Amenability of operator algebras on Banach spaces, II

Volker Runde

Amenability o $\mathcal{K}(E)$

Amenability of $\mathcal{B}(E)$ A positive example $\mathcal{B}(\ell^p \oplus \ell^q)$ with $p \neq p$ $\mathcal{B}(\ell^p)$

Amenability of operator algebras on Banach spaces, II

Volker Runde

University of Alberta

NBFAS, Leeds, June 1, 2010

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Amenability of operator algebras on Banach spaces, II
Volker Runde
Amenability of $\mathcal{K}(E)$

▲□▶ ▲圖▶ ▲圖▶ ▲圖▶ = ● ● ●

Amenability of operator algebras on Banach spaces, II

Volker Runde

Amenability of $\mathcal{K}(E)$

Amenability o $\mathcal{B}(E)$ A positive example $\mathcal{B}(\ell^p \oplus \ell^q)$ with $p \neq p$ $\mathcal{B}(\ell^p)$

Example

▲□> ★@> ★ E> ★ E> E のQ(

Amenability of operator algebras on Banach spaces, II

Volker Runde

Amenability of $\mathcal{K}(E)$

Amenability o $\mathcal{B}(\mathcal{E})$ A positive example $\mathcal{B}(\ell^{p} \oplus \ell^{q})$ with $p \neq p$ $\mathcal{B}(\ell^{p})$

Example

Let E be a Banach space

| ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ○ ○ ○

Amenability of operator algebras on Banach spaces, II

Volker Runde

Amenability of $\mathcal{K}(E)$

```
Amenability o

\mathcal{B}(\mathcal{E})

A positive

example

\mathcal{B}(\ell^{p} \oplus \ell^{q})

with p \neq p

\mathcal{B}(\ell^{p})
```

Example

Let *E* be a Banach space with $n := \dim E < \infty$

ヘロト 人間 とくほ とくほ とう

а.

Amenability of operator algebras on Banach spaces, II

Volker Runde

Amenability of $\mathcal{K}(E)$

```
Amenability o

\mathcal{B}(\mathcal{E})

A positive

example

\mathcal{B}(\ell^{p} \oplus \ell^{q})

with p \neq p

\mathcal{B}(\ell^{p})
```

Example

Let *E* be a Banach space with $n := \dim E < \infty$ so that

$$\mathcal{B}(E) = \mathcal{K}(E) \cong M_n$$

ヘロト 人間 とくほ とくほ とう

Amenability of operator algebras on Banach spaces, II

Example

Volker Runde

Amenability of $\mathcal{K}(E)$

Amenability of $\mathcal{B}(\mathcal{E})$ A positive example $\mathcal{B}(\ell^P \oplus \ell^q)$ with $p \neq p$ $\mathcal{B}(\ell^p)$ Let E be a Banach space with $n:=\dim E<\infty$ so that $\mathcal{B}(E)=\mathcal{K}(E)\cong M_n.$

Let G be a finite subgroup of invertible elements of M_n

= nac

Amenability of operator algebras on Banach spaces, II

Volker Runde

Amenability of $\mathcal{K}(E)$

```
Amenability o

\mathcal{B}(E)

A positive

example

\mathcal{B}(\ell^{p} \oplus \ell^{q})

with p \neq p

\mathcal{B}(\ell^{p})
```

Example

Let *E* be a Banach space with $n := \dim E < \infty$ so that

$$\mathcal{B}(E) = \mathcal{K}(E) \cong M_n.$$

Let G be a finite subgroup of invertible elements of M_n such that span $G = M_n$.

Amenability of operator algebras on Banach spaces, II

Volker Runde

Amenability of $\mathcal{K}(E)$

Amenability o $\mathcal{B}(E)$ A positive example $\mathcal{B}(\ell^p \oplus \ell^q)$ with $p \neq p$ $\mathcal{B}(\ell^p)$

Example

Let *E* be a Banach space with $n := \dim E < \infty$ so that

$$\mathcal{B}(E) = \mathcal{K}(E) \cong M_n$$

Let G be a finite subgroup of invertible elements of M_n such that span $G = M_n$. Set

$$\mathsf{d} := rac{1}{|G|} \sum_{g \in G} g \otimes g^{-1}$$

Amenability of operator algebras on Banach spaces, II

Volker Runde

Amenability of $\mathcal{K}(E)$

Amenability o $\mathcal{B}(E)$ A positive example $\mathcal{B}(\ell^p \oplus \ell^q)$ with $p \neq p$ $\mathcal{B}(\ell^p)$

Example

Let *E* be a Banach space with $n := \dim E < \infty$ so that

$$\mathcal{B}(E) = \mathcal{K}(E) \cong M_n.$$

Let G be a finite subgroup of invertible elements of M_n such that span $G = M_n$.

$$\mathsf{d} := rac{1}{|\mathcal{G}|} \sum_{g \in \mathcal{G}} g \otimes g^{-1}$$

Then

Set

 $a \cdot \mathbf{d} = \mathbf{d} \cdot a \qquad (a \in M_n)$

ヘロト 人間 ト 人 ヨ ト 人 ヨ ト

Amenability of operator algebras on Banach spaces, II

Volker Runde

Amenability of $\mathcal{K}(E)$

Amenability o $\mathcal{B}(E)$ A positive example $\mathcal{B}(\ell^p \oplus \ell^q)$ with $p \neq p$ $\mathcal{B}(\ell^p)$

Example

Let *E* be a Banach space with $n := \dim E < \infty$ so that

$$\mathcal{B}(E) = \mathcal{K}(E) \cong M_n.$$

Let G be a finite subgroup of invertible elements of M_n such that span $G = M_n$.

$$\mathsf{d} := rac{1}{|\mathcal{G}|} \sum_{g \in \mathcal{G}} g \otimes g^{-1}$$

Then

Set

 $a \cdot \mathbf{d} = \mathbf{d} \cdot a$ $(a \in M_n)$

3

and $\Delta \mathbf{d} = I_n$.

Amenability of operator algebras on Banach spaces, II

Volker Runde

Amenability of $\mathcal{K}(E)$

Amenability o $\mathcal{B}(\mathcal{E})$ A positive example $\mathcal{B}(\ell^p \oplus \ell^q)$ with $p \neq p$ $\mathcal{B}(\ell^p)$

Example

Let *E* be a Banach space with $n := \dim E < \infty$ so that

$$\mathcal{B}(E) = \mathcal{K}(E) \cong M_n.$$

Let G be a finite subgroup of invertible elements of M_n such that span $G = M_n$.

$$\mathsf{d} := rac{1}{|\mathcal{G}|} \sum_{g \in \mathcal{G}} g \otimes g^{-1}$$

Then

Set

$$a \cdot \mathbf{d} = \mathbf{d} \cdot a$$
 $(a \in M_n)$

ヘロト 人間 ト 人 ヨ ト 人 ヨ ト

3

and $\Delta \mathbf{d} = I_n$. Hence, $\mathcal{K}(E) = \mathcal{B}(E)$ is amenable.

Amenability of operator algebras on Banach spaces, II
Volker Runde
Amenability of $\mathcal{K}(E)$ Amenability of

<□ > < @ > < E > < E > E のQ @

Amenability of operator algebras on Banach spaces, II

Volker Runde

Amenability of $\mathcal{K}(E)$

Amenability of $\mathcal{B}(\mathcal{E})$ A positive example $\mathcal{B}(\ell^p \oplus \ell^q)$ with $p \neq p$ $\mathcal{B}(\ell^p)$

Theorem (B. E. Johnson, 1972)

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Amenability of operator algebras on Banach spaces, II

Volker Runde

Amenability of $\mathcal{K}(E)$

```
Amenability of

\mathcal{B}(\mathcal{E})

A positive

example

\mathcal{B}(\ell^p \oplus \ell^q)

with p \neq p

\mathcal{B}(\ell^p)
```

Theorem (B. E. Johnson, 1972)

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

 $\mathcal{K}(E)$ is amenable if

Amenability of operator algebras on Banach spaces, II

Volker Runde

Amenability of $\mathcal{K}(E)$

```
Amenability of

\mathcal{B}(\mathcal{E})

A positive

example

\mathcal{B}(\ell^p \oplus \ell^q)

with p \neq p

\mathcal{B}(\ell^p)
```

Theorem (B. E. Johnson, 1972)

 $\mathcal{K}(E)$ is amenable if $E = \ell^p$ with 1

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

Amenability of operator algebras on Banach spaces, II

Volker Runde

Amenability of $\mathcal{K}(E)$

```
Amenability of

\mathcal{B}(\mathcal{E})

A positive

example

\mathcal{B}(\ell^{p} \oplus \ell^{q})

with p \neq p

\mathcal{B}(\ell^{p})
```

Theorem (B. E. Johnson, 1972)

 $\mathcal{K}(E)$ is amenable if $E = \ell^p$ with $1 or <math>E = \mathcal{C}(\mathbb{T})$.

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

Amenability of operator algebras on Banach spaces, II

Volker Runde

Amenability of $\mathcal{K}(E)$

Amenability of $\mathcal{B}(E)$ A positive example $\mathcal{B}(\ell^p \oplus \ell^q)$ with $p \neq p$ $\mathcal{B}(\ell^p)$

Theorem (B. E. Johnson, 1972)

 $\mathcal{K}(E)$ is amenable if $E = \ell^p$ with $1 or <math>E = \mathcal{C}(\mathbb{T})$.

Amenable Banach algebras must have bounded approximate identities...

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Amenability of operator algebras on Banach spaces, II

Volker Runde

Amenability of $\mathcal{K}(E)$

Amenability o $\mathcal{B}(E)$ A positive example $\mathcal{B}(\ell^p \oplus \ell^q)$ with $p \neq p$ $\mathcal{B}(\ell^p)$

Theorem (B. E. Johnson, 1972)

 $\mathcal{K}(E)$ is amenable if $E = \ell^p$ with $1 or <math>E = \mathcal{C}(\mathbb{T})$.

Amenable Banach algebras must have bounded approximate identities...

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Theorem (N. Grønbæk & G. A. Willis, 1994)

Amenability of operator algebras on Banach spaces, II

Volker Runde

Amenability of $\mathcal{K}(E)$

Amenability o $\mathcal{B}(E)$ A positive example $\mathcal{B}(\ell^p \oplus \ell^q)$ with $p \neq p$ $\mathcal{B}(\ell^p)$

Theorem (B. E. Johnson, 1972)

 $\mathcal{K}(E)$ is amenable if $E = \ell^p$ with $1 or <math>E = \mathcal{C}(\mathbb{T})$.

Amenable Banach algebras must have bounded approximate identities...

Theorem (N. Grønbæk & G. A. Willis, 1994)

Suppose that E has the approximation property.

Amenability of operator algebras on Banach spaces, II

Volker Runde

Amenability of $\mathcal{K}(E)$

Amenability of $\mathcal{B}(E)$ A positive example $\mathcal{B}(\ell^p \oplus \ell^q)$ with $p \neq p$ $\mathcal{B}(\ell^p)$

Theorem (B. E. Johnson, 1972)

 $\mathcal{K}(E)$ is amenable if $E = \ell^p$ with $1 or <math>E = \mathcal{C}(\mathbb{T})$.

Amenable Banach algebras must have bounded approximate identities...

Theorem (N. Grønbæk & G. A. Willis, 1994)

Suppose that E has the approximation property. Then $\mathcal{K}(E)$ has a bounded approximate identity

Amenability of operator algebras on Banach spaces, II

Volker Runde

Amenability of $\mathcal{K}(E)$

Amenability o $\mathcal{B}(E)$ A positive example $\mathcal{B}(\ell^p \oplus \ell^q)$ with $p \neq p$ $\mathcal{B}(\ell^p)$

Theorem (B. E. Johnson, 1972)

 $\mathcal{K}(E)$ is amenable if $E = \ell^p$ with $1 or <math>E = \mathcal{C}(\mathbb{T})$.

Amenable Banach algebras must have bounded approximate identities...

Theorem (N. Grønbæk & G. A. Willis, 1994)

Suppose that E has the approximation property. Then $\mathcal{K}(E)$ has a bounded approximate identity if and only if E^* has the bounded approximation property.

Amenability of operator algebras on Banach spaces, II

Volker Runde

Amenability of $\mathcal{K}(E)$

Amenability o $\mathcal{B}(E)$ A positive example $\mathcal{B}(\ell^p \oplus \ell^q)$ with $p \neq p$ $\mathcal{B}(\ell^p)$

Theorem (B. E. Johnson, 1972)

 $\mathcal{K}(E)$ is amenable if $E = \ell^p$ with $1 or <math>E = \mathcal{C}(\mathbb{T})$.

Amenable Banach algebras must have bounded approximate identities...

Theorem (N. Grønbæk & G. A. Willis, 1994)

Suppose that E has the approximation property. Then $\mathcal{K}(E)$ has a bounded approximate identity if and only if E^* has the bounded approximation property.

Example

Amenability of operator algebras on Banach spaces, II

Volker Runde

Amenability of $\mathcal{K}(E)$

Amenability o $\mathcal{B}(E)$ A positive example $\mathcal{B}(\ell^p \oplus \ell^q)$ with $p \neq p$ $\mathcal{B}(\ell^p)$

Theorem (B. E. Johnson, 1972)

 $\mathcal{K}(E)$ is amenable if $E = \ell^p$ with $1 or <math>E = \mathcal{C}(\mathbb{T})$.

Amenable Banach algebras must have bounded approximate identities...

Theorem (N. Grønbæk & G. A. Willis, 1994)

Suppose that E has the approximation property. Then $\mathcal{K}(E)$ has a bounded approximate identity if and only if E^* has the bounded approximation property.

Example

Let $E = \ell^2 \hat{\otimes} \ell^2$.

Amenability of operator algebras on Banach spaces, II

Volker Runde

Amenability of $\mathcal{K}(E)$

Amenability o $\mathcal{B}(E)$ A positive example $\mathcal{B}(\ell^p \oplus \ell^q)$ with $p \neq p$ $\mathcal{B}(\ell^p)$

Theorem (B. E. Johnson, 1972)

 $\mathcal{K}(E)$ is amenable if $E = \ell^p$ with $1 or <math>E = \mathcal{C}(\mathbb{T})$.

Amenable Banach algebras must have bounded approximate identities...

Theorem (N. Grønbæk & G. A. Willis, 1994)

Suppose that E has the approximation property. Then $\mathcal{K}(E)$ has a bounded approximate identity if and only if E^* has the bounded approximation property.

Example

Let $E = \ell^2 \hat{\otimes} \ell^2$. Then *E* has the approximation property,

Amenability of operator algebras on Banach spaces, II

Volker Runde

Amenability of $\mathcal{K}(E)$

Amenability o $\mathcal{B}(E)$ A positive example $\mathcal{B}(\ell^p \oplus \ell^q)$ with $p \neq p$ $\mathcal{B}(\ell^p)$

Theorem (B. E. Johnson, 1972)

 $\mathcal{K}(E)$ is amenable if $E = \ell^p$ with $1 or <math>E = \mathcal{C}(\mathbb{T})$.

Amenable Banach algebras must have bounded approximate identities...

Theorem (N. Grønbæk & G. A. Willis, 1994)

Suppose that E has the approximation property. Then $\mathcal{K}(E)$ has a bounded approximate identity if and only if E^* has the bounded approximation property.

Example

Let $E = \ell^2 \hat{\otimes} \ell^2$. Then *E* has the approximation property, but $E^* = \mathcal{B}(\ell^2)$ doesn't.

Amenability of operator algebras on Banach spaces, II

Volker Runde

Amenability of $\mathcal{K}(E)$

Amenability o $\mathcal{B}(E)$ A positive example $\mathcal{B}(\ell^p \oplus \ell^q)$ with $p \neq p$ $\mathcal{B}(\ell^p)$

Theorem (B. E. Johnson, 1972)

 $\mathcal{K}(E)$ is amenable if $E = \ell^p$ with $1 or <math>E = \mathcal{C}(\mathbb{T})$.

Amenable Banach algebras must have bounded approximate identities...

Theorem (N. Grønbæk & G. A. Willis, 1994)

Suppose that E has the approximation property. Then $\mathcal{K}(E)$ has a bounded approximate identity if and only if E^* has the bounded approximation property.

Example

Let $E = \ell^2 \hat{\otimes} \ell^2$. Then *E* has the approximation property, but $E^* = \mathcal{B}(\ell^2)$ doesn't. Hence, $\mathcal{K}(E)$ does not have a bounded approximate identity

Amenability of operator algebras on Banach spaces, II

Volker Runde

Amenability of $\mathcal{K}(E)$

Amenability o $\mathcal{B}(E)$ A positive example $\mathcal{B}(\ell^p \oplus \ell^q)$ with $p \neq p$ $\mathcal{B}(\ell^p)$

Theorem (B. E. Johnson, 1972)

 $\mathcal{K}(E)$ is amenable if $E = \ell^p$ with $1 or <math>E = \mathcal{C}(\mathbb{T})$.

Amenable Banach algebras must have bounded approximate identities...

Theorem (N. Grønbæk & G. A. Willis, 1994)

Suppose that E has the approximation property. Then $\mathcal{K}(E)$ has a bounded approximate identity if and only if E^* has the bounded approximation property.

Example

Let $E = \ell^2 \hat{\otimes} \ell^2$. Then *E* has the approximation property, but $E^* = \mathcal{B}(\ell^2)$ doesn't. Hence, $\mathcal{K}(E)$ does not have a bounded approximate identity and is thus not amenable.

Amenability of operator algebras on Banach spaces, II
Volker Runde Amenability of $\mathcal{K}(E)$

Amenability of operator algebras on Banach spaces, II	Definition
Amenability of $\mathcal{K}(E)$	

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Amenability of operator algebras on Banach spaces, II

Volker Runde

Amenability of $\mathcal{K}(E)$

Amenability o $\mathcal{B}(\mathcal{E})$ A positive example $\mathcal{B}(\ell^{p} \oplus \ell^{q})$ with $p \neq p$ $\mathcal{B}(\ell^{p})$

Definition

A finite, biorthogonal system

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 = のへで

Amenability of operator algebras on Banach spaces, II

Volker Runde

Amenability of $\mathcal{K}(E)$

Amenability o $\mathcal{B}(E)$ A positive example $\mathcal{B}(\ell^{p} \oplus \ell^{q})$ with $p \neq p$ $\mathcal{B}(\ell^{p})$

Definition

A finite, biorthogonal system is a set $\{(x_j, \phi_k) : j, k = 1, ..., n\} \subset E \times E^*$

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Amenability of operator algebras on Banach spaces, II

Definition

Volker Runde

Amenability of $\mathcal{K}(E)$

Amenability o $\mathcal{B}(E)$ A positive example $\mathcal{B}(\ell^P \oplus \ell^q)$ with $p \neq p$ $\mathcal{B}(\ell^P)$

A finite, biorthogonal system is a set $\{(x_j, \phi_k) : j, k = 1, \dots, n\} \subset E \times E^*$ such that

$$\langle x_j, \phi_k \rangle = \delta_{j,k}$$
 $(j, k = 1, \dots, n).$

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Amenability of operator algebras on Banach spaces, II

Volker Runde

Amenability of $\mathcal{K}(E)$

Amenability of $\mathcal{B}(\mathcal{E})$ A positive example $\mathcal{B}(\ell^p \oplus \ell^q)$ with $p \neq p$ $\mathcal{B}(\ell^p)$

A finite, biorthogonal system is a set $\{(x_j, \phi_k) : j, k = 1, \dots, n\} \subset E \times E^*$ such that

$$\langle x_j, \phi_k \rangle = \delta_{j,k}$$
 $(j, k = 1, \dots, n).$

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Remark

Definition

Amenability of operator algebras on Banach spaces, II

Volker Runde

Amenability of $\mathcal{K}(E)$

Amenability o $\mathcal{B}(\mathcal{E})$ A positive example $\mathcal{B}(\ell^p \oplus \ell^q)$ with $p \neq p$ $\mathcal{B}(\ell^p)$

A finite, biorthogonal system is a set $\{(x_j, \phi_k) : j, k = 1, ..., n\} \subset E \times E^*$ such that

$$\langle x_j, \phi_k \rangle = \delta_{j,k}$$
 $(j, k = 1, \dots, n).$

Remark

Definition

If $\{(x_j, \phi_k) : j, k = 1, \dots, n\}$ is a finite, biorthogonal system,

▲□▶ ▲圖▶ ▲厘▶ ▲厘▶ 厘 の��

Amenability of operator algebras on Banach spaces, II

Volker Runde

Amenability of $\mathcal{K}(E)$

Amenability o $\mathcal{B}(E)$ A positive example $\mathcal{B}(\ell^p \oplus \ell^q)$ with $p \neq p$ $\mathcal{B}(\ell^p)$

A finite, biorthogonal system is a set $\{(x_j, \phi_k) : j, k = 1, \dots, n\} \subset E \times E^*$ such that

$$\langle x_j, \phi_k \rangle = \delta_{j,k}$$
 $(j, k = 1, \dots, n).$

Remark

Definition

If $\{(x_j, \phi_k) : j, k = 1, ..., n\}$ is a finite, biorthogonal system, then

$$\theta: M_n \to \mathcal{F}(E), \quad [\alpha_{j,k}] \mapsto \sum_{j,k=1}^n \alpha_{j,k} x_j \otimes \phi_k$$

▲□▶ ▲□▶ ▲臣▶ ▲臣▶ = 臣 = のへで

Finite, biorthogonal systems

Amenability of operator algebras on Banach spaces, II

Volker Runde

Amenability of $\mathcal{K}(E)$

Amenability o $\mathcal{B}(E)$ A positive example $\mathcal{B}(\ell^p \oplus \ell^q)$ with $p \neq p$ $\mathcal{B}(\ell^p)$

A finite, biorthogonal system is a set $\{(x_j, \phi_k) : j, k = 1, \dots, n\} \subset E \times E^*$ such that

$$\langle x_j, \phi_k \rangle = \delta_{j,k}$$
 $(j, k = 1, \dots, n).$

Remark

Definition

If $\{(x_j, \phi_k) : j, k = 1, ..., n\}$ is a finite, biorthogonal system, then

$$\theta: M_n \to \mathcal{F}(E), \quad [\alpha_{j,k}] \mapsto \sum_{j,k=1}^n \alpha_{j,k} x_j \otimes \phi_k$$

is an algebra homomorphism.

	Property (A)
Amenability of operator algebras on Banach spaces, II	
Volker Runde	
Amenability of $\mathcal{K}(E)$	
Amenability of $\mathcal{B}(E)$ A positive example $\mathcal{B}(\ell^P \oplus \ell^q)$ with $p \neq p$ $\mathcal{B}(\ell^P)$	

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへの

Amenability of operator algebras on Banach spaces, II

Volker Runde

Amenability of $\mathcal{K}(E)$

Amenability o $\mathcal{B}(E)$ A positive example $\mathcal{B}(\ell^p \oplus \ell^q)$ with $p \neq p$ $\mathcal{B}(\ell^p)$

Definition (N. Grønbæk, BEJ, & G. A. Willis, 1994)

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 = のへで

Amenability of operator algebras on Banach spaces, II

Volker Runde

Amenability of $\mathcal{K}(E)$

```
Amenability of

\mathcal{B}(\mathcal{E})

A positive

example

\mathcal{B}(\ell^p \oplus \ell^q)

with p \neq p

\mathcal{B}(\ell^p)
```

Definition (N. Grønbæk, BEJ, & G. A. Willis, 1994)

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

We say that E has property (A) if

Amenability of operator algebras on Banach spaces, II

Volker Runde

Amenability of $\mathcal{K}(E)$

Amenability of $\mathcal{B}(E)$ A positive example $\mathcal{B}(\ell^P \oplus \ell^q)$ with $p \neq p$ $\mathcal{B}(\ell^p)$

Definition (N. Grønbæk, BEJ, & G. A. Willis, 1994)

We say that *E* has property (A) if there is a net $(\{(x_{j,\lambda}, \phi_{k,\lambda}) : j, k = 1, ..., n_{\lambda}\})_{\lambda}$ of finite biorthogonal systems

Amenability of operator algebras on Banach spaces, II

Volker Runde

Amenability of $\mathcal{K}(E)$

Amenability of $\mathcal{B}(E)$ A positive example $\mathcal{B}(\ell^p \oplus \ell^q)$ with $p \neq p$ $\mathcal{B}(\ell^p)$

Definition (N. Grønbæk, BEJ, & G. A. Willis, 1994)

We say that *E* has property (A) if there is a net $(\{(x_{j,\lambda}, \phi_{k,\lambda}) : j, k = 1, ..., n_{\lambda}\})_{\lambda}$ of finite biorthogonal systems with corresponding homomorphisms $\theta_{\lambda} : M_{n_{\lambda}} \to \mathcal{F}(E)$

Amenability of operator algebras on Banach spaces, II

Volker Runde

Amenability of $\mathcal{K}(E)$

Amenability of $\mathcal{B}(E)$ A positive example $\mathcal{B}(\ell^p \oplus \ell^q)$ with $p \neq p$ $\mathcal{B}(\ell^p)$

Definition (N. Grønbæk, BEJ, & G. A. Willis, 1994)

We say that *E* has property (A) if there is a net $(\{(x_{j,\lambda}, \phi_{k,\lambda}) : j, k = 1, ..., n_{\lambda}\})_{\lambda}$ of finite biorthogonal systems with corresponding homomorphisms $\theta_{\lambda} : M_{n_{\lambda}} \to \mathcal{F}(E)$ with the following properties:

Amenability of operator algebras on Banach spaces, II

Volker Runde

Amenability of $\mathcal{K}(E)$

Amenability of $\mathcal{B}(E)$ A positive example $\mathcal{B}(\ell^{p} \oplus \ell^{q})$ with $p \neq p$ $\mathcal{B}(\ell^{p})$

Definition (N. Grønbæk, BEJ, & G. A. Willis, 1994)

We say that *E* has property (A) if there is a net $(\{(x_{j,\lambda}, \phi_{k,\lambda}) : j, k = 1, ..., n_{\lambda}\})_{\lambda}$ of finite biorthogonal systems with corresponding homomorphisms $\theta_{\lambda} : M_{n_{\lambda}} \to \mathcal{F}(E)$ with the following properties:

▲ロト ▲帰ト ▲ヨト ▲ヨト - ヨ - の々ぐ

1 $\theta_{\lambda}(I_{n_{\lambda}}) \rightarrow id_E$ uniformly on compacts;

Amenability of operator algebras on Banach spaces, II

Volker Runde

Amenability of $\mathcal{K}(E)$

Amenability o $\mathcal{B}(E)$ A positive example $\mathcal{B}(\ell^{p} \oplus \ell^{q})$ with $p \neq p$ $\mathcal{B}(\ell^{p})$

Definition (N. Grønbæk, BEJ, & G. A. Willis, 1994)

We say that *E* has property (A) if there is a net $(\{(x_{j,\lambda}, \phi_{k,\lambda}) : j, k = 1, ..., n_{\lambda}\})_{\lambda}$ of finite biorthogonal systems with corresponding homomorphisms $\theta_{\lambda} : M_{n_{\lambda}} \to \mathcal{F}(E)$ with the following properties:

▲ロト ▲帰ト ▲ヨト ▲ヨト - ヨ - の々ぐ

1 $\theta_{\lambda}(I_{n_{\lambda}}) \rightarrow id_E$ uniformly on compacts;

2 $\theta_{\lambda}(I_{n_{\lambda}})^* \rightarrow \text{id}_{E^*}$ uniformly on compacts;

Amenability of operator algebras on Banach spaces, II

Volker Runde

Amenability of $\mathcal{K}(E)$

Amenability of $\mathcal{B}(E)$ A positive example $\mathcal{B}(\ell^{p} \oplus \ell^{q})$ with $p \neq p$ $\mathcal{B}(\ell^{p})$

Definition (N. Grønbæk, BEJ, & G. A. Willis, 1994)

We say that *E* has property (A) if there is a net $(\{(x_{j,\lambda}, \phi_{k,\lambda}) : j, k = 1, ..., n_{\lambda}\})_{\lambda}$ of finite biorthogonal systems with corresponding homomorphisms $\theta_{\lambda} : M_{n_{\lambda}} \to \mathcal{F}(E)$ with the following properties:

- 1 $\theta_{\lambda}(I_{n_{\lambda}}) \rightarrow id_E$ uniformly on compacts;
- 2 $\theta_{\lambda}(I_{n_{\lambda}})^* \rightarrow id_{E^*}$ uniformly on compacts;
- 3 for each λ ,

Amenability of operator algebras on Banach spaces, II

Volker Runde

Amenability of $\mathcal{K}(E)$

Amenability of $\mathcal{B}(E)$ A positive example $\mathcal{B}(\ell^{p} \oplus \ell^{q})$ with $p \neq p$ $\mathcal{B}(\ell^{p})$

Definition (N. Grønbæk, BEJ, & G. A. Willis, 1994)

We say that *E* has property (A) if there is a net $(\{(x_{j,\lambda}, \phi_{k,\lambda}) : j, k = 1, ..., n_{\lambda}\})_{\lambda}$ of finite biorthogonal systems with corresponding homomorphisms $\theta_{\lambda} : M_{n_{\lambda}} \to \mathcal{F}(E)$ with the following properties:

- 1 $\theta_{\lambda}(I_{n_{\lambda}}) \rightarrow id_E$ uniformly on compacts;
- 2 $\theta_{\lambda}(I_{n_{\lambda}})^* \rightarrow id_{E^*}$ uniformly on compacts;
- **3** for each λ , there is a finite group G_{λ}

Amenability of operator algebras on Banach spaces, II

Volker Runde

Amenability of $\mathcal{K}(E)$

Amenability of $\mathcal{B}(E)$ A positive example $\mathcal{B}(\ell^{p} \oplus \ell^{q})$ with $p \neq p$ $\mathcal{B}(\ell^{p})$

Definition (N. Grønbæk, BEJ, & G. A. Willis, 1994)

We say that *E* has property (A) if there is a net $(\{(x_{j,\lambda}, \phi_{k,\lambda}) : j, k = 1, ..., n_{\lambda}\})_{\lambda}$ of finite biorthogonal systems with corresponding homomorphisms $\theta_{\lambda} : M_{n_{\lambda}} \to \mathcal{F}(E)$ with the following properties:

- 1 $\theta_{\lambda}(I_{n_{\lambda}}) \rightarrow id_E$ uniformly on compacts;
- 2 $\theta_{\lambda}(I_{n_{\lambda}})^* \rightarrow id_{E^*}$ uniformly on compacts;
- 3 for each λ , there is a finite group G_{λ} of invertible elements of $M_{n_{\lambda}}$

Amenability of operator algebras on Banach spaces, II

Volker Runde

Amenability of $\mathcal{K}(E)$

Amenability of $\mathcal{B}(E)$ A positive example $\mathcal{B}(\ell^{p} \oplus \ell^{q})$ with $p \neq p$ $\mathcal{B}(\ell^{p})$

Definition (N. Grønbæk, BEJ, & G. A. Willis, 1994)

We say that *E* has property (A) if there is a net $(\{(x_{j,\lambda}, \phi_{k,\lambda}) : j, k = 1, ..., n_{\lambda}\})_{\lambda}$ of finite biorthogonal systems with corresponding homomorphisms $\theta_{\lambda} : M_{n_{\lambda}} \to \mathcal{F}(E)$ with the following properties:

- 1 $\theta_{\lambda}(I_{n_{\lambda}}) \rightarrow id_E$ uniformly on compacts;
- 2 $\theta_{\lambda}(I_{n_{\lambda}})^* \rightarrow id_{E^*}$ uniformly on compacts;
- 3 for each λ , there is a finite group G_{λ} of invertible elements of $M_{n_{\lambda}}$ spanning $M_{n_{\lambda}}$

Amenability of operator algebras on Banach spaces, II

Volker Runde

Amenability of $\mathcal{K}(E)$

Amenability of $\mathcal{B}(E)$ A positive example $\mathcal{B}(\ell^{p} \oplus \ell^{q})$ with $p \neq p$ $\mathcal{B}(\ell^{p})$

Definition (N. Grønbæk, BEJ, & G. A. Willis, 1994)

We say that *E* has property (A) if there is a net $(\{(x_{j,\lambda}, \phi_{k,\lambda}) : j, k = 1, ..., n_{\lambda}\})_{\lambda}$ of finite biorthogonal systems with corresponding homomorphisms $\theta_{\lambda} : M_{n_{\lambda}} \to \mathcal{F}(E)$ with the following properties:

- 1 $\theta_{\lambda}(I_{n_{\lambda}}) \rightarrow id_E$ uniformly on compacts;
- 2 $\theta_{\lambda}(I_{n_{\lambda}})^* \rightarrow id_{E^*}$ uniformly on compacts;
- 3 for each λ , there is a finite group G_{λ} of invertible elements of $M_{n_{\lambda}}$ spanning $M_{n_{\lambda}}$ such that

```
\sup_{\lambda} \max_{g \in \mathcal{G}_{\lambda}} \| 	heta_{\lambda}(g) \| < \infty.
```

Amenability of operator algebras on Banach spaces, II
Volker Runde Amenability of
$\mathcal{K}(E)$ Amenability of $\mathcal{B}(E)$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

Amenability of operator algebras on Banach spaces, II

Volker Runde

Amenability of $\mathcal{K}(E)$

Amenability of $\mathcal{B}(\mathcal{E})$ A positive example $\mathcal{B}(\ell^{p} \oplus \ell^{q})$ with $p \neq p$ $\mathcal{B}(\ell^{p})$

The idea behind (\mathbb{A})

▲ロト ▲帰ト ▲ヨト ▲ヨト - ヨ - の々ぐ

Amenability of operator algebras on Banach spaces, II

Volker Runde

Amenability of $\mathcal{K}(E)$

```
Amenability of

\mathcal{B}(\mathcal{E})

A positive

example

\mathcal{B}(\ell^{p} \oplus \ell^{q})

with p \neq p

\mathcal{B}(\ell^{p})
```

The idea behind (\mathbb{A})

Use the diagonals of the $M_{n_{\lambda}}$'s

Amenability of operator algebras on Banach spaces, II

Volker Runde

Amenability of $\mathcal{K}(E)$

```
Amenability of

\mathcal{B}(E)

A positive

example

\mathcal{B}(\ell^{p} \oplus \ell^{q})

with p \neq p

\mathcal{B}(\ell^{p})
```

The idea behind (\mathbb{A})

Use the diagonals of the $M_{n_{\lambda}}$'s to construct an approximate diagonal for $\mathcal{K}(E)$.

Amenability of operator algebras on Banach spaces, II

Volker Runde

Amenability of $\mathcal{K}(E)$

```
Amenability of

\mathcal{B}(\mathcal{E})

A positive

example

\mathcal{B}(\ell^p \oplus \ell^q)

with p \neq p

\mathcal{B}(\ell^p)
```

The idea behind (\mathbb{A})

Use the diagonals of the $M_{n_{\lambda}}$'s to construct an approximate diagonal for $\mathcal{K}(E)$.

▲ロト ▲帰ト ▲ヨト ▲ヨト - ヨ - の々ぐ

Theorem (N. Grønbæk, BEJ, & G. A. Willis, 1994)

Amenability of operator algebras on Banach spaces, II

Volker Runde

Amenability of $\mathcal{K}(E)$

Amenability of $\mathcal{B}(\mathcal{E})$ A positive example $\mathcal{B}(\ell^p \oplus \ell^q)$ with $p \neq p$ $\mathcal{B}(\ell^p)$

The idea behind (\mathbb{A})

Use the diagonals of the $M_{n_{\lambda}}$'s to construct an approximate diagonal for $\mathcal{K}(E)$.

Theorem (N. Grønbæk, BEJ, & G. A. Willis, 1994)

Suppose that E has property (A).

Amenability of operator algebras on Banach spaces, II

Volker Runde

Amenability of $\mathcal{K}(E)$

Amenability of $\mathcal{B}(\mathcal{E})$ A positive example $\mathcal{B}(\ell^p \oplus \ell^q)$ with $p \neq p$ $\mathcal{B}(\ell^p)$

The idea behind (\mathbb{A})

Use the diagonals of the $M_{n_{\lambda}}$'s to construct an approximate diagonal for $\mathcal{K}(E)$.

Theorem (N. Grønbæk, BEJ, & G. A. Willis, 1994)

Suppose that E has property (A). Then $\mathcal{K}(E)$ is amenable.

Amenability of operator algebras on Banach spaces, II

Volker Runde

Amenability of $\mathcal{K}(E)$

Amenability of $\mathcal{B}(\mathcal{E})$ A positive example $\mathcal{B}(\ell^p \oplus \ell^q)$ with $p \neq p$ $\mathcal{B}(\ell^p)$

The idea behind (\mathbb{A})

Use the diagonals of the $M_{n_{\lambda}}$'s to construct an approximate diagonal for $\mathcal{K}(E)$.

Theorem (N. Grønbæk, BEJ, & G. A. Willis, 1994)

Suppose that E has property (A). Then $\mathcal{K}(E)$ is amenable.

Examples

Amenability of operator algebras on Banach spaces, II

Volker Runde

Amenability of $\mathcal{K}(E)$

Amenability o $\mathcal{B}(\mathcal{E})$ A positive example $\mathcal{B}(\ell^p \oplus \ell^q)$ with $p \neq p$ $\mathcal{B}(\ell^p)$

The idea behind (\mathbb{A})

Use the diagonals of the $M_{n_{\lambda}}$'s to construct an approximate diagonal for $\mathcal{K}(E)$.

Theorem (N. Grønbæk, BEJ, & G. A. Willis, 1994)

Suppose that E has property (A). Then $\mathcal{K}(E)$ is amenable.

Examples

1 $L^{p}(\mu)$ has property (A)

Amenability of operator algebras on Banach spaces, II

Volker Runde

Amenability of $\mathcal{K}(E)$

Amenability o $\mathcal{B}(\mathcal{E})$ A positive example $\mathcal{B}(\ell^p \oplus \ell^q)$ with $p \neq p$ $\mathcal{B}(\ell^p)$

The idea behind (\mathbb{A})

Use the diagonals of the $M_{n_{\lambda}}$'s to construct an approximate diagonal for $\mathcal{K}(E)$.

Theorem (N. Grønbæk, BEJ, & G. A. Willis, 1994)

Suppose that E has property (A). Then $\mathcal{K}(E)$ is amenable.

Examples

1 $L^p(\mu)$ has property (A) for all $1 \le p < \infty$

Amenability of operator algebras on Banach spaces, II

Volker Runde

Amenability of $\mathcal{K}(E)$

Amenability o $\mathcal{B}(\mathcal{E})$ A positive example $\mathcal{B}(\ell^p \oplus \ell^q)$ with $p \neq p$ $\mathcal{B}(\ell^p)$

The idea behind (\mathbb{A})

Use the diagonals of the $M_{n_{\lambda}}$'s to construct an approximate diagonal for $\mathcal{K}(E)$.

Theorem (N. Grønbæk, BEJ, & G. A. Willis, 1994)

Suppose that E has property (A). Then $\mathcal{K}(E)$ is amenable.

Examples

1 $L^p(\mu)$ has property (A) for all $1 \le p < \infty$ and all μ .

Amenability of operator algebras on Banach spaces, II

Volker Runde

Amenability of $\mathcal{K}(E)$

Amenability o $\mathcal{B}(\mathcal{E})$ A positive example $\mathcal{B}(\ell^p \oplus \ell^q)$ with $p \neq p$ $\mathcal{B}(\ell^p)$

The idea behind (\mathbb{A})

Use the diagonals of the $M_{n_{\lambda}}$'s to construct an approximate diagonal for $\mathcal{K}(E)$.

Theorem (N. Grønbæk, BEJ, & G. A. Willis, 1994)

Suppose that E has property (A). Then $\mathcal{K}(E)$ is amenable.

Examples

1 $L^{p}(\mu)$ has property (A) for all $1 \le p < \infty$ and all μ . 2 C(K) has property (A)

Amenability of operator algebras on Banach spaces, II

Volker Runde

Amenability of $\mathcal{K}(E)$

Amenability of $\mathcal{B}(\mathcal{E})$ A positive example $\mathcal{B}(\ell^p \oplus \ell^q)$ with $p \neq p$ $\mathcal{B}(\ell^p)$

The idea behind (\mathbb{A})

Use the diagonals of the $M_{n_{\lambda}}$'s to construct an approximate diagonal for $\mathcal{K}(E)$.

Theorem (N. Grønbæk, BEJ, & G. A. Willis, 1994)

Suppose that E has property (A). Then $\mathcal{K}(E)$ is amenable.

Examples

1 $L^{p}(\mu)$ has property (A) for all $1 \le p < \infty$ and all μ . **2** C(K) has property (A) for each compact K,

Amenability of operator algebras on Banach spaces, II

Volker Runde

Amenability of $\mathcal{K}(E)$

Amenability of $\mathcal{B}(\mathcal{E})$ A positive example $\mathcal{B}(\ell^p \oplus \ell^q)$ with $p \neq p$ $\mathcal{B}(\ell^p)$

The idea behind (\mathbb{A})

Use the diagonals of the $M_{n_{\lambda}}$'s to construct an approximate diagonal for $\mathcal{K}(E)$.

Theorem (N. Grønbæk, BEJ, & G. A. Willis, 1994)

Suppose that E has property (A). Then $\mathcal{K}(E)$ is amenable.

Examples

1 $L^{p}(\mu)$ has property (A) for all $1 \le p < \infty$ and all μ . **2** C(K) has property (A) for each compact K, as does

therefore $L^{\infty}(\mu)$ for each μ .

Amenability of operator algebras on Banach spaces, II
Amenability of $\mathcal{B}(E)$ A positive example $\mathcal{B}(\ell^p \oplus \ell^q)$ with $p \neq p$ $\mathcal{B}(\ell^p)$

(ロ)、

Amenability of operator algebras on Banach spaces, II	Question	
Volker Runde		
Amenability of $\mathcal{K}(E)$		
Amenability of $\mathcal{B}(E)$ A positive example $\mathcal{B}(\ell^P \oplus \ell^q)$ with $p \neq p$ $\mathcal{B}(\ell^P)$		

<□ > < @ > < E > < E > E のQ @

Amenability of operator algebras on Banach spaces, II

Volker Runde

Amenability o $\mathcal{K}(E)$

Amenability o $\mathcal{B}(E)$ A positive example

 $\begin{array}{l} \mathcal{B}(\ell^{p} \oplus \ell^{q} \\ \text{with } p \neq p \\ \mathcal{B}(\ell^{p}) \end{array}$

Question

Is there an infinite-dimensional Banach space ${\it E}$

▲ロト ▲冊 ▶ ▲ ヨ ▶ ▲ ヨ ▶ ● の Q @

Amenability of operator algebras on Banach spaces, II

Volker Runde

Amenability o $\mathcal{K}(E)$

Amenability o B(E) A positive example

 $\begin{array}{c} \mathcal{B}(\ell^P \oplus \ell^q) \\ \text{with } p \neq p \\ \mathcal{B}(\ell^P) \end{array}$

Question

Is there an infinite-dimensional Banach space *E* such that $\mathcal{B}(E) = \mathcal{K}(E) + \mathbb{C} \operatorname{id}_E$?

Amenability of operator algebras on Banach spaces, II

Volker Runde

Amenability o $\mathcal{K}(E)$

Amenability of $\mathcal{B}(E)$ A positive example $\mathcal{B}(\ell^p \oplus \ell^q)$ with $p \neq p$

Question

Is there an infinite-dimensional Banach space *E* such that $\mathcal{B}(E) = \mathcal{K}(E) + \mathbb{C} \operatorname{id}_E$?

▲ロト ▲帰ト ▲ヨト ▲ヨト - ヨ - の々ぐ

Theorem (S. A. Argyros & R. G. Haydon, 2009)

Amenability of operator algebras on Banach spaces, II

Volker Runde

Amenability o $\mathcal{K}(E)$

Amenability of $\mathcal{B}(E)$ A positive example $\mathcal{B}(\ell^P \oplus \ell^q)$

Question

Is there an infinite-dimensional Banach space *E* such that $\mathcal{B}(E) = \mathcal{K}(E) + \mathbb{C} \operatorname{id}_E$?

Theorem (S. A. Argyros & R. G. Haydon, 2009)

There is a Banach space E such that $\mathcal{B}(E) = \mathcal{K}(E) + \mathbb{C} \operatorname{id}_{E}$

Amenability of operator algebras on Banach spaces, II

Volker Runde

Amenability o $\mathcal{K}(E)$

Amenability of $\mathcal{B}(E)$ A positive example $\mathcal{B}(\ell^P \oplus \ell^q)$ with $p \neq p$

Question

Is there an infinite-dimensional Banach space *E* such that $\mathcal{B}(E) = \mathcal{K}(E) + \mathbb{C} \operatorname{id}_E$?

Theorem (S. A. Argyros & R. G. Haydon, 2009)

There is a Banach space E such that $\mathcal{B}(E) = \mathcal{K}(E) + \mathbb{C} \operatorname{id}_{E}$ and $E^* = \ell^1$.

Amenability of operator algebras on Banach spaces, II

Volker Runde

Amenability o $\mathcal{K}(E)$

Amenability o $\mathcal{B}(E)$ A positive example $\mathcal{B}(\ell^P \oplus \ell^q)$ with $p \neq p$ $\mathcal{B}(\ell^p)$

Question

Is there an infinite-dimensional Banach space *E* such that $\mathcal{B}(E) = \mathcal{K}(E) + \mathbb{C} \operatorname{id}_E$?

Theorem (S. A. Argyros & R. G. Haydon, 2009)

There is a Banach space E such that $\mathcal{B}(E) = \mathcal{K}(E) + \mathbb{C} \operatorname{id}_{E}$ and $E^* = \ell^1$.

▲ロト ▲帰ト ▲ヨト ▲ヨト - ヨ - の々ぐ

Theorem (N. Grønbæk, BEJ, & G. A. Willis, 1994)

Amenability of operator algebras on Banach spaces, II

Volker Runde

Amenability o $\mathcal{K}(E)$

Amenability o $\mathcal{B}(\mathcal{E})$ A positive example $\mathcal{B}(\ell^p \oplus \ell^q)$ with $p \neq p$ $\mathcal{B}(\ell^p)$

Question

Is there an infinite-dimensional Banach space *E* such that $\mathcal{B}(E) = \mathcal{K}(E) + \mathbb{C} \operatorname{id}_E$?

Theorem (S. A. Argyros & R. G. Haydon, 2009)

There is a Banach space E such that $\mathcal{B}(E) = \mathcal{K}(E) + \mathbb{C} \operatorname{id}_{E}$ and $E^* = \ell^1$.

Theorem (N. Grønbæk, BEJ, & G. A. Willis, 1994)

Suppose that E^* has property (A).

Amenability of operator algebras on Banach spaces, II

Volker Runde

Amenability o $\mathcal{K}(E)$

Amenability o $\mathcal{B}(\mathcal{E})$ A positive example $\mathcal{B}(\ell^p \oplus \ell^q)$ with $p \neq p$ $\mathcal{B}(\ell^p)$

Question

Is there an infinite-dimensional Banach space *E* such that $\mathcal{B}(E) = \mathcal{K}(E) + \mathbb{C} \operatorname{id}_E$?

Theorem (S. A. Argyros & R. G. Haydon, 2009)

There is a Banach space E such that $\mathcal{B}(E) = \mathcal{K}(E) + \mathbb{C} \operatorname{id}_E$ and $E^* = \ell^1$.

Theorem (N. Grønbæk, BEJ, & G. A. Willis, 1994)

Suppose that E^* has property (A). Then so has E.

Amenability of operator algebras on Banach spaces, II

Volker Runde

Amenability o $\mathcal{K}(E)$

Amenability of $\mathcal{B}(\mathcal{E})$ A positive example $\mathcal{B}(\ell^{p} \oplus \ell^{q})$ with $p \neq p$ $\mathcal{B}(\ell^{p})$

Question

Is there an infinite-dimensional Banach space *E* such that $\mathcal{B}(E) = \mathcal{K}(E) + \mathbb{C} \operatorname{id}_E$?

Theorem (S. A. Argyros & R. G. Haydon, 2009)

There is a Banach space E such that $\mathcal{B}(E) = \mathcal{K}(E) + \mathbb{C} \operatorname{id}_E$ and $E^* = \ell^1$.

Theorem (N. Grønbæk, BEJ, & G. A. Willis, 1994)

Suppose that E^* has property (A). Then so has E.

Corollary

Amenability of operator algebras on Banach spaces, II

Volker Runde

Amenability o $\mathcal{K}(E)$

Amenability o $\mathcal{B}(E)$ A positive example $\mathcal{B}(\ell^{p} \oplus \ell^{q})$ with $p \neq p$ $\mathcal{B}(\ell^{p})$

Question

Is there an infinite-dimensional Banach space *E* such that $\mathcal{B}(E) = \mathcal{K}(E) + \mathbb{C} \operatorname{id}_E$?

Theorem (S. A. Argyros & R. G. Haydon, 2009)

There is a Banach space E such that $\mathcal{B}(E) = \mathcal{K}(E) + \mathbb{C} \operatorname{id}_{E}$ and $E^* = \ell^1$.

Theorem (N. Grønbæk, BEJ, & G. A. Willis, 1994)

Suppose that E^* has property (A). Then so has E.

Corollary

There is an infinite-dimensional Banach space E

Amenability of operator algebras on Banach spaces, II

Volker Runde

Amenability o $\mathcal{K}(E)$

Amenability of $\mathcal{B}(\mathcal{E})$ A positive example $\mathcal{B}(\ell^{p} \oplus \ell^{q})$ with $p \neq p$ $\mathcal{B}(\ell^{p})$

Question

Is there an infinite-dimensional Banach space *E* such that $\mathcal{B}(E) = \mathcal{K}(E) + \mathbb{C} \operatorname{id}_E$?

Theorem (S. A. Argyros & R. G. Haydon, 2009)

There is a Banach space E such that $\mathcal{B}(E) = \mathcal{K}(E) + \mathbb{C} \operatorname{id}_{E}$ and $E^* = \ell^1$.

Theorem (N. Grønbæk, BEJ, & G. A. Willis, 1994)

Suppose that E^* has property (A). Then so has E.

Corollary

There is an infinite-dimensional Banach space E such that $\mathcal{B}(E)$ is amenable.

<□ > < @ > < E > < E > E のQ @

Amenability of operator algebras on Banach spaces, II	
Amenability of $\mathcal{B}(\mathcal{E})$ A positive example $\mathcal{B}(\ell^{P} \oplus \ell^{q})$ with $\rho \neq \rho$ $\mathcal{B}(\ell^{P})$	

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Amenability of operator algebras on Banach spaces, II

Volker Runde

Amenability o $\mathcal{K}(E)$

Amenability of $\mathcal{B}(\mathcal{E})$ A positive example $\mathcal{B}(\ell^{p} \bigoplus \ell^{q})$ with $p \neq p$ $\mathcal{B}(\ell^{p})$

Theorem (G. A. Willis, unpublished)

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Amenability of operator algebras on Banach spaces, II

Volker Runde

Amenability o $\mathcal{K}(E)$

Amenability o $\mathcal{B}(E)$ A positive example $\mathcal{B}(\ell^P \bigoplus \ell^q)$ with $p \neq p$ $\mathcal{B}(\ell^P)$

Theorem (G. A. Willis, unpublished)

```
Let p, q \in (1, \infty) be such that p \neq q.
```

Amenability of operator algebras on Banach spaces, II

Volker Runde

Amenability o $\mathcal{K}(E)$

Amenability o $\mathcal{B}(E)$ A positive example $\mathcal{B}(\ell^{p} \bigoplus \ell^{q})$ with $p \neq p$ $\mathcal{B}(\ell^{p})$

Theorem (G. A. Willis, unpublished)

Let $p, q \in (1, \infty)$ be such that $p \neq q$. Then $\mathcal{B}(\ell^p \oplus \ell^q)$ is not amenable.

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Amenability of operator algebras on Banach spaces, II

Volker Runde

Amenability of $\mathcal{K}(E)$

Amenability of $\mathcal{B}(E)$ A positive example $\mathcal{B}(\ell^p \oplus \ell^q)$ with $p \neq p$ $\mathcal{B}(\ell^p)$

Theorem (G. A. Willis, unpublished)

Let $p, q \in (1, \infty)$ be such that $p \neq q$. Then $\mathcal{B}(\ell^p \oplus \ell^q)$ is not amenable.

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Ingredients

Amenability of operator algebras on Banach spaces, II

Volker Runde

Amenability o $\mathcal{K}(E)$

Amenability of $\mathcal{B}(E)$ A positive example $\mathcal{B}(\ell^P \bigoplus \ell^q)$ with $p \neq p$ $\mathcal{B}(\ell^P)$

Theorem (G. A. Willis, unpublished)

Let $p, q \in (1, \infty)$ be such that $p \neq q$. Then $\mathcal{B}(\ell^p \oplus \ell^q)$ is not amenable.

Ingredients

A quotient of an amenable Banach algebra is again amenable.

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Amenability of operator algebras on Banach spaces, II

Volker Runde

Amenability o $\mathcal{K}(E)$

Amenability o $\mathcal{B}(E)$ A positive example $\mathcal{B}(\ell^{p} \bigoplus \ell^{q})$ with $p \neq p$ $\mathcal{B}(\ell^{p})$

Theorem (G. A. Willis, unpublished)

Let $p, q \in (1, \infty)$ be such that $p \neq q$. Then $\mathcal{B}(\ell^p \oplus \ell^q)$ is not amenable.

Ingredients

- A quotient of an amenable Banach algebra is again amenable.
- 2 Every complemented closed ideal of an amenable Banach algebra is amenable.

Amenability of operator algebras on Banach spaces, II

Volker Runde

Amenability o $\mathcal{K}(E)$

Amenability o $\mathcal{B}(E)$ A positive example $\mathcal{B}(\ell^{p} \bigoplus \ell^{q})$ with $p \neq p$ $\mathcal{B}(\ell^{p})$

Theorem (G. A. Willis, unpublished)

Let $p, q \in (1, \infty)$ be such that $p \neq q$. Then $\mathcal{B}(\ell^p \oplus \ell^q)$ is not amenable.

Ingredients

- A quotient of an amenable Banach algebra is again amenable.
- 2 Every complemented closed ideal of an amenable Banach algebra is amenable.

3 Every amenable Banach algebra has a bounded approximate identity.

Amenability of operator algebras on Banach spaces, II

Volker Runde

Amenability o $\mathcal{K}(E)$

Amenability o $\mathcal{B}(E)$ A positive example $\mathcal{B}(\ell^{p} \bigoplus \ell^{q})$ with $p \neq p$ $\mathcal{B}(\ell^{p})$

Theorem (G. A. Willis, unpublished)

Let $p, q \in (1, \infty)$ be such that $p \neq q$. Then $\mathcal{B}(\ell^p \oplus \ell^q)$ is not amenable.

Ingredients

- A quotient of an amenable Banach algebra is again amenable.
- 2 Every complemented closed ideal of an amenable Banach algebra is amenable.

- **3** Every amenable Banach algebra has a bounded approximate identity.
- 4 Pitt's Theorem.

Amenability of operator algebras on Banach spaces, II

Volker Runde

Amenability o $\mathcal{K}(E)$

Amenability o $\mathcal{B}(E)$ A positive example $\mathcal{B}(\ell^{p} \bigoplus \ell^{q})$ with $p \neq p$ $\mathcal{B}(\ell^{p})$

Theorem (G. A. Willis, unpublished)

Let $p, q \in (1, \infty)$ be such that $p \neq q$. Then $\mathcal{B}(\ell^p \oplus \ell^q)$ is not amenable.

Ingredients

- A quotient of an amenable Banach algebra is again amenable.
- 2 Every complemented closed ideal of an amenable Banach algebra is amenable.
- **3** Every amenable Banach algebra has a bounded approximate identity.
- **4** Pitt's Theorem. If p > q, then $\mathcal{B}(\ell^p, \ell^q) = \mathcal{K}(\ell^p, \ell^q)$.

<□ > < @ > < E > < E > E のQ @

Amenability of operator algebras on Banach spaces, II
Volker Runde
Amenability of $\mathcal{K}(E)$
Amenability of $\mathcal{B}(E)$ A positive example $\mathcal{B}(\ell P \oplus \ell^{q})$ $\mathcal{W}(t p \neq p P B(\ell^{p})$

Amenability of operator algebras on Banach spaces, II

Volker Runde

Amenability o $\mathcal{K}(E)$

Amenability of $\mathcal{B}(\mathcal{E})$ A positive example $\mathcal{B}(\ell^p \bigoplus \ell^q)$ with $p \neq p$ $\mathcal{B}(\ell^p)$

Proof.

Suppose that p > q.

<ロ> <団> < 団> < 三> < 三> < 三</p>

Amenability of operator algebras on Banach spaces, II

Proof.

Volker Runde

Amenability $\mathcal{K}(E)$

Amenability of $\mathcal{B}(\mathcal{E})$ A positive example $\mathcal{B}(\ell^{p} \oplus \ell^{q})$ with $p \neq p$ $\mathcal{B}(\ell^{p})$ Suppose that p > q. Note that

$$\mathcal{B}(\ell^p \oplus \ell^q) = egin{bmatrix} \mathcal{B}(\ell^p) & \mathcal{B}(\ell^q, \ell^p) \ \mathcal{B}(\ell^p, \ell^q) & \mathcal{B}(\ell^q) \end{bmatrix}$$

ヘロト ヘロト ヘモト ヘモト

......

Amenability of operator algebras on Banach spaces, II

Proof.

Volker Runde

Amenability $\mathcal{K}(E)$

Amenability of $\mathcal{B}(\mathcal{E})$ A positive example $\mathcal{B}(\ell^{p} \oplus \ell^{q})$ with $p \neq p$ $\mathcal{B}(\ell^{p})$

Suppose that p > q. Note that

$$\mathcal{B}(\ell^p \oplus \ell^q) = egin{bmatrix} \mathcal{B}(\ell^p) & \mathcal{B}(\ell^q, \ell^p) \ \mathcal{K}(\ell^p, \ell^q) & \mathcal{B}(\ell^q) \end{bmatrix}$$

ヘロト ヘロト ヘビト ヘビト

2.1

Amenability of operator algebras on Banach spaces, II

Volker Runde

Amenability $\mathcal{K}(E)$

Amenability of $\mathcal{B}(\mathcal{E})$ A positive example $\mathcal{B}(\ell^{p} \oplus \ell^{q})$ with $p \neq p$ $\mathcal{B}(\ell^{p})$

Suppose that p > q. Note that

$$\mathcal{B}(\ell^p \oplus \ell^q) = egin{bmatrix} \mathcal{B}(\ell^p) & \mathcal{B}(\ell^q, \ell^p) \ \mathcal{K}(\ell^p, \ell^q) & \mathcal{B}(\ell^q) \end{bmatrix}$$

and

Proof.

$$\mathcal{K}(\ell^p\oplus\ell^q)=egin{bmatrix}\mathcal{K}(\ell^p)&\mathcal{K}(\ell^q,\ell^p)\\mathcal{K}(\ell^p,\ell^q)&\mathcal{K}(\ell^q)\end{bmatrix},$$

ヘロト ヘロト ヘビト ヘビト

......

Amenability of operator algebras on Banach spaces, II

Volker Runde

Amenability c $\mathcal{K}(E)$

Amenability of $\mathcal{B}(\mathcal{E})$ A positive example $\mathcal{B}(\ell^P \bigoplus \ell^q)$ with $p \neq p$ $\mathcal{B}(\ell^P)$ Suppose that p > q. Note that

$$\mathcal{B}(\ell^p \oplus \ell^q) = egin{bmatrix} \mathcal{B}(\ell^p) & \mathcal{B}(\ell^q, \ell^p) \ \mathcal{K}(\ell^p, \ell^q) & \mathcal{B}(\ell^q) \end{bmatrix}$$

and

Proof.

$$\mathcal{K}(\ell^p\oplus\ell^q)=egin{bmatrix}\mathcal{K}(\ell^p)&\mathcal{K}(\ell^q,\ell^p)\\mathcal{K}(\ell^p,\ell^q)&\mathcal{K}(\ell^q)\end{bmatrix},$$

so that

$$\mathcal{C}(\ell^p\oplus\ell^q)=egin{bmatrix}\mathcal{C}(\ell^p)&*\0&\mathcal{C}(\ell^q)\end{bmatrix}.$$

ヘロン ヘロン ヘビン ヘビン しど

Amenability of operator algebras on Banach spaces, II

Volker Runde

Amenability c $\mathcal{K}(E)$

Amenability of $\mathcal{B}(E)$ A positive example $\mathcal{B}(\ell^{p} \oplus \ell^{q})$ with $p \neq p$ $\mathcal{B}(\ell^{p})$ Suppose that p > q. Note that

$$\mathcal{B}(\ell^{p} \oplus \ell^{q}) = \begin{bmatrix} \mathcal{B}(\ell^{p}) & \mathcal{B}(\ell^{q}, \ell^{p}) \\ \mathcal{K}(\ell^{p}, \ell^{q}) & \mathcal{B}(\ell^{q}) \end{bmatrix}$$

and

Proof.

$$\mathcal{K}(\ell^p \oplus \ell^q) = egin{bmatrix} \mathcal{K}(\ell^p) & \mathcal{K}(\ell^q, \ell^p) \ \mathcal{K}(\ell^p, \ell^q) & \mathcal{K}(\ell^q) \end{bmatrix},$$

so that

$$\mathcal{C}(\ell^p\oplus\ell^q)=egin{bmatrix}\mathcal{C}(\ell^p)&*\0&\mathcal{C}(\ell^q)\end{bmatrix}.$$

Then $I := \begin{bmatrix} 0 & * \\ 0 & 0 \end{bmatrix} \neq \{0\}$ is a complemented ideal of $\mathcal{C}(\ell^p \oplus \ell^q)$,

Amenability of operator algebras on Banach spaces, II

Volker Runde

Amenability c $\mathcal{K}(E)$

Amenability of $\mathcal{B}(E)$ A positive example $\mathcal{B}(\ell^{p} \oplus \ell^{q})$ with $p \neq p$ $\mathcal{B}(\ell^{p})$ Suppose that p > q. Note that

$$\mathcal{B}(\ell^{p} \oplus \ell^{q}) = \begin{bmatrix} \mathcal{B}(\ell^{p}) & \mathcal{B}(\ell^{q}, \ell^{p}) \\ \mathcal{K}(\ell^{p}, \ell^{q}) & \mathcal{B}(\ell^{q}) \end{bmatrix}$$

and

Proof.

$$\mathcal{K}(\ell^p\oplus\ell^q)=egin{bmatrix}\mathcal{K}(\ell^p)&\mathcal{K}(\ell^q,\ell^p)\\mathcal{K}(\ell^p,\ell^q)&\mathcal{K}(\ell^q)\end{bmatrix},$$

so that

$$\mathcal{C}(\ell^p\oplus\ell^q)=egin{bmatrix} \mathcal{C}(\ell^p) & *\ 0 & \mathcal{C}(\ell^q) \end{bmatrix},$$

Then $I := \begin{bmatrix} 0 & * \\ 0 & 0 \end{bmatrix} \neq \{0\}$ is a complemented ideal of $\mathcal{C}(\ell^p \oplus \ell^q)$, thus is amenable,

Amenability of operator algebras on Banach spaces, II

Volker Runde

Amenability c $\mathcal{K}(E)$

Amenability of $\mathcal{B}(E)$ A positive example $\mathcal{B}(\ell^{p} \oplus \ell^{q})$ with $p \neq p$ $\mathcal{B}(\ell^{p})$

Suppose that p > q. Note that

$$\mathcal{B}(\ell^p \oplus \ell^q) = \begin{bmatrix} \mathcal{B}(\ell^p) & \mathcal{B}(\ell^q, \ell^p) \\ \mathcal{K}(\ell^p, \ell^q) & \mathcal{B}(\ell^q) \end{bmatrix}$$

and

Proof.

$$\mathcal{K}(\ell^p \oplus \ell^q) = egin{bmatrix} \mathcal{K}(\ell^p) & \mathcal{K}(\ell^q, \ell^p) \ \mathcal{K}(\ell^p, \ell^q) & \mathcal{K}(\ell^q) \end{bmatrix},$$

so that

$$\mathcal{C}(\ell^p\oplus\ell^q)=egin{bmatrix} \mathcal{C}(\ell^p) & *\ 0 & \mathcal{C}(\ell^q) \end{bmatrix},$$

Then $I := \begin{bmatrix} 0 & * \\ 0 & 0 \end{bmatrix} \neq \{0\}$ is a complemented ideal of $\mathcal{C}(\ell^p \oplus \ell^q)$, thus is amenable, and thus has a BAI.

2.1

Amenability of operator algebras on Banach spaces, II

Volker Runde

Amenability c $\mathcal{K}(E)$

Amenability of $\mathcal{B}(E)$ A positive example $\mathcal{B}(\ell^{p} \oplus \ell^{q})$ with $p \neq p$ $\mathcal{B}(\ell^{p})$

Suppose that p > q. Note that

$$\mathcal{B}(\ell^p \oplus \ell^q) = \begin{bmatrix} \mathcal{B}(\ell^p) & \mathcal{B}(\ell^q, \ell^p) \\ \mathcal{K}(\ell^p, \ell^q) & \mathcal{B}(\ell^q) \end{bmatrix}$$

and

Proof.

$$\mathcal{K}(\ell^p \oplus \ell^q) = egin{bmatrix} \mathcal{K}(\ell^p) & \mathcal{K}(\ell^q, \ell^p) \ \mathcal{K}(\ell^p, \ell^q) & \mathcal{K}(\ell^q) \end{bmatrix},$$

so that

$$\mathcal{C}(\ell^p\oplus\ell^q)=egin{bmatrix}\mathcal{C}(\ell^p)&*\0&\mathcal{C}(\ell^q)\end{bmatrix}$$

Then $I := \begin{bmatrix} 0 & * \\ 0 & 0 \end{bmatrix} \neq \{0\}$ is a complemented ideal of $\mathcal{C}(\ell^p \oplus \ell^q)$, thus is amenable, and thus has a BAI. But $I^2 = \{0\}$...

Amenability of operator algebras on Banach spaces, II

Volker Runde

Amenability c $\mathcal{K}(E)$

Amenability of $\mathcal{B}(E)$ A positive example $\mathcal{B}(\ell^{p} \oplus \ell^{q})$ with $p \neq p$ $\mathcal{B}(\ell^{p})$

Suppose that p > q. Note that

$$\mathcal{B}(\ell^p \oplus \ell^q) = \begin{bmatrix} \mathcal{B}(\ell^p) & \mathcal{B}(\ell^q, \ell^p) \\ \mathcal{K}(\ell^p, \ell^q) & \mathcal{B}(\ell^q) \end{bmatrix}$$

and

Proof.

$$\mathcal{K}(\ell^p \oplus \ell^q) = egin{bmatrix} \mathcal{K}(\ell^p) & \mathcal{K}(\ell^q, \ell^p) \ \mathcal{K}(\ell^p, \ell^q) & \mathcal{K}(\ell^q) \end{bmatrix},$$

so that

$$\mathcal{C}(\ell^p\oplus\ell^q)=egin{bmatrix}\mathcal{C}(\ell^p)&*\0&\mathcal{C}(\ell^q)\end{bmatrix}$$

Then $I := \begin{bmatrix} 0 & * \\ 0 & 0 \end{bmatrix} \neq \{0\}$ is a complemented ideal of $\mathcal{C}(\ell^p \oplus \ell^q)$, thus is amenable, and thus has a BAI. But $I^2 = \{0\}$...

Amenabi opera algebra Bana spaces	tor s on ch
example $\mathcal{B}(\ell^P \oplus$ with $p \neq$ $\mathcal{B}(\ell^P)$	
D(c [,])	

<□ > < @ > < E > < E > E のQ @

▲ロト ▲帰ト ▲ヨト ▲ヨト - ヨ - の々ぐ

Amenability of operator algebras on Banach spaces, II

Volker Runde

Amenability c $\mathcal{K}(E)$

Amenability of $\mathcal{B}(E)$ A positive example $\mathcal{B}(\ell^p \oplus \ell^q)$ with $p \neq p$ $\mathcal{B}(\ell^p)$

Theorem (C. J. Read, <2006)

▲ロト ▲帰ト ▲ヨト ▲ヨト - ヨ - の々ぐ

Amenability of operator algebras on Banach spaces, II

Volker Runde

Amenability o $\mathcal{K}(E)$

```
Amenability of \mathcal{B}(E)
A positive
example
\mathcal{B}(\ell^p \oplus \ell^q)
with p \neq p
\mathcal{B}(\ell^p)
```

Theorem (C. J. Read, <2006)

 $\mathcal{B}(\ell^1)$ is not amenable.

Non-amenability of $\overline{\mathcal{B}}(\ell^p)$ for $p = 1, 2, \infty$

▲ロト ▲帰ト ▲ヨト ▲ヨト - ヨ - の々ぐ

Amenability of operator algebras on Banach spaces, II

Volker Runde

Amenability o K(E)

Amenability o $\mathcal{B}(E)$ A positive example $\mathcal{B}(\ell^{p} \oplus \ell^{q})$ with $p \neq p$ $\mathcal{B}(\ell^{p})$

Theorem (C. J. Read, <2006)

 $\mathcal{B}(\ell^1)$ is not amenable.

Progress since

Amenability of operator algebras on Banach spaces, II

Volker Runde

Amenability o $\mathcal{K}(E)$

Amenability o $\mathcal{B}(E)$ A positive example $\mathcal{B}(\ell^p \oplus \ell^q)$ with $p \neq p$ $\mathcal{B}(\ell^p)$ Theorem (C. J. Read, <2006)

 $\mathcal{B}(\ell^1)$ is not amenable.

Progress since

1 Simplification of Read's proof by G. Pisier, 2004.

▲ロト ▲帰ト ▲ヨト ▲ヨト - ヨ - の々ぐ

Amenability of operator algebras on Banach spaces, II

Volker Runde

Amenability o $\mathcal{K}(E)$

Amenability of $\mathcal{B}(E)$ A positive example $\mathcal{B}(\ell^{p} \oplus \ell^{q})$ with $p \neq p$ $\mathcal{B}(\ell^{p})$ Theorem (C. J. Read, <2006)

 $\mathcal{B}(\ell^1)$ is not amenable.

Progress since

- **1** Simplification of Read's proof by G. Pisier, 2004.
- Simultaneous proof for the non-amenability of $\mathcal{B}(\ell^p)$ for $p = 1, 2, \infty$ by N. Ozawa, 2006.

▲ロト ▲帰ト ▲ヨト ▲ヨト - ヨ - の々ぐ

Amenability of operator algebras on Banach spaces, II

Volker Runde

Amenability o $\mathcal{K}(E)$

Amenability of $\mathcal{B}(\mathcal{E})$ A positive example $\mathcal{B}(\ell^{p} \oplus \ell^{q})$ with $p \neq p$ $\mathcal{B}(\ell^{p})$ Theorem (C. J. Read, <2006)

 $\mathcal{B}(\ell^1)$ is not amenable.

Progress since

1 Simplification of Read's proof by G. Pisier, 2004.

Simultaneous proof for the non-amenability of $\mathcal{B}(\ell^p)$ for $p = 1, 2, \infty$ by N. Ozawa, 2006.

Question

Amenability of operator algebras on Banach spaces, II

Volker Runde

Amenability o $\mathcal{K}(E)$

Amenability of $\mathcal{B}(E)$ A positive example $\mathcal{B}(\ell^{p} \oplus \ell^{q})$ with $p \neq p$ $\mathcal{B}(\ell^{p})$ Theorem (C. J. Read, <2006)

 $\mathcal{B}(\ell^1)$ is not amenable.

Progress since

- **1** Simplification of Read's proof by G. Pisier, 2004.
- 2 Simultaneous proof for the non-amenability of $\mathcal{B}(\ell^p)$ for $p = 1, 2, \infty$ by N. Ozawa, 2006.

Question

Is $\mathcal{B}(\ell^p)$ amenable

Amenability of operator algebras on Banach spaces, II

Volker Runde

Amenability o $\mathcal{K}(E)$

Amenability o $\mathcal{B}(E)$ A positive example $\mathcal{B}(\ell^{p} \oplus \ell^{q})$ with $p \neq p$ $\mathcal{B}(\ell^{p})$ Theorem (C. J. Read, <2006)

 $\mathcal{B}(\ell^1)$ is not amenable.

Progress since

- **1** Simplification of Read's proof by G. Pisier, 2004.
- 2 Simultaneous proof for the non-amenability of $\mathcal{B}(\ell^p)$ for $p = 1, 2, \infty$ by N. Ozawa, 2006.

Question

Is $\mathcal{B}(\ell^p)$ amenable for any $p \in (1,\infty) \setminus \{2\}$?

Amenability of operator algebras on Banach spaces, II
$\mathcal{B}(\ell^p)$

(ロ)、(型)、(E)、(E)、(E)、(O)へ(C)

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Amenability o	
operator	
algebras on	
Banach	
spaces, II	

Volker Runde

Amenability c $\mathcal{K}(E)$

Amenability of $\mathcal{B}(E)$ A positive example $\mathcal{B}(\ell^{p} \oplus \ell^{q})$ with $p \neq p$ $\mathcal{B}(\ell^{p})$

Theorem (M. Daws & VR, 2008)

Amenability of operator algebras on Banach spaces, II

Volker Runde

Amenability c $\mathcal{K}(E)$

Amenability $\mathcal{B}(E)$ A positive example $\mathcal{B}(\ell^p \oplus \ell^q)$ with $p \neq p$ $\mathcal{B}(\ell^p)$

Theorem (M. Daws & VR, 2008)

The following are equivalent for a Banach space E and $p \in [1, \infty)$:

Amenability of operator algebras on Banach spaces, II

Volker Runde

Amenability o $\mathcal{K}(E)$

Amenability o $\mathcal{B}(E)$ A positive example $\mathcal{B}(\ell^p \oplus \ell^q)$ with $p \neq p$ $\mathcal{B}(\ell^p)$

Theorem (M. Daws & VR, 2008)

The following are equivalent for a Banach space E and $p \in [1, \infty)$:

▲ロト ▲帰ト ▲ヨト ▲ヨト - ヨ - の々ぐ

1 $\mathcal{B}(\ell^p(E))$ is amenable;

Amenability of operator algebras on Banach spaces, II

Volker Runde

Amenability o $\mathcal{K}(E)$

Amenability of $\mathcal{B}(E)$ A positive example $\mathcal{B}(\ell^p \oplus \ell^q)$ with $p \neq p$ $\mathcal{B}(\ell^p)$

Theorem (M. Daws & VR, 2008)

The following are equivalent for a Banach space E and $p \in [1, \infty)$:

▲ロト ▲帰ト ▲ヨト ▲ヨト - ヨ - の々ぐ

1 $\mathcal{B}(\ell^{p}(E))$ is amenable;

2 $\ell^{\infty}(\mathcal{B}(\ell^{p}(E)))$ is amenable.

Amenability of operator algebras on Banach spaces, II

Volker Runde

Amenability c $\mathcal{K}(E)$

Amenability of $\mathcal{B}(\mathcal{E})$ A positive example $\mathcal{B}(\ell^p \oplus \ell^q)$ with $p \neq p$ $\mathcal{B}(\ell^p)$

Theorem (M. Daws & VR, 2008)

The following are equivalent for a Banach space E and $p \in [1, \infty)$:

▲ロト ▲帰ト ▲ヨト ▲ヨト - ヨ - の々ぐ

- **1** $\mathcal{B}(\ell^p(E))$ is amenable;
- **2** $\ell^{\infty}(\mathcal{B}(\ell^{p}(E)))$ is amenable.

Idea

Amenability of operator algebras on Banach spaces, II

Volker Runde

Amenability c $\mathcal{K}(E)$

Amenability of $\mathcal{B}(\mathcal{E})$ A positive example $\mathcal{B}(\ell^{p} \oplus \ell^{q})$ with $p \neq p$ $\mathcal{B}(\ell^{p})$

Theorem (M. Daws & VR, 2008)

The following are equivalent for a Banach space E and $p \in [1, \infty)$:

▲ロト ▲帰ト ▲ヨト ▲ヨト - ヨ - の々ぐ

- **1** $\mathcal{B}(\ell^{p}(E))$ is amenable;
- 2 $\ell^{\infty}(\mathcal{B}(\ell^{p}(E)))$ is amenable.

Idea

$$\ell^p(\ell^p(E)) \cong \ell^p(E)$$

Amenability of operator algebras on Banach spaces, II

Volker Runde

Amenability c $\mathcal{K}(E)$

Amenability of $\mathcal{B}(\mathcal{E})$ A positive example $\mathcal{B}(\ell^{p} \oplus \ell^{q})$ with $p \neq p$ $\mathcal{B}(\ell^{p})$

Theorem (M. Daws & VR, 2008)

The following are equivalent for a Banach space E and $p \in [1, \infty)$:

- **1** $\mathcal{B}(\ell^{p}(E))$ is amenable;
- **2** $\ell^{\infty}(\mathcal{B}(\ell^{p}(E)))$ is amenable.

Idea

- $\ell^p(\ell^p(E)) \cong \ell^p(E)$
- $\ell^{\infty}(\mathcal{B}(\ell^{p}(E))) \cong$ block diagonal matrices in $\mathcal{B}(\ell^{p}(\ell^{p}(E)))$

Amenability of operator algebras on Banach spaces, II

Volker Runde

Amenability c $\mathcal{K}(E)$

Amenability of $\mathcal{B}(\mathcal{E})$ A positive example $\mathcal{B}(\ell^{p} \oplus \ell^{q})$ with $p \neq p$ $\mathcal{B}(\ell^{p})$

Theorem (M. Daws & VR, 2008)

The following are equivalent for a Banach space E and $p \in [1, \infty)$:

- **1** $\mathcal{B}(\ell^{p}(E))$ is amenable;
- **2** $\ell^{\infty}(\mathcal{B}(\ell^{p}(E)))$ is amenable.

Idea

- $\ell^p(\ell^p(E)) \cong \ell^p(E)$
- $\ell^{\infty}(\mathcal{B}(\ell^{p}(E))) \cong$ block diagonal matrices in $\mathcal{B}(\ell^{p}(\ell^{p}(E)))$

Corollary

Amenability of operator algebras on Banach spaces, II

Volker Runde

Amenability c $\mathcal{K}(E)$

Amenability of $\mathcal{B}(\mathcal{E})$ A positive example $\mathcal{B}(\ell^{p} \oplus \ell^{q})$ with $p \neq p$ $\mathcal{B}(\ell^{p})$

Theorem (M. Daws & VR, 2008)

The following are equivalent for a Banach space E and $p \in [1, \infty)$:

- **1** $\mathcal{B}(\ell^{p}(E))$ is amenable;
- 2 $\ell^{\infty}(\mathcal{B}(\ell^{p}(E)))$ is amenable.

Idea

- $\ell^p(\ell^p(E)) \cong \ell^p(E)$
- $\ell^{\infty}(\mathcal{B}(\ell^{p}(E))) \cong$ block diagonal matrices in $\mathcal{B}(\ell^{p}(\ell^{p}(E)))$

Corollary

Suppose that $\mathcal{B}(\ell^p)$ is amenable for some $p \in [1, \infty)$.

Amenability of operator algebras on Banach spaces, II

Volker Runde

Amenability c $\mathcal{K}(E)$

Amenability of $\mathcal{B}(\mathcal{E})$ A positive example $\mathcal{B}(\ell^{p} \oplus \ell^{q})$ with $p \neq p$ $\mathcal{B}(\ell^{p})$

Theorem (M. Daws & VR, 2008)

The following are equivalent for a Banach space E and $p \in [1, \infty)$:

1 $\mathcal{B}(\ell^p(E))$ is amenable;

2 $\ell^{\infty}(\mathcal{B}(\ell^{p}(E)))$ is amenable.

Idea

- $\ell^p(\ell^p(E)) \cong \ell^p(E)$
- $\ell^{\infty}(\mathcal{B}(\ell^{p}(E))) \cong$ block diagonal matrices in $\mathcal{B}(\ell^{p}(\ell^{p}(E)))$

Corollary

Suppose that $\mathcal{B}(\ell^p)$ is amenable for some $p \in [1, \infty)$. Then so are the Banach algebras $\ell^{\infty}(\mathcal{B}(\ell^p))$

Amenability of operator algebras on Banach spaces, II

Volker Runde

Amenability o $\mathcal{K}(E)$

Amenability of $\mathcal{B}(\mathcal{E})$ A positive example $\mathcal{B}(\ell^{p} \oplus \ell^{q})$ with $p \neq p$ $\mathcal{B}(\ell^{p})$

Theorem (M. Daws & VR, 2008)

The following are equivalent for a Banach space E and $p \in [1, \infty)$:

- **1** $\mathcal{B}(\ell^p(E))$ is amenable;
- **2** $\ell^{\infty}(\mathcal{B}(\ell^{p}(E)))$ is amenable.

Idea

- $\ell^p(\ell^p(E)) \cong \ell^p(E)$
- $\ell^{\infty}(\mathcal{B}(\ell^{p}(E))) \cong$ block diagonal matrices in $\mathcal{B}(\ell^{p}(\ell^{p}(E)))$

Corollary

Suppose that $\mathcal{B}(\ell^p)$ is amenable for some $p \in [1, \infty)$. Then so are the Banach algebras $\ell^{\infty}(\mathcal{B}(\ell^p))$ and $\ell^{\infty}(\mathcal{K}(\ell^p))$.

\mathcal{L}^{p} -spaces, I

Amenability o operator algebras on Banach spaces, II
$\mathcal{B}(\ell^p \oplus \ell^q)$ with $p \neq p$ $\mathcal{B}(\ell^p)$

◆□▶ ▲□▶ ▲目▶ ▲目▶ ▲□▶

Amenability of operator algebras on Banach spaces, II

Volker Runde

Amenability c $\mathcal{K}(E)$

Amenability of $\mathcal{B}(E)$ A positive example $\mathcal{B}(\ell^p \oplus \ell^q)$ with $p \neq p$ $\mathcal{B}(\ell^p)$

Definition (J. Lindenstrauss & A. Pełczyński, 1968)

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Amenability of operator algebras on Banach spaces, II

Volker Runde

Amenability o $\mathcal{K}(E)$

Amenability of $\mathcal{B}(\mathcal{E})$ A positive example $\mathcal{B}(\ell^{p} \oplus \ell^{q})$ with $p \neq p$ $\mathcal{B}(\ell^{p})$

Definition (J. Lindenstrauss & A. Pełczyński, 1968)

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

Let $p \in [1, \infty]$ and let $\lambda \ge 1$.

Amenability of operator algebras on Banach spaces, II

Volker Runde

Amenability of $\mathcal{K}(E)$

Amenability of $\mathcal{B}(E)$ A positive example $\mathcal{B}(\ell^{p} \oplus \ell^{q})$ with $p \neq p$ $\mathcal{B}(\ell^{p})$

Definition (J. Lindenstrauss & A. Pełczyński, 1968)

Let $p \in [1,\infty]$ and let $\lambda \ge 1$. A Banach space E is called a \mathcal{L}^p_{λ} -space if,

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

Amenability of operator algebras on Banach spaces, II

Volker Runde

Amenability of $\mathcal{K}(E)$

Amenability of $\mathcal{B}(E)$ A positive example $\mathcal{B}(\ell^{p} \oplus \ell^{q})$ with $p \neq p$ $\mathcal{B}(\ell^{p})$

Definition (J. Lindenstrauss & A. Pełczyński, 1968)

Let $p \in [1, \infty]$ and let $\lambda \ge 1$. A Banach space E is called a $\mathcal{L}^{p}_{\lambda}$ -space if, for every finite-dimensional subspace X of E,

Amenability of operator algebras on Banach spaces, II

Volker Runde

Amenability o $\mathcal{K}(E)$

Amenability of $\mathcal{B}(\mathcal{E})$ A positive example $\mathcal{B}(\ell^p \oplus \ell^q)$ with $p \neq p$ $\mathcal{B}(\ell^p)$

Definition (J. Lindenstrauss & A. Pełczyński, 1968)

Let $p \in [1, \infty]$ and let $\lambda \ge 1$. A Banach space E is called a $\mathcal{L}^{p}_{\lambda}$ -space if, for every finite-dimensional subspace X of E, there is a finite-dimensional subspace $Y \supset X$ of E

Amenability of operator algebras on Banach spaces, II

Volker Runde

Amenability c $\mathcal{K}(E)$

Amenability o $\mathcal{B}(\mathcal{E})$ A positive example $\mathcal{B}(\ell^{p} \oplus \ell^{q})$ with $p \neq p$ $\mathcal{B}(\ell^{p})$

Definition (J. Lindenstrauss & A. Pełczyński, 1968)

Let $p \in [1, \infty]$ and let $\lambda \ge 1$. A Banach space E is called a $\mathcal{L}^{p}_{\lambda}$ -space if, for every finite-dimensional subspace X of E, there is a finite-dimensional subspace $Y \supset X$ of E with $d(Y, \ell^{p}_{\dim Y}) \le \lambda$.

Amenability of operator algebras on Banach spaces, II

Volker Runde

Amenability c $\mathcal{K}(E)$

Amenability o $\mathcal{B}(\mathcal{E})$ A positive example $\mathcal{B}(\ell^{p} \oplus \ell^{q})$ with $p \neq p$ $\mathcal{B}(\ell^{p})$

Definition (J. Lindenstrauss & A. Pełczyński, 1968)

Let $p \in [1, \infty]$ and let $\lambda \ge 1$. A Banach space E is called a $\mathcal{L}^{p}_{\lambda}$ -space if, for every finite-dimensional subspace X of E, there is a finite-dimensional subspace $Y \supset X$ of E with $d(Y, \ell^{p}_{\dim Y}) \le \lambda$. We call E an \mathcal{L}^{p} -space

Amenability of operator algebras on Banach spaces, II

Volker Runde

Amenability c $\mathcal{K}(E)$

Amenability of $\mathcal{B}(E)$ A positive example $\mathcal{B}(\ell^p \oplus \ell^q)$ with $p \neq p$ $\mathcal{B}(\ell^p)$

Definition (J. Lindenstrauss & A. Pełczyński, 1968)

Let $p \in [1, \infty]$ and let $\lambda \ge 1$. A Banach space E is called a $\mathcal{L}^{p}_{\lambda}$ -space if, for every finite-dimensional subspace X of E, there is a finite-dimensional subspace $Y \supset X$ of E with $d(Y, \ell^{p}_{\dim Y}) \le \lambda$. We call E an \mathcal{L}^{p} -space if it is an $\mathcal{L}^{p}_{\lambda}$ -space for some $\lambda \ge 1$.

Amenability of operator algebras on Banach spaces, II

Volker Runde

Amenability c $\mathcal{K}(E)$

Amenability o $\mathcal{B}(E)$ A positive example $\mathcal{B}(\ell^{p} \oplus \ell^{q})$ with $p \neq p$ $\mathcal{B}(\ell^{p})$

Definition (J. Lindenstrauss & A. Pełczyński, 1968)

Let $p \in [1, \infty]$ and let $\lambda \ge 1$. A Banach space E is called a $\mathcal{L}^{p}_{\lambda}$ -space if, for every finite-dimensional subspace X of E, there is a finite-dimensional subspace $Y \supset X$ of E with $d(Y, \ell^{p}_{\dim Y}) \le \lambda$. We call E an \mathcal{L}^{p} -space if it is an $\mathcal{L}^{p}_{\lambda}$ -space for some $\lambda \ge 1$.

▲ロト ▲帰ト ▲ヨト ▲ヨト - ヨ - の々ぐ

Examples

Amenability of operator algebras on Banach spaces, II

Volker Runde

Amenability c $\mathcal{K}(E)$

Amenability o $\mathcal{B}(E)$ A positive example $\mathcal{B}(\ell^{p} \oplus \ell^{q})$ with $p \neq p$ $\mathcal{B}(\ell^{p})$

Definition (J. Lindenstrauss & A. Pełczyński, 1968)

Let $p \in [1, \infty]$ and let $\lambda \ge 1$. A Banach space E is called a $\mathcal{L}^{p}_{\lambda}$ -space if, for every finite-dimensional subspace X of E, there is a finite-dimensional subspace $Y \supset X$ of E with $d(Y, \ell^{p}_{\dim Y}) \le \lambda$. We call E an \mathcal{L}^{p} -space if it is an $\mathcal{L}^{p}_{\lambda}$ -space for some $\lambda \ge 1$.

▲ロト ▲帰ト ▲ヨト ▲ヨト - ヨ - の々ぐ

Examples

All Banach spaces isomorphic to an L^p-space are L^p-spaces.

Amenability of operator algebras on Banach spaces, II

Volker Runde

Amenability o $\mathcal{K}(E)$

Amenability of $\mathcal{B}(E)$ A positive example $\mathcal{B}(\ell^{p} \oplus \ell^{q})$ with $p \neq p$ $\mathcal{B}(\ell^{p})$

Definition (J. Lindenstrauss & A. Pełczyński, 1968)

Let $p \in [1, \infty]$ and let $\lambda \ge 1$. A Banach space E is called a \mathcal{L}^p_{λ} -space if, for every finite-dimensional subspace X of E, there is a finite-dimensional subspace $Y \supset X$ of E with $d(Y, \ell^p_{\dim Y}) \le \lambda$. We call E an \mathcal{L}^p -space if it is an \mathcal{L}^p_{λ} -space for some $\lambda \ge 1$.

▲ロト ▲帰ト ▲ヨト ▲ヨト - ヨ - の々ぐ

Examples

- All Banach spaces isomorphic to an L^p-space are L^p-spaces.
- 2 Let $p \in (1,\infty) \setminus \{2\}$.

Amenability of operator algebras on Banach spaces, II

Volker Runde

Amenability o $\mathcal{K}(E)$

Amenability of $\mathcal{B}(E)$ A positive example $\mathcal{B}(\ell^p \oplus \ell^q)$ with $p \neq p$ $\mathcal{B}(\ell^p)$

Definition (J. Lindenstrauss & A. Pełczyński, 1968)

Let $p \in [1, \infty]$ and let $\lambda \ge 1$. A Banach space E is called a $\mathcal{L}^{p}_{\lambda}$ -space if, for every finite-dimensional subspace X of E, there is a finite-dimensional subspace $Y \supset X$ of E with $d(Y, \ell^{p}_{\dim Y}) \le \lambda$. We call E an \mathcal{L}^{p} -space if it is an $\mathcal{L}^{p}_{\lambda}$ -space for some $\lambda \ge 1$.

Examples

- All Banach spaces isomorphic to an L^p-space are L^p-spaces.
- 2 Let $p \in (1,\infty) \setminus \{2\}$. Then $\ell^p(\ell^2)$ and $\ell^2 \oplus \ell^p$ are \mathcal{L}^p -spaces,

Amenability of operator algebras on Banach spaces, II

Volker Runde

Amenability o $\mathcal{K}(E)$

Amenability o $\mathcal{B}(E)$ A positive example $\mathcal{B}(\ell^{p} \oplus \ell^{q})$ with $p \neq p$ $\mathcal{B}(\ell^{p})$

Definition (J. Lindenstrauss & A. Pełczyński, 1968)

Let $p \in [1, \infty]$ and let $\lambda \ge 1$. A Banach space E is called a \mathcal{L}^p_{λ} -space if, for every finite-dimensional subspace X of E, there is a finite-dimensional subspace $Y \supset X$ of E with $d(Y, \ell^p_{\dim Y}) \le \lambda$. We call E an \mathcal{L}^p -space if it is an \mathcal{L}^p_{λ} -space for some $\lambda \ge 1$.

Examples

- All Banach spaces isomorphic to an L^p-space are L^p-spaces.
- 2 Let $p \in (1, \infty) \setminus \{2\}$. Then $\ell^p(\ell^2)$ and $\ell^2 \oplus \ell^p$ are \mathcal{L}^p -spaces, but not isomorphic to L^p -spaces.

\mathcal{L}^{p} -spaces, II

Amenability of operator algebras on Banach spaces, II
Amenability of $\mathcal{B}(\mathcal{E})$ A positive example $\mathcal{B}(\ell^p \oplus \ell^q)$ with $p \neq p$ $\mathcal{B}(\ell^p)$

Amenability of operator algebras on Banach spaces, II

Volker Runde

Amenability c K(E)

Amenability of $\mathcal{B}(E)$ A positive example $\mathcal{B}(\ell^P \oplus \ell^q)$ with $p \neq p$ $\mathcal{B}(\ell^p)$

Theorem (M. Daws & VR, 2008)

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Amenability of operator algebras on Banach spaces, II

Volker Runde

Amenability c $\mathcal{K}(E)$

 $\mathcal{B}(E)$ A positive example $\mathcal{B}(\ell^p \oplus \ell^q)$ with $p \neq p$ $\mathcal{B}(\ell^p)$

Theorem (M. Daws & VR, 2008)

Let $p \in [1, \infty]$. Then one of the following is true:

Amenability of operator algebras on Banach spaces, II

Volker Runde

Amenability o $\mathcal{K}(E)$

Amenability of $\mathcal{B}(E)$ A positive example $\mathcal{B}(\ell^{p} \oplus \ell^{q})$ with $p \neq p$ $\mathcal{B}(\ell^{p})$

Theorem (M. Daws & VR, 2008)

Let $p \in [1, \infty]$. Then one of the following is true:

 ℓ[∞](K(E)) is amenable for every L^p-space E with dim E = ∞;

Amenability of operator algebras on Banach spaces, II

voiker Runde

Amenability c $\mathcal{K}(E)$

Amenability of $\mathcal{B}(E)$ A positive example $\mathcal{B}(\ell^p \oplus \ell^q)$ with $p \neq p$ $\mathcal{B}(\ell^p)$

Theorem (M. Daws & VR, 2008)

- Let $p \in [1,\infty]$. Then one of the following is true:
 - 1 $\ell^{\infty}(\mathcal{K}(E))$ is amenable for every \mathcal{L}^{p} -space E with dim $E = \infty$;
 - 2 ℓ[∞](𝔅(𝔅)) is not amenable for any 𝔅^p-space 𝔅 with dim 𝔅 = ∞.

Amenability of operator algebras on Banach spaces, II

Volker Kullde

Amenability o $\mathcal{K}(E)$

Amenability o $\mathcal{B}(\mathcal{E})$ A positive example $\mathcal{B}(\ell^p \oplus \ell^q)$ with $p \neq p$ $\mathcal{B}(\ell^p)$

Theorem (M. Daws & VR, 2008)

- Let $p \in [1, \infty]$. Then one of the following is true:
 - 1 $\ell^{\infty}(\mathcal{K}(E))$ is amenable for every \mathcal{L}^{p} -space E with dim $E = \infty$;
 - 2 ℓ[∞](𝔅(𝔅)) is not amenable for any 𝔅^p-space 𝔅 with dim 𝔅 = ∞.

▲ロト ▲帰ト ▲ヨト ▲ヨト - ヨ - の々ぐ

Corollary

Amenability of operator algebras on Banach spaces, II

voiker Runde

Amenability o $\mathcal{K}(E)$

Amenability o $\mathcal{B}(\mathcal{E})$ A positive example $\mathcal{B}(\ell^{p} \oplus \ell^{q})$ with $p \neq p$ $\mathcal{B}(\ell^{p})$

Theorem (M. Daws & VR, 2008)

- Let $p \in [1, \infty]$. Then one of the following is true:
 - 1 $\ell^{\infty}(\mathcal{K}(E))$ is amenable for every \mathcal{L}^{p} -space E with dim $E = \infty$;
 - 2 ℓ[∞](𝔅(𝔅)) is not amenable for any 𝔅^p-space 𝔅 with dim 𝔅 = ∞.

▲ロト ▲帰ト ▲ヨト ▲ヨト - ヨ - の々ぐ

Corollary

Suppose that $\mathcal{B}(\ell^p)$ is amenable for some $p \in [1,\infty)$.

Amenability of operator algebras on Banach spaces, II

Volker Kullde

Amenability o $\mathcal{K}(E)$

Amenability o $\mathcal{B}(\mathcal{E})$ A positive example $\mathcal{B}(\ell^{p} \oplus \ell^{q})$ with $p \neq p$ $\mathcal{B}(\ell^{p})$

Theorem (M. Daws & VR, 2008)

- Let $p \in [1, \infty]$. Then one of the following is true:
 - 1 $\ell^{\infty}(\mathcal{K}(E))$ is amenable for every \mathcal{L}^{p} -space E with dim $E = \infty$;
 - 2 ℓ[∞](𝔅(𝔅)) is not amenable for any 𝔅^p-space 𝔅 with dim 𝔅 = ∞.

Corollary

Suppose that $\mathcal{B}(\ell^p)$ is amenable for some $p \in [1, \infty)$. Then $\ell^{\infty}(\mathcal{K}(E))$ is amenable

Amenability of operator algebras on Banach spaces, II

Volker Runde

Amenability o $\mathcal{K}(E)$

Amenability o $\mathcal{B}(\mathcal{E})$ A positive example $\mathcal{B}(\ell^{p} \oplus \ell^{q})$ with $p \neq p$ $\mathcal{B}(\ell^{p})$

Theorem (M. Daws & VR, 2008)

- Let $p \in [1, \infty]$. Then one of the following is true:
 - 1 $\ell^{\infty}(\mathcal{K}(E))$ is amenable for every \mathcal{L}^{p} -space E with dim $E = \infty$;
 - 2 $\ell^{\infty}(\mathcal{K}(E))$ is not amenable for any \mathcal{L}^{p} -space E with dim $E = \infty$.

Corollary

Suppose that $\mathcal{B}(\ell^p)$ is amenable for some $p \in [1, \infty)$. Then $\ell^{\infty}(\mathcal{K}(E))$ is amenable for every \mathcal{L}^p -space E with dim $E = \infty$.

Amenability of operator algebras on Banach spaces, II

voiker Runde

Amenability o $\mathcal{K}(E)$

Amenability o $\mathcal{B}(\mathcal{E})$ A positive example $\mathcal{B}(\ell^{p} \oplus \ell^{q})$ with $p \neq p$ $\mathcal{B}(\ell^{p})$

Theorem (M. Daws & VR, 2008)

- Let $p \in [1, \infty]$. Then one of the following is true:
 - 1 $\ell^{\infty}(\mathcal{K}(E))$ is amenable for every \mathcal{L}^{p} -space E with dim $E = \infty$;
 - 2 $\ell^{\infty}(\mathcal{K}(E))$ is not amenable for any \mathcal{L}^{p} -space E with dim $E = \infty$.

Corollary

Suppose that $\mathcal{B}(\ell^p)$ is amenable for some $p \in [1, \infty)$. Then $\ell^{\infty}(\mathcal{K}(E))$ is amenable for every \mathcal{L}^p -space E with dim $E = \infty$.

Question

\mathcal{L}^{p} -spaces, II

Amenability of operator algebras on Banach spaces, II

voiker Runde

Amenability o $\mathcal{K}(E)$

Amenability o $\mathcal{B}(E)$ A positive example $\mathcal{B}(\ell^p \oplus \ell^q)$ with $p \neq p$ $\mathcal{B}(\ell^p)$

Theorem (M. Daws & VR, 2008)

- Let $p \in [1,\infty]$. Then one of the following is true:
 - 1 $\ell^{\infty}(\mathcal{K}(E))$ is amenable for every \mathcal{L}^{p} -space E with dim $E = \infty$;
 - 2 $\ell^{\infty}(\mathcal{K}(E))$ is not amenable for any \mathcal{L}^{p} -space E with dim $E = \infty$.

Corollary

Suppose that $\mathcal{B}(\ell^p)$ is amenable for some $p \in [1, \infty)$. Then $\ell^{\infty}(\mathcal{K}(E))$ is amenable for every \mathcal{L}^p -space E with dim $E = \infty$.

Question

Is $\ell^\infty(\mathcal{K}(\ell^2\oplus\ell^p))$ amenable for any $p\in(1,\infty)\setminus\{2\}$?

Amenability of operator algebras on Banach spaces, II
Amenability of $\mathcal{B}(E)$ A positive example $\mathcal{B}(\ell^p \oplus \ell^q)$ with $p \neq p$ $\mathcal{B}(\ell^p)$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Amenability of operator algebras on Banach spaces, II	Definition	
with $p eq p$ $\mathcal{B}(\ell^p)$		

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Amenability of operator algebras on Banach spaces, II

Volker Runde

Amenability o $\mathcal{K}(E)$

Amenability of $\mathcal{B}(E)$ A positive example $\mathcal{B}(\ell^p \oplus \ell^q)$ with $p \neq p$ $\mathcal{B}(\ell^p)$

Definition

A locally compact group G has Kazhdan's property (T)

Amenability of operator algebras on Banach spaces, II

Volker Runde

Amenability o $\mathcal{K}(E)$

Amenability of $\mathcal{B}(E)$ A positive example $\mathcal{B}(\ell^P \oplus \ell^q)$ with $p \neq p$ $\mathcal{B}(\ell^p)$

Definition

A locally compact group G has Kazhdan's property (T) if there are $\epsilon > 0$

Amenability of operator algebras on Banach spaces, II

Volker Runde

Amenability o $\mathcal{K}(E)$

Amenability of $\mathcal{B}(E)$ A positive example $\mathcal{B}(\ell^{p} \oplus \ell^{q})$ with $p \neq p$ $\mathcal{B}(\ell^{p})$

Definition

A locally compact group G has Kazhdan's property (T) if there are $\epsilon > 0$ and a compact set $K \subset G$

Amenability of operator algebras on Banach spaces, II

Volker Runde

Amenability of $\mathcal{K}(E)$

Amenability of $\mathcal{B}(E)$ A positive example $\mathcal{B}(\ell^p \oplus \ell^q)$ with $p \neq p$ $\mathcal{B}(\ell^p)$

Definition

A locally compact group G has Kazhdan's property (T) if there are $\epsilon > 0$ and a compact set $K \subset G$ with the following property:

Amenability of operator algebras on Banach spaces, II

Volker Runde

Amenability of $\mathcal{K}(E)$

Amenability of $\mathcal{B}(\mathcal{E})$ A positive example $\mathcal{B}(\ell^{p} \oplus \ell^{q})$ with $p \neq p$ $\mathcal{B}(\ell^{p})$

Definition

A locally compact group G has Kazhdan's property (T) if there are $\epsilon > 0$ and a compact set $K \subset G$ with the following property: for every irreducible, unitary representation π of G on \mathfrak{H}

Amenability of operator algebras on Banach spaces, II

Volker Runde

Amenability o $\mathcal{K}(E)$

Amenability o $\mathcal{B}(E)$ A positive example $\mathcal{B}(\ell^{p} \oplus \ell^{q})$ with $p \neq p$ $\mathcal{B}(\ell^{p})$

Definition

A locally compact group G has Kazhdan's property (T) if there are $\epsilon > 0$ and a compact set $K \subset G$ with the following property: for every irreducible, unitary representation π of G on \mathfrak{H} and for every unit vector $\xi \in \mathfrak{H}$,

Amenability of operator algebras on Banach

spaces, II

Volker Runde

Amenability o $\mathcal{K}(E)$

Amenability o $\mathcal{B}(\mathcal{E})$ A positive example $\mathcal{B}(\ell^{p} \oplus \ell^{q})$ with $p \neq p$ $\mathcal{B}(\ell^{p})$ A locally compact group G has Kazhdan's property (T) if there are $\epsilon > 0$ and a compact set $K \subset G$ with the following property: for every irreducible, unitary representation π of G on \mathfrak{H} and for every unit vector $\xi \in \mathfrak{H}$, there is $k \in K$

Amenability of operator Definition

operator algebras on Banach spaces, II

Volker Runde

Amenability o $\mathcal{K}(E)$

Amenability o $\mathcal{B}(\mathcal{E})$ A positive example $\mathcal{B}(\ell^{p} \oplus \ell^{q})$ with $p \neq p$ $\mathcal{B}(\ell^{p})$ A locally compact group G has Kazhdan's property (T) if there are $\epsilon > 0$ and a compact set $K \subset G$ with the following property: for every irreducible, unitary representation π of G on \mathfrak{H} and for every unit vector $\xi \in \mathfrak{H}$, there is $k \in K$ such that

 $\|\pi(k)\xi-\xi\|>\epsilon.$

Definition

Amenability of operator algebras on Banach spaces, II

Volker Runde

Amenability c $\mathcal{K}(E)$

Amenability o $\mathcal{B}(\mathcal{E})$ A positive example $\mathcal{B}(\ell^p \oplus \ell^q)$ with $p \neq p$ $\mathcal{B}(\ell^p)$ A locally compact group G has Kazhdan's property (T) if there are $\epsilon > 0$ and a compact set $K \subset G$ with the following property: for every irreducible, unitary representation π of G on \mathfrak{H} and for every unit vector $\xi \in \mathfrak{H}$, there is $k \in K$ such that

$$\|\pi(k)\xi-\xi\|>\epsilon.$$

Examples

Definition

Amenability of operator algebras on Banach spaces, II

Volker Runde

Amenability c $\mathcal{K}(E)$

Amenability o $\mathcal{B}(E)$ A positive example $\mathcal{B}(\ell^p \oplus \ell^q)$ with $p \neq p$ $\mathcal{B}(\ell^p)$ A locally compact group G has Kazhdan's property (T) if there are $\epsilon > 0$ and a compact set $K \subset G$ with the following property: for every irreducible, unitary representation π of G on \mathfrak{H} and for every unit vector $\xi \in \mathfrak{H}$, there is $k \in K$ such that

$$\|\pi(k)\xi-\xi\|>\epsilon.$$

Examples

1 All compact groups have property (T), as does

Definition

Amenability of operator algebras on Banach spaces, II

Volker Runde

Amenability c $\mathcal{K}(E)$

Amenability o $\mathcal{B}(E)$ A positive example $\mathcal{B}(\ell^p \oplus \ell^q)$ with $p \neq p$ $\mathcal{B}(\ell^p)$ A locally compact group G has Kazhdan's property (T) if there are $\epsilon > 0$ and a compact set $K \subset G$ with the following property: for every irreducible, unitary representation π of G on \mathfrak{H} and for every unit vector $\xi \in \mathfrak{H}$, there is $k \in K$ such that

$$\|\pi(k)\xi-\xi\|>\epsilon.$$

Examples

1 All compact groups have property (T), as does $SL(3,\mathbb{Z})$.

Definition

Amenability of operator algebras on Banach spaces, II

Volker Runde

Amenability c $\mathcal{K}(E)$

Amenability o $\mathcal{B}(\mathcal{E})$ A positive example $\mathcal{B}(\ell^p \oplus \ell^q)$ with $p \neq p$ $\mathcal{B}(\ell^p)$ A locally compact group G has Kazhdan's property (T) if there are $\epsilon > 0$ and a compact set $K \subset G$ with the following property: for every irreducible, unitary representation π of G on \mathfrak{H} and for every unit vector $\xi \in \mathfrak{H}$, there is $k \in K$ such that

$$\|\pi(k)\xi-\xi\|>\epsilon.$$

Examples

1 All compact groups have property (T), as does SL(3, \mathbb{Z}).

2 Amenable groups have property (T)

Amenability of operator algebras on Banach spaces, II

Volker Runde

Amenability o $\mathcal{K}(E)$

Amenability o $\mathcal{B}(E)$ A positive example $\mathcal{B}(\ell^p \oplus \ell^q)$ with $p \neq p$ $\mathcal{B}(\ell^p)$

Definition

A locally compact group G has Kazhdan's property (T) if there are $\epsilon > 0$ and a compact set $K \subset G$ with the following property: for every irreducible, unitary representation π of G on \mathfrak{H} and for every unit vector $\xi \in \mathfrak{H}$, there is $k \in K$ such that

$$\|\pi(k)\xi-\xi\|>\epsilon.$$

Examples

- **1** All compact groups have property (T), as does SL $(3, \mathbb{Z})$.
- Amenable groups have property (T) if and only if they are compact.

Amenability of operator Definition

operator algebras on Banach spaces, II

Volker Runde

Amenability o $\mathcal{K}(E)$

Amenability o $\mathcal{B}(E)$ A positive example $\mathcal{B}(\ell^p \oplus \ell^q)$ with $p \neq p$ $\mathcal{B}(\ell^p)$

A locally compact group G has Kazhdan's property (T) if there are $\epsilon > 0$ and a compact set $K \subset G$ with the following property: for every irreducible, unitary representation π of G on \mathfrak{H} and for every unit vector $\xi \in \mathfrak{H}$, there is $k \in K$ such that

$$\|\pi(k)\xi-\xi\|>\epsilon.$$

Examples

- **1** All compact groups have property (T), as does SL(3, \mathbb{Z}).
- Amenable groups have property (T) if and only if they are compact.
- 3 \mathbb{F}_2 and SL $(2, \mathbb{R})$ are not amenable,

Definition

operator algebras on Banach spaces, II

Amenability of

Volker Runde

Amenability o $\mathcal{K}(E)$

Amenability o $\mathcal{B}(E)$ A positive example $\mathcal{B}(\ell^P \oplus \ell^q)$ with $p \neq p$ $\mathcal{B}(\ell^P)$ A locally compact group G has Kazhdan's property (T) if there are $\epsilon > 0$ and a compact set $K \subset G$ with the following property: for every irreducible, unitary representation π of G on \mathfrak{H} and for every unit vector $\xi \in \mathfrak{H}$, there is $k \in K$ such that

$$\|\pi(k)\xi-\xi\|>\epsilon.$$

Examples

- **1** All compact groups have property (T), as does SL(3, \mathbb{Z}).
- Amenable groups have property (T) if and only if they are compact.

3 \mathbb{F}_2 and $SL(2,\mathbb{R})$ are not amenable, but lack property (T).

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Amenability of operator algebras on Banach spaces, II	The setup	
Volker Runde		
Amenability of $\mathcal{K}(E)$		
Amenability of $\mathcal{B}(E)$ A positive example $\mathcal{B}(\ell^{P} \oplus \ell^{q})$ with $\rho \neq \rho$ $\mathcal{B}(\ell^{p})$		

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Amenability of operator algebras on Banach spaces, II

Volker Runde

Amenability o $\mathcal{K}(E)$

Amenability of $\mathcal{B}(E)$ A positive example $\mathcal{B}(\ell^p \oplus \ell^q)$ with $p \neq p$ $\mathcal{B}(\ell^p)$

The setup

Since SL(3, \mathbb{Z}) has property (*T*),

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ 三臣 - わへで

Amenability of operator algebras on Banach spaces, II

Volker Runde

Amenability o $\mathcal{K}(E)$

Amenability of $\mathcal{B}(E)$ A positive example $\mathcal{B}(\ell^p \oplus \ell^q)$ with $p \neq p$ $\mathcal{B}(\ell^p)$

The setup

Since $SL(3,\mathbb{Z})$ has property (*T*), it is finitely generated

Amenability of operator algebras on Banach spaces, II

Volker Runde

Amenability c $\mathcal{K}(E)$

 $\mathcal{B}(E)$ A positive example $\mathcal{B}(\ell^p \oplus \ell^q)$ with $p \neq p$ $\mathcal{B}(\ell^p)$

The setup

Since $SL(3, \mathbb{Z})$ has property (*T*), it is finitely generated by g_1, \ldots, g_m , say.

Amenability of operator algebras on Banach spaces, II

Volker Runde

Amenability o $\mathcal{K}(E)$

Amenability o $\mathcal{B}(E)$ A positive example $\mathcal{B}(\ell^p \oplus \ell^q)$ with $p \neq p$ $\mathcal{B}(\ell^p)$

The setup

Since SL(3, \mathbb{Z}) has property (*T*), it is finitely generated by g_1, \ldots, g_m , say. Write \mathbb{P} for the set of prime numbers.

Amenability of operator algebras on Banach spaces, II

Volker Runde

Amenability c $\mathcal{K}(E)$

Amenability o $\mathcal{B}(E)$ A positive example $\mathcal{B}(\ell^p \oplus \ell^q)$ with $p \neq p$ $\mathcal{B}(\ell^p)$

The setup

Since SL(3, \mathbb{Z}) has property (*T*), it is finitely generated by g_1, \ldots, g_m , say. Write \mathbb{P} for the set of prime numbers. Let $p \in \mathbb{P}$,

Amenability of operator algebras on Banach spaces, II

Volker Runde

Amenability o $\mathcal{K}(E)$

Amenability of $\mathcal{B}(E)$ A positive example $\mathcal{B}(\ell^p \oplus \ell^q)$ with $p \neq p$ $\mathcal{B}(\ell^p)$

The setup

Since SL(3, \mathbb{Z}) has property (*T*), it is finitely generated by g_1, \ldots, g_m , say. Write \mathbb{P} for the set of prime numbers. Let $p \in \mathbb{P}$, and let Λ_p be the projective plane over $\mathbb{Z}/p\mathbb{Z}$.

Amenability of operator algebras on Banach spaces, II

Volker Runde

Amenability o $\mathcal{K}(E)$ Amenability o $\mathcal{B}(E)$

A positive example $\mathcal{B}(\ell^P \oplus \ell^q)$ with $p \neq p$ $\mathcal{B}(\ell^P)$

The setup

Since SL(3, \mathbb{Z}) has property (*T*), it is finitely generated by g_1, \ldots, g_m , say. Write \mathbb{P} for the set of prime numbers. Let $p \in \mathbb{P}$, and let Λ_p be the projective plane over $\mathbb{Z}/p\mathbb{Z}$.

Then SL(3, \mathbb{Z}) acts on Λ_p through matrix multiplication.

Amenability of operator algebras on Banach spaces, II

Volker Runde

Amenability of $\mathcal{K}(E)$ Amenability of $\mathcal{B}(E)$ A positive example $\mathcal{B}(\ell^p \oplus \ell^q)$

 $\mathcal{B}(\ell^p)$

The setup

Since SL(3, \mathbb{Z}) has property (T), it is finitely generated by g_1, \ldots, g_m , say. Write \mathbb{P} for the set of prime numbers. Let $p \in \mathbb{P}$, and let Λ_p be the projective plane over $\mathbb{Z}/p\mathbb{Z}$. Then SL(3, \mathbb{Z}) acts on Λ_p through matrix multiplication.

This group action induces a unitary representation $\pi_p: SL(3,\mathbb{Z}) \to \mathcal{B}(\ell^2(\Lambda_p)).$

Amenability of operator algebras on Banach spaces, II

Volker Runde

Amenability of $\mathcal{K}(E)$ Amenability of $\mathcal{B}(E)$ A positive example $\mathcal{B}(\ell^{p} \oplus \ell^{q})$ with $q \neq \ell^{q}$

 $\mathcal{B}(\ell^p)$

The setup

Since SL(3, \mathbb{Z}) has property (*T*), it is finitely generated by g_1, \ldots, g_m , say. Write \mathbb{P} for the set of prime numbers.

Let $p \in \mathbb{P}$, and let Λ_p be the projective plane over $\mathbb{Z}/p\mathbb{Z}$. Then SL(3, \mathbb{Z}) acts on Λ_p through matrix multiplication. This group action induces a unitary representation $\pi_p: SL(3, \mathbb{Z}) \to \mathcal{B}(\ell^2(\Lambda_p)).$ Choose $S_p \subset \Lambda_p$ with $|S_p| = \frac{|\Lambda_p| - 1}{2}$

Amenability of operator algebras on Banach spaces, II

Volker Runde

Amenability of $\mathcal{K}(E)$ Amenability of $\mathcal{B}(E)$ A positive example $\mathcal{B}(\ell^p \oplus \ell^q)$ with $p \neq p$

 $\mathcal{B}(\ell^p)$

The setup

Since SL(3, \mathbb{Z}) has property (*T*), it is finitely generated by g_1, \ldots, g_m , say. Write \mathbb{P} for the set of prime numbers. Let $p \in \mathbb{P}$, and let Λ_p be the projective plane over $\mathbb{Z}/p\mathbb{Z}$. Then SL(3, \mathbb{Z}) acts on Λ_p through matrix multiplication. This group action induces a unitary representation $\pi_p: SL(3, \mathbb{Z}) \to \mathcal{B}(\ell^2(\Lambda_p))$. Choose $S_p \subset \Lambda_p$ with $|S_p| = \frac{|\Lambda_p| - 1}{2}$ and define a unitary $\pi_p(g_{m+1}) \in \mathcal{B}(\ell^2(\Lambda_p))$

Amenability of operator algebras on Banach spaces, II

Volker Runde

Amenability of $\mathcal{K}(E)$ Amenability of $\mathcal{B}(E)$ A positive example $\mathcal{B}(\ell^p \oplus \ell^q)$ with $p \neq p$

 $\mathcal{B}(\ell^p)$

The setup

Since SL(3, \mathbb{Z}) has property (*T*), it is finitely generated by g_1, \ldots, g_m , say. Write \mathbb{P} for the set of prime numbers. Let $p \in \mathbb{P}$, and let Λ_p be the projective plane over $\mathbb{Z}/p\mathbb{Z}$. Then SL(3, \mathbb{Z}) acts on Λ_p through matrix multiplication. This group action induces a unitary representation $\pi_p: SL(3, \mathbb{Z}) \to \mathcal{B}(\ell^2(\Lambda_p))$. Choose $S_p \subset \Lambda_p$ with $|S_p| = \frac{|\Lambda_p| - 1}{2}$ and define a unitary $\pi_p(g_{m+1}) \in \mathcal{B}(\ell^2(\Lambda_p))$ via

$$\pi_p(g_{m+1})e_\lambda =$$

Amenability of operator algebras on Banach spaces, II

Volker Runde

Amenability o $\mathcal{K}(E)$ Amenability o $\mathcal{B}(E)$ A positive example $\mathcal{B}(\ell^p \oplus \ell^q)$ with $p \neq p$ $\mathcal{B}(\ell^p)$

The setup

Since SL(3, \mathbb{Z}) has property (*T*), it is finitely generated by g_1, \ldots, g_m , say. Write \mathbb{P} for the set of prime numbers.

Let $p \in \mathbb{P}$, and let Λ_p be the projective plane over $\mathbb{Z}/p\mathbb{Z}$. Then SL(3, \mathbb{Z}) acts on Λ_p through matrix multiplication. This group action induces a unitary representation $\pi_p \colon SL(3, \mathbb{Z}) \to \mathcal{B}(\ell^2(\Lambda_p))$. Choose $S_p \subset \Lambda_p$ with $|S_p| = \frac{|\Lambda_p| - 1}{2}$ and define a unitary $\pi_p(g_{m+1}) \in \mathcal{B}(\ell^2(\Lambda_p))$ via

$$\pi_{\rho}(g_{m+1})e_{\lambda} = \begin{cases} & e_{\lambda}, \quad \lambda \in S_{\rho}, \end{cases}$$

Amenability of operator algebras on Banach spaces, II

Volker Runde

Amenability o $\mathcal{K}(E)$ Amenability o $\mathcal{B}(E)$ A positive example $\mathcal{B}(\ell^p \oplus \ell^q)$

 $\mathcal{B}(\ell^p)$

The setup

Since SL(3, \mathbb{Z}) has property (*T*), it is finitely generated by g_1, \ldots, g_m , say. Write \mathbb{P} for the set of prime numbers. Let $p \in \mathbb{P}$, and let Λ_p be the projective plane over $\mathbb{Z}/p\mathbb{Z}$. Then SL(3, \mathbb{Z}) acts on Λ_p through matrix multiplication.

This group action induces a unitary representation $\pi_p: SL(3, \mathbb{Z}) \to \mathcal{B}(\ell^2(\Lambda_p)).$

Choose $S_p \subset \Lambda_p$ with $|S_p| = \frac{|\Lambda_p|-1}{2}$ and define a unitary $\pi_p(g_{m+1}) \in \mathcal{B}(\ell^2(\Lambda_p))$ via

$$\pi_{
ho}(g_{m+1})e_{\lambda} = \left\{egin{array}{cc} e_{\lambda}, & \lambda \in S_{
ho}, \ -e_{\lambda}, & \lambda
otin S_{
ho}. \end{array}
ight.$$

Amenability of operator algebras on Banach spaces, II
Amenability of $\mathcal{B}(E)$ A positive example $\mathcal{B}(\ell^p \oplus \ell^q)$ with $p \neq p$ $\mathcal{B}(\ell^p)$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Ozawa's Lemma

Amenability of operator algebras on Banach spaces, II

Volker Runde

Amenability o $\mathcal{K}(E)$

Amenability $\mathcal{B}(E)$ A positive example $\mathcal{B}(\ell^P \oplus \ell^q)$ with $p \neq p$ $\mathcal{B}(\ell^P)$ It is impossible to find, for each $\epsilon > 0$, a number $r \in \mathbb{N}$ with the following property: for each $p \in \mathbb{P}$ there are $\xi_{1,p}, \eta_{1,p}, \ldots, \xi_{r,p}, \eta_{r,p} \in \ell^2(\Lambda_p)$ such that $\sum_{k=1}^r \xi_{k,p} \otimes \eta_{k,p} \neq 0$ and

$$\begin{split} \left\| \sum_{k=1}^{r} \xi_{j,p} \otimes \eta_{k,p} - (\pi_{p}(g_{j}) \otimes \pi_{p}(g_{j}))(\xi_{k,p} \otimes \eta_{k,p}) \right\|_{\ell^{2}(\Lambda_{p})\hat{\otimes}\ell^{2}(\Lambda_{p})} \\ & \leq \epsilon \left\| \sum_{k=1}^{r} \xi_{k,p} \otimes \eta_{k,p} \right\|_{\ell^{2}(\Lambda_{p})\hat{\otimes}\ell^{2}(\Lambda_{p})} \qquad (j = 1, \dots, m+1). \end{split}$$

Amenability of operator algebras on Banach spaces, II
Amenability of $\mathcal{B}(E)$ A positive example $\mathcal{B}(\ell^p \oplus \ell^q)$ with $p \neq p$ $\mathcal{B}(\ell^p \oplus \ell^q)$
$\mathcal{B}(\ell^p)$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Amenability of operator algebras on Banach	Ingredients
spaces, II	
Amenability of $\mathcal{B}(E)$ A positive example $\mathcal{B}(\ell^{p} \oplus \ell^{q})$ with $\rho \neq \rho$ $\mathcal{B}(\ell^{p} \oplus \ell^{q})$	

Amenability of operator algebras on Banach spaces, II

Volker Runde

Amenability o $\mathcal{K}(E)$

Amenability of $\mathcal{B}(E)$ A positive example $\mathcal{B}(\ell^p \oplus \ell^q)$ with $p \neq p$ $\mathcal{B}(\ell^p)$

Ingredients

1 SL(3, \mathbb{Z}) has Kazhdan's property (T).

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

Ingredients

Amenability of operator algebras on Banach spaces, II

Volker Runde

Amenability o $\mathcal{K}(E)$

Amenability of $\mathcal{B}(E)$ A positive example $\mathcal{B}(\ell^{p} \oplus \ell^{q})$ with $p \neq p$ $\mathcal{B}(\ell^{p})$

1 SL(3, \mathbb{Z}) has Kazhdan's property (*T*).

2 The non-commutative Mazur map is uniformly continuous.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

Amenability of operator algebras on Banach spaces, II

Volker Runde

Amenability c $\mathcal{K}(E)$

Amenability of $\mathcal{B}(E)$ A positive example $\mathcal{B}(\ell^{p} \oplus \ell^{q})$ with $p \neq p$ $\mathcal{B}(\ell^{p})$

- **1** SL $(3,\mathbb{Z})$ has Kazhdan's property (T).
- 2 The non-commutative Mazur map is uniformly continuous.

▲ロト ▲帰ト ▲ヨト ▲ヨト - ヨ - の々ぐ

3 A key inequality.

Ingredients

Ingredients

Amenability of operator algebras on Banach spaces, II

Volker Runde

Amenability c $\mathcal{K}(E)$

Amenability of $\mathcal{B}(E)$ A positive example $\mathcal{B}(\ell^{p} \oplus \ell^{q})$ with $p \neq p$ $\mathcal{B}(\ell^{p})$

- **1** SL $(3, \mathbb{Z})$ has Kazhdan's property (T).
- 2 The non-commutative Mazur map is uniformly continuous.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

3 A key inequality. For $p = 1, 2, \infty$,

Ingredients

Amenability of operator algebras on Banach spaces, II

Volker Runde

Amenability c $\mathcal{K}(E)$

Amenability of $\mathcal{B}(E)$ A positive example $\mathcal{B}(\ell^{p} \oplus \ell^{q})$ with $p \neq p$ $\mathcal{B}(\ell^{p})$

- **1** SL $(3, \mathbb{Z})$ has Kazhdan's property (T).
- 2 The non-commutative Mazur map is uniformly continuous.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

3 A key inequality. For $p = 1, 2, \infty$, $N \in \mathbb{N}$,

Ingredients

Amenability of operator algebras on Banach spaces, II

Volker Runde

Amenability c $\mathcal{K}(E)$

Amenability of $\mathcal{B}(E)$ A positive example $\mathcal{B}(\ell^{p} \oplus \ell^{q})$ with $p \neq p$ $\mathcal{B}(\ell^{p})$

- **1** SL $(3, \mathbb{Z})$ has Kazhdan's property (T).
- 2 The non-commutative Mazur map is uniformly continuous.
- 3 A key inequality. For $p = 1, 2, \infty$, $N \in \mathbb{N}$, $S \in \mathcal{B}(\ell^p, \ell^p_N)$, and $T \in \mathcal{B}(\ell^{p'}, \ell^{p'}_N)$:

Ingredients

Amenability of operator algebras on Banach spaces, II

Volker Runde

Amenability c $\mathcal{K}(E)$

Amenability of $\mathcal{B}(\mathcal{E})$ A positive example $\mathcal{B}(\ell^{p} \oplus \ell^{q})$ with $p \neq p$ $\mathcal{B}(\ell^{p})$

- **1** SL(3, \mathbb{Z}) has Kazhdan's property (*T*).
- 2 The non-commutative Mazur map is uniformly continuous.
- 3 A key inequality. For $p = 1, 2, \infty$, $N \in \mathbb{N}$, $S \in \mathcal{B}(\ell^p, \ell^p_N)$, and $T \in \mathcal{B}(\ell^{p'}, \ell^{p'}_N)$:

$$\sum_{n=1}^{\infty} \|Se_n\|_{\ell^2_N} \|Te^*_n\|_{\ell^2_N} \le N \|S\| \|T\|.$$

Ingredients

Amenability of operator algebras on Banach spaces, II

Volker Runde

Amenability c $\mathcal{K}(E)$

Amenability of $\mathcal{B}(E)$ A positive example $\mathcal{B}(\ell^p \oplus \ell^q)$ with $p \neq p$ $\mathcal{B}(\ell^p)$

- **1** $SL(3,\mathbb{Z})$ has Kazhdan's property (T).
- **2** The non-commutative Mazur map is uniformly continuous.
- 3 A key inequality. For $p = 1, 2, \infty$, $N \in \mathbb{N}$, $S \in \mathcal{B}(\ell^p, \ell^p_N)$, and $T \in \mathcal{B}(\ell^{p'}, \ell^{p'}_N)$:

$$\sum_{n=1}^{\infty} \|Se_n\|_{\ell^2_N} \|Te_n^*\|_{\ell^2_N} \le N \|S\| \|T\|.$$

(This estimate is no longer true for $p \in (1, \infty) \setminus \{2\}$.)

(ロ)、(型)、(E)、(E)、 E) の(の)

operator algebras on Banach spaces, II	
with $p \neq p$ $\mathcal{B}(\ell^p)$	

▲ロト ▲帰ト ▲ヨト ▲ヨト - ヨ - の々ぐ

Amenability of operator algebras on Banach spaces, II

Volker Runde

Amenability o $\mathcal{K}(E)$

Amenability of $\mathcal{B}(E)$ A positive example $\mathcal{B}(\ell^{p} \oplus \ell^{q})$ with $p \neq p$ $\mathcal{B}(\ell^{p})$

Theorem (VR, 2009)

▲ロト ▲帰ト ▲ヨト ▲ヨト - ヨ - の々ぐ

Amenability of operator algebras on Banach spaces, II

Volker Runde

Amenability o $\mathcal{K}(E)$

Amenability of $\mathcal{B}(E)$ A positive example $\mathcal{B}(\ell^p \oplus \ell^q)$ with $p \neq p$ $\mathcal{B}(\ell^p)$

Theorem (VR, 2009)

Let E be a Banach space with a basis $(x_n)_{n=1}^{\infty}$

Amenability of operator algebras on Banach spaces, II

Volker Runde

Amenability of $\mathcal{K}(E)$

Amenability o $\mathcal{B}(E)$ A positive example $\mathcal{B}(\ell^{p} \oplus \ell^{q})$ with $p \neq p$ $\mathcal{B}(\ell^{p})$

Theorem (VR, 2009)

Let E be a Banach space with a basis $(x_n)_{n=1}^\infty$ such that there is C>0

Amenability of operator algebras on Banach spaces, II

Volker Runde

Amenability of $\mathcal{K}(E)$

Amenability of $\mathcal{B}(\mathcal{E})$ A positive example $\mathcal{B}(\ell^{p} \oplus \ell^{q})$ with $p \neq p$ $\mathcal{B}(\ell^{p})$

Theorem (VR, 2009)

Let E be a Banach space with a basis $(x_n)_{n=1}^{\infty}$ such that there is C > 0 with

 $\sum_{n=1} \|Sx_n\| \|Tx_n^*\| \le C N\|S\| \|T\|$

 $(N \in \mathbb{N}, S \in \mathcal{B}(E, \ell_N^2), T \in \mathcal{B}(E^*, \ell_N^2)).$

Amenability of operator algebras on Banach spaces, II

Volker Runde

Amenability of $\mathcal{K}(E)$

Amenability of $\mathcal{B}(E)$ A positive example $\mathcal{B}(\ell^{p} \oplus \ell^{q})$ with $p \neq p$ $\mathcal{B}(\ell^{p})$

Theorem (VR, 2009)

 ∞

Let E be a Banach space with a basis $(x_n)_{n=1}^{\infty}$ such that there is C > 0 with

$$\sum_{n=1} \|Sx_n\| \|Tx_n^*\| \le C N\|S\| \|T\|$$

 $(N \in \mathbb{N}, S \in \mathcal{B}(E, \ell_N^2), T \in \mathcal{B}(E^*, \ell_N^2)).$

Then $\ell^{\infty}(\mathcal{K}(\ell^2 \oplus E))$ is not amenable.

Amenability of operator algebras on Banach spaces, II

Volker Runde

Amenability of $\mathcal{K}(E)$

Amenability of $\mathcal{B}(\mathcal{E})$ A positive example $\mathcal{B}(\ell^p \oplus \ell^q)$ with $p \neq p$ $\mathcal{B}(\ell^p)$

Theorem (VR, 2009)

Let E be a Banach space with a basis $(x_n)_{n=1}^\infty$ such that there is C>0 with

$$\sum_{n=1} \|Sx_n\| \|Tx_n^*\| \le C N\|S\| \|T\|$$

 $(N \in \mathbb{N}, S \in \mathcal{B}(E, \ell_N^2), T \in \mathcal{B}(E^*, \ell_N^2)).$

Then $\ell^{\infty}(\mathcal{K}(\ell^2 \oplus E))$ is not amenable.

Example

 ∞

Amenability of operator algebras on Banach spaces, II

Volker Runde

Amenability of $\mathcal{K}(E)$

Amenability of $\mathcal{B}(E)$ A positive example $\mathcal{B}(\ell^p \oplus \ell^q)$ with $p \neq p$ $\mathcal{B}(\ell^p)$

Theorem (VR, 2009)

Let E be a Banach space with a basis $(x_n)_{n=1}^\infty$ such that there is C>0 with

$$\sum_{n=1} \|Sx_n\| \|Tx_n^*\| \le C N\|S\| \|T\|$$

 $(N \in \mathbb{N}, S \in \mathcal{B}(E, \ell_N^2), T \in \mathcal{B}(E^*, \ell_N^2)).$

Then $\ell^{\infty}(\mathcal{K}(\ell^2 \oplus E))$ is not amenable.

Example

 ∞

It is easy to see that the following spaces satisfy the hypotheses of the theorem:

Amenability of operator algebras on Banach spaces, II

Volker Runde

Amenability of $\mathcal{K}(E)$

Amenability of $\mathcal{B}(E)$ A positive example $\mathcal{B}(\ell^p \oplus \ell^q)$ with $p \neq p$ $\mathcal{B}(\ell^p)$

Theorem (VR, 2009)

Let E be a Banach space with a basis $(x_n)_{n=1}^\infty$ such that there is C>0 with

$$\sum_{n=1} \|Sx_n\| \|Tx_n^*\| \le C N\|S\| \|T\|$$

 $(N \in \mathbb{N}, S \in \mathcal{B}(E, \ell_N^2), T \in \mathcal{B}(E^*, \ell_N^2)).$

Then $\ell^{\infty}(\mathcal{K}(\ell^2 \oplus E))$ is not amenable.

Example

 ∞

It is easy to see that the following spaces satisfy the hypotheses of the theorem: c_0 ,

Amenability of operator algebras on Banach spaces, II

Volker Runde

Amenability of $\mathcal{K}(E)$

Amenability of $\mathcal{B}(E)$ A positive example $\mathcal{B}(\ell^p \oplus \ell^q)$ with $p \neq p$ $\mathcal{B}(\ell^p)$

Theorem (VR, 2009)

Let E be a Banach space with a basis $(x_n)_{n=1}^\infty$ such that there is C>0 with

$$\sum_{n=1} \|Sx_n\| \|Tx_n^*\| \le C N \|S\| \|T\|$$

 $(N \in \mathbb{N}, S \in \mathcal{B}(E, \ell_N^2), T \in \mathcal{B}(E^*, \ell_N^2)).$

Then $\ell^{\infty}(\mathcal{K}(\ell^2 \oplus E))$ is not amenable.

Example

 ∞

It is easy to see that the following spaces satisfy the hypotheses of the theorem: c_0 , ℓ^1 ,

Amenability of operator algebras on Banach spaces, II

Volker Runde

Amenability of $\mathcal{K}(E)$

Amenability of $\mathcal{B}(E)$ A positive example $\mathcal{B}(\ell^p \oplus \ell^q)$ with $p \neq p$ $\mathcal{B}(\ell^p)$

Theorem (VR, 2009)

Let E be a Banach space with a basis $(x_n)_{n=1}^\infty$ such that there is C>0 with

$$\sum_{n=1} \|Sx_n\| \|Tx_n^*\| \le C N \|S\| \|T\|$$

 $(N \in \mathbb{N}, S \in \mathcal{B}(E, \ell_N^2), T \in \mathcal{B}(E^*, \ell_N^2)).$

Then $\ell^{\infty}(\mathcal{K}(\ell^2 \oplus E))$ is not amenable.

Example

 ∞

It is easy to see that the following spaces satisfy the hypotheses of the theorem: c_0 , ℓ^1 , and ℓ^2 .

(ロ)、(型)、(E)、(E)、 E) の(の)

operator algebras on Banach spaces, II	
Volker Runde	
Amenability of $\mathcal{K}(E)$	
Amenability of $\mathcal{B}(\mathcal{E})$ A positive example $\mathcal{B}(\ell^{p} \oplus \ell^{q})$ with $p \neq p$ $\mathcal{B}(\ell^{p})$	

Amenability of operator algebras on Banach spaces, II	Lemma	
Amenability of $\mathcal{B}(E)$ A positive example $\mathcal{B}(\ell^{p} \oplus \ell^{q})$ with $\rho \neq \rho$ $\mathcal{B}(\ell^{p})$		

Amenability of operator algebras on Banach spaces, II

Volker Runde

Amenability of $\mathcal{K}(E)$

Amenability o $\mathcal{B}(E)$ A positive example $\mathcal{B}(\ell^{p} \oplus \ell^{q})$ with $p \neq p$ $\mathcal{B}(\ell^{p})$

Lemma

Let \mathfrak{A} be an amenable Banach algebra, and let $e \in \mathfrak{A}$ be an idempotent. Then,

Amenability of operator algebras on Banach spaces, II

Volker Runde

Amenability of $\mathcal{K}(E)$

Amenability o $\mathcal{B}(E)$ A positive example $\mathcal{B}(\ell^{p} \oplus \ell^{q})$ with $p \neq p$ $\mathcal{B}(\ell^{p})$

Lemma

Let \mathfrak{A} be an amenable Banach algebra, and let $e \in \mathfrak{A}$ be an idempotent. Then, for any $\epsilon > 0$

Amenability of operator algebras on Banach spaces, II

Volker Runde

Amenability of $\mathcal{K}(E)$

Amenability of $\mathcal{B}(E)$ A positive example $\mathcal{B}(\ell^{p} \oplus \ell^{q})$ with $p \neq p$ $\mathcal{B}(\ell^{p})$

Lemma

Let \mathfrak{A} be an amenable Banach algebra, and let $e \in \mathfrak{A}$ be an idempotent. Then, for any $\epsilon > 0$ and any finite subset F of $e\mathfrak{A}e$,

Amenability of operator algebras on Banach spaces, II

Lemma

Volker Runde

Amenability o $\mathcal{K}(E)$

Amenability of $\mathcal{B}(E)$ A positive example $\mathcal{B}(\ell^p \oplus \ell^q)$ with $p \neq p$ $\mathcal{B}(\ell^p)$ Let \mathfrak{A} be an amenable Banach algebra, and let $e \in \mathfrak{A}$ be an idempotent. Then, for any $\epsilon > 0$ and any finite subset F of $e\mathfrak{A}e$, there are $a_1, b_1, \ldots, a_r, b_r \in \mathfrak{A}$

Amenability of operator algebras on Banach spaces, II

Volker Runde

Amenability o $\mathcal{K}(E)$

Amenability of $\mathcal{B}(\mathcal{E})$ A positive example $\mathcal{B}(\ell^{p} \oplus \ell^{q})$ with $p \neq p$ $\mathcal{B}(\ell^{p})$ Let \mathfrak{A} be an amenable Banach algebra, and let $e \in \mathfrak{A}$ be an idempotent. Then, for any $\epsilon > 0$ and any finite subset F of $e\mathfrak{A}e$, there are $a_1, b_1, \ldots, a_r, b_r \in \mathfrak{A}$ such that

$$\sum_{k=1}^r a_k b_k = e$$

▲ロト ▲帰ト ▲ヨト ▲ヨト - ヨ - の々ぐ

and

Lemma

Amenability of operator algebras on Banach spaces, II

Volker Runde

Amenability o $\mathcal{K}(E)$

Amenability of $\mathcal{B}(\mathcal{E})$ A positive example $\mathcal{B}(\ell^{p} \oplus \ell^{q})$ with $p \neq p$ $\mathcal{B}(\ell^{p})$ Let \mathfrak{A} be an amenable Banach algebra, and let $e \in \mathfrak{A}$ be an idempotent. Then, for any $\epsilon > 0$ and any finite subset F of $e\mathfrak{A}e$, there are $a_1, b_1, \ldots, a_r, b_r \in \mathfrak{A}$ such that

$$\sum_{k=1}^r a_k b_k = e$$

and

Lemma

$$\left\|\sum_{k=1}^r x a_k \otimes b_k - a_k \otimes b_k x\right\|_{\mathfrak{A} \otimes \mathfrak{A}} < \epsilon \qquad (x \in F).$$

operator algebras on Banach spaces, II	
Volker Runde	
Amenability of $\mathcal{K}(E)$	
Amenability of $\mathcal{B}(E)$	
A positive example $\mathcal{B}(\ell^p \oplus \ell^q)$ with $p \neq p$	
$\mathcal{B}(\ell^p)$	

▲ロト ▲帰ト ▲ヨト ▲ヨト - ヨ - の々ぐ

Amenability of operator algebras on Banach spaces, II

Volker Runde

Amenability o $\mathcal{K}(E)$

Amenability of $\mathcal{B}(\mathcal{E})$ A positive example $\mathcal{B}(\ell^{p} \oplus \ell^{q})$ with $p \neq p$ $\mathcal{B}(\ell^{p})$

Sketched proof of the Theorem

▲ロト ▲帰ト ▲ヨト ▲ヨト - ヨ - の々ぐ

Amenability of operator algebras on Banach spaces, II

Volker Runde

Amenability of $\mathcal{K}(E)$

Amenability o $\mathcal{B}(E)$ A positive example $\mathcal{B}(\ell^{p} \oplus \ell^{q})$ with $p \neq p$ $\mathcal{B}(\ell^{p})$

Sketched proof of the Theorem

Embed

$$\ell^{\infty}$$
- $\bigoplus_{p\in\mathbb{P}}\mathcal{B}(\ell^{2}(\Lambda_{p}))$

Amenability of operator algebras on Banach spaces, II

Volker Runde

 $\mathcal{B}(\ell^p)$

Sketched proof of the Theorem

Embed

 ℓ^{∞} - $\bigoplus_{p\in\mathbb{P}}\mathcal{B}(\ell^{2}(\Lambda_{p}))\subset\ell^{\infty}$ - $\bigoplus_{p\in\mathbb{P}}\mathcal{K}(\ell^{2}\oplus E)$

▲□▶ ▲圖▶ ▲厘▶ ▲厘▶ 厘 の��

Amenability of operator algebras on Banach spaces, II

Volker Runde

Sketched proof of the Theorem

Embed

Amenability o $\mathcal{B}(E)$ A positive example $\mathcal{B}(\ell^p \oplus \ell^q)$ with $p \neq p$ $\mathcal{B}(\ell^p)$

$$\ell^{\infty}$$
- $\bigoplus_{p\in\mathbb{P}}\mathcal{B}(\ell^2(\Lambda_p))\subset\ell^{\infty}$ - $\bigoplus_{p\in\mathbb{P}}\mathcal{K}(\ell^2\oplus E)=:\mathfrak{A}$

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ = 臣 = のへで

Amenability of operator algebras on Banach spaces, II

Volker Runde

Sketched proof of the Theorem

Embed

Amenability of $\mathcal{B}(E)$ A positive example $\mathcal{B}(\ell^{p} \oplus \ell^{q})$ with $p \neq p$ $\mathcal{B}(\ell^{p})$

$$\ell^{\infty}$$
- $\bigoplus_{p\in\mathbb{P}}\mathcal{B}(\ell^2(\Lambda_p))\subset\ell^{\infty}$ - $\bigoplus_{p\in\mathbb{P}}\mathcal{K}(\ell^2\oplus E)=:\mathfrak{A}$

▲ロト ▲帰ト ▲ヨト ▲ヨト - ヨ - の々ぐ

as "upper left corners".

Amenability of operator algebras on Banach spaces, II

Volker Runde

Sketched proof of the Theorem

Embed

Amenability of $\mathcal{B}(E)$ A positive example $\mathcal{B}(\ell^p \oplus \ell^q)$ with $p \neq p$ $\mathcal{B}(\ell^p)$

$$\ell^{\infty}$$
- $\bigoplus_{p\in\mathbb{P}}\mathcal{B}(\ell^2(\Lambda_p))\subset\ell^{\infty}$ - $\bigoplus_{p\in\mathbb{P}}\mathcal{K}(\ell^2\oplus E)=:\mathfrak{A}$

▲ロト ▲帰ト ▲ヨト ▲ヨト - ヨ - の々ぐ

as "upper left corners". Let ${\mathfrak A}$ act on

 $\ell^2(\mathbb{P},\ell^2\oplus E)$

Amenability of operator algebras on Banach spaces, II

Volker Runde

Sketched proof of the Theorem

Embed

Amenability o $\mathcal{B}(E)$ A positive example $\mathcal{B}(\ell^p \oplus \ell^q)$ with $p \neq p$ $\mathcal{B}(\ell^p)$

$$\ell^{\infty}$$
- $igoplus_{
ho \in \mathbb{P}} \mathcal{B}(\ell^2(\Lambda_{
ho})) \subset \ell^{\infty}$ - $igoplus_{
ho \in \mathbb{P}} \mathcal{K}(\ell^2 \oplus E) =: \mathfrak{A}$

as "upper left corners". Let ${\mathfrak A}$ act on

 $\ell^2(\mathbb{P}, \ell^2 \oplus E) \cong \ell^2(\mathbb{P}, \ell^2) \oplus \ell^2(\mathbb{P}, E).$

(ロ)、(型)、(E)、(E)、 E) の(の)

operator algebras on Banach spaces, II
Volker Runde
Amenability of $\mathcal{K}(E)$
Amenability of $\mathcal{B}(E)$ A positive
example $\mathcal{B}(\ell^P \oplus \ell^q)$ with $p \neq p$ $\mathcal{B}(\ell^P)$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへ⊙

Amenability of operator algebras on Banach spaces, II

Volker Runde

Amenability o $\mathcal{K}(E)$

Amenability of $\mathcal{B}(E)$ A positive example $\mathcal{B}(\ell^{p} \oplus \ell^{q})$ with $p \neq p$ $\mathcal{B}(\ell^{p})$

Sketched proof of the Theorem (continued)

For $p \in \mathbb{P}$,

Amenability of operator algebras on Banach spaces, II

Volker Runde

Amenability o $\mathcal{K}(E)$

Amenability of $\mathcal{B}(E)$ A positive example $\mathcal{B}(\ell^p \oplus \ell^q)$ with $p \neq p$ $\mathcal{B}(\ell^p)$

Sketched proof of the Theorem (continued)

For $p \in \mathbb{P}$, let $P_p \in \mathcal{B}(\ell^2)$ be the canonical projection

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Amenability of operator algebras on Banach spaces, II

Volker Runde

Amenability o $\mathcal{K}(E)$

Amenability o $\mathcal{B}(E)$ A positive example $\mathcal{B}(\ell^p \oplus \ell^q)$ with $p \neq p$ $\mathcal{B}(\ell^p)$

Sketched proof of the Theorem (continued)

For $p \in \mathbb{P}$, let $P_p \in \mathcal{B}(\ell^2)$ be the canonical projection onto the first $|\Lambda_p|$ coordinates

Amenability of operator algebras on Banach spaces, II

Volker Runde

Amenability c $\mathcal{K}(E)$

Amenability o $\mathcal{B}(E)$ A positive example $\mathcal{B}(\ell^p \oplus \ell^q)$ with $p \neq p$ $\mathcal{B}(\ell^p)$

Sketched proof of the Theorem (continued)

For $p \in \mathbb{P}$, let $P_p \in \mathcal{B}(\ell^2)$ be the canonical projection onto the first $|\Lambda_p|$ coordinates of the $p^{\text{th}} \ell^2$ -summand

Amenability of operator algebras on Banach spaces, II

Volker Runde

Amenability c $\mathcal{K}(E)$

Amenability o $\mathcal{B}(E)$ A positive example $\mathcal{B}(\ell^{p} \oplus \ell^{q})$ with $p \neq p$ $\mathcal{B}(\ell^{p})$

Sketched proof of the Theorem (continued)

For $p \in \mathbb{P}$, let $P_p \in \mathcal{B}(\ell^2)$ be the canonical projection onto the first $|\Lambda_p|$ coordinates of the $p^{\text{th}} \ell^2$ -summand of

$$\ell^2(\mathbb{P},\ell^2)\oplus\ell^2(\mathbb{P},E).$$

Amenability of operator algebras on Banach spaces, II

Volker Runde

Amenability c $\mathcal{K}(E)$

Amenability o $\mathcal{B}(E)$ A positive example $\mathcal{B}(\ell^{p} \oplus \ell^{q})$ with $p \neq p$ $\mathcal{B}(\ell^{p})$

Sketched proof of the Theorem (continued)

For $p \in \mathbb{P}$, let $P_p \in \mathcal{B}(\ell^2)$ be the canonical projection onto the first $|\Lambda_p|$ coordinates of the $p^{\text{th}} \ell^2$ -summand of

$$\ell^2(\mathbb{P},\ell^2)\oplus\ell^2(\mathbb{P},E).$$

Set $e = (P_p)_{p \in \mathbb{P}}$.

Amenability of operator algebras on Banach spaces, II

Volker Runde

Amenability c $\mathcal{K}(E)$

Amenability o $\mathcal{B}(E)$ A positive example $\mathcal{B}(\ell^{p} \oplus \ell^{q})$ with $p \neq p$ $\mathcal{B}(\ell^{p})$

Sketched proof of the Theorem (continued)

For $p \in \mathbb{P}$, let $P_p \in \mathcal{B}(\ell^2)$ be the canonical projection onto the first $|\Lambda_p|$ coordinates of the $p^{\text{th}} \ell^2$ -summand of

$$\ell^2(\mathbb{P},\ell^2)\oplus\ell^2(\mathbb{P},E).$$

Set $e = (P_p)_{p \in \mathbb{P}}$. Then e is an idempotent in \mathfrak{A}

Amenability of operator algebras on Banach spaces, II

Volker Runde

Amenability o $\mathcal{K}(E)$

Amenability o $\mathcal{B}(E)$ A positive example $\mathcal{B}(\ell^{p} \oplus \ell^{q})$ with $p \neq p$ $\mathcal{B}(\ell^{p})$

Sketched proof of the Theorem (continued)

For $p \in \mathbb{P}$, let $P_p \in \mathcal{B}(\ell^2)$ be the canonical projection onto the first $|\Lambda_p|$ coordinates of the $p^{\text{th}} \ell^2$ -summand of

$$\ell^2(\mathbb{P},\ell^2)\oplus\ell^2(\mathbb{P},E).$$

Set $e = (P_p)_{p \in \mathbb{P}}$. Then e is an idempotent in \mathfrak{A} with

$$e\mathfrak{A}e = \ell^{\infty} - \bigoplus_{p \in \mathbb{P}} \mathcal{B}(\ell^2(\Lambda_p)).$$

(ロ)、(型)、(E)、(E)、 E) の(の)

operator algebras on Banach spaces, II
example $\mathcal{B}(\ell^{p} \oplus \ell^{q})$ with $p \neq p$ $\mathcal{B}(\ell^{p})$

Amenability of operator algebras on Banach spaces, Il		
	of	
Amenability of $\mathcal{B}(E)$ A positive example $\mathcal{B}(\ell^p \oplus \ell^q)$ with $\rho \neq \rho$ $\mathcal{B}(\ell^p)$		

(ロ)、(型)、(E)、(E)、 E) の(の)

Amenability of operator algebras on Banach spaces, II

Volker Runde

Amenability o $\mathcal{K}(E)$

Amenability o $\mathcal{B}(E)$ A positive example $\mathcal{B}(\ell^p \oplus \ell^q)$ with $p \neq p$ $\mathcal{B}(\ell^p)$

Sketched proof of the Theorem (continued)

Assume towards a contradiction that $\ell^{\infty}(\mathbb{P}, \mathcal{K}(\ell^2 \oplus E))$ is amenable.

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Amenability of operator algebras on Banach spaces, II

Volker Runde

Amenability c $\mathcal{K}(E)$

Amenability o $\mathcal{B}(E)$ A positive example $\mathcal{B}(\ell^{p} \oplus \ell^{q})$ with $p \neq p$ $\mathcal{B}(\ell^{p})$

Sketched proof of the Theorem (continued)

Assume towards a contradiction that $\ell^{\infty}(\mathbb{P}, \mathcal{K}(\ell^2 \oplus E))$ is amenable.

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Let $\epsilon > 0$ be arbitrary.

Amenability of operator algebras on Banach spaces, II

Volker Runde

Amenability o $\mathcal{K}(E)$

Amenability of $\mathcal{B}(E)$ A positive example $\mathcal{B}(\ell^{p} \oplus \ell^{q})$ with $p \neq p$ $\mathcal{B}(\ell^{p})$

Sketched proof of the Theorem (continued)

Assume towards a contradiction that $\ell^{\infty}(\mathbb{P}, \mathcal{K}(\ell^2 \oplus E))$ is amenable.

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Let $\epsilon > 0$ be arbitrary. By the previous Lemma

Amenability of operator algebras on Banach spaces, II

Volker Runde

Amenability o $\mathcal{K}(E)$

 $\mathcal{B}(E)$ A positive example $\mathcal{B}(\ell^p \oplus \ell^q)$ with $p \neq p$ $\mathcal{B}(\ell^p)$

Sketched proof of the Theorem (continued)

Assume towards a contradiction that $\ell^{\infty}(\mathbb{P}, \mathcal{K}(\ell^2 \oplus E))$ is amenable.

Let $\epsilon > 0$ be arbitrary. By the previous Lemma there are thus $a_1, b_1, \ldots, a_r, b_r \in \mathfrak{A}$

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Amenability of operator algebras on Banach spaces, II

Volker Runde

Amenability $\mathcal{K}(E)$

Amenability of $\mathcal{B}(E)$ A positive example $\mathcal{B}(\ell^p \oplus \ell^q)$ with $p \neq p$ $\mathcal{B}(\ell^p)$

Sketched proof of the Theorem (continued)

Assume towards a contradiction that $\ell^{\infty}(\mathbb{P}, \mathcal{K}(\ell^2 \oplus E))$ is amenable.

Let $\epsilon > 0$ be arbitrary. By the previous Lemma there are thus $a_1, b_1, \ldots, a_r, b_r \in \mathfrak{A}$ such that $\sum_{k=1}^r a_k b_k = e$

Amenability of operator algebras on Banach spaces, II

Volker Runde

Amenability o $\mathcal{K}(E)$

 $\mathcal{B}(E)$ A positive example $\mathcal{B}(\ell^{p} \oplus \ell^{q})$ with $p \neq p$ $\mathcal{B}(\ell^{p})$

Sketched proof of the Theorem (continued)

Assume towards a contradiction that $\ell^{\infty}(\mathbb{P}, \mathcal{K}(\ell^2 \oplus E))$ is amenable.

Let $\epsilon > 0$ be arbitrary. By the previous Lemma there are thus $a_1, b_1, \ldots, a_r, b_r \in \mathfrak{A}$ such that $\sum_{k=1}^r a_k b_k = e$ and

$$\left\|\sum_{k=1}^r x a_k \otimes b_k - a_k \otimes b_k x\right\| < \frac{\epsilon}{(C+1)(m+1)} \qquad (x \in F),$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Amenability of operator algebras on Banach spaces, II

Volker Runde

Amenability o $\mathcal{K}(E)$ Amenability o $\mathcal{B}(E)$

A positive example $\mathcal{B}(\ell^P \oplus \ell^q)$ with $p \neq p$ $\mathcal{B}(\ell^p)$

Sketched proof of the Theorem (continued)

Assume towards a contradiction that $\ell^{\infty}(\mathbb{P}, \mathcal{K}(\ell^2 \oplus E))$ is amenable.

Let $\epsilon > 0$ be arbitrary. By the previous Lemma there are thus $a_1, b_1, \ldots, a_r, b_r \in \mathfrak{A}$ such that $\sum_{k=1}^r a_k b_k = e$ and

$$\left\|\sum_{k=1}^r xa_k \otimes b_k - a_k \otimes b_k x\right\| < \frac{\epsilon}{(C+1)(m+1)} \qquad (x \in F),$$

where

$$F := \{(\pi_p(g_j))_{p \in \mathbb{P}} : j = 1, \dots, m+1\}.$$

(ロ)、(型)、(E)、(E)、 E) のQの

operator algebras on Banach spaces, II
A positive example $\mathcal{B}(\ell^p \oplus \ell^q)$ with $p \neq p$ $\mathcal{B}(\ell^p)$

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Amenability of operator algebras on Banach spaces, II

Volker Runde

Amenability o $\mathcal{K}(E)$

Amenability of $\mathcal{B}(\mathcal{E})$ A positive example $\mathcal{B}(\ell^{p} \oplus \ell^{q})$ with $p \neq p$ $\mathcal{B}(\ell^{p})$

Sketched proof of the Theorem (continued)

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Amenability of operator algebras on Banach spaces, II

Volker Runde

Amenability of $\mathcal{K}(E)$

Amenability of $\mathcal{B}(E)$ A positive example $\mathcal{B}(\ell^{p} \oplus \ell^{q})$ with $p \neq p$ $\mathcal{B}(\ell^{p})$

Sketched proof of the Theorem (continued)

For $p, q \in \mathbb{P}$ and $n \in \mathbb{N}$, define

Amenability of operator algebras on Banach spaces, II

Volker Runde

Amenability o $\mathcal{K}(E)$

Amenability o $\mathcal{B}(E)$ A positive example $\mathcal{B}(\ell^{p} \oplus \ell^{q})$ with $p \neq p$ $\mathcal{B}(\ell^{p})$

Sketched proof of the Theorem (continued)

For $p,q \in \mathbb{P}$ and $n \in \mathbb{N}$, define

$$T_p(q, n) := \sum_{k=1}^{r} P_p a_k(e_q \otimes e_n) \otimes P_p^* b_k^*(e_q^* \otimes e_n^*)$$

+ $P_p a_k(e_q \otimes x_n) \otimes P_p^* b_k^*(e_q^* \otimes x_n^*)$

Amenability of operator algebras on Banach spaces, II

Volker Runde

Amenability o $\mathcal{K}(E)$

Amenability o $\mathcal{B}(\mathcal{E})$ A positive example $\mathcal{B}(\ell^p \oplus \ell^q)$ with $p \neq p$ $\mathcal{B}(\ell^p)$

Sketched proof of the Theorem (continued)

For $p,q\in\mathbb{P}$ and $n\in\mathbb{N}$, define

$$egin{aligned} & \Gamma_p(q,n) := \sum_{k=1}^{\prime} P_p a_k(e_q \otimes e_n) \otimes P_p^* b_k^*(e_q^* \otimes e_n^*) \ & + P_p a_k(e_q \otimes x_n) \otimes P_p^* b_k^*(e_q^* \otimes x_n^*) \end{aligned}$$

Note that

$$T_p(q,n) \in \ell^2(\Lambda_p) \hat{\otimes} \ell^2(\Lambda_p).$$

(ロ)、(型)、(E)、(E)、 E) の(の)

Amenability of operator algebras on Banach spaces, II	
$ \begin{array}{l} \mathcal{B}(\ell^{p} \oplus \ell^{q}) \\ \text{with } p \neq p \\ \mathcal{B}(\ell^{p}) \end{array} $	

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Amenability of operator algebras on Banach spaces, II

Volker Runde

Amenability o $\mathcal{K}(E)$

Amenability of $\mathcal{B}(E)$ A positive example $\mathcal{B}(\ell^{p} \oplus \ell^{q})$ with $p \neq p$ $\mathcal{B}(\ell^{p})$

Sketched proof of the Theorem (continued)

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Amenability of operator algebras on Banach spaces, II

Volker Runde

Amenability o $\mathcal{K}(E)$

Amenability of $\mathcal{B}(E)$ A positive example $\mathcal{B}(\ell^p \oplus \ell^q)$ with $p \neq p$ $\mathcal{B}(\ell^p)$

Sketched proof of the Theorem (continued)

It follows that

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Amenability of operator algebras on Banach spaces, II

Volker Runde

Amenability o $\mathcal{K}(E)$

Amenability of $\mathcal{B}(E)$ A positive example $\mathcal{B}(\ell^p \oplus \ell^q)$ with $p \neq p$ $\mathcal{B}(\ell^p)$

Sketched proof of the Theorem (continued)

It follows that

Amenability of operator algebras on Banach spaces, II

Volker Runde

Amenability $\mathcal{K}(E)$

Amenability of $\mathcal{B}(E)$ A positive example $\mathcal{B}(\ell^p \oplus \ell^q)$ with $p \neq p$ $\mathcal{B}(\ell^p)$

Sketched proof of the Theorem (continued)

It follows that \sim

$$\sum_{q\in\mathbb{P}}\sum_{n=1}^{\infty} \| {\mathcal T}_p(q,n) - \left((\pi_p(g_j)\otimes\pi_p(g_j)){\mathcal T}_p(q,n) \| \leq rac{\epsilon}{m+1} | \Lambda_p |$$

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Amenability of operator algebras on Banach spaces, II

Volker Runde

Amenability $\mathcal{K}(E)$

Amenability of $\mathcal{B}(E)$ A positive example $\mathcal{B}(\ell^P \oplus \ell^q)$ with $p \neq p$ $\mathcal{B}(\ell^P)$

Sketched proof of the Theorem (continued)

It follows that ∞

$$\sum_{q\in\mathbb{P}}\sum_{n=1}^{\infty}\|T_p(q,n)-((\pi_p(g_j)\otimes\pi_p(g_j))T_p(q,n)\|\leq\frac{\epsilon}{m+1}|\Lambda_p|$$

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

for j = 1, ..., m + 1

Amenability of operator algebras on Banach spaces, II

Volker Runde

Amenability $\mathcal{K}(E)$

Amenability of $\mathcal{B}(E)$ A positive example $\mathcal{B}(\ell^P \oplus \ell^q)$ with $p \neq p$ $\mathcal{B}(\ell^p)$ Sketched proof of the Theorem (continued)

It follows that ∞

$$\sum_{q\in\mathbb{P}}\sum_{n=1}^{\infty}\|\mathcal{T}_p(q,n)-((\pi_p(g_j)\otimes\pi_p(g_j))\mathcal{T}_p(q,n)\|\leqrac{\epsilon}{m+1}|\mathsf{A}_p|$$

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

for $j = 1, \ldots, m+1$ and $p \in \mathbb{P}$

Amenability of operator algebras on Banach spaces, II

Volker Runde

Amenability $\mathcal{K}(E)$

Amenability $\mathcal{B}(E)$ A positive example $\mathcal{B}(\ell^P \oplus \ell^q)$ with $p \neq p$ $\mathcal{B}(\ell^p)$

Sketched proof of the Theorem (continued)

It follows that \sim

$$\sum_{q\in\mathbb{P}}\sum_{n=1}^{\infty}\| extsf{T}_{p}(q,n)-((\pi_{p}(g_{j})\otimes\pi_{p}(g_{j})) extsf{T}_{p}(q,n)\|\leqrac{\epsilon}{m+1}|\Lambda_{p}|$$

for $j=1,\ldots,m+1$ and $p\in\mathbb{P}$ and thus

$$\sum_{q\in\mathbb{P}}\sum_{n=1}^{\infty}\sum_{j=1}^{m+1}\|T_p(q,n)-((\pi_p(g_j)\otimes\pi_p(g_j))T_p(q,n)\|$$

 $\leq \epsilon |\Lambda_p|.$

(ロ)、(型)、(E)、(E)、 E) の(の)

operator algebras on Banach spaces, II	
Amenability of $\mathcal{B}(\mathcal{E})$ A positive example $\mathcal{B}(\ell^p \oplus \ell^q)$ with $p \neq p$ $\mathcal{B}(\ell^p)$	

Amenability o
operator
algebras on
Banach
spaces, II

Volker Runde

Amenability o $\mathcal{K}(E)$

```
Amenability of

\mathcal{B}(E)

A positive

example

\mathcal{B}(\ell^p \oplus \ell^q)

with p \neq p

\mathcal{B}(\ell^p)
```

Sketched proof of the Theorem (continued)

Amenability of operator algebras on Banach spaces, II

Volker Runde

Amenability c $\mathcal{K}(E)$

Amenability of $\mathcal{B}(\mathcal{E})$ A positive example $\mathcal{B}(\ell^{p} \oplus \ell^{q})$ with $p \neq p$ $\mathcal{B}(\ell^{p})$

Sketched proof of the Theorem (continued)

On the other hand:

 ∞

$$\begin{split} &\sum_{q\in\mathbb{P}}\sum_{n=1}^{\infty}\|T_p(q,n)\|\\ &\geq \sum_{n=1}^{\infty}\left|\sum_{k=1}^{r}\langle P_pa_{k,p}e_n, P_p^*b_{k,p}^*e_n^*\rangle + \sum_{k=1}^{r}\langle P_pa_{k,p}x_n, P_p^*b_{k,p}^*x_n^*\rangle\right| \end{split}$$

Amenability of operator algebras on Banach spaces, II

Volker Runde

Amenability $\mathcal{K}(E)$

Amenability $\mathcal{B}(E)$ A positive example $\mathcal{B}(\ell^{p} \oplus \ell^{q})$ with $p \neq p$ $\mathcal{B}(\ell^{p})$

Sketched proof of the Theorem (continued)

On the other hand:

~~

$$\begin{split} &\sum_{q\in\mathbb{P}}\sum_{n=1}^{\infty}\|T_p(q,n)\|\\ &\geq \sum_{n=1}^{\infty}\left|\sum_{k=1}^{r}\langle P_p a_{k,p} e_n, P_p^* b_{k,p}^* e_n^*\rangle + \sum_{k=1}^{r}\langle P_p a_{k,p} x_n, P_p^* b_{k,p}^* x_n^*\rangle\right|\\ &= \operatorname{Tr}\sum_{k=1}^{r}b_{k,p} P_p a_{k,p} \end{split}$$

Amenability of operator algebras on Banach spaces, II

Volker Runde

Amenability of $\mathcal{K}(E)$ Amenability of $\mathcal{B}(E)$ A positive example $\mathcal{B}(\ell^p \oplus \ell^q)$

 $\mathcal{B}(\ell^p)$

Sketched proof of the Theorem (continued)

On the other hand:

$$\begin{split} &\sum_{q\in\mathbb{P}}\sum_{n=1}^{\infty}\|T_p(q,n)\|\\ &\geq \sum_{n=1}^{\infty}\left|\sum_{k=1}^{r}\langle P_p a_{k,p} e_n, P_p^* b_{k,p}^* e_n^*\rangle + \sum_{k=1}^{r}\langle P_p a_{k,p} x_n, P_p^* b_{k,p}^* x_n^*\rangle \right.\\ &= \operatorname{Tr}\sum_{k=1}^{r} b_{k,p} P_p a_{k,p}\\ &= \operatorname{Tr}\sum_{k=1}^{r} P_p a_{k,p} b_{k,p} \end{split}$$

Amenability of operator algebras on Banach spaces, II

Volker Runde

Amenability of $\mathcal{K}(E)$ Amenability of $\mathcal{B}(E)$ A positive example $\mathcal{B}(\ell^p \oplus \ell^q)$ with $p \neq p$

 $\mathcal{B}(\ell^p)$

Sketched proof of the Theorem (continued)

On the other hand:

$$\begin{split} &\sum_{q\in\mathbb{P}}\sum_{n=1}^{\infty}\|T_{p}(q,n)\|\\ &\geq \sum_{n=1}^{\infty}\left|\sum_{k=1}^{r}\langle P_{p}a_{k,p}e_{n}, P_{p}^{*}b_{k,p}^{*}e_{n}^{*}\rangle + \sum_{k=1}^{r}\langle P_{p}a_{k,p}x_{n}, P_{p}^{*}b_{k,p}^{*}x_{n}^{*}\rangle\\ &= \operatorname{Tr}\sum_{k=1}^{r}b_{k,p}P_{p}a_{k,p}\\ &= \operatorname{Tr}\sum_{k=1}^{r}P_{p}a_{k,p}b_{k,p}\\ &= \operatorname{Tr}P_{p} \end{split}$$

Amenability of operator algebras on Banach spaces, II

Volker Runde

Amenability of $\mathcal{K}(E)$ Amenability of $\mathcal{B}(E)$ A positive example $\mathcal{B}(\ell^{P} \oplus \ell^{q})$ with $\rho \neq \rho$ $\mathcal{B}(\ell^{P})$

Sketched proof of the Theorem (continued)

On the other hand:

$$\begin{split} &\sum_{q\in\mathbb{P}}\sum_{n=1}^{\infty}\|T_{p}(q,n)\|\\ &\geq \sum_{n=1}^{\infty}\left|\sum_{k=1}^{r}\langle P_{p}a_{k,p}e_{n}, P_{p}^{*}b_{k,p}^{*}e_{n}^{*}\rangle + \sum_{k=1}^{r}\langle P_{p}a_{k,p}x_{n}, P_{p}^{*}b_{k,p}^{*}x_{n}^{*}\rangle\\ &= \operatorname{Tr}\sum_{k=1}^{r}b_{k,p}P_{p}a_{k,p}\\ &= \operatorname{Tr}\sum_{k=1}^{r}P_{p}a_{k,p}b_{k,p}\\ &= \operatorname{Tr}P_{p} = |\Lambda_{p}|. \end{split}$$

(ロ)、(型)、(E)、(E)、 E) の(の)

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Amenability of operator algebras on Banach spaces, II

Volker Runde

Amenability o $\mathcal{K}(E)$

Amenability $\mathcal{B}(E)$ A positive example $\mathcal{B}(\ell^P \oplus \ell^q)$ with $p \neq p$ $\mathcal{B}(\ell^P)$

Sketched proof of the Theorem (conclusion)

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Amenability of operator algebras on Banach spaces, II

Volker Runde

Amenability of $\mathcal{K}(E)$

Amenability o $\mathcal{B}(E)$ A positive example $\mathcal{B}(\ell^{p} \oplus \ell^{q})$ with $p \neq p$ $\mathcal{B}(\ell^{p})$

Sketched proof of the Theorem (conclusion)

It follows that,

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Amenability of operator algebras on Banach spaces, II

Volker Runde

Amenability o $\mathcal{K}(E)$

Amenability o $\mathcal{B}(E)$ A positive example $\mathcal{B}(\ell^{p} \oplus \ell^{q})$ with $p \neq p$ $\mathcal{B}(\ell^{p})$

Sketched proof of the Theorem (conclusion)

It follows that, for each $p \in \mathbb{P}$,

Amenability of operator algebras on Banach spaces, II

Volker Runde

Amenability o $\mathcal{K}(E)$

Amenability o $\mathcal{B}(E)$ A positive example $\mathcal{B}(\ell^{p} \oplus \ell^{q})$ with $p \neq p$ $\mathcal{B}(\ell^{p})$

Sketched proof of the Theorem (conclusion)

It follows that, for each $p \in \mathbb{P}$, there are $q \in \mathbb{P}$ and $n \in \mathbb{N}$

Amenability of operator algebras on Banach spaces, II

Volker Runde

Amenability o $\mathcal{K}(E)$

Amenability o $\mathcal{B}(E)$ A positive example $\mathcal{B}(\ell^{p} \oplus \ell^{q})$ with $p \neq p$ $\mathcal{B}(\ell^{p})$

Sketched proof of the Theorem (conclusion)

It follows that, for each $p \in \mathbb{P}$, there are $q \in \mathbb{P}$ and $n \in \mathbb{N}$ with $T_p(q, n) \neq 0$

Amenability of operator algebras on Banach spaces, II

Volker Runde

Amenability o $\mathcal{K}(E)$ Amenability o $\mathcal{B}(E)$ A positive example $\mathcal{B}(\ell^{p} \oplus \ell^{q})$ with $p \neq p$ $\mathcal{B}(\ell^{p})$ Sketched proof of the Theorem (conclusion)

It follows that, for each $p\in\mathbb{P}$, there are $q\in\mathbb{P}$ and $n\in\mathbb{N}$ with $T_p(q,n)
eq 0$ and

 $\|T_p(q,n) - ((\pi_p(g_j) \otimes \pi_p(g_j))T_p(q,n)\| \le \epsilon \|T_p(q,n)\|$

for j = 1, ..., m + 1,

Amenability of operator algebras on Banach spaces, II

Volker Runde

Amenability o $\mathcal{K}(E)$ Amenability o $\mathcal{B}(E)$ A positive example $\mathcal{B}(\ell^p \oplus \ell^q)$ with $p \neq p$ $\mathcal{B}(\ell^p)$ Sketched proof of the Theorem (conclusion)

It follows that, for each $p \in \mathbb{P}$, there are $q \in \mathbb{P}$ and $n \in \mathbb{N}$ with $T_p(q, n) \neq 0$ and

 $\|T_{\rho}(q,n) - \left(\left(\pi_{\rho}(g_{j}) \otimes \pi_{\rho}(g_{j})\right)T_{\rho}(q,n)\| \leq \epsilon \|T_{\rho}(q,n)\|$

for $j = 1, \ldots, m + 1$, which violates Ozawa's Lemma.

Amenability of operator algebras on Banach spaces, II

Volker Runde

Amenability of $\mathcal{K}(E)$ Amenability of $\mathcal{B}(E)$ A positive example $\mathcal{B}(\ell^P \oplus \ell^q)$ with $p \neq \rho$ $\mathcal{B}(\ell^P)$ Sketched proof of the Theorem (conclusion)

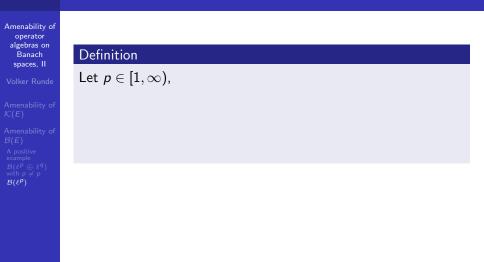
It follows that, for each $p\in\mathbb{P}$, there are $q\in\mathbb{P}$ and $n\in\mathbb{N}$ with $T_p(q,n)
eq 0$ and

 $\|T_{\rho}(q,n) - \left(\left(\pi_{\rho}(g_{j}) \otimes \pi_{\rho}(g_{j})\right)T_{\rho}(q,n)\| \leq \epsilon \|T_{\rho}(q,n)\|$

for $j = 1, \ldots, m + 1$, which violates Ozawa's Lemma.

Amenability of operator algebras on Banach spaces, II
$\mathcal{B}(\ell^{p} \oplus \ell^{q})$ with $p \neq p$ $\mathcal{B}(\ell^{p})$

(ロ)、(型)、(E)、(E)、 E) のQの



◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

Amenability of operator algebras on Banach spaces, II

Volker Runde

Amenability o K(E)

Amenability of $\mathcal{B}(E)$ A positive example $\mathcal{B}(\ell^{p} \oplus \ell^{q})$ with $p \neq p$ $\mathcal{B}(\ell^{p})$

Definition

Let $p \in [1, \infty)$, and *E* and *F* be Banach spaces.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 = のへで

Definition

Amenability of operator algebras on Banach spaces, II

Volker Runde

Amenability of $\mathcal{K}(E)$

Amenability of $\mathcal{B}(E)$ A positive example $\mathcal{B}(\ell^{p} \oplus \ell^{q})$ with $p \neq p$ $\mathcal{B}(\ell^{p})$

Let $p \in [1, \infty)$, and E and F be Banach spaces. A linear map $T : E \to F$ is called *p*-summing

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

Definition

Amenability of operator algebras on Banach spaces, II

Volker Runde

Amenability of $\mathcal{K}(E)$

Amenability of $\mathcal{B}(E)$ A positive example $\mathcal{B}(\ell^P \oplus \ell^q)$ with $p \neq p$ $\mathcal{B}(\ell^P)$ Let $p \in [1, \infty)$, and E and F be Banach spaces. A linear map $T : E \to F$ is called *p*-summing if the amplification $\mathrm{id}_{\ell^p} \otimes T : \ell^p \otimes E \to \ell^p \otimes F$

Definition

Amenability of operator algebras on Banach spaces, II

Volker Runde

Amenability o K(E)

Amenability o $\mathcal{B}(E)$ A positive example $\mathcal{B}(\ell^{p} \bigoplus \ell^{q})$ with $p \neq p$ $\mathcal{B}(\ell^{p})$ Let $p \in [1, \infty)$, and E and F be Banach spaces. A linear map $T : E \to F$ is called *p*-summing if the amplification $\mathrm{id}_{\ell^p} \otimes T : \ell^p \otimes E \to \ell^p \otimes F$ extends to a bounded map from $\ell^p \bigotimes E$ to $\ell^p(F)$.

Definition

Amenability of operator algebras on Banach spaces, II

Volker Runde

Amenability o $\mathcal{K}(E)$

Amenability o $\mathcal{B}(E)$ A positive example $\mathcal{B}(\ell^{p} \oplus \ell^{q})$ with $p \neq p$ $\mathcal{B}(\ell^{p})$ Let $p \in [1, \infty)$, and E and F be Banach spaces. A linear map $T : E \to F$ is called *p*-summing if the amplification $\mathrm{id}_{\ell^p} \otimes T : \ell^p \otimes E \to \ell^p \otimes F$ extends to a bounded map from $\ell^p \check{\otimes} E$ to $\ell^p(F)$. The operator norm of $\mathrm{id}_{\ell^p \otimes T} : \ell^p \check{\otimes} E \to \ell^p(F)$ is called the *p*-summing norm of T

Definition

Amenability of operator algebras on Banach spaces, II

Volker Runde

Amenability o $\mathcal{K}(E)$

Amenability o $\mathcal{B}(E)$ A positive example $\mathcal{B}(\ell^{p} \oplus \ell^{q})$ with $p \neq p$ $\mathcal{B}(\ell^{p})$

Let $p \in [1, \infty)$, and E and F be Banach spaces. A linear map $T : E \to F$ is called *p*-summing if the amplification $\mathrm{id}_{\ell^p} \otimes T : \ell^p \otimes E \to \ell^p \otimes F$ extends to a bounded map from $\ell^p \check{\otimes} E$ to $\ell^p(F)$. The operator norm of $\mathrm{id}_{\ell^p \otimes T} : \ell^p \check{\otimes} E \to \ell^p(F)$ is called the *p*-summing norm of T and denoted by $\pi_p(T)$.

Definition

Amenability of operator algebras on Banach spaces, II

Volker Runde

Amenability o $\mathcal{K}(E)$

Amenability of $\mathcal{B}(E)$ A positive example $\mathcal{B}(\ell^{p} \oplus \ell^{q})$ with $p \neq p$ $\mathcal{B}(\ell^{p})$ Let $p \in [1, \infty)$, and E and F be Banach spaces. A linear map $T : E \to F$ is called *p*-summing if the amplification $\mathrm{id}_{\ell^p} \otimes T : \ell^p \otimes E \to \ell^p \otimes F$ extends to a bounded map from $\ell^p \check{\otimes} E$ to $\ell^p(F)$. The operator norm of $\mathrm{id}_{\ell^p \otimes T} : \ell^p \check{\otimes} E \to \ell^p(F)$ is called the *p*-summing norm of T and denoted by $\pi_p(T)$.

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Theorem (Y. Gordon, 1969)

Definition

Amenability of operator algebras on Banach spaces, II

Volker Runde

Amenability o $\mathcal{K}(E)$

Amenability of $\mathcal{B}(E)$ A positive example $\mathcal{B}(\ell^{p} \oplus \ell^{q})$ with $p \neq p$ $\mathcal{B}(\ell^{p})$ Let $p \in [1, \infty)$, and E and F be Banach spaces. A linear map $T : E \to F$ is called *p*-summing if the amplification $\mathrm{id}_{\ell^p} \otimes T : \ell^p \otimes E \to \ell^p \otimes F$ extends to a bounded map from $\ell^p \check{\otimes} E$ to $\ell^p(F)$. The operator norm of $\mathrm{id}_{\ell^p \otimes T} : \ell^p \check{\otimes} E \to \ell^p(F)$ is called the *p*-summing norm of T and denoted by $\pi_p(T)$.

Theorem (Y. Gordon, 1969)

$$\pi_p(\mathsf{id}_{\ell^2_N}) \sim N^{rac{1}{2}}$$

Definition

Amenability of operator algebras on Banach spaces, II

Volker Runde

Amenability o $\mathcal{K}(E)$

Amenability of $\mathcal{B}(E)$ A positive example $\mathcal{B}(\ell^p \oplus \ell^q)$ with $p \neq p$ $\mathcal{B}(\ell^p)$

Let $p \in [1, \infty)$, and E and F be Banach spaces. A linear map $T : E \to F$ is called *p*-summing if the amplification $\mathrm{id}_{\ell^p} \otimes T : \ell^p \otimes E \to \ell^p \otimes F$ extends to a bounded map from $\ell^p \check{\otimes} E$ to $\ell^p(F)$. The operator norm of $\mathrm{id}_{\ell^p \otimes T} : \ell^p \check{\otimes} E \to \ell^p(F)$ is called the *p*-summing norm of T and denoted by $\pi_p(T)$.

Theorem (Y. Gordon, 1969)

$$\pi_p(\mathsf{id}_{\ell^2_N}) \sim N^{rac{1}{2}}$$

for all $p \in [1, \infty)$.

A Lemma

Amenability of operator algebras on Banach spaces, II
A positive example $\mathcal{B}(\ell^p \oplus \ell^q)$ with $p \neq p$ $\mathcal{B}(\ell^p)$

spaces, II Volker Runde Amenability of $\mathcal{K}(E)$ Amenability of $\mathcal{B}(E)$ Apositive example $\mathcal{B}(\ell^P \oplus \ell^q)$ $\mathcal{B}(\ell^P)$	Amenability of operator algebras on Banach
Amenability of $\mathcal{K}(E)$ Amenability of $\mathcal{B}(E)$ A positive example $\mathcal{B}(\ell \oplus \ell^q)$ $\mathcal{B}(\ell \oplus \ell^q)$	
$ \begin{array}{l} \mathcal{B}(E) \\ \text{A positive} \\ \text{example} \\ \mathcal{B}(\ell^p \oplus \ell^q) \\ \text{with } p \neq p \end{array} $	

<□ > < @ > < E > < E > E のQ @

Amenability of operator algebras on Banach spaces, II Lemma Let $p \in (1, \infty)$. $\mathcal{B}(\ell^p)$

Amenability of operator algebras on Banach spaces, II Lemma Let $p \in (1, \infty)$. Then there is C > 0 $\mathcal{B}(\ell^p)$

Amenability of operator algebras on Banach spaces, II

Volker Runde

Amenability c $\mathcal{K}(E)$

Amenability of $\mathcal{B}(\mathcal{E})$ A positive example $\mathcal{B}(\ell^p \oplus \ell^q)$ with $p \neq p$ $\mathcal{B}(\ell^p)$

Lemma

Let $p \in (1,\infty)$. Then there is C > 0 such that

$$\sum_{n=1}^{\infty} \|Se_n\|_{\ell_N^2} \|Te_n^*\|_{\ell_N^2} \le C N \|S\| \|T\|$$
$$(N \in \mathbb{N}, S \in \mathcal{B}(\ell^p, \ell_N^2), T \in \mathcal{B}(\ell^{p'}, \ell_N^2)).$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 = のへで

▲□▶ ▲圖▶ ▲圖▶ ▲圖▶ = ● ● ●

Amenability of operator algebras on Banach spaces, II	Proof.		
Amenability of $\mathcal{B}(E)$ A positive example $\mathcal{B}(\ell^{p} \oplus \ell^{q})$ with $\rho \neq \rho$ $\mathcal{B}(\ell^{p})$			

Amenability of operator algebras on Banach spaces, II	Proof. Identify	
Volker Runde		
Amenability of $\mathcal{K}(E)$		
Amenability of $\mathcal{B}(\mathcal{E})$ A positive example $\mathcal{B}(\ell^P \oplus \ell^q)$ with $\rho \neq \rho$ $\mathcal{B}(\ell^P)$		
	<ロ> <合> <定> <定> <定> <定> <定> <	• ৩৫৫

Amenability of operator algebras on Banach spaces, II

Volker Runde

Amenability o $\mathcal{K}(E)$

Amenability of $\mathcal{B}(\mathcal{E})$ A positive example $\mathcal{B}(\ell^p \oplus \ell^q)$ with $p \neq p$ $\mathcal{B}(\ell^p)$

Proof.

Identify

$$\mathcal{B}(\ell^p,\ell^2_N) = \ell^{p'} \check{\otimes} \ell^2_N$$

Amenability of operator algebras on Banach spaces, II

Volker Runde

Amenability o $\mathcal{K}(E)$

Amenability of $\mathcal{B}(E)$ A positive example $\mathcal{B}(\ell^{p} \oplus \ell^{q})$ with $p \neq p$ $\mathcal{B}(\ell^{p})$

Proof.

Identify algebraically

$$\mathcal{B}(\ell^{p},\ell^{2}_{N}) = \ell^{p'} \check{\otimes} \ell^{2}_{N} = \ell^{p'} \otimes \ell^{2}_{N}$$

Amenability of operator algebras on Banach spaces, II

Volker Runde

Amenability o $\mathcal{K}(E)$

```
Amenability of

\mathcal{B}(\mathcal{E})

A positive

example

\mathcal{B}(\ell^p \oplus \ell^q)

with p \neq p

\mathcal{B}(\ell^p)
```

Proof.

Identify algebraically

$$\mathcal{B}(\ell^{p},\ell^{2}_{N}) = \ell^{p'} \check{\otimes} \ell^{2}_{N} = \ell^{p'} \otimes \ell^{2}_{N} = \ell^{p'}(\ell^{2}_{N}),$$

Amenability of operator algebras on Banach spaces, II

Volker Runde

Amenability o $\mathcal{K}(E)$

Amenability of $\mathcal{B}(E)$ A positive example $\mathcal{B}(\ell^{p} \oplus \ell^{q})$ with $p \neq p$ $\mathcal{B}(\ell^{p})$

Proof.

Identify algebraically

$$\mathcal{B}(\ell^p,\ell^2_N) = \ell^{p'} \check{\otimes} \ell^2_N = \ell^{p'} \otimes \ell^2_N = \ell^{p'}(\ell^2_N), \quad \text{and} \quad$$

Amenability of operator algebras on Banach spaces, II

Volker Runde

Amenability $\mathcal{K}(E)$

Amenability of $\mathcal{B}(\mathcal{E})$ A positive example $\mathcal{B}(\ell^p \oplus \ell^q)$ with $p \neq p$ $\mathcal{B}(\ell^p)$

Proof.

Identify algebraically

$$\mathcal{B}(\ell^{p},\ell^{2}_{N}) = \ell^{p'} \check{\otimes} \ell^{2}_{N} = \ell^{p'} \otimes \ell^{2}_{N} = \ell^{p'}(\ell^{2}_{N}), \text{ and}$$
$$\mathcal{B}(\ell^{p'},\ell^{2}_{N}) = \ell^{p} \check{\otimes} \ell^{2}_{N} = \ell^{p} \otimes \ell^{2}_{N} = \ell^{p}(\ell^{2}_{N}).$$

Amenability of operator algebras on Banach spaces, II

Volker Runde

Amenability c $\mathcal{K}(E)$

Amenability of $\mathcal{B}(\mathcal{E})$ A positive example $\mathcal{B}(\ell^{p} \oplus \ell^{q})$ with $p \neq p$ $\mathcal{B}(\ell^{p})$

Proof.

Identify algebraically

$$\mathcal{B}(\ell^{p},\ell^{2}_{N}) = \ell^{p'} \check{\otimes} \ell^{2}_{N} = \ell^{p'} \otimes \ell^{2}_{N} = \ell^{p'}(\ell^{2}_{N}), \text{ and}$$
$$\mathcal{B}(\ell^{p'},\ell^{2}_{N}) = \ell^{p} \check{\otimes} \ell^{2}_{N} = \ell^{p} \otimes \ell^{2}_{N} = \ell^{p}(\ell^{2}_{N}).$$

Note that

Amenability of operator algebras on Banach spaces, II

Volker Runde

Amenability $\mathcal{K}(E)$

Amenability of $\mathcal{B}(E)$ A positive example $\mathcal{B}(\ell^p \oplus \ell^q)$ with $p \neq p$ $\mathcal{B}(\ell^p)$

Proof.

Identify algebraically

$$\mathcal{B}(\ell^{p},\ell^{2}_{N}) = \ell^{p'} \check{\otimes} \ell^{2}_{N} = \ell^{p'} \otimes \ell^{2}_{N} = \ell^{p'}(\ell^{2}_{N}), \text{ and}$$
$$\mathcal{B}(\ell^{p'},\ell^{2}_{N}) = \ell^{p} \check{\otimes} \ell^{2}_{N} = \ell^{p} \otimes \ell^{2}_{N} = \ell^{p}(\ell^{2}_{N}).$$

Note that

-

$$\sum_{n=1}^{\infty} \|Se_n\|_{\ell^2_N} \|Te^*_n\|_{\ell^2_N} \le \|S\|_{\ell^{p'}(\ell^2_N)} \|T\|_{\ell^p(\ell^2_N)}, \qquad \text{by H\"older},$$

▲□▶ ▲□▶ ▲注▶ ▲注▶ … 注: のへ⊙

Amenability of operator algebras on Banach spaces, II

Volker Runde

Amenability $\mathcal{K}(E)$

Amenability of $\mathcal{B}(\mathcal{E})$ A positive example $\mathcal{B}(\ell^p \oplus \ell^q)$ with $p \neq p$ $\mathcal{B}(\ell^p)$

Proof.

Identify algebraically

$$\mathcal{B}(\ell^{p},\ell^{2}_{N}) = \ell^{p'} \check{\otimes} \ell^{2}_{N} = \ell^{p'} \otimes \ell^{2}_{N} = \ell^{p'}(\ell^{2}_{N}), \text{ and}$$
$$\mathcal{B}(\ell^{p'},\ell^{2}_{N}) = \ell^{p} \check{\otimes} \ell^{2}_{N} = \ell^{p} \otimes \ell^{2}_{N} = \ell^{p}(\ell^{2}_{N}).$$

Note that

-

$$\sum_{n=1}^{\infty} \|Se_n\|_{\ell_N^2} \|Te_n^*\|_{\ell_N^2} \le \|S\|_{\ell^{p'}(\ell_N^2)} \|T\|_{\ell^p(\ell_N^2)}, \quad \text{by H\"older}, \\ \le \pi_{p'}(\operatorname{id}_{\ell_N^2})\pi_p(\operatorname{id}_{\ell_N^2}) \|S\| \|T\|$$

▲ロト ▲圖ト ▲温ト ▲温ト

æ

Amenability of operator algebras on Banach spaces, II

Volker Runde

Amenability $\mathcal{K}(E)$

Amenability of $\mathcal{B}(E)$ A positive example $\mathcal{B}(\ell^p \oplus \ell^q)$ with $p \neq p$ $\mathcal{B}(\ell^p)$

Proof.

Identify algebraically

$$\mathcal{B}(\ell^{p},\ell^{2}_{N}) = \ell^{p'} \check{\otimes} \ell^{2}_{N} = \ell^{p'} \otimes \ell^{2}_{N} = \ell^{p'}(\ell^{2}_{N}), \text{ and}$$
$$\mathcal{B}(\ell^{p'},\ell^{2}_{N}) = \ell^{p} \check{\otimes} \ell^{2}_{N} = \ell^{p} \otimes \ell^{2}_{N} = \ell^{p}(\ell^{2}_{N}).$$

Note that

$$\sum_{n=1}^{\infty} \|Se_n\|_{\ell_N^2} \|Te_n^*\|_{\ell_N^2} \le \|S\|_{\ell^{p'}(\ell_N^2)} \|T\|_{\ell^p(\ell_N^2)}, \quad \text{by H\"older}, \\ \le \pi_{p'}(\operatorname{id}_{\ell_N^2})\pi_p(\operatorname{id}_{\ell_N^2}) \|S\| \|T\| \\ \le C N \|S\| \|T\|$$

▲ロト ▲圖ト ▲温ト ▲温ト

æ

Amenability of operator algebras on Banach spaces, II

Volker Runde

Amenability $\mathcal{K}(E)$

Amenability of $\mathcal{B}(E)$ A positive example $\mathcal{B}(\ell^p \oplus \ell^q)$ with $p \neq p$ $\mathcal{B}(\ell^p)$

Proof.

Identify algebraically

$$\mathcal{B}(\ell^{p},\ell^{2}_{N}) = \ell^{p'} \check{\otimes} \ell^{2}_{N} = \ell^{p'} \otimes \ell^{2}_{N} = \ell^{p'}(\ell^{2}_{N}), \text{ and}$$
$$\mathcal{B}(\ell^{p'},\ell^{2}_{N}) = \ell^{p} \check{\otimes} \ell^{2}_{N} = \ell^{p} \otimes \ell^{2}_{N} = \ell^{p}(\ell^{2}_{N}).$$

Note that

$$\begin{split} \sum_{n=1}^{\infty} \|Se_n\|_{\ell_N^2} \|\mathcal{T}e_n^*\|_{\ell_N^2} &\leq \|S\|_{\ell^{p'}(\ell_N^2)} \|\mathcal{T}\|_{\ell^p(\ell_N^2)}, \quad \text{ by H\"older}, \\ &\leq \pi_{p'}(\operatorname{id}_{\ell_N^2})\pi_p(\operatorname{id}_{\ell_N^2}) \|S\| \|\mathcal{T}\| \\ &\leq C N \|S\| \|\mathcal{T}\|, \quad \text{ by Gordon.} \end{split}$$

<□ > < @ > < E > < E > E のQ @

Amenability of operator algebras on Banach spaces, II	Corollary
Volker Runde	
Amenability of $\mathcal{K}(E)$	
Amenability of $\mathcal{B}(E)$ A positive example $\mathcal{B}(\ell^{p} \oplus \ell^{q})$ $\psi(t_{p} \neq \rho \neq \rho)$ $\mathcal{B}(\ell^{p})$	

<□ > < @ > < E > < E > E のQ @

Amenability of operator algebras on Banach spaces, II

Volker Runde

Amenability $\mathcal{K}(E)$

Amenability of $\mathcal{B}(E)$ A positive example $\mathcal{B}(\ell^P \oplus \ell^q)$ with $p \neq p$ $\mathcal{B}(\ell^P)$

Corollary

Let $p \in (1,\infty)$ and let E be an \mathcal{L}^p -space with dim $E = \infty$.

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Amenability of operator algebras on Banach spaces, II

Volker Runde

Amenability of $\mathcal{K}(E)$

Amenability o $\mathcal{B}(E)$ A positive example $\mathcal{B}(\ell^p \oplus \ell^q)$ with $p \neq p$ $\mathcal{B}(\ell^p)$

Corollary

Let $p \in (1, \infty)$ and let E be an \mathcal{L}^p -space with dim $E = \infty$. Then $\ell^{\infty}(\mathcal{K}(E))$ is not amenable.

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Amenability of operator algebras on Banach spaces, II

Volker Runde

Amenability o $\mathcal{K}(E)$

Amenability of $\mathcal{B}(E)$ A positive example $\mathcal{B}(\ell^p \oplus \ell^q)$ with $p \neq p$ $\mathcal{B}(\ell^p)$

Corollary

Let $p \in (1, \infty)$ and let E be an \mathcal{L}^p -space with dim $E = \infty$. Then $\ell^{\infty}(\mathcal{K}(E))$ is not amenable.

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Theorem (VR, 2009)

Amenability of operator algebras on Banach spaces, II

Volker Runde

Amenability o $\mathcal{K}(E)$

Amenability of $\mathcal{B}(E)$ A positive example $\mathcal{B}(\ell^{p} \oplus \ell^{q})$ with $p \neq p$ $\mathcal{B}(\ell^{p})$

Corollary

Let $p \in (1, \infty)$ and let E be an \mathcal{L}^p -space with dim $E = \infty$. Then $\ell^{\infty}(\mathcal{K}(E))$ is not amenable.

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Theorem (VR, 2009)

Let $p \in (1, \infty)$, and let E be an \mathcal{L}^p -space.

Amenability of operator algebras on Banach spaces, II

Volker Runde

Amenability o $\mathcal{K}(E)$

Amenability of $\mathcal{B}(E)$ A positive example $\mathcal{B}(\ell^{p} \oplus \ell^{q})$ with $p \neq p$ $\mathcal{B}(\ell^{p})$

Corollary

Let $p \in (1, \infty)$ and let E be an \mathcal{L}^p -space with dim $E = \infty$. Then $\ell^{\infty}(\mathcal{K}(E))$ is not amenable.

Theorem (VR, 2009)

Let $p \in (1, \infty)$, and let E be an \mathcal{L}^p -space. Then $\mathcal{B}(\ell^p(E))$ is not amenable.

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Amenability of operator algebras on Banach spaces, II

Volker Runde

Amenability o $\mathcal{K}(E)$

Amenability o $\mathcal{B}(E)$ A positive example $\mathcal{B}(\ell^{p} \oplus \ell^{q})$ with $p \neq p$ $\mathcal{B}(\ell^{p})$

Corollary

Let $p \in (1, \infty)$ and let E be an \mathcal{L}^p -space with dim $E = \infty$. Then $\ell^{\infty}(\mathcal{K}(E))$ is not amenable.

Theorem (VR, 2009)

Let $p \in (1, \infty)$, and let E be an \mathcal{L}^p -space. Then $\mathcal{B}(\ell^p(E))$ is not amenable.

Proof.

Amenability of operator algebras on Banach spaces, II

Volker Runde

Amenability o $\mathcal{K}(E)$

Amenability o $\mathcal{B}(E)$ A positive example $\mathcal{B}(\ell^{p} \oplus \ell^{q})$ with $p \neq p$ $\mathcal{B}(\ell^{p})$

Corollary

Let $p \in (1, \infty)$ and let E be an \mathcal{L}^p -space with dim $E = \infty$. Then $\ell^{\infty}(\mathcal{K}(E))$ is not amenable.

Theorem (VR, 2009)

Let $p \in (1, \infty)$, and let E be an \mathcal{L}^p -space. Then $\mathcal{B}(\ell^p(E))$ is not amenable.

Proof.

If $\mathcal{B}(\ell^p(E))$ is amenable,

Amenability of operator algebras on Banach spaces, II

Volker Runde

Amenability o $\mathcal{K}(E)$

Amenability o $\mathcal{B}(E)$ A positive example $\mathcal{B}(\ell^{p} \oplus \ell^{q})$ with $p \neq p$ $\mathcal{B}(\ell^{p})$

Corollary

Let $p \in (1, \infty)$ and let E be an \mathcal{L}^p -space with dim $E = \infty$. Then $\ell^{\infty}(\mathcal{K}(E))$ is not amenable.

Theorem (VR, 2009)

Let $p \in (1, \infty)$, and let E be an \mathcal{L}^p -space. Then $\mathcal{B}(\ell^p(E))$ is not amenable.

Proof.

If $\mathcal{B}(\ell^p(E))$ is amenable, then so is $\ell^\infty(\mathcal{B}(\ell^p(E)))$

Amenability of operator algebras on Banach spaces, II

Volker Runde

Amenability o $\mathcal{K}(E)$

Amenability o $\mathcal{B}(\mathcal{E})$ A positive example $\mathcal{B}(\ell^{p} \oplus \ell^{q})$ with $p \neq p$ $\mathcal{B}(\ell^{p})$

Corollary

Let $p \in (1, \infty)$ and let E be an \mathcal{L}^p -space with dim $E = \infty$. Then $\ell^{\infty}(\mathcal{K}(E))$ is not amenable.

Theorem (VR, 2009)

Let $p \in (1, \infty)$, and let E be an \mathcal{L}^p -space. Then $\mathcal{B}(\ell^p(E))$ is not amenable.

Proof.

If $\mathcal{B}(\ell^{p}(E))$ is amenable, then so is $\ell^{\infty}(\mathcal{B}(\ell^{p}(E)))$ as is $\ell^{\infty}(\mathcal{K}(\ell^{p}(E)))$.

Amenability of operator algebras on Banach spaces, II

Volker Runde

Amenability o $\mathcal{K}(E)$

Amenability o $\mathcal{B}(\mathcal{E})$ A positive example $\mathcal{B}(\ell^{p} \oplus \ell^{q})$ with $p \neq p$ $\mathcal{B}(\ell^{p})$

Corollary

Let $p \in (1, \infty)$ and let E be an \mathcal{L}^p -space with dim $E = \infty$. Then $\ell^{\infty}(\mathcal{K}(E))$ is not amenable.

Theorem (VR, 2009)

Let $p \in (1, \infty)$, and let E be an \mathcal{L}^p -space. Then $\mathcal{B}(\ell^p(E))$ is not amenable.

Proof.

If $\mathcal{B}(\ell^{p}(E))$ is amenable, then so is $\ell^{\infty}(\mathcal{B}(\ell^{p}(E)))$ as is $\ell^{\infty}(\mathcal{K}(\ell^{p}(E)))$. Impossible!

Amenability of operator algebras on Banach spaces, II

Volker Runde

Amenability o $\mathcal{K}(E)$

Amenability o $\mathcal{B}(\mathcal{E})$ A positive example $\mathcal{B}(\ell^{p} \oplus \ell^{q})$ with $p \neq p$ $\mathcal{B}(\ell^{p})$

Corollary

Let $p \in (1, \infty)$ and let E be an \mathcal{L}^p -space with dim $E = \infty$. Then $\ell^{\infty}(\mathcal{K}(E))$ is not amenable.

Theorem (VR, 2009)

Let $p \in (1, \infty)$, and let E be an \mathcal{L}^p -space. Then $\mathcal{B}(\ell^p(E))$ is not amenable.

Proof.

If $\mathcal{B}(\ell^{p}(E))$ is amenable, then so is $\ell^{\infty}(\mathcal{B}(\ell^{p}(E)))$ as is $\ell^{\infty}(\mathcal{K}(\ell^{p}(E)))$. Impossible!

Amenability of operator algebras on Banach spaces, II

Volker Runde

Amenability o $\mathcal{K}(E)$

Amenability o $\mathcal{B}(\mathcal{E})$ A positive example $\mathcal{B}(\ell^{p} \oplus \ell^{q})$ with $p \neq p$ $\mathcal{B}(\ell^{p})$

Corollary

Let $p \in (1, \infty)$ and let E be an \mathcal{L}^p -space with dim $E = \infty$. Then $\ell^{\infty}(\mathcal{K}(E))$ is not amenable.

Theorem (VR, 2009)

Let $p \in (1, \infty)$, and let E be an \mathcal{L}^p -space. Then $\mathcal{B}(\ell^p(E))$ is not amenable.

Proof.

If $\mathcal{B}(\ell^{p}(E))$ is amenable, then so is $\ell^{\infty}(\mathcal{B}(\ell^{p}(E)))$ as is $\ell^{\infty}(\mathcal{K}(\ell^{p}(E)))$. Impossible!

Corollary

Amenability of operator algebras on Banach spaces, II

Volker Runde

Amenability o $\mathcal{K}(E)$

Amenability o $\mathcal{B}(\mathcal{E})$ A positive example $\mathcal{B}(\ell^{p} \oplus \ell^{q})$ with $p \neq p$ $\mathcal{B}(\ell^{p})$

Corollary

Let $p \in (1, \infty)$ and let E be an \mathcal{L}^p -space with dim $E = \infty$. Then $\ell^{\infty}(\mathcal{K}(E))$ is not amenable.

Theorem (VR, 2009)

Let $p \in (1, \infty)$, and let E be an \mathcal{L}^p -space. Then $\mathcal{B}(\ell^p(E))$ is not amenable.

Proof.

If $\mathcal{B}(\ell^{p}(E))$ is amenable, then so is $\ell^{\infty}(\mathcal{B}(\ell^{p}(E)))$ as is $\ell^{\infty}(\mathcal{K}(\ell^{p}(E)))$. Impossible!

Corollary

Let $p \in (1,\infty)$.

Amenability of operator algebras on Banach spaces, II

Volker Runde

Amenability o $\mathcal{K}(E)$

Amenability o $\mathcal{B}(\mathcal{E})$ A positive example $\mathcal{B}(\ell^{p} \oplus \ell^{q})$ with $p \neq p$ $\mathcal{B}(\ell^{p})$

Corollary

Let $p \in (1, \infty)$ and let E be an \mathcal{L}^p -space with dim $E = \infty$. Then $\ell^{\infty}(\mathcal{K}(E))$ is not amenable.

Theorem (VR, 2009)

Let $p \in (1, \infty)$, and let E be an \mathcal{L}^p -space. Then $\mathcal{B}(\ell^p(E))$ is not amenable.

ヘロン 不良と イヨン イロン

Proof.

If $\mathcal{B}(\ell^{p}(E))$ is amenable, then so is $\ell^{\infty}(\mathcal{B}(\ell^{p}(E)))$ as is $\ell^{\infty}(\mathcal{K}(\ell^{p}(E)))$. Impossible!

Corollary

Let $p \in (1,\infty)$. Then $\mathcal{B}(\ell^p)$

Amenability of operator algebras on Banach spaces, II

Volker Runde

Amenability o $\mathcal{K}(E)$

Amenability o $\mathcal{B}(E)$ A positive example $\mathcal{B}(\ell^{p} \oplus \ell^{q})$ with $p \neq p$ $\mathcal{B}(\ell^{p})$

Corollary

Let $p \in (1, \infty)$ and let E be an \mathcal{L}^p -space with dim $E = \infty$. Then $\ell^{\infty}(\mathcal{K}(E))$ is not amenable.

Theorem (VR, 2009)

Let $p \in (1, \infty)$, and let E be an \mathcal{L}^p -space. Then $\mathcal{B}(\ell^p(E))$ is not amenable.

Proof.

If $\mathcal{B}(\ell^{p}(E))$ is amenable, then so is $\ell^{\infty}(\mathcal{B}(\ell^{p}(E)))$ as is $\ell^{\infty}(\mathcal{K}(\ell^{p}(E)))$. Impossible!

Corollary

Let $p \in (1, \infty)$. Then $\mathcal{B}(\ell^p)$ and $\mathcal{B}(L^p[0, 1])$

Amenability of operator algebras on Banach spaces, II

Volker Runde

Amenability o $\mathcal{K}(E)$

Amenability o $\mathcal{B}(\mathcal{E})$ A positive example $\mathcal{B}(\ell^{p} \oplus \ell^{q})$ with $p \neq p$ $\mathcal{B}(\ell^{p})$

Corollary

Let $p \in (1, \infty)$ and let E be an \mathcal{L}^p -space with dim $E = \infty$. Then $\ell^{\infty}(\mathcal{K}(E))$ is not amenable.

Theorem (VR, 2009)

Let $p \in (1, \infty)$, and let E be an \mathcal{L}^p -space. Then $\mathcal{B}(\ell^p(E))$ is not amenable.

Proof.

If $\mathcal{B}(\ell^{p}(E))$ is amenable, then so is $\ell^{\infty}(\mathcal{B}(\ell^{p}(E)))$ as is $\ell^{\infty}(\mathcal{K}(\ell^{p}(E)))$. Impossible!

Corollary

Let $p \in (1, \infty)$. Then $\mathcal{B}(\ell^p)$ and $\mathcal{B}(L^p[0, 1])$ are not amenable.