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The finite-dimensional case

Example

Let E be a Banach space with n := dim E <∞ so that

B(E ) = K(E ) ∼= Mn.

Let G be a finite subgroup of invertible elements of Mn such
that span G = Mn.
Set

d :=
1

|G |
∑
g∈G

g ⊗ g−1.

Then
a · d = d · a (a ∈ Mn)

and ∆d = In.
Hence, K(E ) = B(E ) is amenable.
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Some more results

Theorem (B. E. Johnson, 1972)

K(E ) is amenable if E = `p with 1 < p <∞ or E = C(T).

Amenable Banach algebras must have bounded approximate
identities. . .

Theorem (N. Grønbæk & G. A. Willis, 1994)

Suppose that E has the approximation property. Then K(E )
has a bounded approximate identity if and only if E ∗ has the
bounded approximation property.

Example

Let E = `2⊗̂`2. Then E has the approximation property, but
E ∗ = B(`2) doesn’t. Hence, K(E ) does not have a bounded
approximate identity and is thus not amenable.
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Finite, biorthogonal systems

Definition

A finite, biorthogonal system is a set
{(xj , φk) : j , k = 1, . . . , n} ⊂ E × E ∗ such that

〈xj , φk〉 = δj ,k (j , k = 1, . . . , n).

Remark

If {(xj , φk) : j , k = 1, . . . , n} is a finite, biorthogonal system,
then

θ : Mn → F(E ), [αj ,k ] 7→
n∑

j ,k=1

αj ,kxj ⊗ φk

is an algebra homomorphism.
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Property (A)

Definition (N. Grønbæk, BEJ, & G. A. Willis, 1994)

We say that E has property (A) if there is a net
({(xj ,λ, φk,λ) : j , k = 1, . . . , nλ})λ of finite biorthogonal systems
with corresponding homomorphisms θλ : Mnλ

→ F(E ) with the
following properties:

1 θλ(Inλ
)→ idE uniformly on compacts;

2 θλ(Inλ
)∗ → idE∗ uniformly on compacts;

3 for each λ, there is a finite group Gλ of invertible elements
of Mnλ

spanning Mnλ
such that

sup
λ

max
g∈Gλ

‖θλ(g)‖ <∞.
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Property (A) and the amenability of K(E )

The idea behind (A)

Use the diagonals of the Mnλ
’s to construct an approximate

diagonal for K(E ).

Theorem (N. Grønbæk, BEJ, & G. A. Willis, 1994)

Suppose that E has property (A). Then K(E ) is amenable.

Examples

1 Lp(µ) has property (A) for all 1 ≤ p <∞ and all µ.

2 C(K ) has property (A) for each compact K , as does
therefore L∞(µ) for each µ.
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The “scalar plus compact” problem

Question

Is there an infinite-dimensional Banach space E such that
B(E ) = K(E ) + C idE ?

Theorem (S. A. Argyros & R. G. Haydon, 2009)

There is a Banach space E such that B(E ) = K(E ) + C idE

and E ∗ = `1.

Theorem (N. Grønbæk, BEJ, & G. A. Willis, 1994)

Suppose that E ∗ has property (A). Then so has E .

Corollary

There is an infinite-dimensional Banach space E such that
B(E ) is amenable.
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example
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with p 6= p

B(`p )

Non-amenability of B(`p ⊕ `q) for p 6= q, I

Theorem (G. A. Willis, unpublished)

Let p, q ∈ (1,∞) be such that p 6= q. Then B(`p ⊕ `q) is not
amenable.

Ingredients

1 A quotient of an amenable Banach algebra is again
amenable.

2 Every complemented closed ideal of an amenable Banach
algebra is amenable.

3 Every amenable Banach algebra has a bounded
approximate identity.

4 Pitt’s Theorem. If p > q, then B(`p, `q) = K(`p, `q).
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Proof.

Suppose that p > q. Note that

B(`p ⊕ `q) =

[
B(`p) B(`q, `p)

B(`q)

]
and

K(`p ⊕ `q) =

[
K(`p) K(`q, `p)
K(`p, `q) K(`q)

]
,

so that

C(`p ⊕ `q) =

[
C(`p) ∗

0 C(`q)

]
.

Then I :=

[
0 ∗
0 0

]
6= {0} is a complemented ideal of C(`p ⊕ `q),

thus is amenable, and thus has a BAI. But I 2 = {0}. . .
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Progress since

1 Simplification of Read’s proof by G. Pisier, 2004.

2 Simultaneous proof for the non-amenability of B(`p) for
p = 1, 2,∞ by N. Ozawa, 2006.

Question

Is B(`p) amenable for any p ∈ (1,∞) \ {2}?
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What if B(`p) were amenable?

Theorem (M. Daws & VR, 2008)

The following are equivalent for a Banach space E and
p ∈ [1,∞):

1 B(`p(E )) is amenable;

2 `∞(B(`p(E ))) is amenable.

Idea

`p(`p(E )) ∼= `p(E )

`∞(B(`p(E ))) ∼= block diagonal matrices in B(`p(`p(E )))

Corollary

Suppose that B(`p) is amenable for some p ∈ [1,∞). Then so
are the Banach algebras `∞(B(`p)) and `∞(K(`p)).
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Lp-spaces, I

Definition (J. Lindenstrauss & A. Pe lczyński, 1968)

Let p ∈ [1,∞] and let λ ≥ 1. A Banach space E is called a
Lp
λ-space if, for every finite-dimensional subspace X of E , there

is a finite-dimensional subspace Y ⊃ X of E with
d(Y , `pdim Y ) ≤ λ. We call E an Lp-space if it is an Lp

λ-space
for some λ ≥ 1.

Examples

1 All Banach spaces isomorphic to an Lp-space are
Lp-spaces.

2 Let p ∈ (1,∞) \ {2}. Then `p(`2) and `2 ⊕ `p are
Lp-spaces, but not isomorphic to Lp-spaces.
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λ-space
for some λ ≥ 1.

Examples

1 All Banach spaces isomorphic to an Lp-space are
Lp-spaces.

2 Let p ∈ (1,∞) \ {2}. Then `p(`2) and `2 ⊕ `p are
Lp-spaces, but not isomorphic to Lp-spaces.
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Lp-spaces, II

Theorem (M. Daws & VR, 2008)

Let p ∈ [1,∞]. Then one of the following is true:

1 `∞(K(E )) is amenable for every Lp-space E with
dim E =∞;

2 `∞(K(E )) is not amenable for any Lp-space E with
dim E =∞.

Corollary

Suppose that B(`p) is amenable for some p ∈ [1,∞). Then
`∞(K(E )) is amenable for every Lp-space E with dim E =∞.

Question

Is `∞(K(`2 ⊕ `p)) amenable for any p ∈ (1,∞) \ {2}?
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Ozawa’s proof revisited, I

Definition

A locally compact group G has Kazhdan’s property (T ) if there
are ε > 0 and a compact set K ⊂ G with the following
property: for every irreducible, unitary representation π of G on
H and for every unit vector ξ ∈ H, there is k ∈ K such that

‖π(k)ξ − ξ‖ > ε.

Examples

1 All compact groups have property (T ), as does SL(3,Z).

2 Amenable groups have property (T ) if and only if they are
compact.

3 F2 and SL(2,R) are not amenable, but lack property (T ).
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1 All compact groups have property (T ), as does SL(3,Z).

2 Amenable groups have property (T ) if and only if they are
compact.

3 F2 and SL(2,R) are not amenable, but lack property (T ).



Amenability of
operator

algebras on
Banach

spaces, II

Volker Runde

Amenability of
K(E)

Amenability of
B(E)

A positive
example

B(`p ⊕ `q )
with p 6= p

B(`p )

Ozawa’s proof revisited, I

Definition

A locally compact group G has Kazhdan’s property (T ) if there
are ε > 0 and a compact set K ⊂ G with the following
property: for every irreducible, unitary representation π of G on
H and for every unit vector ξ ∈ H, there is k ∈ K such that

‖π(k)ξ − ξ‖ > ε.

Examples

1 All compact groups have property (T ), as does SL(3,Z).

2 Amenable groups have property (T ) if and only if they are
compact.

3 F2 and SL(2,R) are not amenable,

but lack property (T ).



Amenability of
operator

algebras on
Banach

spaces, II

Volker Runde

Amenability of
K(E)

Amenability of
B(E)

A positive
example

B(`p ⊕ `q )
with p 6= p

B(`p )

Ozawa’s proof revisited, I

Definition

A locally compact group G has Kazhdan’s property (T ) if there
are ε > 0 and a compact set K ⊂ G with the following
property: for every irreducible, unitary representation π of G on
H and for every unit vector ξ ∈ H, there is k ∈ K such that

‖π(k)ξ − ξ‖ > ε.

Examples

1 All compact groups have property (T ), as does SL(3,Z).

2 Amenable groups have property (T ) if and only if they are
compact.

3 F2 and SL(2,R) are not amenable, but lack property (T ).



Amenability of
operator

algebras on
Banach

spaces, II

Volker Runde

Amenability of
K(E)

Amenability of
B(E)

A positive
example

B(`p ⊕ `q )
with p 6= p

B(`p )

Ozawa’s proof revisited, II

The setup

Since SL(3,Z) has property (T ), it is finitely generated by
g1, . . . , gm, say.
Write P for the set of prime numbers.
Let p ∈ P, and let Λp be the projective plane over Z/pZ.
Then SL(3,Z) acts on Λp through matrix multiplication.
This group action induces a unitary representation
πp : SL(3,Z)→ B(`2(Λp)).

Choose Sp ⊂ Λp with |Sp| =
|Λp |−1

2 and define a unitary
πp(gm+1) ∈ B(`2(Λp)) via

πp(gm+1)eλ =

{
eλ, λ ∈ Sp,
−eλ, λ /∈ Sp.
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Ozawa’s proof revisited, III

Ozawa’s Lemma

It is impossible to find, for each ε > 0, a number r ∈ N with
the following property: for each p ∈ P there are
ξ1,p, η1,p, . . . , ξr ,p, ηr ,p ∈ `2(Λp) such that

∑r
k=1 ξk,p ⊗ ηk,p 6= 0

and∥∥∥∥∥
r∑

k=1

ξj ,p ⊗ ηk,p − (πp(gj)⊗ πp(gj))(ξk,p ⊗ ηk,p)

∥∥∥∥∥
`2(Λp)⊗̂`2(Λp)

≤ ε

∥∥∥∥∥
r∑

k=1

ξk,p ⊗ ηk,p

∥∥∥∥∥
`2(Λp)⊗̂`2(Λp)

(j = 1, . . . ,m + 1).
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Ozawa’s proof revisited, IV

Ingredients

1 SL(3,Z) has Kazhdan’s property (T ).

2 The non-commutative Mazur map is uniformly continuous.

3 A key inequality. For p = 1, 2,∞, N ∈ N, S ∈ B(`p, `pN),

and T ∈ B(`p
′
, `p
′

N ):

∞∑
n=1

‖Sen‖`2
N
‖Te∗n‖`2

N
≤ N‖S‖‖T‖.

(This estimate is no longer true for p ∈ (1,∞) \ {2}.)
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Example
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of the theorem: c0, `1, and `2.



Amenability of
operator

algebras on
Banach

spaces, II

Volker Runde

Amenability of
K(E)

Amenability of
B(E)

A positive
example

B(`p ⊕ `q )
with p 6= p

B(`p )

A non-amenability result for `∞(K(`2 ⊕ E )), I

Theorem (VR, 2009)

Let E be a Banach space with a basis (xn)∞n=1 such that there
is C > 0 with

∞∑
n=1

‖Sxn‖‖Tx∗n‖ ≤ C N‖S‖‖T‖

(N ∈ N, S ∈ B(E , `2
N), T ∈ B(E ∗, `2

N)).

Then `∞(K(`2 ⊕ E )) is not amenable.

Example

It is easy to see that the following spaces satisfy the hypotheses
of the theorem: c0, `1, and `2.



Amenability of
operator

algebras on
Banach

spaces, II

Volker Runde

Amenability of
K(E)

Amenability of
B(E)

A positive
example

B(`p ⊕ `q )
with p 6= p

B(`p )

A non-amenability result for `∞(K(`2 ⊕ E )), I

Theorem (VR, 2009)

Let E be a Banach space with a basis (xn)∞n=1

such that there
is C > 0 with

∞∑
n=1

‖Sxn‖‖Tx∗n‖ ≤ C N‖S‖‖T‖

(N ∈ N, S ∈ B(E , `2
N), T ∈ B(E ∗, `2

N)).

Then `∞(K(`2 ⊕ E )) is not amenable.

Example

It is easy to see that the following spaces satisfy the hypotheses
of the theorem: c0, `1, and `2.



Amenability of
operator

algebras on
Banach

spaces, II

Volker Runde

Amenability of
K(E)

Amenability of
B(E)

A positive
example

B(`p ⊕ `q )
with p 6= p

B(`p )

A non-amenability result for `∞(K(`2 ⊕ E )), I

Theorem (VR, 2009)

Let E be a Banach space with a basis (xn)∞n=1 such that there
is C > 0

with

∞∑
n=1

‖Sxn‖‖Tx∗n‖ ≤ C N‖S‖‖T‖

(N ∈ N, S ∈ B(E , `2
N), T ∈ B(E ∗, `2

N)).

Then `∞(K(`2 ⊕ E )) is not amenable.

Example

It is easy to see that the following spaces satisfy the hypotheses
of the theorem: c0, `1, and `2.



Amenability of
operator

algebras on
Banach

spaces, II

Volker Runde

Amenability of
K(E)

Amenability of
B(E)

A positive
example

B(`p ⊕ `q )
with p 6= p

B(`p )

A non-amenability result for `∞(K(`2 ⊕ E )), I

Theorem (VR, 2009)

Let E be a Banach space with a basis (xn)∞n=1 such that there
is C > 0 with

∞∑
n=1

‖Sxn‖‖Tx∗n‖ ≤ C N‖S‖‖T‖

(N ∈ N, S ∈ B(E , `2
N), T ∈ B(E ∗, `2

N)).

Then `∞(K(`2 ⊕ E )) is not amenable.

Example

It is easy to see that the following spaces satisfy the hypotheses
of the theorem: c0, `1, and `2.



Amenability of
operator

algebras on
Banach

spaces, II

Volker Runde

Amenability of
K(E)

Amenability of
B(E)

A positive
example

B(`p ⊕ `q )
with p 6= p

B(`p )

A non-amenability result for `∞(K(`2 ⊕ E )), I

Theorem (VR, 2009)

Let E be a Banach space with a basis (xn)∞n=1 such that there
is C > 0 with

∞∑
n=1

‖Sxn‖‖Tx∗n‖ ≤ C N‖S‖‖T‖

(N ∈ N, S ∈ B(E , `2
N), T ∈ B(E ∗, `2

N)).

Then `∞(K(`2 ⊕ E )) is not amenable.

Example

It is easy to see that the following spaces satisfy the hypotheses
of the theorem: c0, `1, and `2.



Amenability of
operator

algebras on
Banach

spaces, II

Volker Runde

Amenability of
K(E)

Amenability of
B(E)

A positive
example

B(`p ⊕ `q )
with p 6= p

B(`p )

A non-amenability result for `∞(K(`2 ⊕ E )), I

Theorem (VR, 2009)

Let E be a Banach space with a basis (xn)∞n=1 such that there
is C > 0 with

∞∑
n=1

‖Sxn‖‖Tx∗n‖ ≤ C N‖S‖‖T‖

(N ∈ N, S ∈ B(E , `2
N), T ∈ B(E ∗, `2

N)).

Then `∞(K(`2 ⊕ E )) is not amenable.

Example

It is easy to see that the following spaces satisfy the hypotheses
of the theorem: c0, `1, and `2.



Amenability of
operator

algebras on
Banach

spaces, II

Volker Runde

Amenability of
K(E)

Amenability of
B(E)

A positive
example

B(`p ⊕ `q )
with p 6= p

B(`p )

A non-amenability result for `∞(K(`2 ⊕ E )), I

Theorem (VR, 2009)

Let E be a Banach space with a basis (xn)∞n=1 such that there
is C > 0 with

∞∑
n=1

‖Sxn‖‖Tx∗n‖ ≤ C N‖S‖‖T‖

(N ∈ N, S ∈ B(E , `2
N), T ∈ B(E ∗, `2

N)).

Then `∞(K(`2 ⊕ E )) is not amenable.

Example

It is easy to see that the following spaces satisfy the hypotheses
of the theorem:

c0, `1, and `2.



Amenability of
operator

algebras on
Banach

spaces, II

Volker Runde

Amenability of
K(E)

Amenability of
B(E)

A positive
example

B(`p ⊕ `q )
with p 6= p

B(`p )

A non-amenability result for `∞(K(`2 ⊕ E )), I

Theorem (VR, 2009)

Let E be a Banach space with a basis (xn)∞n=1 such that there
is C > 0 with

∞∑
n=1

‖Sxn‖‖Tx∗n‖ ≤ C N‖S‖‖T‖

(N ∈ N, S ∈ B(E , `2
N), T ∈ B(E ∗, `2

N)).

Then `∞(K(`2 ⊕ E )) is not amenable.

Example

It is easy to see that the following spaces satisfy the hypotheses
of the theorem: c0,

`1, and `2.



Amenability of
operator

algebras on
Banach

spaces, II

Volker Runde

Amenability of
K(E)

Amenability of
B(E)

A positive
example

B(`p ⊕ `q )
with p 6= p

B(`p )

A non-amenability result for `∞(K(`2 ⊕ E )), I

Theorem (VR, 2009)

Let E be a Banach space with a basis (xn)∞n=1 such that there
is C > 0 with

∞∑
n=1

‖Sxn‖‖Tx∗n‖ ≤ C N‖S‖‖T‖

(N ∈ N, S ∈ B(E , `2
N), T ∈ B(E ∗, `2

N)).

Then `∞(K(`2 ⊕ E )) is not amenable.

Example

It is easy to see that the following spaces satisfy the hypotheses
of the theorem: c0, `1,

and `2.



Amenability of
operator

algebras on
Banach

spaces, II

Volker Runde

Amenability of
K(E)

Amenability of
B(E)

A positive
example

B(`p ⊕ `q )
with p 6= p

B(`p )

A non-amenability result for `∞(K(`2 ⊕ E )), I

Theorem (VR, 2009)

Let E be a Banach space with a basis (xn)∞n=1 such that there
is C > 0 with

∞∑
n=1

‖Sxn‖‖Tx∗n‖ ≤ C N‖S‖‖T‖

(N ∈ N, S ∈ B(E , `2
N), T ∈ B(E ∗, `2

N)).

Then `∞(K(`2 ⊕ E )) is not amenable.

Example

It is easy to see that the following spaces satisfy the hypotheses
of the theorem: c0, `1, and `2.



Amenability of
operator

algebras on
Banach

spaces, II

Volker Runde

Amenability of
K(E)

Amenability of
B(E)

A positive
example

B(`p ⊕ `q )
with p 6= p

B(`p )

A non-amenability result for `∞(K(`2 ⊕ E )), II

Lemma

Let A be an amenable Banach algebra, and let e ∈ A be an
idempotent. Then, for any ε > 0 and any finite subset F of
eAe, there are a1, b1, . . . , ar , br ∈ A such that

r∑
k=1

akbk = e

and ∥∥∥∥∥
r∑

k=1

xak ⊗ bk − ak ⊗ bkx

∥∥∥∥∥
A⊗̂A

< ε (x ∈ F ).
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Sketched proof of the Theorem

Embed

`∞-
⊕
p∈P
B(`2(Λp)) ⊂ `∞-

⊕
p∈P
K(`2 ⊕ E ) =: A

as “upper left corners”. Let A act on

`2(P, `2 ⊕ E ) ∼= `2(P, `2)⊕ `2(P,E ).
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Sketched proof of the Theorem (continued)

For p ∈ P, let Pp ∈ B(`2) be the canonical projection onto the
first |Λp| coordinates of the pth `2-summand of

`2(P, `2)⊕ `2(P,E ).

Set e = (Pp)p∈P. Then e is an idempotent in A with

eAe = `∞-
⊕
p∈P
B(`2(Λp)).
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Sketched proof of the Theorem (continued)

Assume towards a contradiction that `∞(P,K(`2 ⊕ E )) is
amenable.
Let ε > 0 be arbitrary. By the previous Lemma there are thus
a1, b1, . . . , ar , br ∈ A such that

∑r
k=1 akbk = e and∥∥∥∥∥

r∑
k=1

xak ⊗ bk − ak ⊗ bkx

∥∥∥∥∥ < ε

(C + 1)(m + 1)
(x ∈ F ),

where
F := {(πp(gj))p∈P : j = 1, . . . ,m + 1} .
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Assume towards a contradiction that `∞(P,K(`2 ⊕ E )) is
amenable.
Let ε > 0 be arbitrary. By the previous Lemma there are thus
a1, b1, . . . , ar , br ∈ A such that

∑r
k=1 akbk = e and∥∥∥∥∥

r∑
k=1

xak ⊗ bk − ak ⊗ bkx

∥∥∥∥∥ < ε

(C + 1)(m + 1)
(x ∈ F ),

where
F := {(πp(gj))p∈P : j = 1, . . . ,m + 1} .



Amenability of
operator

algebras on
Banach

spaces, II

Volker Runde

Amenability of
K(E)

Amenability of
B(E)

A positive
example

B(`p ⊕ `q )
with p 6= p

B(`p )

A non-amenability result for `∞(K(`2 ⊕ E )), VI

Sketched proof of the Theorem (continued)

For p, q ∈ P and n ∈ N, define

Tp(q, n) :=
r∑

k=1

Ppak(eq ⊗ en)⊗ P∗pb∗k(e∗q ⊗ e∗n)

+ Ppak(eq ⊗ xn)⊗ P∗pb∗k(e∗q ⊗ x∗n )

Note that
Tp(q, n) ∈ `2(Λp)⊗̂`2(Λp).
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Sketched proof of the Theorem (continued)

It follows that∑
q∈P

∞∑
n=1

‖Tp(q, n)− ((πp(gj)⊗ πp(gj))Tp(q, n)‖ ≤ ε

m + 1
|Λp|

for j = 1, . . . ,m + 1 and p ∈ P and thus

∑
q∈P

∞∑
n=1

m+1∑
j=1

‖Tp(q, n)− ((πp(gj)⊗ πp(gj))Tp(q, n)‖

≤ ε|Λp|.
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Sketched proof of the Theorem (continued)

On the other hand:∑
q∈P

∞∑
n=1

‖Tp(q, n)‖

≥
∞∑

n=1

∣∣∣∣∣
r∑

k=1

〈Ppak,pen,P
∗
pb∗k,pe∗n〉+

r∑
k=1

〈Ppak,pxn,P
∗
pb∗k,px∗n 〉

∣∣∣∣∣

= Tr
r∑

k=1

bk,pPpak,p

= Tr
r∑

k=1

Ppak,pbk,p

= Tr Pp = |Λp|.
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Sketched proof of the Theorem (conclusion)

It follows that, for each p ∈ P, there are q ∈ P and n ∈ N with
Tp(q, n) 6= 0 and

‖Tp(q, n)− ((πp(gj)⊗ πp(gj))Tp(q, n)‖ ≤ ε‖Tp(q, n)‖

for j = 1, . . . ,m + 1, which violates Ozawa’s Lemma.
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p-summing operators

Definition

Let p ∈ [1,∞), and E and F be Banach spaces. A linear map
T : E → F is called p-summing if the amplification
id`p ⊗ T : `p ⊗ E → `p ⊗ F extends to a bounded map from
`p⊗̌E to `p(F ). The operator norm of id`p⊗T : `p⊗̌E → `p(F )
is called the p-summing norm of T and denoted by πp(T ).

Theorem (Y. Gordon, 1969)

πp(id`2
N

) ∼ N
1
2

for all p ∈ [1,∞).
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A Lemma

Lemma

Let p ∈ (1,∞). Then there is C > 0 such that

∞∑
n=1

‖Sen‖`2
N
‖Te∗n‖`2

N
≤ C N‖S‖‖T‖

(N ∈ N, S ∈ B(`p, `2
N), T ∈ B(`p

′
, `2

N)).
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Proof of the Lemma

Proof.

Identify

algebraically

B(`p, `2
N) = `p

′⊗̌`2
N = `p

′ ⊗ `2
N = `p

′
(`2

N), and

B(`p
′
, `2

N) = `p⊗̌`2
N = `p ⊗ `2

N = `p(`2
N).

Note that

∞∑
n=1

‖Sen‖`2
N
‖Te∗n‖`2

N

≤ ‖S‖`p′ (`2
N)‖T‖`p(`2

N), by Hölder,

≤ πp′(id`2
N

)πp(id`2
N

)‖S‖‖T‖

≤ C N‖S‖‖T‖, by Gordon.
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≤ πp′(id`2
N

)πp(id`2
N

)‖S‖‖T‖

≤ C N‖S‖‖T‖, by Gordon.



Amenability of
operator

algebras on
Banach

spaces, II

Volker Runde

Amenability of
K(E)

Amenability of
B(E)

A positive
example

B(`p ⊕ `q )
with p 6= p

B(`p )

Proof of the Lemma

Proof.

Identify algebraically

B(`p, `2
N) = `p

′⊗̌`2
N = `p

′ ⊗ `2
N = `p

′
(`2

N),

and

B(`p
′
, `2

N) = `p⊗̌`2
N = `p ⊗ `2

N = `p(`2
N).

Note that

∞∑
n=1

‖Sen‖`2
N
‖Te∗n‖`2

N

≤ ‖S‖`p′ (`2
N)‖T‖`p(`2

N), by Hölder,
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Non-amenability of B(`p) for p ∈ (1,∞)

Corollary

Let p ∈ (1,∞) and let E be an Lp-space with dim E =∞.
Then `∞(K(E )) is not amenable.

Theorem (VR, 2009)

Let p ∈ (1,∞), and let E be an Lp-space. Then B(`p(E )) is
not amenable.

Proof.

If B(`p(E )) is amenable, then so is `∞(B(`p(E ))) as is
`∞(K(`p(E ))). Impossible!

Corollary

Let p ∈ (1,∞). Then B(`p) and B(Lp[0, 1]) are not amenable.
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