Amenability of operator algebras on Banach spaces, I

Volker Runde

Prelude

Amenable groups

Amenable Banach algebras

C^{*}- and von Neumann algebras

Similarity problems

Amenability of operator algebras on Banach spaces, I

Volker Runde

University of Alberta

NBFAS, Leeds, June 1, 2010

Philosophical musings

Amenability of operator algebras on Banach spaces, I

Volker Runde

Prelude

Amenable groups

Amenable Banach algebras

C^{*}- and von Neumann algebras

Similarity problems

A quote

Big things are fucking rarely amenable!

N.N., Istanbul, 2004.

Thus. . .

AMENABLE \approx SMALL

Mean things

Amenability of operator algebras on Banach spaces, I

Volker Runde

Prelude

Amenable groups

Amenable Banach algebras

C^{*}- and von Neumann algebras

Similarity problems

Definition

Let G be a locally compact group. A mean on $L^{\infty}(G)$ is a functional $M \in L^{\infty}(G)^*$ such that $\langle 1, M \rangle = ||M|| = 1$.

Definition (J. von Neumann 1929; M. M. Day, 1949)

G is amenable if there is a mean on $L^{\infty}(G)$ which is left invariant, i.e.,

$$\langle L_x \phi, M \rangle = \langle \phi, M \rangle$$
 $(x \in G, \phi \in L^{\infty}(G)),$

where

$$(L_x\phi)(y):=\phi(xy)\qquad (y\in G).$$

Some amenable groups...

Amenability of operator algebras on Banach spaces, I

Volker Runde

Prelude

Amenable groups

Amenable Banach algebras

C*- and vor Neumann algebras

Similarity problems

Examples

- **1** Compact groups amenable: M = Haar measure.
- Abelian groups are amenable: use Markov-Kakutani to get M.

Really nice hereditary properties!

- **1** If G is amenable and H < G, then H is amenable.
- **2** If G is is amenable and $N \lhd G$, then G/N is amenable.
- 3 If G and $N \lhd G$ are such that N and G/N are amenable, then G is amenable.
- 4 If $(H_{\alpha})_{\alpha}$ is a directed union of closed, amenable subgroups of G such that $G = \overline{\bigcup_{\alpha} H_{\alpha}}$, then G is amenable.

... and a non-amenable one, I

Amenability of operator algebras on Banach spaces, I

Volker Runde

Prelude

Amenable groups

Amenable Banach algebras

C^{*}- and vor Neumann algebras

Similarity problems

Example

Let \mathbb{F}_2 be the free group in two generators. Assume that there is a left invariant mean M on $\ell^{\infty}(\mathbb{F}_2)$. Define

$$\mu: \mathfrak{P}(\mathbb{F}_2) \to [0,1], \quad E \mapsto \langle \chi_E, M \rangle.$$

Then

• μ is finitely additive,

•
$$\mu(\mathbb{F}_2) = 1$$
, and

•
$$\mu(xE) = \mu(E)$$
 $(x \in \mathbb{F}_2, E \subset \mathbb{F}_2).$

... and a non-amenable one, II

Amenability of operator algebras on Banach spaces, I

Volker Runde

Prelude

Amenable groups

Amenable Banach algebras

C^{*}- and von Neumann algebras

Similarity problems

Example (continued...)

For $x \in \{a, b, a^{-1}, b^{-1}\}$ set

$$W(x) := \{ w \in \mathbb{F}_2 : w \text{ starts with } x \}.$$

Let $w \in \mathbb{F}_2 \setminus W(a)$. Then $a^{-1}w \in W(a^{-1})$, therefore $w \in aW(a^{-1}),$

and thus

$$\mathbb{F}_2 = W(a) \cup aW(a^{-1}).$$

Similarly,

$$\mathbb{F}_2 = W(b) \cup bW(b^{-1})$$

holds.

... and a non-amenable one, III

Amenability of operator algebras on Banach spaces, I

Volker Runde

Prelude

Amenable groups

Amenable Banach algebras

C*- and voi Neumann algebras

Similarity problems

Example (continued even further)

Since

$$\mathbb{F}_2 = \{\epsilon\} \stackrel{\cdot}{\cup} W(a) \stackrel{\cdot}{\cup} W(a^{-1}) \stackrel{\cdot}{\cup} W(b) \stackrel{\cdot}{\cup} W(b^{-1}),$$

we have

$$\begin{split} &= \mu(\mathbb{F}_2) \\ &\geq \mu(W(a)) + \mu(aW(a^{-1})) + \mu(W(b)) + \mu(bW(b^{-1})) \\ &\geq \mu(W(a) \cup aW(a^{-1})) + \mu(W(b) \cup bW(b^{-1})) \\ &= \mu(\mathbb{F}_2) + \mu(\mathbb{F}_2) \\ &= 2, \end{split}$$

which is nonsense.

Consequences

Amenability of operator algebras on Banach spaces, I

Volker Runde

Prelude

Amenable groups

Amenable Banach algebras

C^{*}- and vor Neumann algebras

Similarity problems

Hence, G is amenable if...

- **1** *G* is solvable or
- **2** *G* is locally finite.

But G is not amenable if...

G contains \mathbb{F}_2 as closed subgroup, e.g., if

- $G = SL(N, \mathbb{R})$ with $N \ge 2$,
- $G = GL(N, \mathbb{R})$ with $N \ge 2$, or
- G = SO(N, ℝ) with N ≥ 3 equipped with the discrete topology.

Amenable Banach algebras via approximate diagonals

Amenability of operator algebras on Banach spaces, I

Volker Runde

Prelude

Amenable groups

Amenable Banach algebras

C^{*}- and vor Neumann algebras

Similarity problems

Definition (B. E. Johnson, 1972)

A Banach algebra \mathfrak{A} is said to be amenable if it possesses an approximate diagonal, i.e., a bounded net $(\mathbf{d}_{\alpha})_{\alpha}$ in the projective tensor product $\mathfrak{A} \hat{\otimes} \mathfrak{A}$ such that

$$oldsymbol{a}\cdot oldsymbol{d}_lpha-oldsymbol{d}_lpha\cdot oldsymbol{a}
ightarrow 0 \qquad (oldsymbol{a}\in\mathfrak{A})$$

and

$$a\Delta {f d}_lpha o a \qquad (a\in {\mathfrak A})$$

with $\Delta : \mathfrak{A} \hat{\otimes} \mathfrak{A} \to \mathfrak{A}$ denoting multiplication.

Amenable Banach algebras and amenable groups

Amenability of operator algebras on Banach spaces, I

Volker Runde

Prelude

Amenable groups

Amenable Banach algebras

C^{*}- and von Neumann algebras

Similarity problems

Theorem (B. E. Johnson, 1972)

The following are equivalent for a locally compact group G:

1 *G* is amenable;

2 $L^1(G)$ is amenable.

Grand theme

Let ${\mathcal C}$ be a class of Banach algebras. Characterize the amenable members of ${\mathcal C}!$

More from abstract harmonic analysis

Amenability of operator algebras on Banach spaces, I

Volker Runde

Prelude

Amenable groups

Amenable Banach algebras

C^{*}- and von Neumann algebras

Similarity problems Theorem (H. G. Dales, F. Ghahramani, & A. Ya. Helemskiĭ, 2002)

The following are equivalent:

1 M(G) is amenable;

2 *G* is amenable and discrete.

Theorem (B. E. Forrest & VR, 2005)

The following are equivalent:

1 A(G) is amenable;

2 *G* has an abelian subgroup of finite index.

From old to new...

Hereditary properties

Amenability of operator algebras on Banach spaces, I

Volker Runde

Prelude

Amenable groups

Amenable Banach algebras

C^{*}- and vor Neumann algebras

Similarity problems

- **1** If \mathfrak{A} is amenable and $\theta : \mathfrak{A} \to \mathfrak{B}$ is a bounded homomorphism with dense range, then \mathfrak{B} is amenable. In particular, if $I \triangleleft \mathfrak{A}$, then \mathfrak{A}/I is amenable.
- 2 If I ⊲ A is such that both I and A/I are amenable, then A is amenable.
- 3 If \mathfrak{A} is amenable and $I \lhd \mathfrak{A}$, then the following are equivalent:
 - 1 *I* is amenable;
 - 2 / has a bounded approximate identity;
 - I is weakly complemented in 𝔄, i.e., I[⊥] is complemented in 𝔄*.

Grand theme, reprise!

Amenability of operator algebras on Banach spaces, I

Volker Runde

Prelude

Amenable groups

Amenable Banach algebras

C^{*}- and vor Neumann algebras

Similarity problems

The "meaning" of amenability

What does it mean for a member of a class C of Banach algebras to be amenable for the following classes C?

- **1** all C^* -algebras;
- 2 all von Neumann algebras;
- all norm closed, but not necessarily self-adjoint subalgebras of B(\$\vec{\mathcal{B}}\$);
- 4 all algebras $\mathcal{K}(E)$;
- **5** all algebras $\mathcal{B}(E)$.

Remember...

$\mathsf{AMENABLE}\approx\mathsf{SMALL}$

Complete positivity

Amenability of operator algebras on Banach spaces, I

Volker Runde

Prelude

Amenable groups

Amenable Banach algebras

C*- and von Neumann algebras

Similarity problems

If \mathfrak{A} and \mathfrak{B} are C^* -algebras, then so are $M_n(\mathfrak{A})$ and $M_n(\mathfrak{B})$ for all $n \in \mathbb{N}$. Whenever $T : \mathfrak{A} \to \mathfrak{B}$ is linear, we write $T^{(n)} : M_n(\mathfrak{A}) \to M_n(\mathfrak{B})$ for its amplification, i.e.,

$$T^{(n)}[a_{j,k}] := [Ta_{j,k}] \qquad ([a_{j,k}] \in M_n(\mathfrak{A})).$$

Definition

 $T : \mathfrak{A} \to \mathfrak{B}$ is called completely positive if $T^{(n)} : M_n(\mathfrak{A}) \to M_n(\mathfrak{B})$ is positive for each $n \in \mathbb{N}$.

Example

$$M_2 \rightarrow M_2, \quad a \mapsto a^t$$

is positive, but not completely positive.

Nuclear C^* -algebras

Amenability of operator algebras on Banach spaces, I

Volker Runde

Prelude

Amenable groups

Amenable Banach algebras

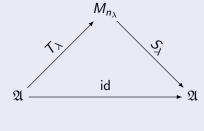
C*- and von Neumann algebras

Similarity problems

Definition

such that

A C^* -algebra \mathfrak{A} is called nuclear if there are nets $(n_\lambda)_\lambda$ of positive integers and of completely positive contractions



 $(S_{\lambda} \circ T_{\lambda})a \rightarrow a \qquad (a \in \mathfrak{A}).$

Nuclearity and amenability

Amenability of operator algebras on Banach spaces, I

Volker Runde

Prelude

Amenable groups

Amenable Banach algebras

C*- and von Neumann algebras

Similarity problems

Theorem (A. Connes, 1978)

A C^{*}-algebra \mathfrak{A} is nuclear if it is amenable and \mathfrak{A}^* is separable.

Theorem (U. Haagerup, 1983)

All nuclear C*-algebras are amenable.

Theorem (A. Connes, U. Haagerup, et al.)

The following are equivalent for a C^* -algebra \mathfrak{A} :

- **1** \mathfrak{A} is nuclear;
- 2 X is amenable.

Nuclear von Neumann algebras

Amenability of operator algebras on Banach spaces, I

Volker Runde

Prelude

Amenable groups

Amenable Banach algebras

C*- and von Neumann algebras

Similarity problems

Theorem (S. Wasserman, 1976)

The following are equivalent for a von Neumann algebra \mathfrak{M} : \mathfrak{M} is nuclear:

2 \mathfrak{M} is subhomogeneous, i.e.,

 $\mathfrak{M}\cong M_{n_1}(\mathfrak{M}_1)\oplus\cdots\oplus M_{n_k}(\mathfrak{M}_k)$

with $n_1, \ldots, n_k \in \mathbb{N}$ and $\mathfrak{M}_1, \ldots, \mathfrak{M}_k$ abelian.

Corollary

 $\mathcal{B}(\mathfrak{H})$ is amenable if and only if dim $\mathfrak{H} < \infty$.

Representations of locally compact groups

Amenability of operator algebras on Banach spaces, I

Volker Runde

Prelude

Amenable groups

Amenable Banach algebras

C^{*}- and vor Neumann algebras

Similarity problems

Definition

A representation of G on a Hilbert space \mathfrak{H} is a group homomomorphism π from G into the invertible elements of $\mathcal{B}(\mathfrak{H})$ which is continuous with respect to the given topology on G and the weakstrong operator topology on $\mathcal{B}(\mathfrak{H})$. We call π :

- **1** unitary if $\pi(G)$ consists of unitaries,
- **2** unitarizable if π is similar to a unitary representation, i.e., there is an invertible $T \in \mathcal{B}(\mathfrak{H})$ such that $T^{-1}\pi(\cdot)T$ is unitary, and
- 3 uniformly bounded if

$$\sup_{g\in G} \|\pi(g)\| < \infty.$$

Unitarizability and amenability

Amenability of operator algebras on Banach spaces, I

Volker Runde

Prelude

Amenable groups

Amenable Banach algebras

C^{*}- and von Neumann algebras

Similarity problems

Obvious...

 π unitary $\Longrightarrow \pi$ unitarizable $\Longrightarrow \pi$ uniformly bounded.

Theorem (J. Dixmier, 1950)

Suppose that G is amenable. Then every uniformly bounded representation of G is unitarizable.

Big open question

Does the converse hold, i.e., is any G such that each uniformly bounded representation is unitarizable already amenable?

Fact

It's false for $\mathbb{F}_2!$

From groups to algebras

Amenability of operator algebras on Banach spaces, I

Volker Runde

Prelude

Amenable groups

Amenable Banach algebras

C^{*}- and von Neumann algebras

Similarity problems

Integration of representations

If π is a uniformly bounded representation of G, we can integrate π and obtain a representation of $L^1(G)$ on \mathfrak{H} :

$$\pi(f) := \int_G f(g)\pi(g) dg \qquad (f \in L^1(G)).$$

Easy

If G is amenable, then $\mathfrak{A} := \overline{\pi(L^1(G))}$ is amenable.

Slightly more difficult

If G is amenable, then π is unitarizable, so that there is an invertible $T \in \mathcal{B}(\mathfrak{H})$ such that $T\mathfrak{A}T^{-1}$ is a C^* -subalgebra of $\mathcal{B}(\mathfrak{H})$.

The similarity problem for amenable operator algebras

Amenability of operator algebras on Banach spaces, I

Volker Runde

Prelude

Amenable groups

Amenable Banach algebras

C^{*}- and von Neumann algebras

Similarity problems

Definition

A closed, but not necessarily self-adjoint subalgebra of $\mathcal{B}(\mathfrak{H})$ is called similar to a C^* -algebra if there is an invertible $T \in \mathcal{B}(\mathfrak{H})$ such that $T\mathfrak{A}T^{-1}$ is a C^* -subalgebra of $\mathcal{B}(\mathfrak{H})$.

Big open question

Is every closed, amenable subalgebra of $\mathcal{B}(\mathfrak{H})$ similar to a C^* -subalgebra of $\mathcal{B}(\mathfrak{H})$ (which is necessarily nuclear)?

Some partial results

Amenability of operator algebras on Banach spaces, I

Volker Runde

Prelude

Amenable groups

Amenable Banach algebras

C^{*}- and von Neumann algebras

Similarity problems

Theorem (J. A. Gifford, <2006)

Suppose that \mathfrak{A} is a closed, amenable subalgebra of $\mathcal{K}(\mathfrak{H})$. Then \mathfrak{A} is similar to a C*-subalgebra of $\mathcal{K}(\mathfrak{H})$.

Definition

Let $C \ge 1$. We call \mathfrak{A} *C*-amenable if \mathfrak{A} has an approximate diagonal bounded by *C*.

Theorem (D. Blecher & C. LeMerdy, 2004)

Let \mathfrak{A} be a closed, 1-amenable subalgebra of $\mathcal{B}(\mathfrak{H})$. Then \mathfrak{A} is a nuclear C^* -algebra.

Open question

What if \mathfrak{A} is commutative, even generated by one operator?