Amenability of operator algebras on Banach spaces, I

Volker Runde

Prelude

Amenable groups

Amenable Banach algebras

C^{*}- and von Neumann algebras

Similarity problems

Amenability of operator algebras on Banach spaces, I

Volker Runde

University of Alberta

NBFAS, Leeds, June 1, 2010

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Amenability of operator algebras on Banach spaces, I
Prelude

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Amenability of operator algebras on Banach spaces, I

Volker Runde

Prelude

Amenable groups

Amenable Banach algebras

C^{*}- and von Neumann algebras

Similarity problems

A quote

Amenability of operator algebras on Banach spaces, I

Volker Runde

Prelude

Amenable groups

Amenable Banach algebras

C^{*}- and von Neumann algebras

Similarity problems

A quote

Big things are rarely amenable!

▲□▶ ▲圖▶ ★ 国▶ ★ 国▶ - 国 - のへで

Amenability of operator algebras on Banach spaces, I

Volker Runde

Prelude

Amenable groups

Amenable Banach algebras

C^{*}- and von Neumann algebras

Similarity problems

A quote

Big things are rarely amenable!

N.N.,

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Amenability of operator algebras on Banach spaces, I

Volker Runde

Prelude

Amenable groups

Amenable Banach algebras

C^{*}- and von Neumann algebras

Similarity problems

A quote

Big things are rarely amenable!

N.N., Istanbul, 2004.

Amenability of operator algebras on Banach spaces, I

Volker Runde

Prelude

Amenable groups

Amenable Banach algebras

C^{*}- and von Neumann algebras

Similarity problems

A quote

Big things are rarely amenable!

N.N., Istanbul, 2004.

Thus. . .

★□> ★□> ★□> ★□> ★□> □ - のへで

Amenability of operator algebras on Banach spaces, I

Volker Runde

Prelude

Amenable groups

Amenable Banach algebras

C^{*}- and von Neumann algebras

Similarity problems

A quote

Big things are rarely amenable!

N.N., Istanbul, 2004.

Thus...

AMENABLE

Amenability of operator algebras on Banach spaces, I

Volker Runde

Prelude

Amenable groups

Amenable Banach algebras

C^{*}- and von Neumann algebras

Similarity problems

A quote

Big things are rarely amenable!

N.N., Istanbul, 2004.

Thus...

AMENABLE \approx SMALL

Amenability of operator algebras on Banach spaces, I

Volker Runde

Prelude

Amenable groups

Amenable Banach algebras

C^{*}- and von Neumann algebras

Similarity problems

A quote

Big things are fucking rarely amenable!

N.N., Istanbul, 2004.

Thus. . .

AMENABLE \approx SMALL

	Mean things
Amenability of operator algebras on Banach spaces, I	

Volker Runde

Prelude

Amenable groups

Amenable Banach algebras

C^{*}- and von Neumann algebras

Similarity problems

▲□▶ <圖▶ < ≧▶ < ≧▶ = のQ@</p>

Amenability of operator algebras on Banach spaces, I

Volker Runde

Prelude

Amenable groups

Amenable Banach algebras

C^{*}- and von Neumann algebras

Similarity problems

Definition

Amenability of operator algebras on Banach spaces, I

Volker Runde

Prelude

Amenable groups

Amenable Banach algebras

C^{*}- and von Neumann algebras

Similarity problems

Definition

Let G be a locally compact group.

Amenability of operator algebras on Banach spaces, I

Volker Runde

Prelude

Amenable groups

Amenable Banach algebras

C^{*}- and von Neumann algebras

Similarity problems

Definition

Let G be a locally compact group. A mean

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ = 臣 = のへで

Amenability of operator algebras on Banach spaces, I

Volker Runde

Prelude

Amenable groups

Amenable Banach algebras

C^{*}- and von Neumann algebras

Similarity problems

Definition

Let G be a locally compact group. A mean on $L^{\infty}(G)$

Amenability of operator algebras on Banach spaces, I

Volker Runde

Prelude

Amenable groups

Amenable Banach algebras

C^{*}- and von Neumann algebras

Similarity problems

Definition

Let G be a locally compact group. A mean on $L^{\infty}(G)$ is a functional $M \in L^{\infty}(G)^*$

Amenability of operator algebras on Banach spaces, I

Volker Runde

Prelude

Amenable groups

Amenable Banach algebras

C^{*}- and von Neumann algebras

Similarity problems

Definition

Let G be a locally compact group. A mean on $L^{\infty}(G)$ is a functional $M \in L^{\infty}(G)^*$ such that $\langle 1, M \rangle = ||M|| = 1$.

Amenability of operator algebras on Banach spaces, I

Volker Runde

Prelude

Amenable groups

Amenable Banach algebras

C^{*}- and von Neumann algebras

Similarity problems

Definition

Let G be a locally compact group. A mean on $L^{\infty}(G)$ is a functional $M \in L^{\infty}(G)^*$ such that $\langle 1, M \rangle = ||M|| = 1$.

▲ロト ▲帰ト ▲ヨト ▲ヨト - ヨ - の々ぐ

Definition (J. von Neumann 1929; M. M. Day, 1949)

Amenability of operator algebras on Banach spaces, I

Volker Runde

Prelude

Amenable groups

Amenable Banach algebras

C^{*}- and von Neumann algebras

Similarity problems

Definition

Let G be a locally compact group. A mean on $L^{\infty}(G)$ is a functional $M \in L^{\infty}(G)^*$ such that $\langle 1, M \rangle = ||M|| = 1$.

Definition (J. von Neumann 1929; M. M. Day, 1949)

G is amenable

Amenability of operator algebras on Banach spaces, I

Volker Runde

Prelude

Amenable groups

Amenable Banach algebras

C^{*}- and von Neumann algebras

Similarity problems

Definition

Let G be a locally compact group. A mean on $L^{\infty}(G)$ is a functional $M \in L^{\infty}(G)^*$ such that $\langle 1, M \rangle = ||M|| = 1$.

Definition (J. von Neumann 1929; M. M. Day, 1949)

G is amenable if there is a mean on $L^{\infty}(G)$

Amenability of operator algebras on Banach spaces, I

Volker Runde

Prelude

Amenable groups

Amenable Banach algebras

C^{*}- and von Neumann algebras

Similarity problems

Definition

Let G be a locally compact group. A mean on $L^{\infty}(G)$ is a functional $M \in L^{\infty}(G)^*$ such that $\langle 1, M \rangle = ||M|| = 1$.

Definition (J. von Neumann 1929; M. M. Day, 1949)

G is amenable if there is a mean on $L^{\infty}(G)$ which is left invariant,

Amenability of operator algebras on Banach spaces, I

Volker Runde

Prelude

Amenable groups

Amenable Banach algebras

C^{*}- and von Neumann algebras

Similarity problems

Definition

Let G be a locally compact group. A mean on $L^{\infty}(G)$ is a functional $M \in L^{\infty}(G)^*$ such that $\langle 1, M \rangle = ||M|| = 1$.

Definition (J. von Neumann 1929; M. M. Day, 1949)

G is amenable if there is a mean on $L^{\infty}(G)$ which is left invariant, i.e.,

$$\langle L_x \phi, M \rangle = \langle \phi, M \rangle$$
 $(x \in G, \phi \in L^{\infty}(G)),$

Amenability of operator algebras on Banach spaces, I

Volker Runde

Prelude

Amenable groups

Amenable Banach algebras

C^{*}- and von Neumann algebras

Similarity problems

Definition

Let G be a locally compact group. A mean on $L^{\infty}(G)$ is a functional $M \in L^{\infty}(G)^*$ such that $\langle 1, M \rangle = ||M|| = 1$.

Definition (J. von Neumann 1929; M. M. Day, 1949)

G is amenable if there is a mean on $L^{\infty}(G)$ which is left invariant, i.e.,

$$\langle L_x \phi, M \rangle = \langle \phi, M \rangle$$
 $(x \in G, \phi \in L^{\infty}(G)),$

where

$$(L_x\phi)(y) := \phi(xy) \qquad (y \in G).$$

Amenability of operator algebras on Banach spaces, I
Amenable groups

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Amenability of operator algebras on Banach spaces, I

Volker Runde

Prelude

Amenable groups

Amenable Banach algebras

C*- and von Neumann algebras

Similarity problems

Examples

- ◆ □ ▶ → □ ▶ → □ ▶ → □ ● ● ● ● ● ●

Amenability of operator algebras on Banach spaces, I

Volker Runde

Prelude

Amenable groups

Amenable Banach algebras

C^{*}- and von Neumann algebras

Similarity problems

Examples

1 Compact groups amenable:

▲□▶ ▲圖▶ ★ 国▶ ★ 国▶ - 国 - のへで

Amenability of operator algebras on Banach spaces, I

Volker Runde

Prelude

Amenable groups

Amenable Banach algebras

C*- and von Neumann algebras

Similarity problems

Examples

1 Compact groups amenable: M = Haar measure.

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Amenability of operator algebras on Banach spaces, I

Volker Runde

Prelude

Amenable groups

Amenable Banach algebras

C^{*}- and von Neumann algebras

Similarity problems

Examples

1 Compact groups amenable: M = Haar measure.

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

2 Abelian groups are amenable:

Amenability of operator algebras on Banach spaces, I

Volker Runde

Prelude

Amenable groups

Amenable Banach algebras

C^{*}- and von Neumann algebras

Similarity problems

Examples

1 Compact groups amenable: M = Haar measure.

Abelian groups are amenable: use Markov-Kakutani to get M.

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Amenability of operator algebras on Banach spaces, I

Volker Runde

Prelude

Amenable groups

Amenable Banach algebras

C^{*}- and von Neumann algebras

Similarity problems

Examples

- **1** Compact groups amenable: M = Haar measure.
- Abelian groups are amenable: use Markov-Kakutani to get M.

ヘロン ヘロン ヘビン ヘビン ビビー

Really nice hereditary properties!

Amenability of operator algebras on Banach spaces, I

Volker Runde

Prelude

Amenable groups

Amenable Banach algebras

C^{*}- and von Neumann algebras

Similarity problems

Examples

- **1** Compact groups amenable: M = Haar measure.
- Abelian groups are amenable: use Markov-Kakutani to get M.

ヘロン ヘロン ヘビン ヘビン ビー

Really nice hereditary properties!

1 If G is amenable

Amenability of operator algebras on Banach spaces, I

Volker Runde

Prelude

Amenable groups

Amenable Banach algebras

C^{*}- and von Neumann algebras

Similarity problems

Examples

- **1** Compact groups amenable: M = Haar measure.
- Abelian groups are amenable: use Markov-Kakutani to get M.

Really nice hereditary properties!

1 If G is amenable and H < G,

Amenability of operator algebras on Banach spaces, I

Volker Runde

Prelude

Amenable groups

Amenable Banach algebras

C^{*}- and von Neumann algebras

Similarity problems

Examples

- **1** Compact groups amenable: M = Haar measure.
- Abelian groups are amenable: use Markov-Kakutani to get M.

Really nice hereditary properties!

1 If G is amenable and H < G, then H is amenable.

Amenability of operator algebras on Banach spaces, I

Volker Runde

Prelude

Amenable groups

Amenable Banach algebras

C^{*}- and von Neumann algebras

Similarity problems

Examples

- **1** Compact groups amenable: M = Haar measure.
- Abelian groups are amenable: use Markov-Kakutani to get M.

ヘロン ヘロン ヘビン ヘビン ビー

Really nice hereditary properties!

- **1** If G is amenable and H < G, then H is amenable.
- 2 If G is is amenable

Amenability of operator algebras on Banach spaces, I

Volker Runde

Prelude

Amenable groups

Amenable Banach algebras

C^{*}- and von Neumann algebras

Similarity problems

Examples

- **1** Compact groups amenable: M = Haar measure.
- Abelian groups are amenable: use Markov-Kakutani to get M.

Really nice hereditary properties!

- **1** If G is amenable and H < G, then H is amenable.
- **2** If G is is amenable and $N \lhd G$,

Amenability of operator algebras on Banach spaces, I

Volker Runde

Prelude

Amenable groups

Amenable Banach algebras

C^{*}- and von Neumann algebras

Similarity problems

Examples

- **1** Compact groups amenable: M = Haar measure.
- Abelian groups are amenable: use Markov-Kakutani to get M.

Really nice hereditary properties!

- **1** If G is amenable and H < G, then H is amenable.
- **2** If G is is amenable and $N \lhd G$, then G/N is amenable.

Amenability of operator algebras on Banach spaces, I

Volker Runde

Prelude

Amenable groups

Amenable Banach algebras

C^{*}- and von Neumann algebras

Similarity problems

Examples

- **1** Compact groups amenable: M = Haar measure.
- Abelian groups are amenable: use Markov-Kakutani to get M.

Really nice hereditary properties!

- **1** If G is amenable and H < G, then H is amenable.
- 2 If G is is amenable and $N \lhd G$, then G/N is amenable. 3 If G

Amenability of operator algebras on Banach spaces, I

Volker Runde

Prelude

Amenable groups

Amenable Banach algebras

C^{*}- and von Neumann algebras

Similarity problems

Examples

- **1** Compact groups amenable: M = Haar measure.
- Abelian groups are amenable: use Markov-Kakutani to get M.

Really nice hereditary properties!

- **1** If G is amenable and H < G, then H is amenable.
- **2** If G is is amenable and $N \lhd G$, then G/N is amenable.

3 If G and $N \lhd G$

Amenability of operator algebras on Banach spaces, I

Volker Runde

Prelude

Amenable groups

Amenable Banach algebras

C^{*}- and von Neumann algebras

Similarity problems

Examples

- **1** Compact groups amenable: M = Haar measure.
- Abelian groups are amenable: use Markov-Kakutani to get M.

- **1** If G is amenable and H < G, then H is amenable.
- **2** If G is is amenable and $N \lhd G$, then G/N is amenable.
- 3 If G and $N \lhd G$ are such that N and G/N are amenable,

Amenability of operator algebras on Banach spaces, I

Volker Runde

Prelude

Amenable groups

Amenable Banach algebras

C^{*}- and von Neumann algebras

Similarity problems

Examples

- **1** Compact groups amenable: M = Haar measure.
- Abelian groups are amenable: use Markov-Kakutani to get M.

Really nice hereditary properties!

- **1** If G is amenable and H < G, then H is amenable.
- **2** If G is is amenable and $N \lhd G$, then G/N is amenable.
- 3 If G and $N \lhd G$ are such that N and G/N are amenable, then G is amenable.

Amenability of operator algebras on Banach spaces, I

Volker Runde

Prelude

Amenable groups

Amenable Banach algebras

C^{*}- and vor Neumann algebras

Similarity problems

Examples

- **1** Compact groups amenable: M = Haar measure.
- Abelian groups are amenable: use Markov-Kakutani to get M.

- **1** If G is amenable and H < G, then H is amenable.
- **2** If G is is amenable and $N \lhd G$, then G/N is amenable.
- 3 If G and $N \lhd G$ are such that N and G/N are amenable, then G is amenable.
- 4 If $(H_{\alpha})_{\alpha}$ is a directed union

Amenability of operator algebras on Banach spaces, I

Volker Runde

Prelude

Amenable groups

Amenable Banach algebras

C*- and vor Neumann algebras

Similarity problems

Examples

- **1** Compact groups amenable: M = Haar measure.
- Abelian groups are amenable: use Markov-Kakutani to get M.

- **1** If G is amenable and H < G, then H is amenable.
- **2** If G is is amenable and $N \lhd G$, then G/N is amenable.
- 3 If G and $N \lhd G$ are such that N and G/N are amenable, then G is amenable.
- 4 If $(H_{\alpha})_{\alpha}$ is a directed union of closed, amenable subgroups of G

Amenability of operator algebras on Banach spaces, I

Volker Runde

Prelude

Amenable groups

Amenable Banach algebras

C*- and vor Neumann algebras

Similarity problems

Examples

- **1** Compact groups amenable: M = Haar measure.
- Abelian groups are amenable: use Markov-Kakutani to get M.

- **1** If G is amenable and H < G, then H is amenable.
- **2** If G is is amenable and $N \lhd G$, then G/N is amenable.
- 3 If G and $N \lhd G$ are such that N and G/N are amenable, then G is amenable.
- 4 If $(H_{\alpha})_{\alpha}$ is a directed union of closed, amenable subgroups of G such that $G = \overline{\bigcup_{\alpha} H_{\alpha}}$,

Amenability of operator algebras on Banach spaces, I

Volker Runde

Prelude

Amenable groups

Amenable Banach algebras

C*- and vor Neumann algebras

Similarity problems

Examples

- **1** Compact groups amenable: M = Haar measure.
- Abelian groups are amenable: use Markov-Kakutani to get M.

- **1** If G is amenable and H < G, then H is amenable.
- **2** If G is is amenable and $N \lhd G$, then G/N is amenable.
- 3 If G and $N \lhd G$ are such that N and G/N are amenable, then G is amenable.
- 4 If $(H_{\alpha})_{\alpha}$ is a directed union of closed, amenable subgroups of G such that $G = \overline{\bigcup_{\alpha} H_{\alpha}}$, then G is amenable.

\ldots and a non-amenable one, I

Amenability of operator algebras on Banach spaces, I
Amenable groups

◆□ ▶ < 圖 ▶ < 圖 ▶ < 圖 ▶ < 圖 • 의 Q @</p>

Amenability of operator algebras on Banach spaces, I

Volker Runde

Prelude

Amenable groups

Amenable Banach algebras

C^{*}- and von Neumann algebras

Similarity problems

Example

・ロ> < 回> < 回> < 回> < 回> < 回

Amenability of operator algebras on Banach spaces, I

Volker Runde

Prelude

Amenable groups

Amenable Banach algebras

C^{*}- and von Neumann algebras

Similarity problems

Example

Let \mathbb{F}_2 be the free group in two generators.

▲ロト ▲帰ト ▲ヨト ▲ヨト - ヨ - の々ぐ

Amenability of operator algebras on Banach spaces, I

Volker Runde

Prelude

Amenable groups

Amenable Banach algebras

C^{*}- and von Neumann algebras

Similarity problems

Example

Let \mathbb{F}_2 be the free group in two generators. Assume that there is a left invariant mean M on $\ell^{\infty}(\mathbb{F}_2)$.

▲ロト ▲帰ト ▲ヨト ▲ヨト - ヨ - の々ぐ

Amenability of operator algebras on Banach spaces, I

Volker Runde

Prelude

Amenable groups

Amenable Banach algebras

C^{*}- and von Neumann algebras

Similarity problems

Example

Let \mathbb{F}_2 be the free group in two generators. Assume that there is a left invariant mean M on $\ell^{\infty}(\mathbb{F}_2)$. Define

$$\mu: \mathfrak{P}(\mathbb{F}_2) \to [0,1], \quad E \mapsto \langle \chi_E, M \rangle.$$

▲ロト ▲帰ト ▲ヨト ▲ヨト - ヨ - の々ぐ

Amenability of operator algebras on Banach spaces, I

Volker Runde

Prelude

Amenable groups

Amenable Banach algebras

C^{*}- and von Neumann algebras

Similarity problems

Example

Let \mathbb{F}_2 be the free group in two generators. Assume that there is a left invariant mean M on $\ell^{\infty}(\mathbb{F}_2)$. Define

$$\mu: \mathfrak{P}(\mathbb{F}_2) \to [0,1], \quad E \mapsto \langle \chi_E, M \rangle.$$

▲ロト ▲帰ト ▲ヨト ▲ヨト - ヨ - の々ぐ

Then

Amenability of operator algebras on Banach spaces, I

Volker Runde

Prelude

Amenable groups

Amenable Banach algebras

C^{*}- and von Neumann algebras

Similarity problems

Example

Let \mathbb{F}_2 be the free group in two generators. Assume that there is a left invariant mean M on $\ell^{\infty}(\mathbb{F}_2)$. Define

$$\mu: \mathfrak{P}(\mathbb{F}_2) \to [0,1], \quad E \mapsto \langle \chi_E, M \rangle.$$

▲ロト ▲帰ト ▲ヨト ▲ヨト - ヨ - の々ぐ

Then

• μ is finitely additive,

Amenability of operator algebras on Banach spaces, I

Volker Runde

Prelude

Amenable groups

Amenable Banach algebras

C^{*}- and vor Neumann algebras

Similarity problems

Example

Let \mathbb{F}_2 be the free group in two generators. Assume that there is a left invariant mean M on $\ell^{\infty}(\mathbb{F}_2)$. Define

$$\mu: \mathfrak{P}(\mathbb{F}_2) \to [0,1], \quad E \mapsto \langle \chi_E, M \rangle.$$

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Then

• μ is finitely additive,

• $\mu(\mathbb{F}_2) = 1$,

Amenability of operator algebras on Banach spaces, I

Volker Runde

Prelude

Amenable groups

Amenable Banach algebras

C^{*}- and vor Neumann algebras

Similarity problems

Example

Let \mathbb{F}_2 be the free group in two generators. Assume that there is a left invariant mean M on $\ell^{\infty}(\mathbb{F}_2)$. Define

$$\mu: \mathfrak{P}(\mathbb{F}_2) \to [0,1], \quad E \mapsto \langle \chi_E, M \rangle.$$

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Then

• μ is finitely additive,

• $\mu(\mathbb{F}_2) = 1$, and

Amenability of operator algebras on Banach spaces, I

Volker Runde

Prelude

Amenable groups

Amenable Banach algebras

C^{*}- and vor Neumann algebras

Similarity problems

Example

Let \mathbb{F}_2 be the free group in two generators. Assume that there is a left invariant mean M on $\ell^{\infty}(\mathbb{F}_2)$. Define

$$\mu: \mathfrak{P}(\mathbb{F}_2) \to [0,1], \quad E \mapsto \langle \chi_E, M \rangle.$$

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Then

• μ is finitely additive,

•
$$\mu(\mathbb{F}_2) = 1$$
, and

• $\mu(xE) = \mu(E)$ $(x \in \mathbb{F}_2, E \subset \mathbb{F}_2).$

◆□ ▶ < 圖 ▶ < 圖 ▶ < 圖 ▶ < 圖 • 의 Q @</p>

Amenability of operator algebras on Banach spaces, I

Volker Runde

Prelude

Amenable groups

Amenable Banach algebras

C^{*}- and von Neumann algebras

Similarity problems

Example (continued...)

Amenability of operator algebras on Banach spaces, I

Volker Runde

Prelude

Amenable groups

Amenable Banach algebras

C^{*}- and von Neumann algebras

Similarity problems

Example (continued...)

For
$$x \in \{a,b,a^{-1},b^{-1}\}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへ⊙

Amenability of operator algebras on Banach spaces, I

Volker Runde

Prelude

Amenable groups

Amenable Banach algebras

C^{*}- and von Neumann algebras

Similarity problems

Example (continued...)

For
$$x \in \{a,b,a^{-1},b^{-1}\}$$
 set

$$W(x) := \{ w \in \mathbb{F}_2 : w \text{ starts with } x \}.$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Amenability of operator algebras on Banach spaces, I

Volker Runde

Prelude

Amenable groups

Amenable Banach algebras

C^{*}- and von Neumann algebras

Similarity problems

Example (continued...)

For $x \in \{a, b, a^{-1}, b^{-1}\}$ set

$$W(x) := \{ w \in \mathbb{F}_2 : w \text{ starts with } x \}.$$

Let $w \in \mathbb{F}_2 \setminus W(a)$.

Amenability of operator algebras on Banach spaces, I

Volker Runde

Prelude

Amenable groups

Amenable Banach algebras

C^{*}- and von Neumann algebras

Similarity problems

Example (continued...)

For $x \in \{a, b, a^{-1}, b^{-1}\}$ set

$$W(x) := \{w \in \mathbb{F}_2 : w \text{ starts with } x\}$$

・ロット (雪) (日) (日) (日)

Let
$$w\in \mathbb{F}_2\setminus W(a)$$
. Then $a^{-1}w\in W(a^{-1})$,

Amenability of operator algebras on Banach spaces, I

Volker Runde

Prelude

Amenable groups

Amenable Banach algebras

C^{*}- and von Neumann algebras

Similarity problems

Example (continued...)

For $x \in \{a, b, a^{-1}, b^{-1}\}$ set

$$W(x) := \{ w \in \mathbb{F}_2 : w \text{ starts with } x \}.$$

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Let $w \in \mathbb{F}_2 \setminus W(a)$. Then $a^{-1}w \in W(a^{-1})$, therefore $w \in aW(a^{-1}),$

Amenability of operator algebras on Banach spaces, I

Volker Runde

Prelude

Amenable groups

Amenable Banach algebras

C^{*}- and von Neumann algebras

Similarity problems

Example (continued...)

For
$$x \in \{a,b,a^{-1},b^{-1}\}$$
 set

$$W(x) := \{ w \in \mathbb{F}_2 : w \text{ starts with } x \}.$$

Let $w \in \mathbb{F}_2 \setminus W(a)$. Then $a^{-1}w \in W(a^{-1})$, therefore $w \in aW(a^{-1}),$

and thus

$$\mathbb{F}_2 = W(a) \cup aW(a^{-1}).$$

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ○ 臣 ○ の Q @

Amenability of operator algebras on Banach spaces, I

Volker Runde

Prelude

Amenable groups

Amenable Banach algebras

C^{*}- and von Neumann algebras

Similarity problems

Example (continued...)

For $x \in \{a, b, a^{-1}, b^{-1}\}$ set

$$W(x) := \{ w \in \mathbb{F}_2 : w \text{ starts with } x \}.$$

Let $w \in \mathbb{F}_2 \setminus W(a)$. Then $a^{-1}w \in W(a^{-1})$, therefore $w \in aW(a^{-1}),$

and thus

$$\mathbb{F}_2 = W(a) \cup aW(a^{-1}).$$

Similarly,

$$\mathbb{F}_2 = W(b) \cup bW(b^{-1})$$

holds.

Amenability o operator algebras on Banach spaces, I
Prelude Amenable
groups

◆□ ▶ < 圖 ▶ < 圖 ▶ < 圖 ▶ < 圖 • 의 Q @</p>

Amenability of operator algebras on Banach spaces, I

Volker Runde

Prelude

Amenable groups

Amenable Banach algebras

C^{*}- and von Neumann algebras

Similarity problems

Example (continued even further)

うせん 聞い ふぼう ふぼう ふロッ

Amenability of operator algebras on Banach spaces, I

Volker Runde

Prelude

Amenable groups

Amenable Banach algebras

C^{*}- and von Neumann algebras

Similarity problems

Example (continued even further)

Since

$$\mathbb{F}_2 = \{\epsilon\} \stackrel{\cdot}{\cup} W(a) \stackrel{\cdot}{\cup} W(a^{-1}) \stackrel{\cdot}{\cup} W(b) \stackrel{\cdot}{\cup} W(b^{-1}),$$

Amenability of operator algebras on Banach spaces, I

Volker Runde

Prelude

Amenable groups

Amenable Banach algebras

C^{*}- and von Neumann algebras

Similarity problems

Example (continued even further)

Since

$$\mathbb{F}_2 = \{\epsilon\} \stackrel{\cdot}{\cup} W(a) \stackrel{\cdot}{\cup} W(a^{-1}) \stackrel{\cdot}{\cup} W(b) \stackrel{\cdot}{\cup} W(b^{-1}),$$

we have

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Amenability of operator algebras on Banach spaces, I

Volker Runde

Prelude

Amenable groups

Amenable Banach algebras

C^{*}- and von Neumann algebras

Similarity problems

Example (continued even further)

Since

$$\mathbb{F}_2 = \{\epsilon\} \stackrel{\cdot}{\cup} W(a) \stackrel{\cdot}{\cup} W(a^{-1}) \stackrel{\cdot}{\cup} W(b) \stackrel{\cdot}{\cup} W(b^{-1}),$$

we have

 $1 = \mu(\mathbb{F}_2)$

Amenability of operator algebras on Banach spaces, I

Volker Runde

Prelude

Amenable groups

Amenable Banach algebras

C^{*}- and von Neumann algebras

Similarity problems

Example (continued even further)

Since

$$\mathbb{F}_2 = \{\epsilon\} \stackrel{\cdot}{\cup} W(a) \stackrel{\cdot}{\cup} W(a^{-1}) \stackrel{\cdot}{\cup} W(b) \stackrel{\cdot}{\cup} W(b^{-1}),$$

we have

$$egin{aligned} &=\mu(\mathbb{F}_2)\ &\geq \mu(\mathcal{W}(a))+\mu(-\mathcal{W}(a^{-1}))+\mu(\mathcal{W}(b))+\mu(-\mathcal{W}(b^{-1})) \end{aligned}$$

Amenability of operator algebras on Banach spaces, I

Volker Runde

Prelude

Amenable groups

Amenable Banach algebras

C^{*}- and von Neumann algebras

Similarity problems

Example (continued even further)

Since

$$\mathbb{F}_2 = \{\epsilon\} \stackrel{\cdot}{\cup} W(a) \stackrel{\cdot}{\cup} W(a^{-1}) \stackrel{\cdot}{\cup} W(b) \stackrel{\cdot}{\cup} W(b^{-1}),$$

we have

$$egin{aligned} &=\mu(\mathbb{F}_2)\ &\geq \mu(\mathcal{W}(\mathsf{a}))+\mu(\mathsf{a}\mathcal{W}(\mathsf{a}^{-1}))+\mu(\mathcal{W}(b))+\mu(b\mathcal{W}(b^{-1})) \end{aligned}$$

Amenability of operator algebras on Banach spaces, I

Volker Runde

Prelude

Amenable groups

Amenable Banach algebras

C^{*}- and vor Neumann algebras

Similarity problems

Example (continued even further)

Since

$$\mathbb{F}_2 = \{\epsilon\} \stackrel{\cdot}{\cup} W(a) \stackrel{\cdot}{\cup} W(a^{-1}) \stackrel{\cdot}{\cup} W(b) \stackrel{\cdot}{\cup} W(b^{-1}),$$

we have

$$egin{aligned} &= \mu(\mathbb{F}_2) \ &\geq \mu(\mathcal{W}(a)) + \mu(a\mathcal{W}(a^{-1})) + \mu(\mathcal{W}(b)) + \mu(b\mathcal{W}(b^{-1})) \ &\geq \mu(\mathcal{W}(a) \cup a\mathcal{W}(a^{-1})) + \mu(\mathcal{W}(b) \cup b\mathcal{W}(b^{-1})) \end{aligned}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Amenability of operator algebras on Banach spaces, I

Volker Runde

Prelude

Amenable groups

Amenable Banach algebras

C^{*}- and vor Neumann algebras

Similarity problems

Example (continued even further)

Since

$$\mathbb{F}_2 = \{\epsilon\} \stackrel{\cdot}{\cup} W(a) \stackrel{\cdot}{\cup} W(a^{-1}) \stackrel{\cdot}{\cup} W(b) \stackrel{\cdot}{\cup} W(b^{-1}),$$

we have

$$egin{aligned} &= \mu(\mathbb{F}_2) \ &\geq \mu(\mathcal{W}(a)) + \mu(a\mathcal{W}(a^{-1})) + \mu(\mathcal{W}(b)) + \mu(b\mathcal{W}(b^{-1})) \ &\geq \mu(\mathcal{W}(a) \cup a\mathcal{W}(a^{-1})) + \mu(\mathcal{W}(b) \cup b\mathcal{W}(b^{-1})) \ &= \mu(\mathbb{F}_2) + \mu(\mathbb{F}_2) \end{aligned}$$

... and a non-amenable one, III

Amenability of operator algebras on Banach spaces, I

Volker Runde

Prelude

Amenable groups

Amenable Banach algebras

C^{*}- and vor Neumann algebras

Similarity problems

Example (continued even further)

Since

$$\mathbb{F}_2 = \{\epsilon\} \stackrel{\cdot}{\cup} W(a) \stackrel{\cdot}{\cup} W(a^{-1}) \stackrel{\cdot}{\cup} W(b) \stackrel{\cdot}{\cup} W(b^{-1}),$$

we have

$$= \mu(\mathbb{F}_2) \geq \mu(W(a)) + \mu(aW(a^{-1})) + \mu(W(b)) + \mu(bW(b^{-1})) \geq \mu(W(a) \cup aW(a^{-1})) + \mu(W(b) \cup bW(b^{-1})) = \mu(\mathbb{F}_2) + \mu(\mathbb{F}_2) = 2,$$

... and a non-amenable one, III

Amenability of operator algebras on Banach spaces, I

Volker Runde

Prelude

Amenable groups

Amenable Banach algebras

C*- and voi Neumann algebras

Similarity problems

Example (continued even further)

Since

$$\mathbb{F}_2 = \{\epsilon\} \stackrel{\cdot}{\cup} W(a) \stackrel{\cdot}{\cup} W(a^{-1}) \stackrel{\cdot}{\cup} W(b) \stackrel{\cdot}{\cup} W(b^{-1}),$$

we have

$$= \mu(\mathbb{F}_2) \geq \mu(W(a)) + \mu(aW(a^{-1})) + \mu(W(b)) + \mu(bW(b^{-1})) \geq \mu(W(a) \cup aW(a^{-1})) + \mu(W(b) \cup bW(b^{-1})) = \mu(\mathbb{F}_2) + \mu(\mathbb{F}_2) = 2,$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

which is nonsense.

Amenability of operator algebras on Banach spaces, l
Prelude Amenable
groups

(ロ)、(型)、(E)、(E)、 E) の(の)

Amenability of operator algebras on Banach spaces, I

Volker Runde

Prelude

Amenable groups

Amenable Banach algebras

C^{*}- and von Neumann algebras

Similarity problems

Hence, G is amenable if...

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Amenability of operator algebras on Banach spaces, I

Volker Runde

Prelude

Amenable groups

Amenable Banach algebras

C^{*}- and von Neumann algebras

Similarity problems

Hence, G is amenable if...

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

1 *G* is solvable

Amenability of operator algebras on Banach spaces, I

Volker Runde

Prelude

Amenable groups

Amenable Banach algebras

C^{*}- and von Neumann algebras

Similarity problems

Hence, G is amenable if...

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

1 *G* is solvable or

Amenability of operator algebras on Banach spaces, I

Volker Runde

Prelude

Amenable groups

Amenable Banach algebras

C^{*}- and von Neumann algebras

Similarity problems

Hence, G is amenable if...

1 *G* is solvable or

2 *G* is locally finite.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Amenability of operator algebras on Banach spaces, I

Volker Runde

Prelude

Amenable groups

Amenable Banach algebras

C*- and von Neumann algebras

Similarity problems

Hence, G is amenable if...

- **1** *G* is solvable or
- **2** *G* is locally finite.

But G is not amenable if...

Amenability of operator algebras on Banach spaces, I

Volker Runde

Prelude

Amenable groups

Amenable Banach algebras

C^{*}- and von Neumann algebras

Similarity problems

Hence, G is amenable if...

- **1** *G* is solvable or
- **2** G is locally finite.

But G is not amenable if...

G contains \mathbb{F}_2 as closed subgroup,

▲ロト ▲帰ト ▲ヨト ▲ヨト - ヨ - の々ぐ

Amenability of operator algebras on Banach spaces, I

Volker Runde

Prelude

Amenable groups

Amenable Banach algebras

C^{*}- and von Neumann algebras

Similarity problems

Hence, G is amenable if...

- **1** *G* is solvable or
- **2** G is locally finite.

But G is not amenable if...

 ${\it G}$ contains \mathbb{F}_2 as closed subgroup, e.g., if

Amenability of operator algebras on Banach spaces, I

Volker Runde

Prelude

Amenable groups

Amenable Banach algebras

C^{*}- and von Neumann algebras

Similarity problems

Hence, G is amenable if...

- **1** *G* is solvable or
- **2** G is locally finite.

But G is not amenable if...

G contains \mathbb{F}_2 as closed subgroup, e.g., if

• $G = SL(N, \mathbb{R})$

Amenability of operator algebras on Banach spaces, I

Volker Runde

Prelude

Amenable groups

Amenable Banach algebras

C^{*}- and von Neumann algebras

Similarity problems

Hence, G is amenable if...

- **1** *G* is solvable or
- **2** G is locally finite.

But G is not amenable if...

 ${\it G}$ contains \mathbb{F}_2 as closed subgroup, e.g., if

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

• $G = SL(N, \mathbb{R})$ with $N \ge 2$,

Amenability of operator algebras on Banach spaces, I

Volker Runde

Prelude

Amenable groups

Amenable Banach algebras

C^{*}- and vor Neumann algebras

Similarity problems

Hence, G is amenable if...

- **1** *G* is solvable or
- **2** *G* is locally finite.

But G is not amenable if...

G contains \mathbb{F}_2 as closed subgroup, e.g., if

- $G = SL(N, \mathbb{R})$ with $N \ge 2$,
- $G = GL(N, \mathbb{R})$ with $N \geq 2$,

Amenability of operator algebras on Banach spaces, I

Volker Runde

Prelude

Amenable groups

Amenable Banach algebras

C^{*}- and vor Neumann algebras

Similarity problems

Hence, G is amenable if...

- **1** *G* is solvable or
- **2** *G* is locally finite.

But G is not amenable if...

G contains \mathbb{F}_2 as closed subgroup, e.g., if

- $G = SL(N, \mathbb{R})$ with $N \geq 2$,
- $G = \operatorname{GL}(N, \mathbb{R})$ with $N \ge 2$, or

Amenability of operator algebras on Banach spaces, I

Volker Runde

Prelude

Amenable groups

Amenable Banach algebras

C^{*}- and vor Neumann algebras

Similarity problems

Hence, G is amenable if...

- **1** *G* is solvable or
- **2** *G* is locally finite.

But G is not amenable if...

G contains \mathbb{F}_2 as closed subgroup, e.g., if

- $G = SL(N, \mathbb{R})$ with $N \ge 2$,
- $G = GL(N, \mathbb{R})$ with $N \ge 2$, or
- $G = SO(N, \mathbb{R})$

Amenability of operator algebras on Banach spaces, I

Volker Runde

Prelude

Amenable groups

Amenable Banach algebras

C^{*}- and vor Neumann algebras

Similarity problems

Hence, G is amenable if...

- **1** *G* is solvable or
- **2** *G* is locally finite.

But G is not amenable if...

G contains \mathbb{F}_2 as closed subgroup, e.g., if

- $G = SL(N, \mathbb{R})$ with $N \ge 2$,
- $G = GL(N, \mathbb{R})$ with $N \ge 2$, or
- $G = SO(N, \mathbb{R})$ with $N \ge 3$

Amenability of operator algebras on Banach spaces, I

Volker Runde

Prelude

Amenable groups

Amenable Banach algebras

C^{*}- and vor Neumann algebras

Similarity problems

Hence, G is amenable if...

- **1** *G* is solvable or
- **2** *G* is locally finite.

But G is not amenable if...

G contains \mathbb{F}_2 as closed subgroup, e.g., if

- $G = SL(N, \mathbb{R})$ with $N \ge 2$,
- $G = GL(N, \mathbb{R})$ with $N \ge 2$, or
- G = SO(N, ℝ) with N ≥ 3 equipped with the discrete topology.

Amenability of operator algebras on Banach spaces, I
Amenable Banach algebras

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

Amenability of operator algebras on Banach spaces, I

Volker Runde

Prelude

Amenable groups

Amenable Banach algebras

C^{*}- and von Neumann algebras

Similarity problems

Definition (B. E. Johnson, 1972)

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Amenability of operator algebras on Banach spaces, I

Volker Runde

Prelude

Amenable groups

Amenable Banach algebras

C^{*}- and von Neumann algebras

Similarity problems

Definition (B. E. Johnson, 1972)

A Banach algebra \mathfrak{A} is said to be amenable

Amenability of operator algebras on Banach spaces, I

Volker Runde

Prelude

Amenable groups

Amenable Banach algebras

C^{*}- and von Neumann algebras

Similarity problems

Definition (B. E. Johnson, 1972)

A Banach algebra \mathfrak{A} is said to be amenable if it possesses an approximate diagonal,

Amenability of operator algebras on Banach spaces, I

Volker Runde

Prelude

Amenable groups

Amenable Banach algebras

C^{*}- and von Neumann algebras

Similarity problems

Definition (B. E. Johnson, 1972)

A Banach algebra \mathfrak{A} is said to be amenable if it possesses an approximate diagonal, i.e., a bounded net $(\mathbf{d}_{\alpha})_{\alpha}$ in the projective tensor product $\mathfrak{A} \hat{\otimes} \mathfrak{A}$

Amenability of operator algebras on Banach spaces, I

Volker Runde

Prelude

Amenable groups

Amenable Banach algebras

C^{*}- and von Neumann algebras

Similarity problems

Definition (B. E. Johnson, 1972)

A Banach algebra \mathfrak{A} is said to be amenable if it possesses an approximate diagonal, i.e., a bounded net $(\mathbf{d}_{\alpha})_{\alpha}$ in the projective tensor product $\mathfrak{A} \hat{\otimes} \mathfrak{A}$ such that

$$oldsymbol{a}\cdot oldsymbol{d}_lpha-oldsymbol{d}_lpha\cdot oldsymbol{a}
ightarrow 0 \qquad (oldsymbol{a}\in\mathfrak{A})$$

Amenability of operator algebras on Banach spaces, I

Volker Runde

Prelude

Amenable groups

Amenable Banach algebras

C^{*}- and von Neumann algebras

Similarity problems

Definition (B. E. Johnson, 1972)

A Banach algebra \mathfrak{A} is said to be amenable if it possesses an approximate diagonal, i.e., a bounded net $(\mathbf{d}_{\alpha})_{\alpha}$ in the projective tensor product $\mathfrak{A} \hat{\otimes} \mathfrak{A}$ such that

$$oldsymbol{a}\cdot oldsymbol{d}_lpha-oldsymbol{d}_lpha\cdot oldsymbol{a}
ightarrow 0 \qquad (oldsymbol{a}\in\mathfrak{A})$$

and

$$\mathsf{a} \Delta \mathsf{d}_lpha o \mathsf{a} \qquad (\mathsf{a} \in \mathfrak{A})$$

Amenability of operator algebras on Banach spaces, I

Volker Runde

Prelude

Amenable groups

Amenable Banach algebras

C^{*}- and vor Neumann algebras

Similarity problems

Definition (B. E. Johnson, 1972)

A Banach algebra \mathfrak{A} is said to be amenable if it possesses an approximate diagonal, i.e., a bounded net $(\mathbf{d}_{\alpha})_{\alpha}$ in the projective tensor product $\mathfrak{A} \hat{\otimes} \mathfrak{A}$ such that

$$oldsymbol{a}\cdot oldsymbol{d}_lpha-oldsymbol{d}_lpha\cdot oldsymbol{a}
ightarrow 0 \qquad (oldsymbol{a}\in\mathfrak{A})$$

and

$$a\Delta {f d}_lpha o a \qquad (a\in {\mathfrak A})$$

with $\Delta : \mathfrak{A} \hat{\otimes} \mathfrak{A} \to \mathfrak{A}$ denoting multiplication.

Amenability of operator algebras on Banach spaces, I
Amenable Banach algebras

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Amenability of operator algebras on Banach spaces, I Theorem (B. E. Johnson, 1972) Amenable Banach algebras

Amenability of operator algebras on Banach spaces, I

Volker Runde

Prelude

Amenable groups

Amenable Banach algebras

C^{*}- and von Neumann algebras

Similarity problems

Theorem (B. E. Johnson, 1972)

The following are equivalent for a locally compact group G:

Amenability of operator algebras on Banach spaces, I

Volker Runde

Prelude

Amenable groups

Amenable Banach algebras

C^{*}- and von Neumann algebras

Similarity problems

Theorem (B. E. Johnson, 1972)

The following are equivalent for a locally compact group G:

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

1 *G* is amenable;

Amenability of operator algebras on Banach spaces, I

Volker Runde

Prelude

Amenable groups

Amenable Banach algebras

C^{*}- and von Neumann algebras

Similarity problems

Theorem (B. E. Johnson, 1972)

The following are equivalent for a locally compact group G:

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

1 *G* is amenable;

2 $L^1(G)$ is amenable.

Amenability of operator algebras on Banach spaces, I

Volker Runde

Prelude

Amenable groups

Amenable Banach algebras

C^{*}- and vor Neumann algebras

Similarity problems

Theorem (B. E. Johnson, 1972)

The following are equivalent for a locally compact group G:

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

1 *G* is amenable;

2 $L^1(G)$ is amenable.

Grand theme

Amenability of operator algebras on Banach spaces, I

Volker Runde

Prelude

Amenable groups

Amenable Banach algebras

C^{*}- and von Neumann algebras

Similarity problems

Theorem (B. E. Johnson, 1972)

The following are equivalent for a locally compact group G:

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

1 *G* is amenable;

2 $L^1(G)$ is amenable.

Grand theme

Let \mathcal{C} be a class of Banach algebras.

Amenability of operator algebras on Banach spaces, I

Volker Runde

Prelude

Amenable groups

Amenable Banach algebras

C^{*}- and vor Neumann algebras

Similarity problems

Theorem (B. E. Johnson, 1972)

The following are equivalent for a locally compact group G:

1 *G* is amenable;

2 $L^1(G)$ is amenable.

Grand theme

Let ${\mathcal C}$ be a class of Banach algebras. Characterize the amenable members of ${\mathcal C}!$

More from abstract harmonic analysis

Amenability of operator algebras on Banach spaces, I
Amenable Banach algebras

More from abstract harmonic analysis

Amenability of operator algebras on Banach spaces, I

Volker Runde

Prelude

Amenable groups

Amenable Banach algebras

C^{*}- and von Neumann algebras

Similarity problems

Theorem (H. G. Dales, F. Ghahramani, & A. Ya. Helemskiĭ, 2002)

More from abstract harmonic analysis

Amenability of operator algebras on Banach spaces, I

Volker Runde

Prelude

Amenable groups

Amenable Banach algebras

C^{*}- and von Neumann algebras

Similarity problems

Theorem (H. G. Dales, F. Ghahramani, & A. Ya. Helemskiĭ, 2002)

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

The following are equivalent:

Amenability of operator algebras on Banach spaces, I

Volker Runde

Prelude

Amenable groups

Amenable Banach algebras

C^{*}- and von Neumann algebras

Similarity problems Theorem (H. G. Dales, F. Ghahramani, & A. Ya. Helemskiĭ, 2002)

▲ロト ▲帰ト ▲ヨト ▲ヨト - ヨ - の々ぐ

The following are equivalent:

1 M(G) is amenable;

Amenability of operator algebras on Banach spaces, I

Volker Runde

Prelude

Amenable groups

Amenable Banach algebras

C^{*}- and von Neumann algebras

Similarity problems Theorem (H. G. Dales, F. Ghahramani, & A. Ya. Helemskiĭ, 2002)

▲ロト ▲帰ト ▲ヨト ▲ヨト - ヨ - の々ぐ

The following are equivalent:

1 M(G) is amenable;

2 *G* is amenable

Amenability of operator algebras on Banach spaces, I

Volker Runde

Prelude

Amenable groups

Amenable Banach algebras

C^{*}- and von Neumann algebras

Similarity problems Theorem (H. G. Dales, F. Ghahramani, & A. Ya. Helemskiĭ, 2002)

▲ロト ▲帰ト ▲ヨト ▲ヨト - ヨ - の々ぐ

The following are equivalent:

1 M(G) is amenable;

2 *G* is amenable and discrete.

Amenability of operator algebras on Banach spaces, I

Volker Runde

Prelude

Amenable groups

Amenable Banach algebras

C^{*}- and von Neumann algebras

Similarity problems Theorem (H. G. Dales, F. Ghahramani, & A. Ya. Helemskiĭ, 2002)

The following are equivalent:

1 M(G) is amenable;

2 *G* is amenable and discrete.

Theorem (B. E. Forrest & VR, 2005)

Amenability of operator algebras on Banach spaces, I

Volker Runde

Prelude

Amenable groups

Amenable Banach algebras

C^{*}- and von Neumann algebras

Similarity problems Theorem (H. G. Dales, F. Ghahramani, & A. Ya. Helemskiĭ, 2002)

The following are equivalent:

1 M(G) is amenable;

2 *G* is amenable and discrete.

Theorem (B. E. Forrest & VR, 2005)

The following are equivalent:

Amenability of operator algebras on Banach spaces, I

Volker Runde

Prelude

Amenable groups

Amenable Banach algebras

C^{*}- and von Neumann algebras

Similarity problems Theorem (H. G. Dales, F. Ghahramani, & A. Ya. Helemskiĭ, 2002)

The following are equivalent:

1 M(G) is amenable;

2 *G* is amenable and discrete.

Theorem (B. E. Forrest & VR, 2005)

The following are equivalent: **1** A(G) is amenable;

Amenability of operator algebras on Banach spaces, I

Volker Runde

Prelude

Amenable groups

Amenable Banach algebras

C^{*}- and von Neumann algebras

Similarity problems Theorem (H. G. Dales, F. Ghahramani, & A. Ya. Helemskiĭ, 2002)

The following are equivalent:

1 M(G) is amenable;

2 *G* is amenable and discrete.

Theorem (B. E. Forrest & VR, 2005)

The following are equivalent:

1 A(G) is amenable;

2 *G* has an abelian subgroup

Amenability of operator algebras on Banach spaces, I

Volker Runde

Prelude

Amenable groups

Amenable Banach algebras

C^{*}- and von Neumann algebras

Similarity problems Theorem (H. G. Dales, F. Ghahramani, & A. Ya. Helemskiĭ, 2002)

The following are equivalent:

1 M(G) is amenable;

2 *G* is amenable and discrete.

Theorem (B. E. Forrest & VR, 2005)

The following are equivalent:

1 A(G) is amenable;

2 *G* has an abelian subgroup of finite index.

<□ > < @ > < E > < E > E のQ @

Amenability of operator algebras on Banach spaces, I

Volker Runde

Prelude

Amenable groups

Amenable Banach algebras

C^{*}- and von Neumann algebras

Similarity problems

Hereditary properties

Amenability of operator algebras on Banach spaces, I

Volker Runde

Prelude

Amenable groups

Amenable Banach algebras

C^{*}- and von Neumann algebras

Similarity problems

Hereditary properties

1 If \mathfrak{A} is amenable

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Hereditary properties

Amenability of operator algebras on Banach spaces, I

Volker Runde

Prelude

Amenable groups

Amenable Banach algebras

C^{*}- and von Neumann algebras

Similarity problems **1** If \mathfrak{A} is amenable and $\theta : \mathfrak{A} \to \mathfrak{B}$ is a bounded homomorphism with dense range,

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへ⊙

Hereditary properties

Amenability of operator algebras on Banach spaces, I

Volker Runde

Prelude

Amenable groups

Amenable Banach algebras

C^{*}- and von Neumann algebras

Similarity problems **1** If \mathfrak{A} is amenable and $\theta : \mathfrak{A} \to \mathfrak{B}$ is a bounded homomorphism with dense range, then \mathfrak{B} is amenable.

Hereditary properties

Amenability of operator algebras on Banach spaces, I

Volker Runde

Prelude

Amenable groups

Amenable Banach algebras

C^{*}- and von Neumann algebras

Similarity problems If 𝔅 is amenable and θ : 𝔅 → 𝔅 is a bounded homomorphism with dense range, then 𝔅 is amenable. In particular,

Hereditary properties

Amenability of operator algebras on Banach spaces, I

Volker Runde

Prelude

Amenable groups

Amenable Banach algebras

C^{*}- and von Neumann algebras

Similarity problems If 𝔅 is amenable and θ : 𝔅 → 𝔅 is a bounded homomorphism with dense range, then 𝔅 is amenable. In particular, if I ⊲ 𝔅,

Hereditary properties

Amenability of operator algebras on Banach spaces, I

Volker Runde

Prelude

Amenable groups

Amenable Banach algebras

C^{*}- and von Neumann algebras

Similarity problems If 𝔄 is amenable and θ : 𝔄 → 𝔅 is a bounded homomorphism with dense range, then 𝔅 is amenable. In particular, if I ⊲ 𝔅, then 𝔅/I is amenable.

Hereditary properties

Amenability of operator algebras on Banach spaces, I

Volker Runde

Prelude

Amenable groups

Amenable Banach algebras

C^{*}- and von Neumann algebras

Similarity problems If 𝔅 is amenable and θ : 𝔅 → 𝔅 is a bounded homomorphism with dense range, then 𝔅 is amenable. In particular, if I ⊲ 𝔅, then 𝔅/I is amenable.

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

2 If $I \lhd \mathfrak{A}$ is such that

Hereditary properties

Amenability of operator algebras on Banach spaces, I

Volker Runde

Prelude

Amenable groups

Amenable Banach algebras

C^{*}- and von Neumann algebras

Similarity problems If 𝔅 is amenable and θ : 𝔅 → 𝔅 is a bounded homomorphism with dense range, then 𝔅 is amenable. In particular, if I ⊲ 𝔅, then 𝔅/I is amenable.

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

2 If $I \lhd \mathfrak{A}$ is such that both I

Hereditary properties

Amenability of operator algebras on Banach spaces, I

Volker Runde

Prelude

Amenable groups

Amenable Banach algebras

C^{*}- and von Neumann algebras

Similarity problems If 𝔅 is amenable and θ : 𝔅 → 𝔅 is a bounded homomorphism with dense range, then 𝔅 is amenable. In particular, if I ⊲ 𝔅, then 𝔅/I is amenable.

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

2 If $I \lhd \mathfrak{A}$ is such that both I and \mathfrak{A}/I

Hereditary properties

Amenability of operator algebras on Banach spaces, I

Volker Runde

Prelude

Amenable groups

Amenable Banach algebras

C^{*}- and von Neumann algebras

Similarity problems If 𝔅 is amenable and θ : 𝔅 → 𝔅 is a bounded homomorphism with dense range, then 𝔅 is amenable. In particular, if I ⊲ 𝔅, then 𝔅/I is amenable.

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

2 If $I \lhd \mathfrak{A}$ is such that both I and \mathfrak{A}/I are amenable,

Hereditary properties

Amenability of operator algebras on Banach spaces, I

Volker Runde

Prelude

Amenable groups

Amenable Banach algebras

C^{*}- and von Neumann algebras

Similarity problems

If 𝔅 is amenable and θ : 𝔅 → 𝔅 is a bounded homomorphism with dense range, then 𝔅 is amenable. In particular, if I ⊲ 𝔅, then 𝔅/I is amenable.

If I ⊲ A is such that both I and A/I are amenable, then A is amenable.

Hereditary properties

Amenability of operator algebras on Banach spaces, I

Volker Runde

Prelude

Amenable groups

Amenable Banach algebras

C^{*}- and von Neumann algebras

Similarity problems

1 If \mathfrak{A} is amenable and $\theta : \mathfrak{A} \to \mathfrak{B}$ is a bounded homomorphism with dense range, then \mathfrak{B} is amenable. In particular, if $I \triangleleft \mathfrak{A}$, then \mathfrak{A}/I is amenable.

If I ⊲ A is such that both I and A/I are amenable, then A is amenable.

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

3 If \mathfrak{A} is amenable

Hereditary properties

Amenability of operator algebras on Banach spaces, I

Volker Runde

Prelude

Amenable groups

Amenable Banach algebras

C^{*}- and von Neumann algebras

Similarity problems

1 If \mathfrak{A} is amenable and $\theta : \mathfrak{A} \to \mathfrak{B}$ is a bounded homomorphism with dense range, then \mathfrak{B} is amenable. In particular, if $I \triangleleft \mathfrak{A}$, then \mathfrak{A}/I is amenable.

If I ⊲ A is such that both I and A/I are amenable, then A is amenable.

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

3 If \mathfrak{A} is amenable and $I \lhd \mathfrak{A}$,

Hereditary properties

Amenability of operator algebras on Banach spaces, I

Volker Runde

Prelude

Amenable groups

Amenable Banach algebras

C^{*}- and vor Neumann algebras

Similarity problems **1** If \mathfrak{A} is amenable and $\theta : \mathfrak{A} \to \mathfrak{B}$ is a bounded homomorphism with dense range, then \mathfrak{B} is amenable. In particular, if $I \triangleleft \mathfrak{A}$, then \mathfrak{A}/I is amenable.

2 If I ⊲ A is such that both I and A/I are amenable, then A is amenable.

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

3 If \mathfrak{A} is amenable and $I \lhd \mathfrak{A}$, then the following are equivalent:

Hereditary properties

Amenability of operator algebras on Banach spaces, I

Volker Runde

Prelude

Amenable groups

Amenable Banach algebras

C^{*}- and vor Neumann algebras

Similarity problems

- **1** If \mathfrak{A} is amenable and $\theta : \mathfrak{A} \to \mathfrak{B}$ is a bounded homomorphism with dense range, then \mathfrak{B} is amenable. In particular, if $I \triangleleft \mathfrak{A}$, then \mathfrak{A}/I is amenable.
- If I ⊲ A is such that both I and A/I are amenable, then A is amenable.

- 3 If \mathfrak{A} is amenable and $I \lhd \mathfrak{A}$, then the following are equivalent:
 - 1 *I* is amenable;

Hereditary properties

Amenability of operator algebras on Banach spaces, I

Volker Runde

Prelude

Amenable groups

Amenable Banach algebras

C^{*}- and vor Neumann algebras

Similarity problems

- **1** If \mathfrak{A} is amenable and $\theta : \mathfrak{A} \to \mathfrak{B}$ is a bounded homomorphism with dense range, then \mathfrak{B} is amenable. In particular, if $I \triangleleft \mathfrak{A}$, then \mathfrak{A}/I is amenable.
- 2 If I ⊲ A is such that both I and A/I are amenable, then A is amenable.

- 3 If \mathfrak{A} is amenable and $I \lhd \mathfrak{A}$, then the following are equivalent:
 - 1 *I* is amenable;
 - 2 / has a bounded approximate identity;

Hereditary properties

Amenability of operator algebras on Banach spaces, I

Volker Runde

Prelude

Amenable groups

Amenable Banach algebras

C^{*}- and vor Neumann algebras

Similarity problems

- **1** If \mathfrak{A} is amenable and $\theta : \mathfrak{A} \to \mathfrak{B}$ is a bounded homomorphism with dense range, then \mathfrak{B} is amenable. In particular, if $I \triangleleft \mathfrak{A}$, then \mathfrak{A}/I is amenable.
- 2 If I ⊲ A is such that both I and A/I are amenable, then A is amenable.

- 3 If \mathfrak{A} is amenable and $I \lhd \mathfrak{A}$, then the following are equivalent:
 - 1 *I* is amenable;
 - 2 / has a bounded approximate identity;
 - 3 *I* is weakly complemented in \mathfrak{A} ,

Hereditary properties

Amenability of operator algebras on Banach spaces, I

Volker Runde

Prelude

Amenable groups

Amenable Banach algebras

C^{*}- and vor Neumann algebras

Similarity problems

- **1** If \mathfrak{A} is amenable and $\theta : \mathfrak{A} \to \mathfrak{B}$ is a bounded homomorphism with dense range, then \mathfrak{B} is amenable. In particular, if $I \triangleleft \mathfrak{A}$, then \mathfrak{A}/I is amenable.
- 2 If I ⊲ A is such that both I and A/I are amenable, then A is amenable.
- 3 If \mathfrak{A} is amenable and $I \lhd \mathfrak{A}$, then the following are equivalent:
 - 1 *I* is amenable;
 - 2 / has a bounded approximate identity;
 - J is weakly complemented in 𝔄, i.e., I[⊥] is complemented in 𝔄*.

Amenability of operator algebras on Banach spaces, I
Amenable Banach algebras

(ロ)、(型)、(E)、(E)、 E) の(の)

Amenability of operator algebras on Banach spaces, I
Amenable Banach algebras

(ロ)、(型)、(E)、(E)、 E) の(の)

Amenability of operator algebras on Banach spaces, I

Volker Runde

Prelude

Amenable groups

Amenable Banach algebras

C^{*}- and von Neumann algebras

Similarity problems

The "meaning" of amenability

Amenability of operator algebras on Banach spaces, I

Volker Runde

Prelude

Amenable groups

Amenable Banach algebras

C^{*}- and von Neumann algebras

Similarity problems

The "meaning" of amenability

What does it mean for a member of a class ${\mathcal C}$ of Banach algebras to be amenable

Amenability of operator algebras on Banach spaces, I

Volker Runde

Prelude

Amenable groups

Amenable Banach algebras

C^{*}- and vor Neumann algebras

Similarity problems

The "meaning" of amenability

What does it mean for a member of a class C of Banach algebras to be amenable for the following classes C?

Amenability of operator algebras on Banach spaces, I

Volker Runde

Prelude

Amenable groups

Amenable Banach algebras

C^{*}- and von Neumann algebras

Similarity problems

The "meaning" of amenability

What does it mean for a member of a class C of Banach algebras to be amenable for the following classes C?

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 = の�@

all C*-algebras;

Amenability of operator algebras on Banach spaces, I

Volker Runde

Prelude

Amenable groups

Amenable Banach algebras

C^{*}- and von Neumann algebras

Similarity problems

The "meaning" of amenability

What does it mean for a member of a class C of Banach algebras to be amenable for the following classes C?

1 all C^* -algebras;

2 all von Neumann algebras;

Amenability of operator algebras on Banach spaces, I

Volker Runde

Prelude

Amenable groups

Amenable Banach algebras

C^{*}- and von Neumann algebras

Similarity problems

The "meaning" of amenability

What does it mean for a member of a class C of Banach algebras to be amenable for the following classes C?

- **1** all C^* -algebras;
- 2 all von Neumann algebras;
- 3 all norm closed,

Amenability of operator algebras on Banach spaces, I

Volker Runde

Prelude

Amenable groups

Amenable Banach algebras

C^{*}- and von Neumann algebras

Similarity problems

The "meaning" of amenability

What does it mean for a member of a class C of Banach algebras to be amenable for the following classes C?

- **1** all C^* -algebras;
- 2 all von Neumann algebras;
- 3 all norm closed, but not necessarily self-adjoint

Amenability of operator algebras on Banach spaces, I

Volker Runde

Prelude

Amenable groups

Amenable Banach algebras

C^{*}- and von Neumann algebras

Similarity problems

The "meaning" of amenability

What does it mean for a member of a class C of Banach algebras to be amenable for the following classes C?

- **1** all C^* -algebras;
- 2 all von Neumann algebras;
- all norm closed, but not necessarily self-adjoint subalgebras of B(\$\vec{\mathcal{B}}\$);

Amenability of operator algebras on Banach spaces, I

Volker Runde

Prelude

Amenable groups

Amenable Banach algebras

C^{*}- and vor Neumann algebras

Similarity problems

The "meaning" of amenability

What does it mean for a member of a class C of Banach algebras to be amenable for the following classes C?

- **1** all C^* -algebras;
- 2 all von Neumann algebras;
- all norm closed, but not necessarily self-adjoint subalgebras of B(\$\vec{\mathcal{B}}\$);

4 all algebras $\mathcal{K}(E)$;

Amenability of operator algebras on Banach spaces, I

Volker Runde

Prelude

Amenable groups

Amenable Banach algebras

C^{*}- and vor Neumann algebras

Similarity problems

The "meaning" of amenability

What does it mean for a member of a class C of Banach algebras to be amenable for the following classes C?

- **1** all C^* -algebras;
- 2 all von Neumann algebras;
- all norm closed, but not necessarily self-adjoint subalgebras of B(\$\vec{\mathcal{B}}\$);

- 4 all algebras $\mathcal{K}(E)$;
- **5** all algebras $\mathcal{B}(E)$.

Amenability of operator algebras on Banach spaces, I

Volker Runde

Prelude

Amenable groups

Amenable Banach algebras

C^{*}- and vor Neumann algebras

Similarity problems

The "meaning" of amenability

What does it mean for a member of a class C of Banach algebras to be amenable for the following classes C?

- **1** all C^* -algebras;
- 2 all von Neumann algebras;
- all norm closed, but not necessarily self-adjoint subalgebras of B(\$\vec{\mathcal{B}}\$);

- 4 all algebras $\mathcal{K}(E)$;
- **5** all algebras $\mathcal{B}(E)$.

Remember...

Amenability of operator algebras on Banach spaces, I

Volker Runde

Prelude

Amenable groups

Amenable Banach algebras

C^{*}- and vor Neumann algebras

Similarity problems

The "meaning" of amenability

What does it mean for a member of a class C of Banach algebras to be amenable for the following classes C?

- **1** all C^* -algebras;
- 2 all von Neumann algebras;
- all norm closed, but not necessarily self-adjoint subalgebras of B(\$\vec{\mathcal{B}}\$);
- 4 all algebras $\mathcal{K}(E)$;
- **5** all algebras $\mathcal{B}(E)$.

Remember...

$\mathsf{AMENABLE}\approx\mathsf{SMALL}$

Amenability of operator algebras on Banach spaces, I
C*- and von Neumann algebras

Amenability of operator algebras on Banach spaces, I

Volker Runde

Prelude

Amenable groups

Amenable Banach algebras

C*- and von Neumann algebras

Similarity problems

If \mathfrak{A} and \mathfrak{B} are C^* -algebras, then so are $M_n(\mathfrak{A})$ and $M_n(\mathfrak{B})$ for all $n \in \mathbb{N}$.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─ のへで

Amenability of operator algebras on Banach spaces, I

Volker Runde

Prelude

Amenable groups

Amenable Banach algebras

C*- and von Neumann algebras

Similarity problems

If \mathfrak{A} and \mathfrak{B} are C^* -algebras, then so are $M_n(\mathfrak{A})$ and $M_n(\mathfrak{B})$ for all $n \in \mathbb{N}$. Whenever $T : \mathfrak{A} \to \mathfrak{B}$ is linear,

▲ロト ▲冊 ▶ ▲ ヨ ▶ ▲ ヨ ▶ ● の Q @

Amenability of operator algebras on Banach spaces, I

Volker Runde

Prelude

Amenable groups

Amenable Banach algebras

C*- and von Neumann algebras

Similarity problems If \mathfrak{A} and \mathfrak{B} are C^* -algebras, then so are $M_n(\mathfrak{A})$ and $M_n(\mathfrak{B})$ for all $n \in \mathbb{N}$. Whenever $T : \mathfrak{A} \to \mathfrak{B}$ is linear, we write $T^{(n)} : M_n(\mathfrak{A}) \to M_n(\mathfrak{B})$ for its amplification,

Amenability of operator algebras on Banach spaces, I

Volker Runde

Prelude

Amenable groups

Amenable Banach algebras

C^{*}- and von Neumann algebras

Similarity problems

If \mathfrak{A} and \mathfrak{B} are C^* -algebras, then so are $M_n(\mathfrak{A})$ and $M_n(\mathfrak{B})$ for all $n \in \mathbb{N}$. Whenever $T : \mathfrak{A} \to \mathfrak{B}$ is linear, we write $T^{(n)} : M_n(\mathfrak{A}) \to M_n(\mathfrak{B})$ for its amplification, i.e.,

$$T^{(n)}[a_{j,k}] := [Ta_{j,k}] \qquad ([a_{j,k}] \in M_n(\mathfrak{A})).$$

Amenability of operator algebras on Banach spaces, I

Volker Runde

Prelude

Amenable groups

Amenable Banach algebras

C*- and von Neumann algebras

Similarity problems If \mathfrak{A} and \mathfrak{B} are C^* -algebras, then so are $M_n(\mathfrak{A})$ and $M_n(\mathfrak{B})$ for all $n \in \mathbb{N}$. Whenever $T : \mathfrak{A} \to \mathfrak{B}$ is linear, we write $T^{(n)} : M_n(\mathfrak{A}) \to M_n(\mathfrak{B})$ for its amplification, i.e.,

$$T^{(n)}[a_{j,k}] := [Ta_{j,k}] \qquad ([a_{j,k}] \in M_n(\mathfrak{A})).$$

▲ロト ▲帰ト ▲ヨト ▲ヨト - ヨ - の々ぐ

Definition

Amenability of operator algebras on Banach spaces, I

Volker Runde

Prelude

Amenable groups

Amenable Banach algebras

C*- and von Neumann algebras

Similarity problems

If \mathfrak{A} and \mathfrak{B} are C^* -algebras, then so are $M_n(\mathfrak{A})$ and $M_n(\mathfrak{B})$ for all $n \in \mathbb{N}$. Whenever $T : \mathfrak{A} \to \mathfrak{B}$ is linear, we write $T^{(n)} : M_n(\mathfrak{A}) \to M_n(\mathfrak{B})$ for its amplification, i.e.,

$$T^{(n)}[a_{j,k}] := [Ta_{j,k}] \qquad ([a_{j,k}] \in M_n(\mathfrak{A})).$$

▲ロト ▲帰ト ▲ヨト ▲ヨト - ヨ - の々ぐ

Definition

 $T: \mathfrak{A} \to \mathfrak{B}$ is called completely positive

Amenability of operator algebras on Banach spaces, I

Volker Runde

Prelude

Amenable groups

Amenable Banach algebras

C*- and von Neumann algebras

Similarity problems If \mathfrak{A} and \mathfrak{B} are C^* -algebras, then so are $M_n(\mathfrak{A})$ and $M_n(\mathfrak{B})$ for all $n \in \mathbb{N}$. Whenever $T : \mathfrak{A} \to \mathfrak{B}$ is linear, we write $T^{(n)} : M_n(\mathfrak{A}) \to M_n(\mathfrak{B})$ for its amplification, i.e.,

$$T^{(n)}[a_{j,k}] := [Ta_{j,k}] \qquad ([a_{j,k}] \in M_n(\mathfrak{A})).$$

▲ロト ▲帰ト ▲ヨト ▲ヨト - ヨ - の々ぐ

Definition

 $T : \mathfrak{A} \to \mathfrak{B}$ is called **completely positive** if $T^{(n)} : M_n(\mathfrak{A}) \to M_n(\mathfrak{B})$ is positive

Amenability of operator algebras on Banach spaces, I

Volker Runde

Prelude

Amenable groups

Amenable Banach algebras

C*- and von Neumann algebras

Similarity problems If \mathfrak{A} and \mathfrak{B} are C^* -algebras, then so are $M_n(\mathfrak{A})$ and $M_n(\mathfrak{B})$ for all $n \in \mathbb{N}$. Whenever $T : \mathfrak{A} \to \mathfrak{B}$ is linear, we write $T^{(n)} : M_n(\mathfrak{A}) \to M_n(\mathfrak{B})$ for its amplification, i.e.,

$$T^{(n)}[a_{j,k}] := [Ta_{j,k}] \qquad ([a_{j,k}] \in M_n(\mathfrak{A})).$$

▲ロト ▲帰ト ▲ヨト ▲ヨト - ヨ - の々ぐ

Definition

 $T : \mathfrak{A} \to \mathfrak{B}$ is called completely positive if $T^{(n)} : M_n(\mathfrak{A}) \to M_n(\mathfrak{B})$ is positive for each $n \in \mathbb{N}$.

Amenability of operator algebras on Banach spaces, I

Volker Runde

Prelude

Amenable groups

Amenable Banach algebras

C*- and von Neumann algebras

Similarity problems If \mathfrak{A} and \mathfrak{B} are C^* -algebras, then so are $M_n(\mathfrak{A})$ and $M_n(\mathfrak{B})$ for all $n \in \mathbb{N}$. Whenever $T : \mathfrak{A} \to \mathfrak{B}$ is linear, we write $T^{(n)} : M_n(\mathfrak{A}) \to M_n(\mathfrak{B})$ for its amplification, i.e.,

$$T^{(n)}[a_{j,k}] := [Ta_{j,k}] \qquad ([a_{j,k}] \in M_n(\mathfrak{A})).$$

Definition

 $T : \mathfrak{A} \to \mathfrak{B}$ is called completely positive if $T^{(n)} : M_n(\mathfrak{A}) \to M_n(\mathfrak{B})$ is positive for each $n \in \mathbb{N}$.

Example

Amenability of operator algebras on Banach spaces, I

Volker Runde

Prelude

Amenable groups

Amenable Banach algebras

C*- and von Neumann algebras

Similarity problems

If \mathfrak{A} and \mathfrak{B} are C^* -algebras, then so are $M_n(\mathfrak{A})$ and $M_n(\mathfrak{B})$ for all $n \in \mathbb{N}$. Whenever $T : \mathfrak{A} \to \mathfrak{B}$ is linear, we write $T^{(n)} : M_n(\mathfrak{A}) \to M_n(\mathfrak{B})$ for its amplification, i.e.,

$$T^{(n)}[a_{j,k}] := [Ta_{j,k}] \qquad ([a_{j,k}] \in M_n(\mathfrak{A})).$$

Definition

 $T : \mathfrak{A} \to \mathfrak{B}$ is called completely positive if $T^{(n)} : M_n(\mathfrak{A}) \to M_n(\mathfrak{B})$ is positive for each $n \in \mathbb{N}$.

Example

$$M_2 \rightarrow M_2, \quad a \mapsto a^t$$

Amenability of operator algebras on Banach spaces, I

Volker Runde

Prelude

Amenable groups

Amenable Banach algebras

C*- and von Neumann algebras

Similarity problems

If \mathfrak{A} and \mathfrak{B} are C^* -algebras, then so are $M_n(\mathfrak{A})$ and $M_n(\mathfrak{B})$ for all $n \in \mathbb{N}$. Whenever $T : \mathfrak{A} \to \mathfrak{B}$ is linear, we write $T^{(n)} : M_n(\mathfrak{A}) \to M_n(\mathfrak{B})$ for its amplification, i.e.,

$$T^{(n)}[a_{j,k}] := [Ta_{j,k}] \qquad ([a_{j,k}] \in M_n(\mathfrak{A})).$$

Definition

 $T : \mathfrak{A} \to \mathfrak{B}$ is called completely positive if $T^{(n)} : M_n(\mathfrak{A}) \to M_n(\mathfrak{B})$ is positive for each $n \in \mathbb{N}$.

Example

$$M_2 \rightarrow M_2, \quad a \mapsto a^t$$

is positive,

Amenability of operator algebras on Banach spaces, I

Volker Runde

Prelude

Amenable groups

Amenable Banach algebras

C*- and von Neumann algebras

Similarity problems

If \mathfrak{A} and \mathfrak{B} are C^* -algebras, then so are $M_n(\mathfrak{A})$ and $M_n(\mathfrak{B})$ for all $n \in \mathbb{N}$. Whenever $T : \mathfrak{A} \to \mathfrak{B}$ is linear, we write $T^{(n)} : M_n(\mathfrak{A}) \to M_n(\mathfrak{B})$ for its amplification, i.e.,

$$T^{(n)}[a_{j,k}] := [Ta_{j,k}] \qquad ([a_{j,k}] \in M_n(\mathfrak{A})).$$

Definition

 $T : \mathfrak{A} \to \mathfrak{B}$ is called completely positive if $T^{(n)} : M_n(\mathfrak{A}) \to M_n(\mathfrak{B})$ is positive for each $n \in \mathbb{N}$.

Example

$$M_2
ightarrow M_2, \quad a \mapsto a^t$$

is positive, but not completely positive.

Amenability of operator algebras on Banach spaces, I
C*- and von Neumann algebras

Amenability of operator algebras on Banach spaces, I

Volker Runde

Prelude

Amenable groups

Amenable Banach algebras

C*- and von Neumann algebras

Similarity problems

Definition

A C^* -algebra \mathfrak{A} is called nuclear

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへ⊙

Amenability of operator algebras on Banach spaces, I

Volker Runde

Prelude

Amenable groups

Amenable Banach algebras

C*- and von Neumann algebras

Similarity problems

Definition

A C^* -algebra \mathfrak{A} is called nuclear if there are nets $(n_\lambda)_\lambda$ of positive integers

Amenability of operator algebras on Banach spaces, I

Volker Runde

Prelude

Amenable groups

Amenable Banach algebras

C*- and von Neumann algebras

Similarity problems

Definition

A C^* -algebra \mathfrak{A} is called nuclear if there are nets $(n_\lambda)_\lambda$ of positive integers and of completely positive contractions

Amenability of operator algebras on Banach spaces, I

Volker Runde

Prelude

Amenable groups

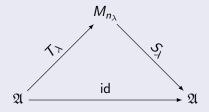
Amenable Banach algebras

C*- and von Neumann algebras

Similarity problems

Definition

A C^* -algebra \mathfrak{A} is called nuclear if there are nets $(n_\lambda)_\lambda$ of positive integers and of completely positive contractions



Amenability of operator algebras on Banach spaces, I

Volker Runde

Prelude

Amenable groups

Amenable Banach algebras

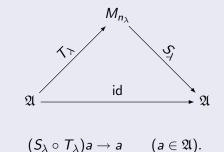
C*- and von Neumann algebras

Similarity problems

Definition

such that

A C^* -algebra \mathfrak{A} is called nuclear if there are nets $(n_\lambda)_\lambda$ of positive integers and of completely positive contractions



Amenability of operator algebras on Banach spaces, I

Volker Runde

Prelude

Amenable groups

Amenable Banach algebras

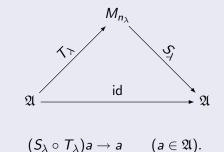
C*- and von Neumann algebras

Similarity problems

Definition

such that

A C^* -algebra \mathfrak{A} is called nuclear if there are nets $(n_\lambda)_\lambda$ of positive integers and of completely positive contractions



Amenability of operator algebras on Banach spaces, I

Volker Runde

Prelude

Amenable groups

Amenable Banach algebras

C*- and von Neumann algebras

Similarity problems

Theorem (A. Connes, 1978)

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Amenability of operator algebras on Banach spaces, I

Volker Runde

Prelude

Amenable groups

Amenable Banach algebras

C*- and von Neumann algebras

Similarity problems

Theorem (A. Connes, 1978)

A C*-algebra \mathfrak{A} is nuclear if it is amenable

Amenability of operator algebras on Banach spaces, I

Volker Runde

Prelude

Amenable groups

Amenable Banach algebras

C*- and von Neumann algebras

Similarity problems

Theorem (A. Connes, 1978)

A C^{*}-algebra \mathfrak{A} is nuclear if it is amenable and \mathfrak{A}^* is separable.

Amenability of operator algebras on Banach spaces, I

Volker Runde

Prelude

Amenable groups

Amenable Banach algebras

C*- and von Neumann algebras

Similarity problems

Theorem (A. Connes, 1978)

A C^{*}-algebra \mathfrak{A} is nuclear if it is amenable and \mathfrak{A}^* is separable.

▲ロト ▲帰ト ▲ヨト ▲ヨト - ヨ - の々ぐ

Theorem (U. Haagerup, 1983)

Amenability of operator algebras on Banach spaces, I

Volker Runde

Prelude

Amenable groups

Amenable Banach algebras

C*- and von Neumann algebras

Similarity problems

Theorem (A. Connes, 1978)

A C^{*}-algebra \mathfrak{A} is nuclear if it is amenable and \mathfrak{A}^* is separable.

Theorem (U. Haagerup, 1983)

All nuclear C*-algebras are amenable.

Amenability of operator algebras on Banach spaces, I

Volker Runde

Prelude

Amenable groups

Amenable Banach algebras

C*- and von Neumann algebras

Similarity problems

Theorem (A. Connes, 1978)

A C^{*}-algebra \mathfrak{A} is nuclear if it is amenable and \mathfrak{A}^* is separable.

Theorem (U. Haagerup, 1983)

All nuclear C*-algebras are amenable.

Theorem (A. Connes, U. Haagerup, et al.)

Amenability of operator algebras on Banach spaces, I

Volker Runde

Prelude

Amenable groups

Amenable Banach algebras

C*- and von Neumann algebras

Similarity problems

Theorem (A. Connes, 1978)

A C^{*}-algebra \mathfrak{A} is nuclear if it is amenable and \mathfrak{A}^* is separable.

Theorem (U. Haagerup, 1983)

All nuclear C*-algebras are amenable.

Theorem (A. Connes, U. Haagerup, et al.)

The following are equivalent for a C^* -algebra \mathfrak{A} :

Amenability of operator algebras on Banach spaces, I

Volker Runde

Prelude

Amenable groups

Amenable Banach algebras

C*- and von Neumann algebras

Similarity problems

Theorem (A. Connes, 1978)

A C^{*}-algebra \mathfrak{A} is nuclear if it is amenable and \mathfrak{A}^* is separable.

Theorem (U. Haagerup, 1983)

All nuclear C*-algebras are amenable.

Theorem (A. Connes, U. Haagerup, et al.)

The following are equivalent for a C*-algebra Ω:
1 Ω is nuclear;

Nuclearity and amenability

Amenability of operator algebras on Banach spaces, I

Volker Runde

Prelude

Amenable groups

Amenable Banach algebras

C*- and von Neumann algebras

Similarity problems

Theorem (A. Connes, 1978)

A C^{*}-algebra \mathfrak{A} is nuclear if it is amenable and \mathfrak{A}^* is separable.

Theorem (U. Haagerup, 1983)

All nuclear C*-algebras are amenable.

Theorem (A. Connes, U. Haagerup, et al.)

The following are equivalent for a C^* -algebra \mathfrak{A} :

- **1** \mathfrak{A} is nuclear;
- **2** \mathfrak{A} is amenable.

Nuclearity and amenability

Amenability of operator algebras on Banach spaces, I

Volker Runde

Prelude

Amenable groups

Amenable Banach algebras

C*- and von Neumann algebras

Similarity problems

Theorem (A. Connes, 1978)

A C^{*}-algebra \mathfrak{A} is nuclear if it is amenable and \mathfrak{A}^* is separable.

Theorem (U. Haagerup, 1983)

All nuclear C*-algebras are amenable.

Theorem (A. Connes, U. Haagerup, et al.)

The following are equivalent for a C^* -algebra \mathfrak{A} :

- **1** \mathfrak{A} is nuclear;
- **2** \mathfrak{A} is amenable.

Amenability of operator algebras on Banach spaces, I
C [*] - and von Neumann algebras

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Amenability of
operator
algebras on
Banach
spaces, I

Volker Runde

Prelude

Amenable groups

Amenable Banach algebras

C*- and von Neumann algebras

Similarity problems

Theorem (S. Wasserman, 1976)

Amenability of operator algebras on Banach spaces, I

Volker Runde

Prelude

Amenable groups

Amenable Banach algebras

C*- and von Neumann algebras

Similarity problems

Theorem (S. Wasserman, 1976)

The following are equivalent for a von Neumann algebra \mathfrak{M} :

Amenability of operator algebras on Banach spaces, I

Volker Runde

Prelude

Amenable groups

Amenable Banach algebras

C*- and von Neumann algebras

Similarity problems

Theorem (S. Wasserman, 1976)

The following are equivalent for a von Neumann algebra M:
1 M is nuclear;

Amenability of operator algebras on Banach spaces, I

Volker Runde

Prelude

Amenable groups

Amenable Banach algebras

C*- and von Neumann algebras

Similarity problems

Theorem (S. Wasserman, 1976)

The following are equivalent for a von Neumann algebra \mathfrak{M} :

- 1 M is nuclear;
- **2** \mathfrak{M} is subhomogeneous,

Amenability of operator algebras on Banach spaces, I

Volker Runde

Prelude

Amenable groups

Amenable Banach algebras

C*- and von Neumann algebras

Similarity problems

Theorem (S. Wasserman, 1976)

The following are equivalent for a von Neumann algebra \mathfrak{M} : \mathfrak{M} is nuclear:

2 \mathfrak{M} is subhomogeneous, i.e.,

$$\mathfrak{M}\cong M_{n_1}(\mathfrak{M}_1)\oplus\cdots\oplus M_{n_k}(\mathfrak{M}_k)$$

Amenability of operator algebras on Banach spaces, I

Volker Runde

Prelude

Amenable groups

Amenable Banach algebras

C*- and von Neumann algebras

Similarity problems

Theorem (S. Wasserman, 1976)

The following are equivalent for a von Neumann algebra \mathfrak{M} : \mathfrak{M} is nuclear:

2 \mathfrak{M} is subhomogeneous, i.e.,

 $\mathfrak{M}\cong M_{n_1}(\mathfrak{M}_1)\oplus\cdots\oplus M_{n_k}(\mathfrak{M}_k)$

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

with $n_1, \ldots, n_k \in \mathbb{N}$

Amenability of operator algebras on Banach spaces, I

Volker Runde

Prelude

Amenable groups

Amenable Banach algebras

C*- and von Neumann algebras

Similarity problems

Theorem (S. Wasserman, 1976)

The following are equivalent for a von Neumann algebra \mathfrak{M} : \mathfrak{M} is nuclear;

2 \mathfrak{M} is subhomogeneous, i.e.,

 $\mathfrak{M}\cong M_{n_1}(\mathfrak{M}_1)\oplus\cdots\oplus M_{n_k}(\mathfrak{M}_k)$

with $n_1, \ldots, n_k \in \mathbb{N}$ and $\mathfrak{M}_1, \ldots, \mathfrak{M}_k$ abelian.

Amenability of operator algebras on Banach spaces, I

Volker Runde

Prelude

Amenable groups

Amenable Banach algebras

C*- and von Neumann algebras

Similarity problems

Theorem (S. Wasserman, 1976)

The following are equivalent for a von Neumann algebra \mathfrak{M} : \mathfrak{M} is nuclear:

2 \mathfrak{M} is subhomogeneous, i.e.,

 $\mathfrak{M}\cong M_{n_1}(\mathfrak{M}_1)\oplus\cdots\oplus M_{n_k}(\mathfrak{M}_k)$

with $n_1, \ldots, n_k \in \mathbb{N}$ and $\mathfrak{M}_1, \ldots, \mathfrak{M}_k$ abelian.

Corollary

Amenability of operator algebras on Banach spaces, I

Volker Runde

Prelude

Amenable groups

Amenable Banach algebras

C*- and von Neumann algebras

Similarity problems

Theorem (S. Wasserman, 1976)

The following are equivalent for a von Neumann algebra \mathfrak{M} : \mathfrak{M} is nuclear:

2 \mathfrak{M} is subhomogeneous, i.e.,

 $\mathfrak{M} \cong M_{n_1}(\mathfrak{M}_1) \oplus \cdots \oplus M_{n_k}(\mathfrak{M}_k)$

with $n_1, \ldots, n_k \in \mathbb{N}$ and $\mathfrak{M}_1, \ldots, \mathfrak{M}_k$ abelian.

Corollary

 $\mathcal{B}(\mathfrak{H})$ is amenable

Amenability of operator algebras on Banach spaces, I

Volker Runde

Prelude

Amenable groups

Amenable Banach algebras

C*- and von Neumann algebras

Similarity problems

Theorem (S. Wasserman, 1976)

The following are equivalent for a von Neumann algebra \mathfrak{M} : \mathfrak{M} is nuclear:

2 \mathfrak{M} is subhomogeneous, i.e.,

 $\mathfrak{M}\cong M_{n_1}(\mathfrak{M}_1)\oplus\cdots\oplus M_{n_k}(\mathfrak{M}_k)$

with $n_1, \ldots, n_k \in \mathbb{N}$ and $\mathfrak{M}_1, \ldots, \mathfrak{M}_k$ abelian.

Corollary

 $\mathcal{B}(\mathfrak{H})$ is amenable if and only if dim $\mathfrak{H} < \infty$.

Amenability of operator algebras on Banach spaces, I
Similarity problems

Amenability of operator algebras on Banach spaces, I

Volker Runde

Prelude

Amenable groups

Amenable Banach algebras

C^{*}- and von Neumann algebras

Similarity problems

Definition

(ロ)、(D)、(E)、(E)、 E、 ())へ()

ヘロト ヘ部ト ヘヨト ヘヨト

.....

Amenability of operator algebras on Banach spaces, I

Volker Runde

Prelude

Amenable groups

Amenable Banach algebras

C^{*}- and von Neumann algebras

Similarity problems

Definition

A representation of G

Amenability of operator algebras on Banach spaces, I

Volker Runde

Prelude

Amenable groups

Amenable Banach algebras

C^{*}- and von Neumann algebras

Similarity problems

Definition

A representation of G on a Hilbert space \mathfrak{H}

Amenability of operator algebras on Banach spaces, I

Volker Runde

Prelude

Amenable groups

Amenable Banach algebras

C^{*}- and von Neumann algebras

Similarity problems

Definition

A representation of G on a Hilbert space \mathfrak{H} is a group homomorphism π

Amenability of operator algebras on Banach spaces, I

Volker Runde

Prelude

Amenable groups

Amenable Banach algebras

C^{*}- and von Neumann algebras

Similarity problems

Definition

A representation of G on a Hilbert space \mathfrak{H} is a group homomorphism π from G

Amenability of operator algebras on Banach spaces, I

Volker Runde

Prelude

Amenable groups

Amenable Banach algebras

C^{*}- and von Neumann algebras

Similarity problems

Definition

A representation of G on a Hilbert space \mathfrak{H} is a group homomomorphism π from G into the invertible elements of $\mathcal{B}(\mathfrak{H})$

Amenability of operator algebras on Banach spaces, I

Volker Runde

Prelude

Amenable groups

Amenable Banach algebras

C^{*}- and von Neumann algebras

Similarity problems

Definition

A representation of G on a Hilbert space \mathfrak{H} is a group homomomorphism π from G into the invertible elements of $\mathcal{B}(\mathfrak{H})$ which is continuous with respect to the given topology on G

Amenability of operator algebras on Banach spaces, I

Volker Runde

Prelude

Amenable groups

Amenable Banach algebras

C^{*}- and von Neumann algebras

Similarity problems

Definition

A representation of G on a Hilbert space \mathfrak{H} is a group homomomorphism π from G into the invertible elements of $\mathcal{B}(\mathfrak{H})$ which is continuous with respect to the given topology on G and the weak operator topology on $\mathcal{B}(\mathfrak{H})$.

Amenability of operator algebras on Banach spaces, I

Volker Runde

Prelude

Amenable groups

Amenable Banach algebras

C^{*}- and von Neumann algebras

Similarity problems

Definition

A representation of G on a Hilbert space \mathfrak{H} is a group homomomorphism π from G into the invertible elements of $\mathcal{B}(\mathfrak{H})$ which is continuous with respect to the given topology on G and the strong operator topology on $\mathcal{B}(\mathfrak{H})$.

Amenability of operator algebras on Banach spaces, I

Volker Runde

Prelude

Amenable groups

Amenable Banach algebras

C^{*}- and von Neumann algebras

Similarity problems

Definition

A representation of *G* on a Hilbert space \mathfrak{H} is a group homomomorphism π from *G* into the invertible elements of $\mathcal{B}(\mathfrak{H})$ which is continuous with respect to the given topology on *G* and the strong operator topology on $\mathcal{B}(\mathfrak{H})$. We call π :

Amenability of operator algebras on Banach spaces, I

Volker Runde

Prelude

Amenable groups

Amenable Banach algebras

C^{*}- and von Neumann algebras

Similarity problems

Definition

A representation of *G* on a Hilbert space \mathfrak{H} is a group homomomorphism π from *G* into the invertible elements of $\mathcal{B}(\mathfrak{H})$ which is continuous with respect to the given topology on *G* and the strong operator topology on $\mathcal{B}(\mathfrak{H})$. We call π :

1 unitary

Amenability of operator algebras on Banach spaces, I

Volker Runde

Prelude

Amenable groups

Amenable Banach algebras

C^{*}- and von Neumann algebras

Similarity problems

Definition

A representation of G on a Hilbert space \mathfrak{H} is a group homomomorphism π from G into the invertible elements of $\mathcal{B}(\mathfrak{H})$ which is continuous with respect to the given topology on G and the strong operator topology on $\mathcal{B}(\mathfrak{H})$. We call π :

1 unitary if $\pi(G)$ consists of unitaries,

Amenability of operator algebras on Banach spaces, I

Volker Runde

Prelude

Amenable groups

Amenable Banach algebras

C^{*}- and von Neumann algebras

Similarity problems

Definition

A representation of G on a Hilbert space \mathfrak{H} is a group homomomorphism π from G into the invertible elements of $\mathcal{B}(\mathfrak{H})$ which is continuous with respect to the given topology on G and the strong operator topology on $\mathcal{B}(\mathfrak{H})$. We call π :

() ク() = (=) (=) (=) (=)

1 unitary if $\pi(G)$ consists of unitaries,

2 unitarizable

Amenability of operator algebras on Banach spaces, I

Volker Runde

Prelude

Amenable groups

Amenable Banach algebras

C^{*}- and von Neumann algebras

Similarity problems

Definition

A representation of G on a Hilbert space \mathfrak{H} is a group homomomorphism π from G into the invertible elements of $\mathcal{B}(\mathfrak{H})$ which is continuous with respect to the given topology on G and the strong operator topology on $\mathcal{B}(\mathfrak{H})$. We call π :

1 unitary if $\pi(G)$ consists of unitaries,

2 unitarizable if π is similar to a unitary representation,

Amenability of operator algebras on Banach spaces, I

Volker Runde

Prelude

Amenable groups

Amenable Banach algebras

C^{*}- and von Neumann algebras

Similarity problems

Definition

A representation of G on a Hilbert space \mathfrak{H} is a group homomomorphism π from G into the invertible elements of $\mathcal{B}(\mathfrak{H})$ which is continuous with respect to the given topology on G and the strong operator topology on $\mathcal{B}(\mathfrak{H})$. We call π :

1 unitary if $\pi(G)$ consists of unitaries,

2 unitarizable if π is similar to a unitary representation, i.e., there is an invertible $T \in \mathcal{B}(\mathfrak{H})$

● 2 (* = < = > < = > < = * (5) * (

Amenability of operator algebras on Banach spaces, I

Volker Runde

Prelude

Amenable groups

Amenable Banach algebras

C^{*}- and von Neumann algebras

Similarity problems

Definition

A representation of G on a Hilbert space \mathfrak{H} is a group homomomorphism π from G into the invertible elements of $\mathcal{B}(\mathfrak{H})$ which is continuous with respect to the given topology on G and the strong operator topology on $\mathcal{B}(\mathfrak{H})$. We call π :

1 unitary if $\pi(G)$ consists of unitaries,

2 unitarizable if π is similar to a unitary representation, i.e., there is an invertible $T \in \mathcal{B}(\mathfrak{H})$ such that $T^{-1}\pi(\cdot)T$ is unitary,

● 2 (* = < = > < = > < = * (5) * (

Amenability of operator algebras on Banach spaces, I

Volker Runde

Prelude

Amenable groups

Amenable Banach algebras

C^{*}- and vor Neumann algebras

Similarity problems

Definition

A representation of G on a Hilbert space \mathfrak{H} is a group homomomorphism π from G into the invertible elements of $\mathcal{B}(\mathfrak{H})$ which is continuous with respect to the given topology on G and the strong operator topology on $\mathcal{B}(\mathfrak{H})$. We call π :

1 unitary if $\pi(G)$ consists of unitaries,

2 unitarizable if π is similar to a unitary representation, i.e., there is an invertible $T \in \mathcal{B}(\mathfrak{H})$ such that $T^{-1}\pi(\cdot)T$ is unitary, and

3 uniformly bounded

Amenability of operator algebras on Banach spaces, I

Volker Runde

Prelude

Amenable groups

Amenable Banach algebras

C^{*}- and vor Neumann algebras

Similarity problems

Definition

A representation of G on a Hilbert space \mathfrak{H} is a group homomomorphism π from G into the invertible elements of $\mathcal{B}(\mathfrak{H})$ which is continuous with respect to the given topology on G and the strong operator topology on $\mathcal{B}(\mathfrak{H})$. We call π :

1 unitary if $\pi(G)$ consists of unitaries,

- **2** unitarizable if π is similar to a unitary representation, i.e., there is an invertible $T \in \mathcal{B}(\mathfrak{H})$ such that $T^{-1}\pi(\cdot)T$ is unitary, and
- 3 uniformly bounded if

$$\sup_{g\in G} \|\pi(g)\| < \infty.$$

Amenability of operator algebras on Banach spaces, I
Similarity problems

Amenability of operator algebras on Banach spaces, I

Volker Runde

Prelude

Amenable groups

Amenable Banach algebras

C^{*}- and von Neumann algebras

Similarity problems

Obvious...

 π unitary

Amenability of operator algebras on Banach spaces, I

Volker Runde

Prelude

Amenable groups

Amenable Banach algebras

C^{*}- and von Neumann algebras

Similarity problems

Obvious...

π unitary $\Longrightarrow \pi$ unitarizable

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 = のへで

Amenability of operator algebras on Banach spaces, I

Volker Runde

Prelude

Amenable groups

Amenable Banach algebras

C^{*}- and von Neumann algebras

Similarity problems

Obvious...

π unitary $\implies \pi$ unitarizable $\implies \pi$ uniformly bounded.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

Amenability of operator algebras on Banach spaces, I

Volker Runde

Prelude

Amenable groups

Amenable Banach algebras

C^{*}- and von Neumann algebras

Similarity problems

Obvious...

 π unitary $\Longrightarrow \pi$ unitarizable $\Longrightarrow \pi$ uniformly bounded.

Theorem (J. Dixmier, 1950)

Amenability of operator algebras on Banach spaces, I

Volker Runde

Prelude

Amenable groups

Amenable Banach algebras

C^{*}- and von Neumann algebras

Similarity problems

Obvious...

 π unitary $\Longrightarrow \pi$ unitarizable $\Longrightarrow \pi$ uniformly bounded.

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Theorem (J. Dixmier, 1950)

Suppose that G is amenable.

Amenability of operator algebras on Banach spaces, I

Volker Runde

Prelude

Amenable groups

Amenable Banach algebras

C^{*}- and von Neumann algebras

Similarity problems

Obvious...

 π unitary $\Longrightarrow \pi$ unitarizable $\Longrightarrow \pi$ uniformly bounded.

Theorem (J. Dixmier, 1950)

Suppose that G is amenable. Then every uniformly bounded representation of G

Amenability of operator algebras on Banach spaces, I

Volker Runde

Prelude

Amenable groups

Amenable Banach algebras

C^{*}- and von Neumann algebras

Similarity problems

Obvious...

 π unitary $\Longrightarrow \pi$ unitarizable $\Longrightarrow \pi$ uniformly bounded.

Theorem (J. Dixmier, 1950)

Suppose that G is amenable. Then every uniformly bounded representation of G is unitarizable.

Amenability of operator algebras on Banach spaces, I

Volker Runde

Prelude

Amenable groups

Amenable Banach algebras

C^{*}- and von Neumann algebras

Similarity problems

Obvious...

 π unitary $\Longrightarrow \pi$ unitarizable $\Longrightarrow \pi$ uniformly bounded.

Theorem (J. Dixmier, 1950)

Suppose that G is amenable. Then every uniformly bounded representation of G is unitarizable.

Big open question

Amenability of operator algebras on Banach spaces, I

Volker Runde

Prelude

Amenable groups

Amenable Banach algebras

C^{*}- and von Neumann algebras

Similarity problems

Obvious...

 π unitary $\Longrightarrow \pi$ unitarizable $\Longrightarrow \pi$ uniformly bounded.

Theorem (J. Dixmier, 1950)

Suppose that G is amenable. Then every uniformly bounded representation of G is unitarizable.

Big open question

Does the converse hold,

Amenability of operator algebras on Banach spaces, I

Volker Runde

Prelude

Amenable groups

Amenable Banach algebras

C^{*}- and von Neumann algebras

Similarity problems

Obvious...

 π unitary $\Longrightarrow \pi$ unitarizable $\Longrightarrow \pi$ uniformly bounded.

Theorem (J. Dixmier, 1950)

Suppose that G is amenable. Then every uniformly bounded representation of G is unitarizable.

Big open question

Does the converse hold, i.e., is any G

Amenability of operator algebras on Banach spaces, I

Volker Runde

Prelude

Amenable groups

Amenable Banach algebras

C^{*}- and von Neumann algebras

Similarity problems

Obvious...

 π unitary $\Longrightarrow \pi$ unitarizable $\Longrightarrow \pi$ uniformly bounded.

Theorem (J. Dixmier, 1950)

Suppose that G is amenable. Then every uniformly bounded representation of G is unitarizable.

Big open question

Does the converse hold, i.e., is any G such that each uniformly bounded representation is unitarizable

Amenability of operator algebras on Banach spaces, I

Volker Runde

Prelude

Amenable groups

Amenable Banach algebras

C^{*}- and von Neumann algebras

Similarity problems

Obvious...

 π unitary $\Longrightarrow \pi$ unitarizable $\Longrightarrow \pi$ uniformly bounded.

Theorem (J. Dixmier, 1950)

Suppose that G is amenable. Then every uniformly bounded representation of G is unitarizable.

Big open question

Does the converse hold, i.e., is any G such that each uniformly bounded representation is unitarizable already amenable?

Amenability of operator algebras on Banach spaces, I

Volker Runde

Prelude

Amenable groups

Amenable Banach algebras

C^{*}- and von Neumann algebras

Similarity problems

Obvious...

 π unitary $\Longrightarrow \pi$ unitarizable $\Longrightarrow \pi$ uniformly bounded.

Theorem (J. Dixmier, 1950)

Suppose that G is amenable. Then every uniformly bounded representation of G is unitarizable.

Big open question

Does the converse hold, i.e., is any G such that each uniformly bounded representation is unitarizable already amenable?

Fact

Amenability of operator algebras on Banach spaces, I

Volker Runde

Prelude

Amenable groups

Amenable Banach algebras

C^{*}- and von Neumann algebras

Similarity problems

Obvious...

 π unitary $\Longrightarrow \pi$ unitarizable $\Longrightarrow \pi$ uniformly bounded.

Theorem (J. Dixmier, 1950)

Suppose that G is amenable. Then every uniformly bounded representation of G is unitarizable.

Big open question

Does the converse hold, i.e., is any G such that each uniformly bounded representation is unitarizable already amenable?

Fact

It's false for $\mathbb{F}_2!$

Amenability of operator algebras on Banach spaces, I
Similarity problems

Amenability of operator algebras on Banach spaces, I

Volker Runde

Prelude

Amenable groups

Amenable Banach algebras

C^{*}- and von Neumann algebras

Similarity problems

Integration of representations

If π is a uniformly bounded representation of G,

Amenability of operator algebras on Banach spaces, I

Volker Runde

Prelude

Amenable groups

Amenable Banach algebras

C^{*}- and von Neumann algebras

Similarity problems

Integration of representations

If π is a uniformly bounded representation of ${\cal G},$ we can integrate π

Amenability of operator algebras on Banach spaces, I

Volker Runde

Prelude

Amenable groups

Amenable Banach algebras

C^{*}- and von Neumann algebras

Similarity problems

Integration of representations

If π is a uniformly bounded representation of G, we can integrate π and obtain a representation of $L^1(G)$ on \mathfrak{H} :

Amenability of operator algebras on Banach spaces, I

Volker Runde

Prelude

Amenable groups

Amenable Banach algebras

C^{*}- and von Neumann algebras

Similarity problems

Integration of representations

If π is a uniformly bounded representation of G, we can integrate π and obtain a representation of $L^1(G)$ on \mathfrak{H} :

$$\pi(f) := \int_{\mathcal{G}} f(g) \pi(g) \, dg \qquad (f \in L^1(\mathcal{G})).$$

Amenability of operator algebras on Banach spaces, I

Volker Runde

Prelude

Amenable groups

Amenable Banach algebras

C^{*}- and von Neumann algebras

Similarity problems

Integration of representations

If π is a uniformly bounded representation of G, we can integrate π and obtain a representation of $L^1(G)$ on \mathfrak{H} :

$$\pi(f) := \int_G f(g)\pi(g) dg \qquad (f \in L^1(G)).$$

Easy

Amenability of operator algebras on Banach spaces, I

Volker Runde

Prelude

Amenable groups

Amenable Banach algebras

C^{*}- and von Neumann algebras

Similarity problems

Integration of representations

If π is a uniformly bounded representation of G, we can integrate π and obtain a representation of $L^1(G)$ on \mathfrak{H} :

$$\pi(f) := \int_G f(g)\pi(g) dg \qquad (f \in L^1(G)).$$

Easy

If G is amenable,

Amenability of operator algebras on Banach spaces, I

Volker Runde

Prelude

Amenable groups

Amenable Banach algebras

C^{*}- and von Neumann algebras

Similarity problems

Integration of representations

If π is a uniformly bounded representation of G, we can integrate π and obtain a representation of $L^1(G)$ on \mathfrak{H} :

$$\pi(f) := \int_G f(g)\pi(g) dg \qquad (f \in L^1(G)).$$

Easy

If G is amenable, then $\mathfrak{A} := \overline{\pi(L^1(G))}$ is amenable.

Amenability of operator algebras on Banach spaces, I

Volker Runde

Prelude

Amenable groups

Amenable Banach algebras

C^{*}- and von Neumann algebras

Similarity problems

Integration of representations

If π is a uniformly bounded representation of G, we can integrate π and obtain a representation of $L^1(G)$ on \mathfrak{H} :

$$\pi(f):=\int_G f(g)\pi(g)\,dg\qquad (f\in L^1(G)).$$

Easy

If G is amenable, then $\mathfrak{A} := \overline{\pi(L^1(G))}$ is amenable.

Slightly more difficult

Amenability of operator algebras on Banach spaces, I

Volker Runde

Prelude

Amenable groups

Amenable Banach algebras

C^{*}- and von Neumann algebras

Similarity problems

Integration of representations

If π is a uniformly bounded representation of G, we can integrate π and obtain a representation of $L^1(G)$ on \mathfrak{H} :

$$\pi(f) := \int_G f(g)\pi(g) dg \qquad (f \in L^1(G)).$$

Easy

If G is amenable, then $\mathfrak{A} := \overline{\pi(L^1(G))}$ is amenable.

Slightly more difficult

If G is amenable,

Amenability of operator algebras on Banach spaces, I

Volker Runde

Prelude

Amenable groups

Amenable Banach algebras

C^{*}- and von Neumann algebras

Similarity problems

Integration of representations

If π is a uniformly bounded representation of G, we can integrate π and obtain a representation of $L^1(G)$ on \mathfrak{H} :

$$\pi(f):=\int_G f(g)\pi(g)\,dg\qquad (f\in L^1(G)).$$

Easy

If G is amenable, then $\mathfrak{A} := \overline{\pi(L^1(G))}$ is amenable.

Slightly more difficult

If G is amenable, then π is unitarizable,

Amenability of operator algebras on Banach spaces, I

Volker Runde

Prelude

Amenable groups

Amenable Banach algebras

C^{*}- and von Neumann algebras

Similarity problems

Integration of representations

If π is a uniformly bounded representation of G, we can integrate π and obtain a representation of $L^1(G)$ on \mathfrak{H} :

$$\pi(f) := \int_G f(g)\pi(g) dg \qquad (f \in L^1(G)).$$

Easy

If G is amenable, then $\mathfrak{A} := \overline{\pi(L^1(G))}$ is amenable.

Slightly more difficult

If G is amenable, then π is unitarizable, so that there is an invertible $\mathcal{T} \in \mathcal{B}(\mathfrak{H})$

Amenability of operator algebras on Banach spaces, I

Volker Runde

Prelude

Amenable groups

Amenable Banach algebras

C^{*}- and von Neumann algebras

Similarity problems

Integration of representations

If π is a uniformly bounded representation of G, we can integrate π and obtain a representation of $L^1(G)$ on \mathfrak{H} :

$$\pi(f) := \int_G f(g)\pi(g) dg \qquad (f \in L^1(G)).$$

Easy

If G is amenable, then $\mathfrak{A} := \overline{\pi(L^1(G))}$ is amenable.

Slightly more difficult

If G is amenable, then π is unitarizable, so that there is an invertible $T \in \mathcal{B}(\mathfrak{H})$ such that $T\mathfrak{A}T^{-1}$ is a C*-subalgebra of $\mathcal{B}(\mathfrak{H})$.

Amenability of operator algebras on Banach spaces, I
Similarity problems
problems

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Definition				
	Definition	Definition	Definition	Definition

Amenability of operator algebras on Banach spaces, I			
	Definition		
	A closed,		
Similarity problems			

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト

3

Amenability of operator algebras on Banach spaces, I

Volker Runde

Prelude

Amenable groups

Amenable Banach algebras

C^{*}- and von Neumann algebras

Similarity problems

Definition

A closed, but not necessarily self-adjoint

Amenability of operator algebras on Banach spaces, I

Volker Runde

Prelude

Amenable groups

Amenable Banach algebras

C^{*}- and von Neumann algebras

Similarity problems

Definition

A closed, but not necessarily self-adjoint subalgebra of $\mathcal{B}(\mathfrak{H})$

イロト 不得 トイヨト イヨト

3

Amenability of operator algebras on Banach spaces, I

Volker Runde

Prelude

Amenable groups

Amenable Banach algebras

C^{*}- and von Neumann algebras

Similarity problems

Definition

A closed, but not necessarily self-adjoint subalgebra of $\mathcal{B}(\mathfrak{H})$ is called similar to a C^* -algebra

Amenability of operator algebras on Banach spaces, I

Volker Runde

Prelude

Amenable groups

Amenable Banach algebras

C^{*}- and von Neumann algebras

Similarity problems

Definition

A closed, but not necessarily self-adjoint subalgebra of $\mathcal{B}(\mathfrak{H})$ is called similar to a C^* -algebra if there is an invertible $\mathcal{T} \in \mathcal{B}(\mathfrak{H})$

Amenability of operator algebras on Banach spaces, I

Volker Runde

Prelude

Amenable groups

Amenable Banach algebras

C^{*}- and von Neumann algebras

Similarity problems

Definition

A closed, but not necessarily self-adjoint subalgebra of $\mathcal{B}(\mathfrak{H})$ is called similar to a C^* -algebra if there is an invertible $T \in \mathcal{B}(\mathfrak{H})$ such that $T\mathfrak{A}T^{-1}$ is a C^* -subalgebra of $\mathcal{B}(\mathfrak{H})$.

Amenability of operator algebras on Banach spaces, I

Volker Runde

Prelude

Amenable groups

Amenable Banach algebras

C^{*}- and von Neumann algebras

Similarity problems

Definition

A closed, but not necessarily self-adjoint subalgebra of $\mathcal{B}(\mathfrak{H})$ is called similar to a C^* -algebra if there is an invertible $T \in \mathcal{B}(\mathfrak{H})$ such that $T\mathfrak{A}T^{-1}$ is a C^* -subalgebra of $\mathcal{B}(\mathfrak{H})$.

Big open question

Amenability of operator algebras on Banach spaces, I

Volker Runde

Prelude

Amenable groups

Amenable Banach algebras

C^{*}- and von Neumann algebras

Similarity problems

Definition

A closed, but not necessarily self-adjoint subalgebra of $\mathcal{B}(\mathfrak{H})$ is called similar to a C^* -algebra if there is an invertible $T \in \mathcal{B}(\mathfrak{H})$ such that $T\mathfrak{A}T^{-1}$ is a C^* -subalgebra of $\mathcal{B}(\mathfrak{H})$.

Big open question

Is every closed, amenable subalgebra of $\mathcal{B}(\mathfrak{H})$

Amenability of operator algebras on Banach spaces, I

Volker Runde

Prelude

Amenable groups

Amenable Banach algebras

C^{*}- and von Neumann algebras

Similarity problems

Definition

A closed, but not necessarily self-adjoint subalgebra of $\mathcal{B}(\mathfrak{H})$ is called similar to a C^* -algebra if there is an invertible $T \in \mathcal{B}(\mathfrak{H})$ such that $T\mathfrak{A}T^{-1}$ is a C^* -subalgebra of $\mathcal{B}(\mathfrak{H})$.

Big open question

Is every closed, amenable subalgebra of $\mathcal{B}(\mathfrak{H})$ similar to a C^* -subalgebra of $\mathcal{B}(\mathfrak{H})$

Amenability of operator algebras on Banach spaces, I

Volker Runde

Prelude

Amenable groups

Amenable Banach algebras

C^{*}- and von Neumann algebras

Similarity problems

Definition

A closed, but not necessarily self-adjoint subalgebra of $\mathcal{B}(\mathfrak{H})$ is called similar to a C^* -algebra if there is an invertible $T \in \mathcal{B}(\mathfrak{H})$ such that $T\mathfrak{A}T^{-1}$ is a C^* -subalgebra of $\mathcal{B}(\mathfrak{H})$.

Big open question

Is every closed, amenable subalgebra of $\mathcal{B}(\mathfrak{H})$ similar to a C^* -subalgebra of $\mathcal{B}(\mathfrak{H})$ (which is necessarily nuclear)?

Amenability of operator algebras on Banach spaces, I
Similarity problems

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Amenability of operator algebras on Banach spaces, I

Volker Runde

Prelude

Amenable groups

Amenable Banach algebras

C^{*}- and von Neumann algebras

Similarity problems

Theorem (J. A. Gifford, <2006)

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

Amenability of operator algebras on Banach spaces, I

Volker Runde

Prelude

Amenable groups

Amenable Banach algebras

C^{*}- and von Neumann algebras

Similarity problems

Theorem (J. A. Gifford, <2006)

Suppose that $\mathfrak A$ is a closed, amenable subalgebra

Amenability of operator algebras on Banach spaces, I

Volker Runde

Prelude

Amenable groups

Amenable Banach algebras

C^{*}- and von Neumann algebras

Similarity problems

Theorem (J. A. Gifford, <2006)

Suppose that \mathfrak{A} is a closed, amenable subalgebra of $\mathcal{K}(\mathfrak{H})$.

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

Amenability of operator algebras on Banach spaces, I

Volker Runde

Prelude

Amenable groups

Amenable Banach algebras

C^{*}- and von Neumann algebras

Similarity problems

Theorem (J. A. Gifford, <2006)

Suppose that \mathfrak{A} is a closed, amenable subalgebra of $\mathcal{K}(\mathfrak{H})$. Then \mathfrak{A} is similar to a C*-subalgebra of $\mathcal{K}(\mathfrak{H})$.

Amenability of operator algebras on Banach spaces, I

Volker Runde

Prelude

Amenable groups

Amenable Banach algebras

C^{*}- and von Neumann algebras

Similarity problems

Theorem (J. A. Gifford, <2006)

Suppose that \mathfrak{A} is a closed, amenable subalgebra of $\mathcal{K}(\mathfrak{H})$. Then \mathfrak{A} is similar to a C^* -subalgebra of $\mathcal{K}(\mathfrak{H})$.

Definition

Amenability of operator algebras on Banach spaces, I

Volker Runde

Prelude

Amenable groups

Amenable Banach algebras

C^{*}- and von Neumann algebras

Similarity problems

Theorem (J. A. Gifford, <2006)

Suppose that \mathfrak{A} is a closed, amenable subalgebra of $\mathcal{K}(\mathfrak{H})$. Then \mathfrak{A} is similar to a C^{*}-subalgebra of $\mathcal{K}(\mathfrak{H})$.

Definition

Let $C \geq 1$.

Amenability of operator algebras on Banach spaces, I

Volker Runde

Prelude

Amenable groups

Amenable Banach algebras

C^{*}- and von Neumann algebras

Similarity problems

Theorem (J. A. Gifford, <2006)

Suppose that \mathfrak{A} is a closed, amenable subalgebra of $\mathcal{K}(\mathfrak{H})$. Then \mathfrak{A} is similar to a C^{*}-subalgebra of $\mathcal{K}(\mathfrak{H})$.

Definition

Let $C \ge 1$. We call \mathfrak{A} *C*-amenable

Amenability of operator algebras on Banach spaces, I

Volker Runde

Prelude

Amenable groups

Amenable Banach algebras

C^{*}- and von Neumann algebras

Similarity problems

Theorem (J. A. Gifford, <2006)

Suppose that \mathfrak{A} is a closed, amenable subalgebra of $\mathcal{K}(\mathfrak{H})$. Then \mathfrak{A} is similar to a C*-subalgebra of $\mathcal{K}(\mathfrak{H})$.

Definition

Let $C \ge 1$. We call \mathfrak{A} *C*-amenable if \mathfrak{A} has an approximate diagonal bounded by *C*.

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Amenability of operator algebras on Banach spaces, I

Volker Runde

Prelude

Amenable groups

Amenable Banach algebras

C^{*}- and von Neumann algebras

Similarity problems

Theorem (J. A. Gifford, <2006)

Suppose that \mathfrak{A} is a closed, amenable subalgebra of $\mathcal{K}(\mathfrak{H})$. Then \mathfrak{A} is similar to a C*-subalgebra of $\mathcal{K}(\mathfrak{H})$.

Definition

Let $C \ge 1$. We call \mathfrak{A} *C*-amenable if \mathfrak{A} has an approximate diagonal bounded by *C*.

Theorem (D. Blecher & C. LeMerdy, 2004)

Amenability of operator algebras on Banach spaces, I

Volker Runde

Prelude

Amenable groups

Amenable Banach algebras

C^{*}- and von Neumann algebras

Similarity problems

Theorem (J. A. Gifford, <2006)

Suppose that \mathfrak{A} is a closed, amenable subalgebra of $\mathcal{K}(\mathfrak{H})$. Then \mathfrak{A} is similar to a C*-subalgebra of $\mathcal{K}(\mathfrak{H})$.

Definition

Let $C \ge 1$. We call \mathfrak{A} *C*-amenable if \mathfrak{A} has an approximate diagonal bounded by *C*.

Theorem (D. Blecher & C. LeMerdy, 2004)

Let \mathfrak{A} be a closed,

Amenability of operator algebras on Banach spaces, I

Volker Runde

Prelude

Amenable groups

Amenable Banach algebras

C^{*}- and von Neumann algebras

Similarity problems

Theorem (J. A. Gifford, <2006)

Suppose that \mathfrak{A} is a closed, amenable subalgebra of $\mathcal{K}(\mathfrak{H})$. Then \mathfrak{A} is similar to a C^{*}-subalgebra of $\mathcal{K}(\mathfrak{H})$.

Definition

Let $C \ge 1$. We call \mathfrak{A} *C*-amenable if \mathfrak{A} has an approximate diagonal bounded by *C*.

Theorem (D. Blecher & C. LeMerdy, 2004)

Let \mathfrak{A} be a closed, 1-amenable

Amenability of operator algebras on Banach spaces, I

Volker Runde

Prelude

Amenable groups

Amenable Banach algebras

C^{*}- and von Neumann algebras

Similarity problems

Theorem (J. A. Gifford, <2006)

Suppose that \mathfrak{A} is a closed, amenable subalgebra of $\mathcal{K}(\mathfrak{H})$. Then \mathfrak{A} is similar to a C*-subalgebra of $\mathcal{K}(\mathfrak{H})$.

Definition

Let $C \ge 1$. We call \mathfrak{A} *C*-amenable if \mathfrak{A} has an approximate diagonal bounded by *C*.

Theorem (D. Blecher & C. LeMerdy, 2004)

Let \mathfrak{A} be a closed, 1-amenable subalgebra of $\mathcal{B}(\mathfrak{H})$.

Amenability of operator algebras on Banach spaces, I

Volker Runde

Prelude

Amenable groups

Amenable Banach algebras

C^{*}- and von Neumann algebras

Similarity problems

Theorem (J. A. Gifford, <2006)

Suppose that \mathfrak{A} is a closed, amenable subalgebra of $\mathcal{K}(\mathfrak{H})$. Then \mathfrak{A} is similar to a C*-subalgebra of $\mathcal{K}(\mathfrak{H})$.

Definition

Let $C \ge 1$. We call \mathfrak{A} *C*-amenable if \mathfrak{A} has an approximate diagonal bounded by *C*.

Theorem (D. Blecher & C. LeMerdy, 2004)

Let \mathfrak{A} be a closed, 1-amenable subalgebra of $\mathcal{B}(\mathfrak{H})$. Then \mathfrak{A} is a nuclear C^* -algebra.

Amenability of operator algebras on Banach spaces, I

Volker Runde

Prelude

Amenable groups

Amenable Banach algebras

C^{*}- and von Neumann algebras

Similarity problems

Theorem (J. A. Gifford, <2006)

Suppose that \mathfrak{A} is a closed, amenable subalgebra of $\mathcal{K}(\mathfrak{H})$. Then \mathfrak{A} is similar to a C*-subalgebra of $\mathcal{K}(\mathfrak{H})$.

Definition

Let $C \ge 1$. We call \mathfrak{A} *C*-amenable if \mathfrak{A} has an approximate diagonal bounded by *C*.

Theorem (D. Blecher & C. LeMerdy, 2004)

Let \mathfrak{A} be a closed, 1-amenable subalgebra of $\mathcal{B}(\mathfrak{H})$. Then \mathfrak{A} is a nuclear C^* -algebra.

Open question

Amenability of operator algebras on Banach spaces, I

Volker Runde

Prelude

Amenable groups

Amenable Banach algebras

C^{*}- and von Neumann algebras

Similarity problems

Theorem (J. A. Gifford, <2006)

Suppose that \mathfrak{A} is a closed, amenable subalgebra of $\mathcal{K}(\mathfrak{H})$. Then \mathfrak{A} is similar to a C*-subalgebra of $\mathcal{K}(\mathfrak{H})$.

Definition

Let $C \ge 1$. We call \mathfrak{A} *C*-amenable if \mathfrak{A} has an approximate diagonal bounded by *C*.

Theorem (D. Blecher & C. LeMerdy, 2004)

Let \mathfrak{A} be a closed, 1-amenable subalgebra of $\mathcal{B}(\mathfrak{H})$. Then \mathfrak{A} is a nuclear C^* -algebra.

Open question

What if \mathfrak{A} is commutative,

Amenability of operator algebras on Banach spaces, I

Volker Runde

Prelude

Amenable groups

Amenable Banach algebras

C^{*}- and von Neumann algebras

Similarity problems

Theorem (J. A. Gifford, <2006)

Suppose that \mathfrak{A} is a closed, amenable subalgebra of $\mathcal{K}(\mathfrak{H})$. Then \mathfrak{A} is similar to a C*-subalgebra of $\mathcal{K}(\mathfrak{H})$.

Definition

Let $C \ge 1$. We call \mathfrak{A} *C*-amenable if \mathfrak{A} has an approximate diagonal bounded by *C*.

Theorem (D. Blecher & C. LeMerdy, 2004)

Let \mathfrak{A} be a closed, 1-amenable subalgebra of $\mathcal{B}(\mathfrak{H})$. Then \mathfrak{A} is a nuclear C^* -algebra.

Open question

What if \mathfrak{A} is commutative, even generated by one operator?