Amenability of operator algebras on Banach spaces, II

olker Runde

Amenability of $\mathcal{K}(E)$

Amenability of $\mathcal{B}(E)$

A positive example $\mathcal{B}(\ell^p \oplus \ell^q)$ with $p \neq p$ $\mathcal{B}(\ell^p)$

Amenability of operator algebras on Banach spaces, II

Volker Runde

University of Alberta

NBFAS, Leeds, June 1, 2010

The finite-dimensional case

Amenability of operator algebras on Banach spaces, II

Volker Runde

Amenability of $\mathcal{K}(E)$

Amenability of $\mathcal{B}(E)$ A positive

 $\mathcal{B}(E)$ A positive example $\mathcal{B}(\ell^p \oplus \ell^q)$ with $p \neq p$ $\mathcal{B}(\ell^p)$

Example

Let *E* be a Banach space with $n := \dim E < \infty$ so that

$$\mathcal{B}(E) = \mathcal{K}(E) \cong M_n$$
.

Let G be a finite subgroup of invertible elements of M_n such that span $G=M_n$.

Set

$$\mathbf{d} := \frac{1}{|G|} \sum_{g \in G} g \otimes g^{-1}.$$

Then

$$a \cdot \mathbf{d} = \mathbf{d} \cdot a \quad (a \in M_n)$$

and $\Delta \mathbf{d} = I_n$.

Hence, $\mathcal{K}(E) = \mathcal{B}(E)$ is amenable.

Some more results

Amenability of operator algebras on Banach spaces, II

Volker Runde

Amenability of $\mathcal{K}(E)$

Amenability of $\mathcal{B}(E)$

A positive example $\mathcal{B}(\ell^p \oplus \ell^q)$ with $p \neq p$ $\mathcal{B}(\ell^p)$

Theorem (B. E. Johnson, 1972)

 $\mathcal{K}(E)$ is amenable if $E = \ell^p$ with $1 or <math>E = \mathcal{C}(\mathbb{T})$.

Amenable Banach algebras must have bounded approximate identities. . .

Theorem (N. Grønbæk & G. A. Willis, 1994)

Suppose that E has the approximation property. Then $\mathcal{K}(E)$ has a bounded approximate identity if and only if E^* has the bounded approximation property.

Example

Let $E=\ell^2\hat{\otimes}\ell^2$. Then E has the approximation property, but $E^*=\mathcal{B}(\ell^2)$ doesn't. Hence, $\mathcal{K}(E)$ does not have a bounded approximate identity and is thus not amenable.

Finite, biorthogonal systems

Amenability of operator algebras on Banach spaces, II

Volker Runde

Amenability of $\mathcal{K}(E)$

Amenability of $\mathcal{B}(E)$

A positive example $\mathcal{B}(\ell^P \oplus \ell^q)$ with $p \neq p$ $\mathcal{B}(\ell^P)$

Definition

A finite, biorthogonal system is a set

$$\{(x_i, \phi_k): j, k = 1, \dots, n\} \subset E \times E^*$$
 such that

$$\langle x_j, \phi_k \rangle = \delta_{j,k}$$
 $(j, k = 1, \dots, n).$

Remark

If $\{(x_j, \phi_k) : j, k = 1, \dots, n\}$ is a finite, biorthogonal system, then

$$\theta: M_n \to \mathcal{F}(E), \quad [\alpha_{j,k}] \mapsto \sum_{j,k=1}^n \alpha_{j,k} x_j \otimes \phi_k$$

is an algebra homomorphism.

Property (♠)

Amenability of operator algebras on Banach spaces, II

Volker Runde

Amenability of $\mathcal{K}(E)$

Amenability of $\mathcal{B}(E)$

A positive example $\mathcal{B}(\ell^p \oplus \ell^q)$ with $p \neq p$ $\mathcal{B}(\ell^p)$

Definition (N. Grønbæk, BEJ, & G. A. Willis, 1994)

We say that E has property (A) if there is a net $(\{(x_{j,\lambda},\phi_{k,\lambda}):j,k=1,\ldots,n_{\lambda}\})_{\lambda}$ of finite biorthogonal systems with corresponding homomorphisms $\theta_{\lambda}:M_{n_{\lambda}}\to\mathcal{F}(E)$ with the following properties:

- **1** $\theta_{\lambda}(I_{n_{\lambda}}) \rightarrow id_{E}$ uniformly on compacts;
- $\theta_{\lambda}(I_{n_{\lambda}})^* \to id_{E^*}$ uniformly on compacts;
- 3 for each λ , there is a finite group G_{λ} of invertible elements of $M_{n_{\lambda}}$ spanning $M_{n_{\lambda}}$ such that

$$\sup_{\lambda}\max_{g\in G_{\lambda}}\|\theta_{\lambda}(g)\|<\infty.$$

Property (A) and the amenability of $\mathcal{K}(E)$

Amenability of operator algebras on Banach spaces, II

Volker Runde

Amenability of $\mathcal{K}(E)$

Amenability of $\mathcal{B}(E)$ A positive

A positive example $\mathcal{B}(\ell^p \oplus \ell^q)$ with $p \neq p$ $\mathcal{B}(\ell^p)$

The idea behind (A)

Use the diagonals of the $M_{n_{\lambda}}$'s to construct an approximate diagonal for $\mathcal{K}(E)$.

Theorem (N. Grønbæk, BEJ, & G. A. Willis, 1994)

Suppose that E has property (A). Then K(E) is amenable.

Examples

- **1** $L^p(\mu)$ has property (A) for all $1 \le p < \infty$ and all μ .
- 2 C(K) has property (\mathbb{A}) for each compact K, as does therefore $L^{\infty}(\mu)$ for each μ .

The "scalar plus compact" problem

Amenability of operator algebras on Banach spaces, II

Volker Runde

Amenability $\mathcal{K}(E)$

Amenability of $\mathcal{B}(E)$

A positive example $\mathcal{B}(\ell^p \oplus \ell^q)$ with $p \neq p$ $\mathcal{B}(\ell^p)$

Question

Is there an infinite-dimensional Banach space E such that $\mathcal{B}(E) = \mathcal{K}(E) + \mathbb{C} \operatorname{id}_E$?

Theorem (S. A. Argyros & R. G. Haydon, 2009)

There is a Banach space E such that $\mathcal{B}(E) = \mathcal{K}(E) + \mathbb{C} \operatorname{id}_E$ and $E^* = \ell^1$.

Theorem (N. Grønbæk, BEJ, & G. A. Willis, 1994)

Suppose that E^* has property (A). Then so has E.

Corollary

There is an infinite-dimensional Banach space E such that $\mathcal{B}(E)$ is amenable.

Non-amenability of $\mathcal{B}(\ell^p \oplus \ell^q)$ for $p \neq q$, I

Amenability of operator algebras on Banach spaces, II

Volker Runde

Amenability o $\mathcal{K}(E)$

A positive example $\mathcal{B}(\ell^p \oplus \ell^q)$ with $p \neq p$ $\mathcal{B}(\ell^p)$

Theorem (G. A. Willis, unpublished)

Let $p, q \in (1, \infty)$ be such that $p \neq q$. Then $\mathcal{B}(\ell^p \oplus \ell^q)$ is not amenable.

Ingredients

- A quotient of an amenable Banach algebra is again amenable.
- 2 Every complemented closed ideal of an amenable Banach algebra is amenable.
- 3 Every amenable Banach algebra has a bounded approximate identity.
- **4** Pitt's Theorem. If p > q, then $\mathcal{B}(\ell^p, \ell^q) = \mathcal{K}(\ell^p, \ell^q)$.

Non-amenability of $\mathcal{B}(\ell^p \oplus \ell^q)$ for p eq q, II

Amenability of operator algebras on Banach spaces, II

Volker Runde

Amenability o $\mathcal{K}(E)$

 $\mathcal{B}(E)$ A positive example $\mathcal{B}(\ell^p \oplus \ell^q)$ with $p \neq p$

Proof.

Suppose that p > q. Note that

$$\mathcal{B}(\ell^p \oplus \ell^q) = egin{bmatrix} \mathcal{B}(\ell^p) & \mathcal{B}(\ell^q,\ell^p) \ \mathcal{B}(\ell^p,\ell^q) & \mathcal{K}(\ell^p,\ell^q) & \mathcal{B}(\ell^q) \end{bmatrix}$$

and

$$\mathcal{K}(\ell^p \oplus \ell^q) = \begin{bmatrix} \mathcal{K}(\ell^p) & \mathcal{K}(\ell^q, \ell^p) \\ \mathcal{K}(\ell^p, \ell^q) & \mathcal{K}(\ell^q) \end{bmatrix},$$

so that

$$\mathcal{C}(\ell^p \oplus \ell^q) = egin{bmatrix} \mathcal{C}(\ell^p) & * \ 0 & \mathcal{C}(\ell^q) \end{bmatrix}.$$

Then $I := \begin{bmatrix} 0 & * \\ 0 & 0 \end{bmatrix} \neq \{0\}$ is a complemented ideal of $\mathcal{C}(\ell^p \oplus \ell^q)$, thus is amenable, and thus has a BAI. But $I^2 = \{0\}$...

Non-amenability of $\mathcal{B}(\ell^p)$ for $p=1,2,\infty$

Amenability of operator algebras on Banach spaces, II

 $\mathcal{B}(\ell^p)$

Theorem (C. J. Read, <2006)

 $\mathcal{B}(\ell^1)$ is not amenable.

Progress since

- 1 Simplification of Read's proof by G. Pisier, 2004.
- 2 Simultaneous proof for the non-amenability of $\mathcal{B}(\ell^p)$ for $p = 1, 2, \infty$ by N. Ozawa, 2006.

Question

Is $\mathcal{B}(\ell^p)$ amenable for any $p \in (1, \infty) \setminus \{2\}$?

What if $\mathcal{B}(\ell^p)$ were amenable?

Amenability of operator algebras on Banach spaces, II

Volker Rund

Amenability $\mathcal{K}(E)$

Amenability of $\mathcal{B}(E)$ A positive example $\mathcal{B}(\ell^p \oplus \ell^q)$ with $p \neq p$ $\mathcal{B}(\ell^p)$

Theorem (M. Daws & VR, 2008)

The following are equivalent for a Banach space E and $p \in [1, \infty)$:

- **1** $\mathcal{B}(\ell^p(E))$ is amenable;
- $\geq \ell^{\infty}(\mathcal{B}(\ell^p(E)))$ is amenable.

Idea

- $\bullet \ell^p(\ell^p(E)) \cong \ell^p(E)$
- $\bullet \ \ell^{\infty}(\mathcal{B}(\ell^p(E))) \cong \mathsf{block} \ \mathsf{diagonal} \ \mathsf{matrices} \ \mathsf{in} \ \mathcal{B}(\ell^p(\ell^p(E)))$

Corollary

Suppose that $\mathcal{B}(\ell^p)$ is amenable for some $p \in [1, \infty)$. Then so are the Banach algebras $\ell^{\infty}(\mathcal{B}(\ell^p))$ and $\ell^{\infty}(\mathcal{K}(\ell^p))$.

\mathcal{L}^p -spaces, I

Amenability of operator algebras on Banach spaces, II

Volker Runde

Amenability of $\mathcal{K}(E)$

Amenability of $\mathcal{B}(E)$ A positive example

A positive example $\mathcal{B}(\ell^p \oplus \ell^q)$ with $p \neq p$ $\mathcal{B}(\ell^p)$

Definition (J. Lindenstrauss & A. Pełczyński, 1968)

Let $p\in [1,\infty]$ and let $\lambda\geq 1$. A Banach space E is called a \mathcal{L}^p_λ -space if, for every finite-dimensional subspace X of E, there is a finite-dimensional subspace $Y\supset X$ of E with $d(Y,\ell^p_{\dim Y})\leq \lambda$. We call E an \mathcal{L}^p -space if it is an \mathcal{L}^p_λ -space for some $\lambda>1$.

Examples

- **1** All Banach spaces isomorphic to an L^p -space are \mathcal{L}^p -spaces.
- 2 Let $p \in (1, \infty) \setminus \{2\}$. Then $\ell^p(\ell^2)$ and $\ell^2 \oplus \ell^p$ are \mathcal{L}^p -spaces, but not isomorphic to L^p -spaces.

\mathcal{L}^p -spaces, Π

Amenability of operator algebras on Banach spaces, II

lker Rund

Amenability o $\mathcal{K}(E)$

Amenability of $\mathcal{B}(E)$ A positive example $\mathcal{B}(\ell^p \oplus \ell^q)$

 $\mathcal{B}(\ell^p)$

Theorem (M. Daws & VR, 2008)

Let $p \in [1, \infty]$. Then one of the following is true:

- 1 $\ell^{\infty}(\mathcal{K}(E))$ is amenable for every \mathcal{L}^p -space E with dim $E=\infty$;
- 2 $\ell^{\infty}(\mathcal{K}(E))$ is not amenable for any \mathcal{L}^p -space E with dim $E = \infty$.

Corollary

Suppose that $\mathcal{B}(\ell^p)$ is amenable for some $p \in [1, \infty)$. Then $\ell^{\infty}(\mathcal{K}(E))$ is amenable for every \mathcal{L}^p -space E with dim $E = \infty$.

Question

Is $\ell^{\infty}(\mathcal{K}(\ell^2 \oplus \ell^p))$ amenable for any $p \in (1, \infty) \setminus \{2\}$?

Ozawa's proof revisited, I

Amenability of operator algebras on Banach spaces, II

Volker Runde

Amenability of $\mathcal{K}(E)$

Amenability of $\mathcal{B}(E)$ A positive example

 $\mathcal{B}(\ell^p)$

Definition

A locally compact group G has Kazhdan's property (T) if there are $\epsilon > 0$ and a compact set $K \subset G$ with the following property: for every irreducible, unitary representation π of G on $\mathfrak H$ and for every unit vector $\xi \in \mathfrak H$, there is $k \in K$ such that

$$\|\pi(k)\xi - \xi\| > \epsilon.$$

Examples

- **1** All compact groups have property (T), as does $SL(3, \mathbb{Z})$.
- 2 Amenable groups have property (T) if and only if they are compact.
- ${\bf 3}$ ${\mathbb F}_2$ and ${\sf SL}(2,{\mathbb R})$ are not amenable, but lack property (T).

Ozawa's proof revisited, II

Amenability of operator algebras on Banach spaces, II

Volker Runde

Amenability o $\mathcal{K}(E)$

Amenability o $\mathcal{B}(E)$

A positive example $\mathcal{B}(\ell^p \oplus \ell^q)$ with $p \neq p$ $\mathcal{B}(\ell^p)$

The setup

Since $SL(3,\mathbb{Z})$ has property (T), it is finitely generated by g_1,\ldots,g_m , say.

Write \mathbb{P} for the set of prime numbers.

Let $p \in \mathbb{P}$, and let Λ_p be the projective plane over $\mathbb{Z}/p\mathbb{Z}$.

Then $SL(3,\mathbb{Z})$ acts on Λ_p through matrix multiplication.

This group action induces a unitary representation

$$\pi_p \colon \mathsf{SL}(3,\mathbb{Z}) \to \mathcal{B}(\ell^2(\Lambda_p)).$$

Choose $S_p \subset \Lambda_p$ with $|S_p| = \frac{|\Lambda_p|-1}{2}$ and define a unitary $\pi_p(g_{m+1}) \in \mathcal{B}(\ell^2(\Lambda_p))$ via

$$\pi_p(g_{m+1})e_{\lambda} = \left\{ egin{array}{ll} e_{\lambda}, & \lambda \in \mathcal{S}_p, \ -e_{\lambda}, & \lambda
otin \mathcal{S}_p. \end{array}
ight.$$

Ozawa's proof revisited, III

Amenability of operator algebras on Banach spaces, II

Volker Runde

Amenability o $\mathcal{K}(E)$

Amenability of $\mathcal{B}(E)$ A positive

A positive example $\mathcal{B}(\ell^p \oplus \ell^q)$ with $p \neq p$ $\mathcal{B}(\ell^p)$

Ozawa's Lemma

It is impossible to find, for each $\epsilon>0$, a number $r\in\mathbb{N}$ with the following property: for each $p\in\mathbb{P}$ there are $\xi_{1,p},\eta_{1,p},\ldots,\xi_{r,p},\eta_{r,p}\in\ell^2(\Lambda_p)$ such that $\sum_{k=1}^r\xi_{k,p}\otimes\eta_{k,p}\neq0$ and

$$\left\| \sum_{k=1}^{r} \xi_{j,p} \otimes \eta_{k,p} - (\pi_{p}(g_{j}) \otimes \pi_{p}(g_{j}))(\xi_{k,p} \otimes \eta_{k,p}) \right\|_{\ell^{2}(\Lambda_{p}) \hat{\otimes} \ell^{2}(\Lambda_{p})}$$

$$\leq \epsilon \left\| \sum_{k=1}^{r} \xi_{k,p} \otimes \eta_{k,p} \right\|_{\ell^{2}(\Lambda_{p}) \hat{\otimes} \ell^{2}(\Lambda_{p})} \qquad (j = 1, \dots, m+1).$$

Ozawa's proof revisited, IV

Amenability of operator algebras on Banach spaces, II

Volker Runde

Amenability o $\mathcal{K}(E)$

Amenability of $\mathcal{B}(E)$

A positive example $\mathcal{B}(\ell^p \oplus \ell^q)$ with $p \neq p$ $\mathcal{B}(\ell^p)$

Ingredients

- **11** $SL(3,\mathbb{Z})$ has Kazhdan's property (T).
- 2 The non-commutative Mazur map is uniformly continuous.
- 3 A key inequality. For $p=1,2,\infty$, $N\in\mathbb{N}$, $S\in\mathcal{B}(\ell^p,\ell^p_N)$, and $T\in\mathcal{B}(\ell^{p'},\ell^{p'}_N)$:

$$\sum_{n=1}^{\infty} \|Se_n\|_{\ell_N^2} \|Te_n^*\|_{\ell_N^2} \le N\|S\|\|T\|.$$

(This estimate is no longer true for $p \in (1, \infty) \setminus \{2\}$.)

A non-amenability result for $\ell^{\infty}(\mathcal{K}(\ell^2 \oplus E))$, I

Amenability of operator algebras on Banach spaces, II

Volker Runde

Amenability o $\mathcal{K}(E)$

Amenability o $\mathcal{B}(E)$ A positive
example

A positive example $\mathcal{B}(\ell^p \oplus \ell^q)$ with $p \neq p$ $\mathcal{B}(\ell^p)$

Theorem (VR, 2009)

Let E be a Banach space with a basis $(x_n)_{n=1}^{\infty}$ such that there is C > 0 with

$$\sum_{n=1}^{\infty} \|Sx_n\| \|Tx_n^*\| \le C N \|S\| \|T\|$$

$$(N\in\mathbb{N},\ S\in\mathcal{B}(E,\ell_N^2),\ T\in\mathcal{B}(E^*,\ell_N^2)).$$

Then $\ell^{\infty}(\mathcal{K}(\ell^2 \oplus E))$ is not amenable.

Example

It is easy to see that the following spaces satisfy the hypotheses of the theorem: c_0 , ℓ^1 , and ℓ^2 .

A non-amenability result for $\ell^{\infty}(\mathcal{K}(\ell^2 \oplus E))$, II

Amenability of operator algebras on Banach spaces, II

Volker Rund

Amenability o $\mathcal{K}(E)$

Amenability o $\mathcal{B}(E)$ A positive example

A positive example $\mathcal{B}(\ell^p \oplus \ell^q)$ with $p \neq p$ $\mathcal{B}(\ell^p)$

Lemma

Let $\mathfrak A$ be an amenable Banach algebra, and let $e \in \mathfrak A$ be an idempotent. Then, for any $\epsilon > 0$ and any finite subset F of $e\mathfrak A e$, there are $a_1, b_1, \ldots, a_r, b_r \in \mathfrak A$ such that

$$\sum_{k=1}^{r} a_k b_k = e$$

and

$$\left\| \sum_{k=1}^r x a_k \otimes b_k - a_k \otimes b_k x \right\|_{\mathfrak{A} \hat{\otimes} \mathfrak{A}} < \epsilon \qquad (x \in F).$$

A non-amenability result for $\ell^{\infty}(\mathcal{K}(\ell^2 \oplus E))$, III

Amenability of operator algebras on Banach spaces, II

Volker Runde

Amenability o $\mathcal{K}(E)$

Amenability of $\mathcal{B}(E)$

A positive example $\mathcal{B}(\ell^P \oplus \ell^q)$ with $p \neq p$ $\mathcal{B}(\ell^P)$

Sketched proof of the Theorem

Embed

$$\ell^{\infty}$$
- $\bigoplus_{
ho\in\mathbb{P}}\mathcal{B}(\ell^2(\Lambda_{
ho}))\subset\ell^{\infty}$ - $\bigoplus_{
ho\in\mathbb{P}}\mathcal{K}(\ell^2\oplus E)=:\mathfrak{A}$

as "upper left corners". Let ${\mathfrak A}$ act on

$$\ell^2(\mathbb{P},\ell^2\oplus E)\cong \ell^2(\mathbb{P},\ell^2)\oplus \ell^2(\mathbb{P},E).$$

A non-amenability result for $\ell^{\infty}(\mathcal{K}(\ell^2 \oplus E))$, IV

Amenability of operator algebras on Banach spaces, II

Volker Rund

Amenability of $\mathcal{K}(E)$

Amenability of $\mathcal{B}(E)$

A positive example $\mathcal{B}(\ell^p \oplus \ell^q)$ with $p \neq p$ $\mathcal{B}(\ell^p)$

Sketched proof of the Theorem (continued)

For $p \in \mathbb{P}$, let $P_p \in \mathcal{B}(\ell^2)$ be the canonical projection onto the first $|\Lambda_p|$ coordinates of the p^{th} ℓ^2 -summand of

$$\ell^2(\mathbb{P},\ell^2) \oplus \ell^2(\mathbb{P},E).$$

Set $e = (P_p)_{p \in \mathbb{P}}$. Then e is an idempotent in $\mathfrak A$ with

$$e\mathfrak{A}e=\ell^\infty$$
- $\bigoplus_{p\in\mathbb{P}}\mathcal{B}(\ell^2(\Lambda_p)).$

A non-amenability result for $\ell^{\infty}(\mathcal{K}(\ell^2 \oplus E))$, V

Amenability of operator algebras on Banach spaces, II

Volker Runde

Amenability o $\mathcal{K}(E)$

Amenability o $\mathcal{B}(E)$

A positive example $\mathcal{B}(\ell^p \oplus \ell^q)$ with $p \neq p$ $\mathcal{B}(\ell^p)$

Sketched proof of the Theorem (continued)

Assume towards a contradiction that $\ell^{\infty}(\mathbb{P}, \mathcal{K}(\ell^2 \oplus E))$ is amenable.

Let $\epsilon > 0$ be arbitrary. By the previous Lemma there are thus $a_1, b_1, \ldots, a_r, b_r \in \mathfrak{A}$ such that $\sum_{k=1}^r a_k b_k = e$ and

$$\left\|\sum_{k=1}^{r} x a_k \otimes b_k - a_k \otimes b_k x\right\| < \frac{\epsilon}{(C+1)(m+1)} \qquad (x \in F),$$

where

$$F := \{(\pi_p(g_j))_{p \in \mathbb{P}} : j = 1, \dots, m+1\}.$$

A non-amenability result for $\ell^{\infty}(\mathcal{K}(\ell^2 \oplus E))$, VI

Amenability of operator algebras on Banach spaces, II

Volker Runde

Amenability o $\mathcal{K}(E)$

Amenability of $\mathcal{B}(E)$

A positive example $\mathcal{B}(\ell^p \oplus \ell^q)$ with $p \neq p$ $\mathcal{B}(\ell^p)$

Sketched proof of the Theorem (continued)

For $p,q\in\mathbb{P}$ and $n\in\mathbb{N}$, define

$$T_p(q,n) := \sum_{k=1}^r P_p a_k(e_q \otimes e_n) \otimes P_p^* b_k^*(e_q^* \otimes e_n^*)$$

$$+P_{p}a_{k}(e_{q}\otimes x_{n})\otimes P_{p}^{*}b_{k}^{*}(e_{q}^{*}\otimes x_{n}^{*})$$

Note that

$$T_p(q,n) \in \ell^2(\Lambda_p) \hat{\otimes} \ell^2(\Lambda_p).$$

A non-amenability result for $\ell^{\infty}(\mathcal{K}(\ell^2 \oplus E))$, VII

Amenability of operator algebras on Banach spaces, II

Volker Runde

Amenability o $\mathcal{K}(E)$

Amenability of $\mathcal{B}(E)$ A positive

A positive example $\mathcal{B}(\ell^p \oplus \ell^q)$ with $p \neq p$ $\mathcal{B}(\ell^p)$

Sketched proof of the Theorem (continued)

It follows that

$$\sum_{q\in\mathbb{P}}\sum_{p=1}^{\infty}\|T_p(q,n)-((\pi_p(g_j)\otimes\pi_p(g_j))T_p(q,n)\|\leq \frac{\epsilon}{m+1}|\Lambda_p|$$

for $j=1,\ldots,m+1$ and $p\in\mathbb{P}$ and thus

$$\sum_{q\in\mathbb{P}}\sum_{n=1}^{\infty}\sum_{j=1}^{m+1}\|T_p(q,n)-((\pi_p(g_j)\otimes\pi_p(g_j))T_p(q,n)\|$$

$$\leq \epsilon|\Lambda_p|.$$

A non-amenability result for $\ell^{\infty}(\mathcal{K}(\ell^2 \oplus E))$, VIII

Sketched proof of the Theorem (continued)

Amenability of operator algebras on Banach spaces, II

 $\mathcal{B}(\ell^p)$

On the other hand:

$$\begin{split} & \sum_{q \in \mathbb{P}} \sum_{n=1}^{\infty} \|T_{p}(q, n)\| \\ & \geq \sum_{n=1}^{\infty} \left| \sum_{k=1}^{r} \langle P_{p} a_{k,p} e_{n}, P_{p}^{*} b_{k,p}^{*} e_{n}^{*} \rangle + \sum_{k=1}^{r} \langle P_{p} a_{k,p} x_{n}, P_{p}^{*} b_{k,p}^{*} x_{n}^{*} \rangle \right| \\ & = \operatorname{Tr} \sum_{k=1}^{r} b_{k,p} P_{p} a_{k,p} \\ & = \operatorname{Tr} \sum_{k=1}^{r} P_{p} a_{k,p} b_{k,p} \end{split}$$

$$=\operatorname{Tr} P_p = |\Lambda_p|.$$

A non-amenability result for $\ell^{\infty}(\mathcal{K}(\ell^2 \oplus E))$, IX

Amenability of operator algebras on Banach spaces, II

Volker Rund

Amenability o $\mathcal{K}(E)$

Amenability of $\mathcal{B}(E)$

A positive example $\mathcal{B}(\ell^p \oplus \ell^q)$ with $p \neq p$ $\mathcal{B}(\ell^p)$

Sketched proof of the Theorem (conclusion)

It follows that, for each $p\in\mathbb{P}$, there are $q\in\mathbb{P}$ and $n\in\mathbb{N}$ with $T_p(q,n)\neq 0$ and

$$\|T_p(q,n)-((\pi_p(g_j)\otimes\pi_p(g_j))T_p(q,n)\|\leq\epsilon\|T_p(q,n)\|$$

for j = 1, ..., m + 1, which violates Ozawa's Lemma.

p-summing operators

Amenability of operator algebras on Banach spaces, II

 $\mathcal{B}(\ell^p)$

Definition

Let $p \in [1, \infty)$, and E and F be Banach spaces. A linear map $T: E \rightarrow F$ is called *p*-summing if the amplification $id_{\ell P} \otimes T : \ell^p \otimes E \to \ell^p \otimes F$ extends to a bounded map from $\ell^p \check{\otimes} E$ to $\ell^p(F)$. The operator norm of $id_{\ell^p \otimes T} : \ell^p \check{\otimes} E \to \ell^p(F)$ is called the p-summing norm of T and denoted by $\pi_p(T)$.

Theorem (Y. Gordon, 1969)

$$\pi_p(\mathsf{id}_{\ell_N^2}) \sim N^{\frac{1}{2}}$$

for all $p \in [1, \infty)$.

A Lemma

Amenability of operator algebras on Banach spaces, II

Volker Runde

Amenability o $\mathcal{K}(E)$

Amenability of $\mathcal{B}(E)$ A positive

A positive example $\mathcal{B}(\ell^p \oplus \ell^q)$ with $p \neq p$ $\mathcal{B}(\ell^p)$

Lemma

Let $p \in (1, \infty)$. Then there is C > 0 such that

$$\sum_{n=0}^{\infty} \|Se_n\|_{\ell_N^2} \|Te_n^*\|_{\ell_N^2} \le C N \|S\| \|T\|$$

$$(N \in \mathbb{N}, S \in \mathcal{B}(\ell^p, \ell^2_N), T \in \mathcal{B}(\ell^{p'}, \ell^2_N)).$$

Proof of the Lemma

Amenability of operator algebras on Banach spaces, II

Volker Runde

Amenability o $\mathcal{K}(E)$

Amenability of $\mathcal{B}(E)$ A positive example

A positive example $\mathcal{B}(\ell^p \oplus \ell^q)$ with $p \neq p$ $\mathcal{B}(\ell^p)$

Proof.

Identify algebraically

$$\mathcal{B}(\ell^p,\ell_N^2) = \ell^{p'} \check{\otimes} \ell_N^2 = \ell^{p'} \otimes \ell_N^2 = \ell^{p'}(\ell_N^2), \quad \text{and} \quad \mathcal{B}(\ell^{p'},\ell_N^2) = \ell^p \check{\otimes} \ell_N^2 = \ell^p \otimes \ell_N^2 = \ell^p(\ell_N^2).$$

Note that

$$\begin{split} \sum_{n=1}^{\infty} \|Se_n\|_{\ell_N^2} \|Te_n^*\|_{\ell_N^2} &\leq \|S\|_{\ell^{p'}(\ell_N^2)} \|T\|_{\ell^p(\ell_N^2)}, \qquad \text{by H\"older}, \\ &\leq \pi_{p'}(\mathrm{id}_{\ell_N^2}) \pi_p(\mathrm{id}_{\ell_N^2}) \|S\| \|T\| \\ &\leq C \, N \|S\| \|T\|, \qquad \text{by Gordon}. \end{split}$$

Non-amenability of $\mathcal{B}(\ell^p)$ for $p\in(1,\infty)$

Amenability of operator algebras on Banach spaces, II

Volker Runde

 $\mathcal{K}(E)$

Amenability of $\mathcal{B}(E)$ A positive example $\mathcal{B}(\ell^p \oplus \ell^q)$

 $\mathcal{B}(\ell^p)$

Corollary

Let $p \in (1, \infty)$ and let E be an \mathcal{L}^p -space with dim $E = \infty$. Then $\ell^{\infty}(\mathcal{K}(E))$ is not amenable.

Theorem (VR, 2009)

Let $p \in (1, \infty)$, and let E be an \mathcal{L}^p -space. Then $\mathcal{B}(\ell^p(E))$ is not amenable.

Proof.

If $\mathcal{B}(\ell^p(E))$ is amenable, then so is $\ell^{\infty}(\mathcal{B}(\ell^p(E)))$ as is $\ell^{\infty}(\mathcal{K}(\ell^p(E)))$. Impossible!

Corollary

Let $p \in (1, \infty)$. Then $\mathcal{B}(\ell^p)$ and $\mathcal{B}(L^p[0, 1])$ are not amenable.