity, etc.

Dual Banach algebras: an overview

Volker Runde

Amenability

Connesamenability

Dual Banac algebras

Connesamenability Normal virtua diagonals

Representation theory

Open questions

Theorem (A. Connes, et al.)

The following are equivalent:

1 \mathfrak{M} is Connes-amenable;

- **2** \mathfrak{M} is injective;
- **3** M is semidiscrete;
- 4 M is hyperfinite.

Corollary

A C*-algebra \mathfrak{A} is amenable if and only if \mathfrak{A}^{**} is Connes-amenable.

Normal virtual digaonals, I

Dual Banach algebras: an overview

Volker Runde

Amenability

Connesamenability

Dual Banach algebras

Connesamenability Normal virtua diagonals

Representation theory

Open questions

Notation

Let $\mathcal{B}^2_{\sigma}(\mathfrak{M},\mathbb{C})$ denote the separately weak^{*} continuous bilinear functionals on \mathfrak{M} .

Observations

1 $\mathcal{B}^2_{\sigma}(\mathfrak{M},\mathbb{C})$ is a closed submodule of $(\mathfrak{M}\hat{\otimes}\mathfrak{M})^*$.

2 Δ^{*}M_{*} ⊂ B²_σ(M, C), so that Δ^{**} drops to a bimodule homomorphism Δ_σ : B²_σ(M, C)^{*} → M.

Normal virtual digaonals, II

Dual Banach algebras: an overview

Volker Runde

Amenability

Connesamenability

Dual Banach algebras

Connesamenability Normal virtua diagonals

Representation theory

Open questions

Definition (E. G. Effros, 1988)

An element $\mathbf{D} \in \mathcal{B}^2_{\sigma}(\mathfrak{M}, \mathbb{C})^*$ is called a normal virtual diagonal for \mathfrak{M} if

$$\mathbf{a} \cdot \mathbf{D} = \mathbf{D} \cdot \mathbf{a} \qquad (\mathbf{a} \in \mathfrak{M})$$

and

$$\mathsf{a}\Delta_{\sigma}\mathsf{D}=\mathsf{a}$$
 $(\mathsf{a}\in\mathfrak{M}).$

Theorem (E. G. Effros, 1988)

ć

 ${\mathfrak M}$ is Connes-amenable if and only if ${\mathfrak M}$ has a normal virtual diagonal.

Dual Banach algebras: the definition

Dual Banach algebras: an overview

Volker Runde

Amenability

Connesamenability

Dual Banach algebras

Connesamenability Normal virtua diagonals

Representation theory

Open questions

Definition

A Banach algebra \mathfrak{A} is called dual if there is a Banach space \mathfrak{A}_* with $(\mathfrak{A}_*)^* = \mathfrak{A}$ such that multiplication in \mathfrak{A} is separately weak^{*} continuous.

Remarks

■ There is no reason for 𝔄_{*} to be unique. The same Banach algebra 𝔅 can therefore carry different dual Banach algebra structures. (Often, the predual is clear from the context.)

The notions of Connes-amenability and normal virtual diagonals carry over to dual Banach algebras without modifications.

Some examples

Dual Banach algebras: an overview

Volker Runde

Amenability

Connesamenability

Dual Banach algebras

Connesamenability Normal virtu diagonals

Representation theory

Open questions

Examples

- **1** Every von Neumann algebra.
- M(G) for every locally compact group G (M(G)_{*} = C₀(G)).
- **3** B(G) for every locally compact group G $(B(G)_* = C^*(G)).$
- 4 $\mathcal{B}(E)$ for every reflexive Banach space E $(\mathcal{B}(E)_* = E \hat{\otimes} E^*).$
- Let A be a Banach algebra and let A^{**} be equipped with either Arens product. Then A^{**} is a dual Banach algebra if and only if A is Arens regular.
- 6 All weak* closed subalgebras of a dual Banach algebra are again dual Banach algebras.

Amenability and Connes-amenability, I

Dual Banach algebras: an overview

Volker Runde

Amenability

Connesamenability

Dual Banach algebras

Connesamenability Normal virtua diagonals

Representation theory

Open questions

Proposition

Let \mathfrak{A} be a dual Banach algebra, and let \mathfrak{B} be a norm closed, amenable subalgebra of \mathfrak{A} that is weak^{*} dense in \mathfrak{A} . Then \mathfrak{A} is Connes-amenable.

Corollary

If ${\mathfrak A}$ is amenable and Arens regular. Then ${\mathfrak A}^{**}$ is Connes-amenable.

Theorem (VR, 2001)

Suppose that \mathfrak{A} is Arens regular and an ideal in \mathfrak{A}^{**} . Then the following are equivalent:

- **1** \mathfrak{A} is amenable;
- **2** \mathfrak{A}^{**} is Connes-amenable.

Amenability and Connes-amenability, II

Dual Banach algebras: an overview

Volker Runde

Amenability

Connesamenability

Dual Banach algebras

Connesamenability Normal virtua diagonals

Representation theory

Open questions

Corollary

Let *E* be reflexive and have the approximation property. Then the following are equivalent:

1 $\mathcal{K}(E)$ is amenable;

2 $\mathcal{B}(E)$ is Connes-amenable.

Example (N. Grønbæk, BEJ, & G. A. Willis, 1994)

Let $p, q \in (1, \infty) \setminus \{2\}$ such that $p \neq q$. Then $\mathcal{K}(\ell^p \oplus \ell^q)$ is not amenable. Hence, $\mathcal{B}(\ell^p \oplus \ell^q)$ is not Connes-amenable.

Normal virtual diagonals, III

Dual Banach algebras: an overview

Volker Runde

Amenability

Connesamenability

Dual Banach algebras Connes-

amenability Normal virtual diagonals

Representation theory

Open questions

Proposition

Suppose that ${\mathfrak A}$ has a normal virtual diagonal. Then ${\mathfrak A}$ is Connes-amenable.

Theorem (VR, 2003)

The following are equivalent for a locally compact group G:

- **1** *G* is amenable;
- **2** M(G) is Connes-amenable;
- **3** M(G) has a normal virtual diagonal.

Corollary

 $\ell^1(G)$ is amenable if and only if it is Connes-amenable.

Weakly almost periodic functions

Dual Banach algebras: an overview

Volker Runde

Amenability

Connesamenability

Dual Banach algebras

Connesamenability Normal virtual diagonals

Representation theory

Open questions

Definition

A bounded continuous function $f : G \to \mathbb{C}$ is called weakly almost periodic if $\{L_x f : x \in G\}$ is relatively weakly compact in $\mathcal{C}_b(G)$. We set

 $WAP(G) := \{ f \in C_b(G) : f \text{ is weakly almost periodic} \}.$

Remark

WAP(G) is a commutative C^* -algebra. Its character space wG is a compact semigroup with separately continuous multiplication containing G as a dense subsemigroup.

This turns $WAP(G)^* \cong M(wG)$ into a dual Banach algebra.

Normal virtual diagonals, IV

Dual Banach algebras: an overview

Volker Runde

Amenability

Connesamenability

Dual Banach algebras

amenability Normal virtual diagonals

Representation theory

Open questions

Proposition

The following are equivalent:

1 *G* is amenable;

2 WAP $(G)^*$ is Connes-amenable.

Theorem (VR, 2006)

Suppose that G has small invariant neighborhoods, e.g, is compact, discrete, or abelian. Then the following are equivalent:

1 WAP(G)* has a normal virtual diagonal;

2 *G* is compact.

Minimally weakly almost periodic groups

Dual Banach algebras: an overview

Volker Runde

Amenability

Connesamenability

Dual Banach algebras

Connesamenability Normal virtual diagonals

Representation theory

Open questions

Definition

A bounded continuous function $f : G \to \mathbb{C}$ is called almost periodic if $\{L_x f : x \in G\}$ is relatively compact in $\mathcal{C}_b(G)$. We set

 $AP(G) := \{ f \in C_b(G) : f \text{ is almost periodic} \}.$

We call G minimally weakly almost periodic (m.w.a.p.) if

 $WAP(G) = AP(G) + C_0(G).$

Normal virtual diagonals, V

Dual Banach algebras: an overview

Volker Runde

Amenability

Connesamenability

Dual Banach algebras Connes-

amenability Normal virtual diagonals

Representation theory

Open questions

Proposition

Suppose that G is amenable and m.w.a.p. Then WAP(G) has a normal virtual diagonal.

Examples

- **1** All compact groups are m.w.a.p..
- **2** SL $(2, \mathbb{R})$ is m.w.a.p., but not amenable.
- **3** The motion group $\mathbb{R}^N \rtimes SO(N)$ is m.w.a.p. for $N \ge 2$ and amenable.

Question

Does $WAP(G)^*$ have a normal virtual diagonal if and only if G is amenable and m.w.a.p.?

Daws' representation theorem

Dual Banach algebras: an overview

Volker Runde

Amenability

Connesamenability

Dual Banach algebras Connesamenability

Normal virtua diagonals

Representation theory

Open questions

Recall. . .

 $\mathcal{B}(E)$ is a dual Banach algebra for reflexive E, as is each weak^{*} closed subalgebra of it.

Theorem (M. Daws, 2007)

Let \mathfrak{A} be a dual Banach algebra. Then there are a reflexive Banach space E and an isometric, weak*-weak* continuous algebra homomorphism $\pi : \mathfrak{A} \to \mathcal{B}(E)$.

In short...

Every dual Banach algebra "is" a subalgebra of $\mathcal{B}(E)$ for some reflexive E.

Injectivity, I

Dual Banach algebras: an overview

Volker Runde

Amenability

Connesamenability

Dual Banach algebras Connesamenability Normal virtual diagonals

Representation theory

Open questions

Recall...

A von Neumann algebra $\mathfrak{M} \subset \mathcal{B}(\mathfrak{H})$ is called injective if there is a norm one projection $\mathcal{E} : \mathcal{B}(\mathfrak{H}) \to \mathfrak{M}'$.

Question

How does the notion of injectivity extend to dual Banach algebras? And how does this extended notion relate to Connes-amenability?

Quasi-expectations

Dual Banach algebras: an overview

Volker Runde

Amenability

Connesamenability

Dual Banach algebras Connesamenability

diagonals

Representation theory

Open questions

Theorem (J. Tomiyama, 1970)

Let \mathfrak{A} be a C^* -algebra, let \mathfrak{B} be a C^* -subalgebra of \mathfrak{A} , and let $\mathcal{E} : \mathfrak{A} \to \mathfrak{B}$ be a norm one projection, an expectation. Then

 $\mathcal{E}(abc) = a(\mathcal{E}b)c$ $(a, c \in \mathfrak{B}, b \in \mathfrak{A}).$

Definition

Let \mathfrak{A} be a Banach algebra, and let \mathfrak{B} be a closed subalgebra. A bounded projection $\mathcal{Q}: \mathfrak{A} \to \mathfrak{B}$ is called a quasi-expectation if

 $\mathcal{Q}(abc) = a(\mathcal{Q}b)c$ $(a, c \in \mathfrak{B}, b \in \mathfrak{A}).$

Injectivity, II

"Definition"

Dual Banach algebras: an overview

Volker Runde

Amenability

Connesamenability

Dual Banach algebras

amenability Normal virtua diagonals

Representation theory

Open questions

We call \mathfrak{A} "injective" if there are a reflexive Banach space E, an isometric, weak*-weak* continuous algebra homomorphism $\pi : \mathfrak{A} \to \mathcal{B}(E)$, and a quasi-expectation $\mathcal{Q} : \mathcal{B}(E) \to \pi(\mathfrak{A})'$.

Easy

Connes-amenability implies "injectivity", but...

Example

For $p, q \in (1, \infty) \setminus \{2\}$ with $p \neq q$, $\mathcal{B}(\ell^p \oplus \ell^q)$ is not Connes-amenable, but trivially "injective".

Injectivity, III

Dual Banach algebras: an overview

Volker Runde

Amenability

Connesamenability

Dual Banach algebras Connesamenability

Normal virtua diagonals

Representation theory

Open questions

Definition (M. Daws, 2007)

A dual Banach algebra \mathfrak{A} is called injective if, for each reflexive Banach space E and for each weak*-weak* continuous algebra homomorphism $\pi : \mathfrak{A} \to \mathcal{B}(E)$, there is a quasi-expectation $\mathcal{Q} : \mathcal{B}(E) \to \pi(\mathfrak{A})'$.

Theorem (M. Daws, 2007)

The following are equivalent for a dual Banach algebra \mathfrak{A} :

1 \mathfrak{A} *is injective;*

2 A is Connes-amenable.

A bicommutant theorem

Dual Banach algebras: an overview

Volker Runde

Amenability

Connesamenability

Dual Banach algebras Connes-

Normal virtua diagonals

Representation theory

Open questions

Question

Does von Neumann's bicommutant theorem extend to general dual Banach algebras?

Example

Let

$$\mathfrak{A} := \left\{ \left[\begin{smallmatrix} a & b \\ 0 & c \end{smallmatrix}
ight\} : a, b, c \in \mathbb{C} \right\}.$$

Then $\mathfrak{A} \subset \mathcal{B}(\mathbb{C}^2)$ is a dual Banach algebra, but $\mathfrak{A}'' = \mathcal{B}(\mathbb{C}^2)$.

Theorem (M. Daws, 2010)

Let \mathfrak{A} be a unital dual Banach algebra. Then there are a reflexive Banach space E and a unital, isometric, weak*-weak* continuous algebra homomorphism $\pi : \mathfrak{A} \to \mathcal{B}(E)$ such that $\pi(\mathfrak{A}) = \pi(\mathfrak{A})''$.

Uniqueness of the predual, I

Dual Banach algebras: an overview

Volker Runde

Amenability

Connesamenability

Dual Banach algebras Connesamenability Normal virtual

Representation theory

Open questions

Question

Let ${\mathfrak A}$ be a dual Banach algebra with predual ${\mathfrak A}_*.$ To what extent is ${\mathfrak A}_*$ unique?

Example

Let *E* be a Banach space with two different preduals, e.g., $E = \ell^1$.

Equip E with the zero product.

Then E is dual Banach algebra, necessarily with two different preduals.

Uniqueness of the predual, II

Dual Banach algebras: an overview

Volker Runde

Amenability

Connesamenability

Dual Banac algebras

amenability Normal virtua diagonals

Representation theory

Open questions

Theorem (G. Godefroy & P. D. Saphar, 1988)

If *E* is reflexive, then $E \hat{\otimes} E^*$ is the unique isometric predual of $\mathcal{B}(E)$.

Theorem (M. Daws, 2007)

If *E* is reflexive and has the approximation property, then $E \hat{\otimes} E^*$ is the unique isomorphic predual of $\mathcal{B}(E)$ turning it into a dual Banach algebra.

Amenability and Connes-amenability

Dual Banach algebras: an overview

Volker Runde

Amenability

Connesamenability

Dual Banach algebras

Connesamenability Normal virtua diagonals

Representation theory

Open questions

Question

Does every Connes-amenable dual Banach algebra contain a closed, weak* dense, amenable subalgebra?

Question

Let ${\mathfrak A}$ be Arens regular such that ${\mathfrak A}^{**}$ is Connes-amenable. Is ${\mathfrak A}$ amenable?

Theorem (VR, 2001)

Suppose that every bounded linear map from \mathfrak{A} to \mathfrak{A}^* is weakly compact and that \mathfrak{A}^{**} has a normal virtual diagonal. Then \mathfrak{A} is amenable.

Representation theory

Dual Banach algebras: an overview

Volker Runde

Amenability

Connesamenability

Dual Banach algebras Connesamenability

Normal virtua diagonals

Representation theory

Open questions

A von Neumann algebra $\mathfrak{M} \subset \mathcal{B}(\mathfrak{H})$ is injective if and only if there is an expectation $\mathcal{E} : \mathcal{B}(\mathfrak{H}) \to \mathfrak{M}$.

Question

Recall. . .

Consider the following property of a unital dual Banach algebra \mathfrak{A} :

For each reflexive Banach space E, and for each unital, weak*-weak* continuous algebra homomorphism $\pi : \mathfrak{A} \to \mathcal{B}(E)$, there is a quasi-expectation $\mathcal{Q} : \mathcal{B}(E) \to \pi(\mathfrak{A})$.

How does this property relate to injectivity?

Fourier–Stieltjes algebras

Dual Banach algebras: an overview

Volker Runde

Amenability

Connesamenability

Dual Banach algebras

Connesamenability Normal virtua diagonals

Representation theory

Open questions

Question

For which G is B(G) Connes-amenable?

Conjecture

B(G) is Connes-amenable if and only if G has an abelian subgroup of finite index.

Theorem (F. Uygul, 2007)

The following are equivalent for discrete G:

- **1** B(G) is Connes-amenable;
- **2** *G* has an abelian subgroup of finite index.