Dual Banach algebras: an overview

Volker Runde

Amenability

Connesamenability

Dual Banach algebras

Connesamenability Normal virtua diagonals

Representation theory

Open questions

Dual Banach algebras: an overview

Volker Runde

University of Alberta

Leeds, June 2, 2010

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Dual Banach algebras: an overview
Amenability

Volker Runde

Amenability

Connesamenability

Dual Banach algebras

Connesamenability Normal virtua diagonals

Representation theory

Open questions

Definition

< ロ > < 国 > < 国 > < 国 > < 国 > < 国 > の < の

Dual Banach algebras: an overview

Volker Runde

Amenability

Connesamenability

Dual Banach algebras

Connesamenability Normal virtua diagonals

Representation theory

Open questions

Definition

Let \mathfrak{A} be a Banach algebra,

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

Dual Banach algebras: an overview

Volker Runde

Amenability

Connesamenability

Dual Banach algebras

Connesamenability Normal virtua diagonals

Representation theory

Open questions

Definition

Let \mathfrak{A} be a Banach algebra, and let E be a Banach \mathfrak{A} -bimodule.

Dual Banach algebras: an overview

Volker Runde

Amenability

Connesamenability

Dual Banach algebras

Connesamenability Normal virtua diagonals

Representation theory

Open questions

Definition

Let \mathfrak{A} be a Banach algebra, and let E be a Banach \mathfrak{A} -bimodule. A bounded linear map $D : \mathfrak{A} \to E$ is called a derivation

Dual Banach algebras: an overview

Volker Runde

Amenability

Connesamenability

Dual Banach algebras

Connesamenability Normal virtua diagonals

Representation theory

Open questions

Definition

Let \mathfrak{A} be a Banach algebra, and let E be a Banach \mathfrak{A} -bimodule. A bounded linear map $D : \mathfrak{A} \to E$ is called a derivation if

$$D(ab) := a \cdot Db + (Da) \cdot b$$
 $(a, b \in \mathfrak{A}).$

Dual Banach algebras: an overview

Volker Runde

Amenability

Connesamenability

Dual Banach algebras

Connesamenability Normal virtua diagonals

Representation theory

Open questions

Definition

Let \mathfrak{A} be a Banach algebra, and let E be a Banach \mathfrak{A} -bimodule. A bounded linear map $D : \mathfrak{A} \to E$ is called a derivation if

$$D(ab) := a \cdot Db + (Da) \cdot b$$
 $(a, b \in \mathfrak{A}).$

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

If there is $x \in E$

Dual Banach algebras: an overview

Volker Runde

Amenability

Connesamenability

Dual Banach algebras

Connesamenability Normal virtua diagonals

Representation theory

Open questions

Definition

Let \mathfrak{A} be a Banach algebra, and let E be a Banach \mathfrak{A} -bimodule. A bounded linear map $D : \mathfrak{A} \to E$ is called a derivation if

$$D(ab) := a \cdot Db + (Da) \cdot b$$
 $(a, b \in \mathfrak{A}).$

If there is $x \in E$ such that

$$Da = a \cdot x - x \cdot a$$
 $(a \in \mathfrak{A}),$

Banach **A-bimodules** and derivations

Dual Banach algebras: an overview

Volker Runde

Amenability

Connesamenability

Dual Banach algebras Connes-

amenability Normal virtua diagonals

Representation theory

Open questions

Definition

Let \mathfrak{A} be a Banach algebra, and let E be a Banach \mathfrak{A} -bimodule. A bounded linear map $D : \mathfrak{A} \to E$ is called a derivation if

$$D(ab) := a \cdot Db + (Da) \cdot b$$
 $(a, b \in \mathfrak{A}).$

If there is $x \in E$ such that

$$Da = a \cdot x - x \cdot a$$
 $(a \in \mathfrak{A}),$

we call D an inner derivation.

Dual Banac
algebras: a
overview
Volker Rund
Amenability
Amenability
Connes-
Dual Banach
Representati
Open

(ロ)、(型)、(E)、(E)、 E、 の(の)

Dual Banach algebras: an overview

Volker Runde

Amenability

Connesamenability

Dual Banach algebras

Connesamenability Normal virtua diagonals

Representation theory

Open questions

Remark

If *E* is a Banach \mathfrak{A} -bimodule, then so is E^* :

◆□▶ ◆□▶ ◆□▶ ◆□▶ □□ - のへぐ

Volker Runde

Amenability

Connesamenability

Dual Banach algebras

Connesamenability Normal virtua diagonals

Representation theory

Open questions

Remark

If *E* is a Banach \mathfrak{A} -bimodule, then so is E^* :

 $oldsymbol{a}\cdot\phi$ $oldsymbol{(a\in\mathfrak{A},\phi\in E^*)}$

Dual Banach algebras: an overview

Volker Runde

Amenability

Connesamenability

Dual Banach algebras

Connesamenability Normal virtua diagonals

Representation theory

Open questions

Remark

If *E* is a Banach \mathfrak{A} -bimodule, then so is E^* :

 $\langle x, a \cdot \phi \rangle$ $(a \in \mathfrak{A}, \phi \in E^*, x \in E)$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへ⊙

Dual Banach algebras: an overview

Volker Runde

Amenability

Connesamenability

Dual Banach algebras

Connesamenability Normal virtua diagonals

Representation theory

Open questions

Remark

If *E* is a Banach \mathfrak{A} -bimodule, then so is E^* :

$$\langle x, a \cdot \phi \rangle := \langle x \cdot a, \phi \rangle$$
 $(a \in \mathfrak{A}, \phi \in E^*, x \in E)$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへ⊙

Dual Banach algebras: an overview

Volker Runde

Amenability

Connesamenability

Dual Banach algebras

Connesamenability Normal virtua diagonals

Representation theory

Open questions

If *E* is a Banach \mathfrak{A} -bimodule, then so is E^* : $\langle x, a \cdot \phi \rangle := \langle x \cdot a, \phi \rangle$ $(a \in \mathfrak{A}, \phi \in E^*, x \in E)$

and

Remark

$$\langle x, \phi \cdot a \rangle := \langle a \cdot x, \phi \rangle$$
 $(a \in \mathfrak{A}, \phi \in E^*, x \in E)$

Dual Banach algebras: an overview

Volker Runde

Amenability

Connesamenability

Dual Banach algebras

Connesamenability Normal virtua diagonals

Representation theory

Open questions

Remark

If E is a Banach \mathfrak{A} -bimodule, then so is E^* :

$$\langle x, a \cdot \phi \rangle := \langle x \cdot a, \phi \rangle$$
 $(a \in \mathfrak{A}, \phi \in E^*, x \in E)$

and

 $\langle x, \phi \cdot a \rangle := \langle a \cdot x, \phi \rangle$ $(a \in \mathfrak{A}, \phi \in E^*, x \in E).$

▲ロト ▲帰 ト ▲ヨト ▲ヨト - ヨ - の々ぐ

We call E^*

Dual Banach algebras: an overview

Volker Runde

Amenability

Connesamenability

Dual Banach algebras

Connesamenability Normal virtua diagonals

Representation theory

Open questions

Remark

If *E* is a Banach \mathfrak{A} -bimodule, then so is E^* :

$$\langle x, a \cdot \phi \rangle := \langle x \cdot a, \phi \rangle$$
 $(a \in \mathfrak{A}, \phi \in E^*, x \in E)$

and

$$\langle x, \phi \cdot a \rangle := \langle a \cdot x, \phi \rangle$$
 $(a \in \mathfrak{A}, \phi \in E^*, x \in E).$

▲ロト ▲帰 ト ▲ヨト ▲ヨト - ヨ - の々ぐ

We call E^* a dual Banach \mathfrak{A} -bimodule.

Dual Banach algebras: an overview

Volker Runde

Amenability

Connesamenability

Dual Banach algebras

Connesamenability Normal virtua diagonals

Representation theory

Open questions

Remark

If *E* is a Banach \mathfrak{A} -bimodule, then so is E^* :

$$\langle x, a \cdot \phi \rangle := \langle x \cdot a, \phi \rangle$$
 $(a \in \mathfrak{A}, \phi \in E^*, x \in E)$

and

$$\langle x, \phi \cdot a \rangle := \langle a \cdot x, \phi \rangle$$
 $(a \in \mathfrak{A}, \phi \in E^*, x \in E).$

We call E^* a dual Banach \mathfrak{A} -bimodule.

Definition (B. E. Johnson, 1972)

Dual Banach algebras: an overview

Volker Runde

Amenability

Connesamenability

Dual Banach algebras

Connesamenability Normal virtua diagonals

Representation theory

Open questions

Remark

If *E* is a Banach \mathfrak{A} -bimodule, then so is E^* :

$$\langle x, a \cdot \phi \rangle := \langle x \cdot a, \phi \rangle$$
 $(a \in \mathfrak{A}, \phi \in E^*, x \in E)$

and

$$\langle x, \phi \cdot a \rangle := \langle a \cdot x, \phi \rangle$$
 $(a \in \mathfrak{A}, \phi \in E^*, x \in E).$

We call E^* a dual Banach \mathfrak{A} -bimodule.

Definition (B. E. Johnson, 1972)

 \mathfrak{A} is called amenable if,

Dual Banach algebras: an overview

Volker Runde

Amenability

Connesamenability

Dual Banach algebras

Connesamenability Normal virtua diagonals

Representation theory

Open questions

Remark

If *E* is a Banach \mathfrak{A} -bimodule, then so is E^* :

$$\langle x, a \cdot \phi \rangle := \langle x \cdot a, \phi \rangle$$
 $(a \in \mathfrak{A}, \phi \in E^*, x \in E)$

and

$$\langle x, \phi \cdot a \rangle := \langle a \cdot x, \phi \rangle$$
 $(a \in \mathfrak{A}, \phi \in E^*, x \in E).$

We call E^* a dual Banach \mathfrak{A} -bimodule.

Definition (B. E. Johnson, 1972)

 \mathfrak{A} is called **amenable** if, for every **dual** Banach \mathfrak{A} -bimodule *E*,

Dual Banach algebras: an overview

Volker Runde

Amenability

Connesamenability

Dual Banach algebras

Connesamenability Normal virtua diagonals

Representation theory

Open questions

Remark

If *E* is a Banach \mathfrak{A} -bimodule, then so is E^* :

$$\langle x, a \cdot \phi \rangle := \langle x \cdot a, \phi \rangle$$
 $(a \in \mathfrak{A}, \phi \in E^*, x \in E)$

and

$$\langle x, \phi \cdot a \rangle := \langle a \cdot x, \phi \rangle$$
 $(a \in \mathfrak{A}, \phi \in E^*, x \in E).$

We call E^* a dual Banach \mathfrak{A} -bimodule.

Definition (B. E. Johnson, 1972)

 \mathfrak{A} is called amenable if, for every dual Banach \mathfrak{A} -bimodule E, every derivation $D : \mathfrak{A} \to E$,

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Dual Banach algebras: an overview

Volker Runde

Amenability

Connesamenability

Dual Banach algebras

Connesamenability Normal virtua diagonals

Representation theory

Open questions

Remark

If *E* is a Banach \mathfrak{A} -bimodule, then so is E^* :

$$\langle x, a \cdot \phi \rangle := \langle x \cdot a, \phi \rangle$$
 $(a \in \mathfrak{A}, \phi \in E^*, x \in E)$

and

$$\langle x, \phi \cdot a \rangle := \langle a \cdot x, \phi \rangle$$
 $(a \in \mathfrak{A}, \phi \in E^*, x \in E).$

We call E^* a dual Banach \mathfrak{A} -bimodule.

Definition (B. E. Johnson, 1972)

 \mathfrak{A} is called amenable if, for every dual Banach \mathfrak{A} -bimodule E, every derivation $D : \mathfrak{A} \to E$, is inner.

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

◆□▶ ◆□▶ ◆□▶ ◆□▶ □□ - のへぐ

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Dual Banach algebras: an overview

Volker Runde

Amenability

Connesamenability

Dual Banach algebras

Connesamenability Normal virtua diagonals

Representation theory

Open questions

Theorem (B. E. Johnson, 1972)

Dual Banach algebras: an overview

Volker Runde

Amenability

Connesamenability

Dual Banach algebras

Connesamenability Normal virtua diagonals

Representation theory

Open questions

Theorem (B. E. Johnson, 1972)

The following are equivalent for a locally compact group G:

▲ロト ▲帰 ト ▲ヨト ▲ヨト - ヨ - の々ぐ

Dual Banach algebras: an overview

Volker Runde

Amenability

Connesamenability

Dual Banach algebras

Connesamenability Normal virtua diagonals

Representation theory

Open questions

Theorem (B. E. Johnson, 1972)

The following are equivalent for a locally compact group G: 1 $L^1(G)$ is an amenable Banach algebra;

▲ロト ▲帰 ト ▲ヨト ▲ヨト - ヨ - の々ぐ

Dual Banach algebras: an overview

Volker Runde

Amenability

Connesamenability

Dual Banach algebras

Connesamenability Normal virtua diagonals

Representation theory

Open questions

Theorem (B. E. Johnson, 1972)

The following are equivalent for a locally compact group G: 1 $L^{1}(G)$ is an amenable Banach algebra;

▲ロト ▲帰 ト ▲ヨト ▲ヨト - ヨ - の々ぐ

2 the group G is amenable.

Dual Banach algebras: an overview

Volker Runde

Amenability

Connesamenability

Dual Banach algebras

Connesamenability Normal virtua diagonals

Representation theory

Open questions

Theorem (B. E. Johnson, 1972)

The following are equivalent for a locally compact group G: $left L^1(G)$ is an amenable Banach algebra;

2 the group G is amenable.

Theorem (H. G. Dales, F. Ghahramani, & A. Ya. Helemskiĭ, 2002)

▲ロト ▲帰 ト ▲ヨト ▲ヨト - ヨ - の々ぐ

Dual Banach algebras: an overview

Volker Runde

Amenability

Connesamenability

Dual Banach algebras

Connesamenability Normal virtua diagonals

Representation theory

Open questions

Theorem (B. E. Johnson, 1972)

The following are equivalent for a locally compact group G: $I L^1(G)$ is an amenable Banach algebra;

2 the group G is amenable.

Theorem (H. G. Dales, F. Ghahramani, & A. Ya. Helemskiĭ, 2002)

▲ロト ▲帰 ト ▲ヨト ▲ヨト - ヨ - の々ぐ

The following are equivalent:

Dual Banach algebras: an overview

Volker Runde

Amenability

Connesamenability

Dual Banach algebras

Connesamenability Normal virtua diagonals

Representation theory

Open questions

Theorem (B. E. Johnson, 1972)

The following are equivalent for a locally compact group G: $I L^1(G)$ is an amenable Banach algebra;

2 the group G is amenable.

Theorem (H. G. Dales, F. Ghahramani, & A. Ya. Helemskiĭ, 2002)

▲ロト ▲帰 ト ▲ヨト ▲ヨト - ヨ - の々ぐ

The following are equivalent:

1 M(G) is amenable;

Dual Banach algebras: an overview

Volker Runde

Amenability

Connesamenability

Dual Banach algebras

Connesamenability Normal virtua diagonals

Representation theory

Open questions

Theorem (B. E. Johnson, 1972)

The following are equivalent for a locally compact group G: $I L^1(G)$ is an amenable Banach algebra;

2 the group G is amenable.

Theorem (H. G. Dales, F. Ghahramani, & A. Ya. Helemskiĭ, 2002)

▲ロト ▲帰 ト ▲ヨト ▲ヨト - ヨ - の々ぐ

The following are equivalent:

1 M(G) is amenable;

2 *G* is amenable

Dual Banach algebras: an overview

Volker Runde

Amenability

Connesamenability

Dual Banach algebras

Connesamenability Normal virtua diagonals

Representation theory

Open questions

Theorem (B. E. Johnson, 1972)

The following are equivalent for a locally compact group G: **1** $L^1(G)$ is an amenable Banach algebra;

2 the group G is amenable.

Theorem (H. G. Dales, F. Ghahramani, & A. Ya. Helemskiĭ, 2002)

▲ロト ▲帰 ト ▲ヨト ▲ヨト - ヨ - の々ぐ

The following are equivalent:

1 M(G) is amenable;

2 *G* is amenable and discrete.

Virtual digaonals

Dual Banach
alashusa as
aigebras: an
overview
Volker Runde
A
Amenadinty
Connes-
Duai Bànach
0
Open .

Virtual digaonals

Dual Banach algebras: an overview

Volker Runde

Amenability

- Connesamenability
- Dual Banach algebras
- Connesamenability Normal virtua diagonals
- Representation theory
- Open questions

Definition (B. E. Johnson, 1972)

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへぐ
Dual Banach algebras: an overview

Volker Runde

Amenability

Connesamenability

Dual Banach algebras

Connesamenability Normal virtua diagonals

Representation theory

Open questions

Definition (B. E. Johnson, 1972)

▲□▶▲□▶▲□▶▲□▶ □ のQ@

An element $\mathbf{D} \in (\mathfrak{A} \hat{\otimes} \mathfrak{A})^{**}$

Dual Banach algebras: an overview

Volker Runde

Amenability

Connesamenability

Dual Banach algebras

Connesamenability Normal virtua diagonals

Representation theory

Open questions

Definition (B. E. Johnson, 1972)

An element $\mathbf{D} \in (\mathfrak{A} \hat{\otimes} \mathfrak{A})^{**}$ is called a virtual diagonal for \mathfrak{A}

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Dual Banach algebras: an overview

Volker Runde

Amenability

Connesamenability

Dual Banach algebras

Connesamenability Normal virtua diagonals

Representation theory

Open questions

Definition (B. E. Johnson, 1972)

An element $\mathbf{D} \in (\mathfrak{A} \hat{\otimes} \mathfrak{A})^{**}$ is called a virtual diagonal for \mathfrak{A} if

$$a \cdot \mathbf{D} = \mathbf{D} \cdot a$$
 $(a \in \mathfrak{A})$

◆□▶ ◆□▶ ◆三▶ ◆三▶ →三 ● ● ●

Dual Banach algebras: an overview

Volker Runde

Amenability

Connesamenability

Dual Banach algebras

Connesamenability Normal virtua diagonals

Representation theory

Open questions

Definition (B. E. Johnson, 1972)

ć

An element $D \in (\mathfrak{A} \hat{\otimes} \mathfrak{A})^{**}$ is called a virtual diagonal for \mathfrak{A} if

$$a \cdot \mathbf{D} = \mathbf{D} \cdot a \qquad (a \in \mathfrak{A})$$

and

$$\mathsf{a}\Delta^{**}\mathsf{D}=\mathsf{a}$$
 $(\mathsf{a}\in\mathfrak{A}),$

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Dual Banach algebras: an overview

Volker Runde

Amenability

Connesamenability

Dual Banach algebras

Connesamenability Normal virtua diagonals

Representation theory

Open questions

Definition (B. E. Johnson, 1972)

An element $\mathbf{D} \in (\mathfrak{A} \hat{\otimes} \mathfrak{A})^{**}$ is called a virtual diagonal for \mathfrak{A} if

$$a \cdot \mathbf{D} = \mathbf{D} \cdot a \qquad (a \in \mathfrak{A})$$

and

$$\mathsf{a}\Delta^{**}\mathsf{D}=\mathsf{a}$$
 $(\mathsf{a}\in\mathfrak{A}),$

▲ロト ▲帰 ト ▲ヨト ▲ヨト - ヨ - の々ぐ

where $\Delta : \mathfrak{A} \hat{\otimes} \mathfrak{A} \to \mathfrak{A}$ denotes multiplication.

Dual Banach algebras: an overview

Volker Runde

Amenability

Connesamenability

Dual Banach algebras

Connesamenability Normal virtua diagonals

Representation theory

Open questions

Definition (B. E. Johnson, 1972)

An element $\mathbf{D} \in (\mathfrak{A} \hat{\otimes} \mathfrak{A})^{**}$ is called a virtual diagonal for \mathfrak{A} if

$$a \cdot \mathbf{D} = \mathbf{D} \cdot a \qquad (a \in \mathfrak{A})$$

and

$$\mathsf{a}\Delta^{**}\mathsf{D}=\mathsf{a}$$
 $(\mathsf{a}\in\mathfrak{A}),$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

where $\Delta : \mathfrak{A} \hat{\otimes} \mathfrak{A} \to \mathfrak{A}$ denotes multiplication.

Theorem (B. E. Johnson, 1972)

Dual Banach algebras: an overview

Volker Runde

Amenability

Connesamenability

Dual Banach algebras

Connesamenability Normal virtua diagonals

Representation theory

Open questions

Definition (B. E. Johnson, 1972)

An element $\mathbf{D} \in (\mathfrak{A} \hat{\otimes} \mathfrak{A})^{**}$ is called a virtual diagonal for \mathfrak{A} if

$$a \cdot \mathbf{D} = \mathbf{D} \cdot a \qquad (a \in \mathfrak{A})$$

and

$$\mathsf{a}\Delta^{**}\mathsf{D}=\mathsf{a}$$
 $(\mathsf{a}\in\mathfrak{A}),$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

where $\Delta : \mathfrak{A} \hat{\otimes} \mathfrak{A} \to \mathfrak{A}$ denotes multiplication.

Theorem (B. E. Johnson, 1972)

 \mathfrak{A} is amenable

Dual Banach algebras: an overview

Volker Runde

Amenability

Connesamenability

Dual Banach algebras

Connesamenability Normal virtua diagonals

Representation theory

Open questions

Definition (B. E. Johnson, 1972)

An element $\mathbf{D} \in (\mathfrak{A} \hat{\otimes} \mathfrak{A})^{**}$ is called a virtual diagonal for \mathfrak{A} if

$$a \cdot \mathbf{D} = \mathbf{D} \cdot a \qquad (a \in \mathfrak{A})$$

and

$$\mathsf{a}\Delta^{**}\mathsf{D}=\mathsf{a}$$
 $(\mathsf{a}\in\mathfrak{A}),$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

where $\Delta : \mathfrak{A} \hat{\otimes} \mathfrak{A} \to \mathfrak{A}$ denotes multiplication.

Theorem (B. E. Johnson, 1972)

 \mathfrak{A} is amenable if and only if

Dual Banach algebras: an overview

Volker Runde

Amenability

Connesamenability

Dual Banach algebras

Connesamenability Normal virtua diagonals

Representation theory

Open questions

Definition (B. E. Johnson, 1972)

An element $\mathbf{D} \in (\mathfrak{A} \hat{\otimes} \mathfrak{A})^{**}$ is called a virtual diagonal for \mathfrak{A} if

$$a \cdot \mathbf{D} = \mathbf{D} \cdot a \qquad (a \in \mathfrak{A})$$

and

$$a\Delta^{**}\mathbf{D} = a$$
 $(a \in \mathfrak{A}),$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

where $\Delta : \mathfrak{A} \hat{\otimes} \mathfrak{A} \to \mathfrak{A}$ denotes multiplication.

Theorem (B. E. Johnson, 1972)

 \mathfrak{A} is amenable if and only if \mathfrak{A} has a virtual diagonal.

Dual Banach algebras: an overview
Volker Runde
Connes-

(ロ)、(型)、(E)、(E)、 E、 の(の)

Dual Banach algebras: an overview

Volker Runde

Amenability

Connesamenability

Dual Banach algebras

Connesamenability Normal virtua diagonals

Representation theory

Open questions

Theorem (A. Connes, U. Haagerup, et al.)

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

Dual Banach algebras: an overview

Volker Runde

Amenability

Connesamenability

Dual Banach algebras

Connesamenability Normal virtua diagonals

Representation theory

Open questions

Theorem (A. Connes, U. Haagerup, et al.)

The following are equivalent for a C^* -algebra \mathfrak{A} :

◆□▶ ◆□▶ ◆三▶ ◆三▶ →三 ● ● ●

Dual Banach algebras: an overview

Volker Runde

Amenability

Connesamenability

Dual Banach algebras

Connesamenability Normal virtua diagonals

Representation theory

Open questions

Theorem (A. Connes, U. Haagerup, et al.)

The following are equivalent for a C^* -algebra \mathfrak{A} :

◆□▶ ◆□▶ ◆三▶ ◆三▶ →三 ● ● ●

1 \mathfrak{A} is nuclear;

Dual Banach algebras: an overview

Volker Runde

Amenability

Connesamenability

Dual Banach algebras

Connesamenability Normal virtua diagonals

Representation theory

Open questions

Theorem (A. Connes, U. Haagerup, et al.)

The following are equivalent for a C^* -algebra \mathfrak{A} :

- 1 A is nuclear;
- **2** \mathfrak{A} is amenable.

Dual Banach algebras: an overview

Volker Runde

Amenability

Connesamenability

Dual Banach algebras

Connesamenability Normal virtua diagonals

Representation theory

Open questions

Theorem (A. Connes, U. Haagerup, et al.)

The following are equivalent for a C^* -algebra \mathfrak{A} :

ヘロン 人間 とくほと くほとう

3

- **1** \mathfrak{A} is nuclear;
- **2** \mathfrak{A} is amenable.

Theorem (S. Wasserman, 1976)

Dual Banach algebras: an overview

Volker Runde

Amenability

Connesamenability

Dual Banach algebras Connesamenability

Normal virtual diagonals

Representation theory

Open questions

Theorem (A. Connes, U. Haagerup, et al.)

The following are equivalent for a C^* -algebra \mathfrak{A} :

- **1** \mathfrak{A} is nuclear;
- **2** \mathfrak{A} is amenable.

Theorem (S. Wasserman, 1976)

The following are equivalent for a von Neumann algebra \mathfrak{M} :

・ロト ・四ト ・ヨト ・ヨト

3

Dual Banach algebras: an overview

Volker Runde

Amenability

Connesamenability

Dual Banach algebras Connes-

Normal virtua diagonals

Representation theory

Open questions

Theorem (A. Connes, U. Haagerup, et al.)

The following are equivalent for a C^* -algebra \mathfrak{A} :

- **1** \mathfrak{A} is nuclear;
- **2** \mathfrak{A} is amenable.

Theorem (S. Wasserman, 1976)

The following are equivalent for a von Neumann algebra M:
1 M is nuclear;

・ロト ・四ト ・ヨト ・ヨト

Dual Banach algebras: an overview

Volker Runde

Amenability

Connesamenability

Dual Banach algebras Connes-

amenability Normal virtua diagonals

Representation theory

Open questions

Theorem (A. Connes, U. Haagerup, et al.)

The following are equivalent for a C^* -algebra \mathfrak{A} :

- **1** \mathfrak{A} is nuclear;
- **2** \mathfrak{A} is amenable.

Theorem (S. Wasserman, 1976)

The following are equivalent for a von Neumann algebra \mathfrak{M} :

(日)、

- 1 M is nuclear;
- **2** \mathfrak{M} is subhomogeneous,

Dual Banach algebras: an overview

Volker Runde

Amenability

Connesamenability

Dual Banach algebras Connes-

Normal virtua diagonals

Representation theory

Open questions

Theorem (A. Connes, U. Haagerup, et al.)

The following are equivalent for a C^* -algebra \mathfrak{A} :

1 \mathfrak{A} is nuclear;

2 \mathfrak{A} is amenable.

Theorem (S. Wasserman, 1976)

The following are equivalent for a von Neumann algebra \mathfrak{M} :

1 M is nuclear;

2 \mathfrak{M} is subhomogeneous, i.e.,

 $\mathfrak{M}\cong M_{n_1}(\mathfrak{M}_1)\oplus\cdots\oplus M_{n_k}(\mathfrak{M}_k)$

▲ロト ▲母 ▶ ▲目 ▶ ▲目 ▶ ▲母 ▶ ▲ ● ● ● ●

Dual Banach algebras: an overview

Volker Runde

Amenability

Connesamenability

Dual Banach algebras Connesamenability

Normal virtua diagonals

Representation theory

Open questions

Theorem (A. Connes, U. Haagerup, et al.)

The following are equivalent for a C^* -algebra \mathfrak{A} :

- **1** \mathfrak{A} is nuclear;
- **2** \mathfrak{A} is amenable.

Theorem (S. Wasserman, 1976)

The following are equivalent for a von Neumann algebra \mathfrak{M} :

1 \mathfrak{M} is nuclear;

2 \mathfrak{M} is subhomogeneous, i.e.,

 $\mathfrak{M}\cong M_{n_1}(\mathfrak{M}_1)\oplus\cdots\oplus M_{n_k}(\mathfrak{M}_k)$

◆□▶ ◆□▶ ◆□▶ ◆□▶ ●□

with $n_1, \ldots, n_k \in \mathbb{N}$

Dual Banach algebras: an overview

Volker Runde

Amenability

Connesamenability

Dual Banach algebras Connesamenability

Normal virtua diagonals

Representation theory

Open questions

Theorem (A. Connes, U. Haagerup, et al.)

The following are equivalent for a C^* -algebra \mathfrak{A} :

1 \mathfrak{A} is nuclear;

2 \mathfrak{A} is amenable.

Theorem (S. Wasserman, 1976)

The following are equivalent for a von Neumann algebra \mathfrak{M} :

1 M is nuclear;

2 \mathfrak{M} is subhomogeneous, i.e.,

 $\mathfrak{M}\cong M_{n_1}(\mathfrak{M}_1)\oplus\cdots\oplus M_{n_k}(\mathfrak{M}_k)$

with $n_1, \ldots, n_k \in \mathbb{N}$ and $\mathfrak{M}_1, \ldots, \mathfrak{M}_k$ abelian.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Normali	ty
---------	----

Dual Banach algebras: an overview

Volker Runde

Amenability

Connesamenability

Dual Banach algebras

Connesamenability Normal virtua diagonals

Representation theory

Open questions

Theorem (S. Sakai, 1956)

◆□▶ ◆圖▶ ◆臣▶ ◆臣▶ 三臣 - のへで

Dual Banach algebras: an overview

Volker Runde

Amenability

Connesamenability

Dual Banach algebras

Connesamenability Normal virtua diagonals

Representation theory

Open questions

Theorem (S. Sakai, 1956)

A C^{*}-algebra can be faithfully represented on a Hilbert space as a von Neumann algebra

Dual Banach algebras: an overview

Volker Runde

Amenability

Connesamenability

Dual Banach algebras

Connesamenability Normal virtua diagonals

Representation theory

Open questions

Theorem (S. Sakai, 1956)

A C^{*}-algebra can be faithfully represented on a Hilbert space as a von Neumann algebra if and only if

Dual Banach algebras: an overview

Volker Runde

Amenability

Connesamenability

Dual Banach algebras

Connesamenability Normal virtua diagonals

Representation theory

Open questions

Theorem (S. Sakai, 1956)

A C*-algebra can be faithfully represented on a Hilbert space as a von Neumann algebra if and only if it is the dual space of some Banach space.

Dual Banach algebras: an overview

Volker Runde

Amenability

Connesamenability

Dual Banach algebras

Connesamenability Normal virtua diagonals

Representation theory

Open questions

Theorem (S. Sakai, 1956)

A C^{*}-algebra can be faithfully represented on a Hilbert space as a von Neumann algebra if and only if it is the dual space of some Banach space. The predual space is unique.

Dual Banach algebras: an overview

Volker Runde

Amenability

Connesamenability

Dual Banach algebras

Connesamenability Normal virtual diagonals

Representation theory

Open questions

Theorem (S. Sakai, 1956)

A C^{*}-algebra can be faithfully represented on a Hilbert space as a von Neumann algebra if and only if it is the dual space of some Banach space. The predual space is unique.

▲ロト ▲帰 ト ▲ヨト ▲ヨト - ヨ - の々ぐ

Definition (R. Kadison, BEJ, & J. Ringrose, 1972)

Dual Banach algebras: an overview

Volker Runde

Amenability

Connesamenability

Dual Banach algebras

Connesamenability Normal virtua diagonals

Representation theory

Open questions

Theorem (S. Sakai, 1956)

A C^{*}-algebra can be faithfully represented on a Hilbert space as a von Neumann algebra if and only if it is the dual space of some Banach space. The predual space is unique.

Definition (R. Kadison, BEJ, & J. Ringrose, 1972)

Let ${\mathfrak M}$ be a von Neumann algebra, and let E be a dual Banach ${\mathfrak M}\text{-bimodule}.$

Dual Banach algebras: an overview

Volker Runde

Amenability

Connesamenability

Dual Banach algebras

Connesamenability Normal virtua diagonals

Representation theory

Open questions

Theorem (S. Sakai, 1956)

A C^{*}-algebra can be faithfully represented on a Hilbert space as a von Neumann algebra if and only if it is the dual space of some Banach space. The predual space is unique.

Definition (R. Kadison, BEJ, & J. Ringrose, 1972)

Let \mathfrak{M} be a von Neumann algebra, and let E be a dual Banach \mathfrak{M} -bimodule. Then E is called normal

Dual Banach algebras: an overview

Volker Runde

Amenability

Connesamenability

Dual Banach algebras

Connesamenability Normal virtua diagonals

Representation theory

Open questions

Theorem (S. Sakai, 1956)

A C^{*}-algebra can be faithfully represented on a Hilbert space as a von Neumann algebra if and only if it is the dual space of some Banach space. The predual space is unique.

Definition (R. Kadison, BEJ, & J. Ringrose, 1972)

Let \mathfrak{M} be a von Neumann algebra, and let E be a dual Banach \mathfrak{M} -bimodule. Then E is called normal if the module actions

$$\mathfrak{M} imes E o E, \quad (a, x) \mapsto \left\{ egin{array}{c} a \cdot x \ x \cdot a \end{array}
ight.$$

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Dual Banach algebras: an overview

Volker Runde

Amenability

Connesamenability

Dual Banach algebras

Connesamenability Normal virtua diagonals

Representation theory

Open question

Theorem (S. Sakai, 1956)

A C^{*}-algebra can be faithfully represented on a Hilbert space as a von Neumann algebra if and only if it is the dual space of some Banach space. The predual space is unique.

Definition (R. Kadison, BEJ, & J. Ringrose, 1972)

Let \mathfrak{M} be a von Neumann algebra, and let E be a dual Banach \mathfrak{M} -bimodule. Then E is called normal if the module actions

$$\mathfrak{M} imes E o E, \quad (a, x) \mapsto \left\{ egin{array}{c} a \cdot x \ x \cdot a \end{array}
ight.$$

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

are separately weak*-weak* continuous.

Dual Banach
algebras: an overview
Volker Runde
Connes- amenability

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへぐ

Volker Runde

Amenability

Connesamenability

Dual Banach algebras

Connesamenability Normal virtua diagonals

Representation theory

Open questions

Definition

▲日▶ ▲圖▶ ▲国▶ ▲国▶ 三国 - 釣Aで

Dual Banach algebras: an overview

Volker Runde

Amenability

Connesamenability

Dual Banach algebras

Connesamenability Normal virtua diagonals

Representation theory

Open questions

Definition

Let ${\mathfrak M}$ a von Neumann algebra, and let E be a normal Banach ${\mathfrak M}\text{-}{\rm bimodule}.$

Dual Banach algebras: an overview

Volker Runde

Amenability

Connesamenability

Dual Banach algebras

Connesamenability Normal virtua diagonals

Representation theory

Open questions

Definition

Let \mathfrak{M} a von Neumann algebra, and let E be a normal Banach \mathfrak{M} -bimodule. We call a derivation $D: \mathfrak{M} \to E$ normal
Dual Banach algebras: an overview

Volker Runde

Amenability

Connesamenability

Dual Banach algebras

Connesamenability Normal virtua diagonals

Representation theory

Open questions

Definition

Let \mathfrak{M} a von Neumann algebra, and let E be a normal Banach \mathfrak{M} -bimodule. We call a derivation $D : \mathfrak{M} \to E$ normal if it is weak*-weak* continuous.

Dual Banach algebras: an overview

Volker Runde

Amenability

Connesamenability

Dual Banach algebras

Connesamenability Normal virtua diagonals

Representation theory

Open questions

Definition

Let \mathfrak{M} a von Neumann algebra, and let E be a normal Banach \mathfrak{M} -bimodule. We call a derivation $D : \mathfrak{M} \to E$ normal if it is weak*-weak* continuous.

▲ロト ▲帰 ト ▲ヨト ▲ヨト - ヨ - の々ぐ

Theorem (R. Kadison, BEJ, & J. Ringrose, 1972)

Dual Banach algebras: an overview

Volker Runde

Amenability

Connesamenability

Dual Banach algebras

Connesamenability Normal virtua diagonals

Representation theory

Open questions

Definition

Let \mathfrak{M} a von Neumann algebra, and let E be a normal Banach \mathfrak{M} -bimodule. We call a derivation $D : \mathfrak{M} \to E$ normal if it is weak*-weak* continuous.

▲ロト ▲帰 ト ▲ヨト ▲ヨト - ヨ - の々ぐ

Theorem (R. Kadison, BEJ, & J. Ringrose, 1972)

Suppose that \mathfrak{M} is a von Neumann algebra

Dual Banach algebras: an overview

Volker Runde

Amenability

Connesamenability

Dual Banach algebras

Connesamenability Normal virtua diagonals

Representation theory

Open questions

Definition

Let \mathfrak{M} a von Neumann algebra, and let E be a normal Banach \mathfrak{M} -bimodule. We call a derivation $D : \mathfrak{M} \to E$ normal if it is weak*-weak* continuous.

Theorem (R. Kadison, BEJ, & J. Ringrose, 1972)

Suppose that \mathfrak{M} is a von Neumann algebra containing a weak^{*} dense amenable C^{*}-subalgebra.

Dual Banach algebras: an overview

Volker Runde

Amenability

Connesamenability

Dual Banach algebras

Connesamenability Normal virtua diagonals

Representation theory

Open questions

Definition

Let \mathfrak{M} a von Neumann algebra, and let E be a normal Banach \mathfrak{M} -bimodule. We call a derivation $D : \mathfrak{M} \to E$ normal if it is weak*-weak* continuous.

Theorem (R. Kadison, BEJ, & J. Ringrose, 1972)

Suppose that \mathfrak{M} is a von Neumann algebra containing a weak^{*} dense amenable C^{*}-subalgebra. Then,

Dual Banach algebras: an overview

Volker Runde

Amenability

Connesamenability

Dual Banach algebras

Connesamenability Normal virtua diagonals

Representation theory

Open questions

Definition

Let \mathfrak{M} a von Neumann algebra, and let E be a normal Banach \mathfrak{M} -bimodule. We call a derivation $D : \mathfrak{M} \to E$ normal if it is weak*-weak* continuous.

Theorem (R. Kadison, BEJ, & J. Ringrose, 1972)

Suppose that \mathfrak{M} is a von Neumann algebra containing a weak^{*} dense amenable C^{*}-subalgebra. Then, for every normal Banach \mathfrak{M} -bimodule E,

Dual Banach algebras: an overview

Volker Runde

Amenability

Connesamenability

Dual Banach algebras

Connesamenability Normal virtua diagonals

Representation theory

Open questions

Definition

Let \mathfrak{M} a von Neumann algebra, and let E be a normal Banach \mathfrak{M} -bimodule. We call a derivation $D : \mathfrak{M} \to E$ normal if it is weak*-weak* continuous.

Theorem (R. Kadison, BEJ, & J. Ringrose, 1972)

Suppose that \mathfrak{M} is a von Neumann algebra containing a weak^{*} dense amenable C^{*}-subalgebra. Then, for every normal Banach \mathfrak{M} -bimodule E, every normal derivation $D : \mathfrak{M} \to E$

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Dual Banach algebras: an overview

Volker Runde

Amenability

Connesamenability

Dual Banach algebras

Connesamenability Normal virtua diagonals

Representation theory

Open questions

Definition

Let \mathfrak{M} a von Neumann algebra, and let E be a normal Banach \mathfrak{M} -bimodule. We call a derivation $D : \mathfrak{M} \to E$ normal if it is weak*-weak* continuous.

Theorem (R. Kadison, BEJ, & J. Ringrose, 1972)

Suppose that \mathfrak{M} is a von Neumann algebra containing a weak^{*} dense amenable C^{*}-subalgebra. Then, for every normal Banach \mathfrak{M} -bimodule E, every normal derivation $D : \mathfrak{M} \to E$ is inner.

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Dual Banach algebras: an overview

Volker Runde

Amenability

Connesamenability

Dual Banach algebras

Connesamenability Normal virtua diagonals

Representation theory

Open questions

Definition

Let \mathfrak{M} a von Neumann algebra, and let E be a normal Banach \mathfrak{M} -bimodule. We call a derivation $D : \mathfrak{M} \to E$ normal if it is weak*-weak* continuous.

Theorem (R. Kadison, BEJ, & J. Ringrose, 1972)

Suppose that \mathfrak{M} is a von Neumann algebra containing a weak^{*} dense amenable C^{*}-subalgebra. Then, for every normal Banach \mathfrak{M} -bimodule E, every normal derivation $D : \mathfrak{M} \to E$ is inner.

▲ロト ▲帰 ト ▲ヨト ▲ヨト - ヨ - の々ぐ

Definition (A. Connes, 1976; A. Ya. Helemskiĭ, 1991)

Dual Banach algebras: an overview

Volker Runde

Amenability

Connesamenability

Dual Banach algebras

Connesamenability Normal virtua diagonals

Representation theory

Open questions

Definition

Let \mathfrak{M} a von Neumann algebra, and let E be a normal Banach \mathfrak{M} -bimodule. We call a derivation $D : \mathfrak{M} \to E$ normal if it is weak*-weak* continuous.

Theorem (R. Kadison, BEJ, & J. Ringrose, 1972)

Suppose that \mathfrak{M} is a von Neumann algebra containing a weak^{*} dense amenable C^{*}-subalgebra. Then, for every normal Banach \mathfrak{M} -bimodule E, every normal derivation $D : \mathfrak{M} \to E$ is inner.

▲ロト ▲帰 ト ▲ヨト ▲ヨト - ヨ - の々ぐ

Definition (A. Connes, 1976; A. Ya. Helemskiĭ, 1991)

 \mathfrak{M} is Connes-amenable

Dual Banach algebras: an overview

Volker Runde

Amenability

Connesamenability

Dual Banach algebras

Connesamenability Normal virtua diagonals

Representation theory

Open questions

Definition

Let \mathfrak{M} a von Neumann algebra, and let E be a normal Banach \mathfrak{M} -bimodule. We call a derivation $D : \mathfrak{M} \to E$ normal if it is weak*-weak* continuous.

Theorem (R. Kadison, BEJ, & J. Ringrose, 1972)

Suppose that \mathfrak{M} is a von Neumann algebra containing a weak^{*} dense amenable C^{*}-subalgebra. Then, for every normal Banach \mathfrak{M} -bimodule E, every normal derivation $D : \mathfrak{M} \to E$ is inner.

Definition (A. Connes, 1976; A. Ya. Helemskiĭ, 1991)

 \mathfrak{M} is Connes-amenable if for every normal Banach \mathfrak{M} -bimodule

Dual Banach algebras: an overview

Volker Runde

Amenability

Connesamenability

Dual Banach algebras

Connesamenability Normal virtua diagonals

Representation theory

Open questions

Definition

Let \mathfrak{M} a von Neumann algebra, and let E be a normal Banach \mathfrak{M} -bimodule. We call a derivation $D : \mathfrak{M} \to E$ normal if it is weak*-weak* continuous.

Theorem (R. Kadison, BEJ, & J. Ringrose, 1972)

Suppose that \mathfrak{M} is a von Neumann algebra containing a weak^{*} dense amenable C^{*}-subalgebra. Then, for every normal Banach \mathfrak{M} -bimodule E, every normal derivation $D : \mathfrak{M} \to E$ is inner.

Definition (A. Connes, 1976; A. Ya. Helemskiĭ, 1991)

 \mathfrak{M} is Connes-amenable if for every normal Banach \mathfrak{M} -bimodule every normal derivation $D: \mathfrak{M} \to E$

Dual Banach algebras: an overview

Volker Runde

Amenability

Connesamenability

Dual Banach algebras

Connesamenability Normal virtua diagonals

Representation theory

Open questions

Definition

Let \mathfrak{M} a von Neumann algebra, and let E be a normal Banach \mathfrak{M} -bimodule. We call a derivation $D : \mathfrak{M} \to E$ normal if it is weak*-weak* continuous.

Theorem (R. Kadison, BEJ, & J. Ringrose, 1972)

Suppose that \mathfrak{M} is a von Neumann algebra containing a weak^{*} dense amenable C^{*}-subalgebra. Then, for every normal Banach \mathfrak{M} -bimodule E, every normal derivation $D : \mathfrak{M} \to E$ is inner.

Definition (A. Connes, 1976; A. Ya. Helemskiĭ, 1991)

 \mathfrak{M} is Connes-amenable if for every normal Banach \mathfrak{M} -bimodule every normal derivation $D: \mathfrak{M} \to E$ is inner.

Dual Banach algebras: an overview

Volker Runde

Amenability

Connesamenability

Dual Banach algebras

Connesamenability Normal virtua diagonals

Representation theory

Open questions

Definition

Let \mathfrak{M} a von Neumann algebra, and let E be a normal Banach \mathfrak{M} -bimodule. We call a derivation $D : \mathfrak{M} \to E$ normal if it is weak*-weak* continuous.

Theorem (R. Kadison, BEJ, & J. Ringrose, 1972)

Suppose that \mathfrak{M} is a von Neumann algebra containing a weak^{*} dense amenable C^{*}-subalgebra. Then, for every normal Banach \mathfrak{M} -bimodule E, every normal derivation $D : \mathfrak{M} \to E$ is inner.

Definition (A. Connes, 1976; A. Ya. Helemskiĭ, 1991)

 \mathfrak{M} is Connes-amenable if for every normal Banach \mathfrak{M} -bimodule every normal derivation $D: \mathfrak{M} \to E$ is inner.

Dual Banach algebras: an overview
Connes- amenability
Dual Banach algebras
Open questions

Dual Banach algebras: an overview

Volker Runde

Amenability

Connesamenability

Dual Banach algebras

Connesamenability Normal virtu diagonals

Representation theory

Open questions

Definition

| ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ● ○ ○ ○ ○

ヘロン 人間 とくほとう ほとう

3

Dual Banach algebras: an overview

Volker Runde

Amenability

Connesamenability

Dual Banach algebras

Connesamenability Normal virtua diagonals

Representation theory

Open questions

Definition

A von Neumann algebra $\mathfrak{M} \subset \mathcal{B}(\mathfrak{H})$ is called

ヘロン 人間 とくほとう ほとう

3

Dual Banach algebras: an overview

Volker Runde

Amenability

Connesamenability

Dual Banach algebras

Connesamenability Normal virtua diagonals

Representation theory

Open questions

Definition

A von Neumann algebra $\mathfrak{M} \subset \mathcal{B}(\mathfrak{H})$ is called

1 injective

Dual Banach algebras: an overview

Volker Runde

Amenability

Connesamenability

Dual Banach algebras

Connesamenability Normal virtua diagonals

Representation theory

Open questions

Definition

A von Neumann algebra $\mathfrak{M} \subset \mathcal{B}(\mathfrak{H})$ is called

1 injective if there is a norm one projection $\mathcal{E} : \mathcal{B}(\mathfrak{H}) \to \mathfrak{M}'$

・ロト ・ 一下・ ・ ヨト・

Dual Banach algebras: an overview

Definition

Volker Runde

Amenability

Connesamenability

Dual Banach algebras

Connesamenability Normal virtua diagonals

Representation theory

Open questions

A von Neumann algebra $\mathfrak{M} \subset \mathcal{B}(\mathfrak{H})$ is called **1** injective if there is a norm one projection $\mathcal{E} : \mathcal{B}(\mathfrak{H})$

 injective if there is a norm one projection E : B(𝔅) → 𝔐' (this property is independent of the representation of 𝔐 on 𝔅);

・ロト ・ 一下・ ・ ヨト・

Dual Banach algebras: an overview

Volker Runde

Amenability

Connesamenability

Dual Banacl algebras

Connesamenability Normal virtua diagonals

Representation theory

Open questions

Definition

A von Neumann algebra $\mathfrak{M} \subset \mathcal{B}(\mathfrak{H})$ is called

 injective if there is a norm one projection E : B(𝔅) → 𝔐' (this property is independent of the representation of 𝔐 on 𝔅);

・ロト ・ 一下・ ・ ヨト・

3

2 semidiscrete

Dual Banach algebras: an overview

Volker Runde

Amenability

Connesamenability

Dual Banacl algebras

Connesamenability Normal virtua diagonals

Representation theory

Open questions

Definition

A von Neumann algebra $\mathfrak{M} \subset \mathcal{B}(\mathfrak{H})$ is called

 injective if there is a norm one projection E : B(𝔅) → 𝔐' (this property is independent of the representation of 𝔐 on 𝔅);

◆□▶ ◆□▶ ◆□▶ ◆□▶ ●□

2 semidiscrete if there is a net $(S_{\lambda})_{\lambda}$

Dual Banach algebras: an overview

Volker Runde

Amenability

Connesamenability

Dual Banac algebras

Connesamenability Normal virtua diagonals

Representation theory

Open questions

Definition

A von Neumann algebra $\mathfrak{M} \subset \mathcal{B}(\mathfrak{H})$ is called

 injective if there is a norm one projection E : B(𝔅) → 𝔐' (this property is independent of the representation of 𝔐 on 𝔅);

・ロト ・ 一下・ ・ ヨト・

20

2 semidiscrete if there is a net $(S_{\lambda})_{\lambda}$ of unital,

Dual Banach algebras: an overview

Definition

Volker Runde

Amenability

Connesamenability

Dual Banac algebras

Connesamenability Normal virtua diagonals

Representation theory

Open question

A von Neumann algebra $\mathfrak{M}\subset\mathcal{B}(\mathfrak{H})$ is called

 injective if there is a norm one projection E : B(𝔅) → 𝔐' (this property is independent of the representation of 𝔐 on 𝔅);

2 semidiscrete if there is a net $(S_{\lambda})_{\lambda}$ of unital, weak*-weak* continuous,

・ロト ・ 一下・ ・ ヨト・

Dual Banach algebras: an overview

Volker Runde

Amenability

Connesamenability

Dual Banacl algebras

Connesamenability Normal virtua diagonals

Representation theory

Open questions

Definition

- A von Neumann algebra $\mathfrak{M} \subset \mathcal{B}(\mathfrak{H})$ is called
 - injective if there is a norm one projection E : B(𝔅) → 𝔐' (this property is independent of the representation of 𝔐 on 𝔅);
 - 2 semidiscrete if there is a net $(S_{\lambda})_{\lambda}$ of unital, weak*-weak* continuous, completely positive

Dual Banach algebras: an overview

Volker Runde

Amenability

Connesamenability

Dual Banacl algebras

Connesamenability Normal virtua diagonals

Representation theory

Open questions

Definition

- A von Neumann algebra $\mathfrak{M} \subset \mathcal{B}(\mathfrak{H})$ is called
 - injective if there is a norm one projection E : B(𝔅) → 𝔐' (this property is independent of the representation of 𝔐 on 𝔅);
 - 2 semidiscrete if there is a net $(S_{\lambda})_{\lambda}$ of unital, weak*-weak* continuous, completely positive finite rank maps

Dual Banach algebras: an overview

Volker Runde

Amenability

Connesamenability

Dual Banach algebras

Connesamenability Normal virtua diagonals

Representation theory

Open question

Definition

- A von Neumann algebra $\mathfrak{M} \subset \mathcal{B}(\mathfrak{H})$ is called
 - injective if there is a norm one projection E : B(𝔅) → 𝔐' (this property is independent of the representation of 𝔐 on 𝔅);
 - **2** semidiscrete if there is a net $(S_{\lambda})_{\lambda}$ of unital, weak*-weak* continuous, completely positive finite rank maps such that

$$\mathcal{S}_\lambda a \stackrel{\mathsf{weak}^*}{\longrightarrow} a \qquad (a \in \mathfrak{M});$$

・ロト ・ 一下・ ・ ヨト・

Dual Banach algebras: an overview

Volker Runde

Amenability

Connesamenability

Dual Banacl algebras

Connesamenability Normal virtua diagonals

Representation theory

Open questions

Definition

- A von Neumann algebra $\mathfrak{M} \subset \mathcal{B}(\mathfrak{H})$ is called
 - injective if there is a norm one projection E : B(𝔅) → 𝔐' (this property is independent of the representation of 𝔐 on 𝔅);
 - **2** semidiscrete if there is a net $(S_{\lambda})_{\lambda}$ of unital, weak*-weak* continuous, completely positive finite rank maps such that

$$\mathcal{S}_\lambda a \stackrel{\mathsf{weak}^*}{\longrightarrow} a \qquad (a \in \mathfrak{M});$$

3 hyperfinite

Dual Banach algebras: an overview

Definition

Volker Runde

Amenability

Connesamenability

Dual Banacl algebras

Connesamenability Normal virtua diagonals

Representation theory

Open questions

A von Neumann algebra M ⊂ B(S) is called **1** injective if there is a norm one projection E : B(S) → M' (this property is independent of the representation of M on S);

2 semidiscrete if there is a net $(S_{\lambda})_{\lambda}$ of unital, weak*-weak* continuous, completely positive finite rank maps such that

$$S_{\lambda} a \stackrel{\mathsf{weak}^*}{\longrightarrow} a \qquad (a \in \mathfrak{M});$$

3 hyperfinite if there is a directed family $(\mathfrak{M}_{\lambda})_{\lambda}$

・ロト・「聞ト・「問ト・「聞・」 白・

Dual Banach algebras: an overview

Definition

Volker Runde

Amenability

Connesamenability

Dual Banac algebras

Connesamenability Normal virtua diagonals

Representation theory

Open questions

A von Neumann algebra $\mathfrak{M} \subset \mathcal{B}(\mathfrak{H})$ is called **1** injective if there is a norm one projection $\mathcal{E} : \mathcal{B}(\mathfrak{H}) \to \mathfrak{M}'$

- (this property is independent of the representation of \mathfrak{M} on \mathfrak{H});
- 2 semidiscrete if there is a net $(S_{\lambda})_{\lambda}$ of unital, weak*-weak* continuous, completely positive finite rank maps such that

$$S_\lambda a \stackrel{\mathsf{weak}^*}{\longrightarrow} a \qquad (a \in \mathfrak{M});$$

3 hyperfinite if there is a directed family (𝔐_λ)_λ of finite-dimensional *-subalgebras of 𝔐

Dual Banach algebras: an overview

Definition

Volker Runde

Amenability

Connesamenability

Dual Banac algebras

Connesamenability Normal virtua diagonals

Representation theory

Open questions

A von Neumann algebra $\mathfrak{M}\subset\mathcal{B}(\mathfrak{H})$ is called

- injective if there is a norm one projection E : B(𝔅) → 𝔐' (this property is independent of the representation of 𝔐 on 𝔅);
- **2** semidiscrete if there is a net $(S_{\lambda})_{\lambda}$ of unital, weak*-weak* continuous, completely positive finite rank maps such that

$$S_{\lambda} a \stackrel{\mathsf{weak}^*}{\longrightarrow} a \qquad (a \in \mathfrak{M});$$

3 hyperfinite if there is a directed family (𝔐_λ)_λ of finite-dimensional *-subalgebras of 𝔐 such that ⋃_λ 𝔐_λ is weak* dense in 𝔐.

◆□▶ ◆□▶ ◆□▶ ◆□▶ □□ - のへぐ

Dual Banach algebras: an overview Theorem (A. Connes, et al.) Connesamenability

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Dual Banach algebras: an overview

Volker Runde

Amenability

Connesamenability

Dual Banach algebras

Connesamenability Normal virtua diagonals

Representation theory

Open questions

Theorem (A. Connes, et al.)

The following are equivalent:

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Dual Banach algebras: an overview

Volker Runde

Amenability

Connesamenability

Dual Banach algebras

Connesamenability Normal virtua diagonals

Representation theory

Open questions

Theorem (A. Connes, et al.)

The following are equivalent:

1 M is Connes-amenable;

▲ロト ▲帰 ト ▲ヨト ▲ヨト - ヨ - の々ぐ

Dual Banach algebras: an overview

Volker Runde

Amenability

Connesamenability

Dual Banac algebras

Connesamenability Normal virtua diagonals

Representation theory

Open questions

Theorem (A. Connes, et al.)

The following are equivalent:

- **1** M is Connes-amenable;
- 2 M is injective;
▲ロト ▲帰 ト ▲ヨト ▲ヨト - ヨ - の々ぐ

Dual Banach algebras: an overview

Volker Runde

Amenability

Connesamenability

Dual Banacl algebras

Connesamenability Normal virtua diagonals

Representation theory

Open questions

Theorem (A. Connes, et al.)

The following are equivalent:

1 \mathfrak{M} is Connes-amenable;

2 \mathfrak{M} is injective;

3 M is semidiscrete;

▲ロト ▲帰 ト ▲ヨト ▲ヨト - ヨ - の々ぐ

Dual Banach algebras: an overview

Volker Runde

Amenability

Connesamenability

Dual Banacl algebras

Connesamenability Normal virtua diagonals

Representation theory

Open questions

Theorem (A. Connes, et al.)

The following are equivalent:

1 \mathfrak{M} is Connes-amenable;

2 \mathfrak{M} is injective;

3 M is semidiscrete;

4 M is hyperfinite.

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Dual Banach algebras: an overview

Volker Runde

Amenability

Connesamenability

Dual Banac algebras

Connesamenability Normal virtua diagonals

Representation theory

Open questions

Theorem (A. Connes, et al.)

The following are equivalent:

1 \mathfrak{M} is Connes-amenable;

- **2** \mathfrak{M} is injective;
- 3 M is semidiscrete;
- 4 M is hyperfinite.

Corollary

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Dual Banach algebras: an overview

Volker Runde

Amenability

Connesamenability

Dual Banac algebras

Connesamenability Normal virtua diagonals

Representation theory

Open questions

Theorem (A. Connes, et al.)

The following are equivalent:

1 \mathfrak{M} is Connes-amenable;

- **2** \mathfrak{M} is injective;
- 3 M is semidiscrete;
- 4 M is hyperfinite.

Corollary

A C^* -algebra \mathfrak{A} is amenable

Dual Banach algebras: an overview

Volker Runde

Amenability

Connesamenability

Dual Banac algebras

Connesamenability Normal virtua diagonals

Representation theory

Open questions

Theorem (A. Connes, et al.)

The following are equivalent:

1 \mathfrak{M} is Connes-amenable;

- **2** \mathfrak{M} is injective;
- 3 M is semidiscrete;
- 4 M is hyperfinite.

Corollary

A C^{*}-algebra \mathfrak{A} is amenable if and only if \mathfrak{A}^{**} is Connes-amenable.

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Dual Banach algebras: an overview
Connes- amenability
Dual Banach algebras
Open questions

◆□▶ ◆□▶ ◆□▶ ◆□▶ □□ - のへぐ

Volker Runde

Amenability

Connesamenability

Dual Banach algebras

Connesamenability Normal virtua diagonals

Representation theory

Open questions

Notation

Let $\mathcal{B}^2_\sigma(\mathfrak{M},\mathbb{C})$

Dual Banach algebras: an overview

Volker Runde

Amenability

Connesamenability

Dual Banach algebras

Connesamenability Normal virtua diagonals

Representation theory

Open questions

Notation

Let $\mathcal{B}^2_{\sigma}(\mathfrak{M},\mathbb{C})$ denote the separately weak^{*} continuous bilinear functionals on \mathfrak{M} .

◆□▶ ◆□▶ ◆三▶ ◆三▶ →三 ● ● ●

Dual Banach algebras: an overview

Volker Runde

Amenability

Connesamenability

Dual Banach algebras

Connesamenability Normal virtual diagonals

Representation theory

Open questions

Notation

Let $\mathcal{B}^2_{\sigma}(\mathfrak{M},\mathbb{C})$ denote the separately weak^{*} continuous bilinear functionals on \mathfrak{M} .

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Observations

Dual Banach algebras: an overview

Volker Runde

Amenability

Connesamenability

Dual Banach algebras

Connesamenability Normal virtua diagonals

Representation theory

Open questions

Notation

Let $\mathcal{B}^2_{\sigma}(\mathfrak{M},\mathbb{C})$ denote the separately weak^{*} continuous bilinear functionals on \mathfrak{M} .

▲ロト ▲帰 ト ▲ヨト ▲ヨト - ヨ - の々ぐ

Observations

1 $\mathcal{B}^2_{\sigma}(\mathfrak{M},\mathbb{C})$ is a closed submodule of $(\mathfrak{M}\hat{\otimes}\mathfrak{M})^*$.

Dual Banach algebras: an overview

Volker Runde

Amenability

Connesamenability

Dual Banach algebras

Connesamenability Normal virtua diagonals

Representation theory

Open questions

Notation

Let $\mathcal{B}^2_{\sigma}(\mathfrak{M},\mathbb{C})$ denote the separately weak^{*} continuous bilinear functionals on \mathfrak{M} .

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Observations

B²_σ(M, C) is a closed submodule of (M^ô⊗M)*.
Δ*M_{*} ⊂ B²_σ(M, C),

Dual Banach algebras: an overview

Volker Runde

Amenability

Connesamenability

Dual Banach algebras

Connesamenability Normal virtua diagonals

Representation theory

Open questions

Notation

Let $\mathcal{B}^2_{\sigma}(\mathfrak{M},\mathbb{C})$ denote the separately weak^{*} continuous bilinear functionals on \mathfrak{M} .

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Observations

B²_σ(M, C) is a closed submodule of (M^ô⊗M)*.
Δ*M_{*} ⊂ B²_σ(M, C), so that Δ** drops

Dual Banach algebras: an overview

Volker Runde

Amenability

Connesamenability

Dual Banach algebras

Connesamenability Normal virtua diagonals

Representation theory

Open questions

Notation

Let $\mathcal{B}^2_{\sigma}(\mathfrak{M},\mathbb{C})$ denote the separately weak^{*} continuous bilinear functionals on \mathfrak{M} .

Observations

1 $\mathcal{B}^2_{\sigma}(\mathfrak{M},\mathbb{C})$ is a closed submodule of $(\mathfrak{M}\hat{\otimes}\mathfrak{M})^*$.

2 Δ^{*}M_{*} ⊂ B²_σ(M, C), so that Δ^{**} drops to a bimodule homomorphism Δ_σ : B²_σ(M, C)^{*} → M.

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Dual Banach algebras: an overview

Volker Runde

Amenability

Connesamenability

Dual Banach algebras

Connesamenability Normal virtua diagonals

Representation theory

Open questions

Definition (E. G. Effros, 1988)

▲□▶▲□▶▲□▶▲□▶ □ のQ@

An element $\mathbf{D} \in \mathcal{B}^2_{\sigma}(\mathfrak{M},\mathbb{C})^*$

Dual Banach algebras: an overview

Volker Runde

Amenability

Connesamenability

Dual Banach algebras

Connesamenability Normal virtua diagonals

Representation theory

Open questions

Definition (E. G. Effros, 1988)

An element $\mathbf{D} \in \mathcal{B}^2_{\sigma}(\mathfrak{M},\mathbb{C})^*$ is called a normal virtual diagonal for \mathfrak{M}

▲ロト ▲帰 ト ▲ヨト ▲ヨト - ヨ - の々ぐ

Dual Banach algebras: an overview

Volker Runde

Amenability

Connesamenability

Dual Banach algebras

Connesamenability Normal virtua diagonals

Representation theory

Open questions

Definition (E. G. Effros, 1988)

An element $\mathbf{D} \in \mathcal{B}^2_{\sigma}(\mathfrak{M},\mathbb{C})^*$ is called a normal virtual diagonal for \mathfrak{M} if

 $a \cdot \mathbf{D} = \mathbf{D} \cdot a$ $(a \in \mathfrak{M})$

▲ロト ▲帰 ト ▲ヨト ▲ヨト - ヨ - の々ぐ

Dual Banach algebras: an overview

Volker Runde

Amenability

Connesamenability

Dual Banach algebras

Connesamenability Normal virtua diagonals

Representation theory

Open question

Definition (E. G. Effros, 1988)

ć

An element $\mathbf{D} \in \mathcal{B}^2_{\sigma}(\mathfrak{M}, \mathbb{C})^*$ is called a normal virtual diagonal for \mathfrak{M} if

$$\mathsf{a}\cdot\mathsf{D}=\mathsf{D}\cdot\mathsf{a}\qquad(\mathsf{a}\in\mathfrak{M})$$

and

$$\mathsf{a} \Delta_\sigma \mathsf{D} = \mathsf{a} \qquad (\mathsf{a} \in \mathfrak{M}).$$

▲ロト ▲帰 ト ▲ヨト ▲ヨト - ヨ - の々ぐ

Dual Banach algebras: an overview

Volker Runde

Amenability

Connesamenability

Dual Banach algebras

Connesamenability Normal virtua diagonals and

Representation theory

Open questions

Definition (E. G. Effros, 1988)

An element $\mathbf{D} \in \mathcal{B}^2_{\sigma}(\mathfrak{M}, \mathbb{C})^*$ is called a normal virtual diagonal for \mathfrak{M} if

$$a \cdot \mathbf{D} = \mathbf{D} \cdot a$$
 $(a \in \mathfrak{M})$

 $a\Delta_{\sigma}\mathbf{D}=a$ $(a\in\mathfrak{M}).$

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Theorem (E. G. Effros, 1988)

Dual Banach algebras: an overview

Volker Runde

Amenability

Connesamenability

Dual Banach algebras

Connesamenability Normal virtua diagonals

Representation theory

Open questions

Definition (E. G. Effros, 1988)

An element $\mathbf{D} \in \mathcal{B}^2_{\sigma}(\mathfrak{M}, \mathbb{C})^*$ is called a normal virtual diagonal for \mathfrak{M} if

$$\mathbf{a} \cdot \mathbf{D} = \mathbf{D} \cdot \mathbf{a} \qquad (\mathbf{a} \in \mathfrak{M})$$

and

$$\mathsf{a}\Delta_{\sigma}\mathsf{D}=\mathsf{a}$$
 $(\mathsf{a}\in\mathfrak{M}).$

Theorem (E. G. Effros, 1988)

ć

 \mathfrak{M} is Connes-amenable if and only if \mathfrak{M} has a normal virtual diagonal.

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Dual Banach algebras: an overview
Amenability Connes-
amenability
Dual Banach algebras

▲□▶ ▲圖▶ ★国▶ ★国▶ 三臣 - のへで

▲ロト ▲帰 ト ▲ヨト ▲ヨト 三三 - のへぐ

Dual Banach algebras: an overview

Volker Runde

Amenability

Connesamenability

Dual Banach algebras

Connesamenability Normal virtua diagonals

Representation theory

Open questions

Definition

A Banach algebra \mathfrak{A} is called dual

Dual Banach algebras: an overview

Volker Runde

Amenability

Connesamenability

Dual Banach algebras

Connesamenability Normal virtua diagonals

Representation theory

Open questions

Definition

A Banach algebra ${\mathfrak A}$ is called dual if there is a Banach space ${\mathfrak A}_*$ with $({\mathfrak A}_*)^*={\mathfrak A}$

▲ロト ▲帰 ト ▲ヨト ▲ヨト 三三 - のへぐ

Dual Banach algebras: an overview

Volker Runde

Amenability

Connesamenability

Dual Banach algebras

Connesamenability Normal virtua diagonals

Representation theory

Open questions

Definition

A Banach algebra \mathfrak{A} is called dual if there is a Banach space \mathfrak{A}_* with $(\mathfrak{A}_*)^* = \mathfrak{A}$ such that multiplication in \mathfrak{A} is separately weak^{*} continuous.

▲ロト ▲帰 ト ▲ヨト ▲ヨト 三三 - のへぐ

Dual Banach algebras: an overview

Volker Runde

Amenability

Connesamenability

Dual Banach algebras

Connesamenability Normal virtua diagonals

Representation theory

Open questions

Definition

A Banach algebra \mathfrak{A} is called **dual** if there is a Banach space \mathfrak{A}_* with $(\mathfrak{A}_*)^* = \mathfrak{A}$ such that multiplication in \mathfrak{A} is separately weak^{*} continuous.

▲ロト ▲帰 ト ▲ヨト ▲ヨト 三三 - のへぐ

Remarks

Dual Banach algebras: an overview

Volker Runde

Amenability

Connesamenability

Dual Banach algebras

Connesamenability Normal virtua diagonals

Representation theory

Open question

Definition

A Banach algebra \mathfrak{A} is called dual if there is a Banach space \mathfrak{A}_* with $(\mathfrak{A}_*)^* = \mathfrak{A}$ such that multiplication in \mathfrak{A} is separately weak^{*} continuous.

▲ロト ▲帰 ト ▲ヨト ▲ヨト 三三 - のへぐ

Remarks

1 There is no reason for \mathfrak{A}_* to be unique.

Dual Banach algebras: an overview

Volker Runde

Amenability

Connesamenability

Dual Banach algebras

Connesamenability Normal virtua diagonals

Representation theory

Open question

Definition

A Banach algebra \mathfrak{A} is called dual if there is a Banach space \mathfrak{A}_* with $(\mathfrak{A}_*)^* = \mathfrak{A}$ such that multiplication in \mathfrak{A} is separately weak^{*} continuous.

Remarks

There is no reason for A_{*} to be unique. The same Banach algebra A can therefore carry different dual Banach algebra structures.

Dual Banach algebras: an overview

Volker Runde

Amenability

Connesamenability

Dual Banach algebras

Connesamenability Normal virtua diagonals

Representation theory

Open question

Definition

A Banach algebra \mathfrak{A} is called dual if there is a Banach space \mathfrak{A}_* with $(\mathfrak{A}_*)^* = \mathfrak{A}$ such that multiplication in \mathfrak{A} is separately weak^{*} continuous.

Remarks

■ There is no reason for \mathfrak{A}_* to be unique. The same Banach algebra \mathfrak{A} can therefore carry different dual Banach algebra structures. (Often, the predual is clear from the context.)

Dual Banach algebras: an overview

Volker Runde

Amenability

Connesamenability

Dual Banach algebras

Connesamenability Normal virtua diagonals

Representation theory

Open questions

Definition

A Banach algebra \mathfrak{A} is called dual if there is a Banach space \mathfrak{A}_* with $(\mathfrak{A}_*)^* = \mathfrak{A}$ such that multiplication in \mathfrak{A} is separately weak^{*} continuous.

Remarks

■ There is no reason for 𝔄_{*} to be unique. The same Banach algebra 𝔅 can therefore carry different dual Banach algebra structures. (Often, the predual is clear from the context.)

2 The notions of Connes-amenability

Dual Banach algebras: an overview

Volker Runde

Amenability

Connesamenability

Dual Banach algebras

Connesamenability Normal virtua diagonals

Representation theory

Open questions

Definition

A Banach algebra \mathfrak{A} is called dual if there is a Banach space \mathfrak{A}_* with $(\mathfrak{A}_*)^* = \mathfrak{A}$ such that multiplication in \mathfrak{A} is separately weak^{*} continuous.

Remarks

■ There is no reason for 𝔄_{*} to be unique. The same Banach algebra 𝔅 can therefore carry different dual Banach algebra structures. (Often, the predual is clear from the context.)

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

The notions of Connes-amenability and normal virtual diagonals

Dual Banach algebras: an overview

Volker Runde

Amenability

Connesamenability

Dual Banach algebras

Connesamenability Normal virtua diagonals

Representation theory

Open questions

Definition

A Banach algebra \mathfrak{A} is called dual if there is a Banach space \mathfrak{A}_* with $(\mathfrak{A}_*)^* = \mathfrak{A}$ such that multiplication in \mathfrak{A} is separately weak^{*} continuous.

Remarks

■ There is no reason for 𝔄_{*} to be unique. The same Banach algebra 𝔅 can therefore carry different dual Banach algebra structures. (Often, the predual is clear from the context.)

The notions of Connes-amenability and normal virtual diagonals carry over to dual Banach algebras without modifications.

Some examples

Dual Banach
overview
Volker Runde
Dual Banach algebras
Open questions

(ロ)、

Some examples

Dual Banach algebras: an overview

Volker Runde

Amenability

Connesamenability

Dual Banach algebras

Connesamenability Normal virtu diagonals

Representation theory

Open questions

Examples

<ロ> <=> <=> <=> <=> <=> <=> <=><</p>

Some examples

Dual Banach algebras: an overview

Volker Runde

Amenability

Connesamenability

Dual Banach algebras

Connesamenability Normal virtua diagonals

Representation theory

Open questions

Examples

1 Every von Neumann algebra.

・ロト・ロト・ヨト・ヨト・コー・シスペ
Dual Banach algebras: an overview

Volker Runde

Amenability

Connesamenability

Dual Banach algebras

Connesamenability Normal virtua diagonals

Representation theory

Open questions

Examples

1 Every von Neumann algebra.

2 M(G) for every locally compact group G

ヘロン ヘロン ヘビン ヘビン 一日

Dual Banach algebras: an overview

Volker Runde

Amenability

Connesamenability

Dual Banach algebras

Connesamenability Normal virtua diagonals

Representation theory

Open questions

Examples

1 Every von Neumann algebra.

2 M(G) for every locally compact group G $(M(G)_* = C_0(G)).$

Dual Banach algebras: an overview

Volker Runde

Amenability

Connesamenability

Dual Banach algebras

Connesamenability Normal virtua diagonals

Representation theory

Open questions

Examples

- **1** Every von Neumann algebra.
- M(G) for every locally compact group G (M(G)* = C0(G)).
- **3** B(G) for every locally compact group G

Dual Banach algebras: an overview

Volker Runde

Amenability

Connesamenability

Dual Banach algebras

Connesamenability Normal virtua diagonals

Representation theory

Open question

Examples

- **1** Every von Neumann algebra.
- M(G) for every locally compact group G (M(G)* = C0(G)).
- **3** B(G) for every locally compact group G $(B(G)_* = C^*(G)).$

Dual Banach algebras: an overview

Volker Runde

Amenability

Connesamenability

Dual Banach algebras

Connesamenability Normal virtua diagonals

Representation theory

Open questions

Examples

- **1** Every von Neumann algebra.
- M(G) for every locally compact group G (M(G)* = C0(G)).
- 3 B(G) for every locally compact group G $(B(G)_* = C^*(G)).$
- **4** $\mathcal{B}(E)$ for every reflexive Banach space E

Dual Banach algebras: an overview

Volker Runde

Amenability

Connesamenability

Dual Banach algebras

Connesamenability Normal virtua diagonals

Representation theory

Open questions

Examples

- **1** Every von Neumann algebra.
- M(G) for every locally compact group G (M(G)* = C0(G)).
- **3** B(G) for every locally compact group G $(B(G)_* = C^*(G)).$

 4 B(E) for every reflexive Banach space E (B(E)_{*} = E ⊗ E^{*}).

Dual Banach algebras: an overview

Volker Runde

Amenability

Connesamenability

Dual Banach algebras

Connesamenability Normal virtu diagonals

Representation theory

Open questions

Examples

- **1** Every von Neumann algebra.
- M(G) for every locally compact group G (M(G)* = C0(G)).
- **3** B(G) for every locally compact group G $(B(G)_* = C^*(G)).$
- 4 B(E) for every reflexive Banach space E (B(E)_{*} = E ⊗ E^{*}).

5 Let \mathfrak{A} be a Banach algebra

Dual Banach algebras: an overview

Volker Runde

Amenability

Connesamenability

Dual Banach algebras

Connesamenability Normal virtu diagonals

Representation theory

Open questions

- **1** Every von Neumann algebra.
- M(G) for every locally compact group G (M(G)_{*} = C₀(G)).
- **3** B(G) for every locally compact group G $(B(G)_* = C^*(G)).$
- 4 $\mathcal{B}(E)$ for every reflexive Banach space E $(\mathcal{B}(E)_* = E \hat{\otimes} E^*).$
- Let A be a Banach algebra and let A^{**} be equipped with either Arens product.

Dual Banach algebras: an overview

Volker Runde

Amenability

Connesamenability

Dual Banach algebras

Connesamenability Normal virtu diagonals

Representation theory

Open questions

- **1** Every von Neumann algebra.
- M(G) for every locally compact group G (M(G)_{*} = C₀(G)).
- **3** B(G) for every locally compact group G $(B(G)_* = C^*(G)).$
- 4 $\mathcal{B}(E)$ for every reflexive Banach space E $(\mathcal{B}(E)_* = E \hat{\otimes} E^*).$
- Let A be a Banach algebra and let A^{**} be equipped with either Arens product. Then A^{**} is a dual Banach algebra

Dual Banach algebras: an overview

Volker Runde

Amenability

Connesamenability

Dual Banach algebras

Connesamenability Normal virtu diagonals

Representation theory

Open questions

- **1** Every von Neumann algebra.
- 2 M(G) for every locally compact group G $(M(G)_* = C_0(G)).$
- **3** B(G) for every locally compact group G $(B(G)_* = C^*(G)).$
- 4 $\mathcal{B}(E)$ for every reflexive Banach space E $(\mathcal{B}(E)_* = E \hat{\otimes} E^*).$
- Let A be a Banach algebra and let A^{**} be equipped with either Arens product. Then A^{**} is a dual Banach algebra if and only if A is Arens regular.

Dual Banach algebras: an overview

Volker Runde

Amenability

Connesamenability

Dual Banach algebras

Connesamenability Normal virtu diagonals

Representation theory

Open questions

- **1** Every von Neumann algebra.
- M(G) for every locally compact group G (M(G)_{*} = C₀(G)).
- **3** B(G) for every locally compact group G $(B(G)_* = C^*(G)).$
- 4 $\mathcal{B}(E)$ for every reflexive Banach space E $(\mathcal{B}(E)_* = E \hat{\otimes} E^*).$
- Let A be a Banach algebra and let A^{**} be equipped with either Arens product. Then A^{**} is a dual Banach algebra if and only if A is Arens regular.
- 6 All weak* closed subalgebras of a dual Banach algebra

Dual Banach algebras: an overview

Volker Runde

Amenability

Connesamenability

Dual Banach algebras

Connesamenability Normal virtu diagonals

Representation theory

Open questions

- **1** Every von Neumann algebra.
- 2 M(G) for every locally compact group G (M(G)* = C₀(G)).
- **3** B(G) for every locally compact group G $(B(G)_* = C^*(G)).$
- 4 $\mathcal{B}(E)$ for every reflexive Banach space E $(\mathcal{B}(E)_* = E \hat{\otimes} E^*).$
- Let A be a Banach algebra and let A^{**} be equipped with either Arens product. Then A^{**} is a dual Banach algebra if and only if A is Arens regular.
- 6 All weak* closed subalgebras of a dual Banach algebra are again dual Banach algebras.

Dual Banach algebras: an overview
Connes- amenability Normal virtual diagonals

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへぐ

Dual Banach algebras: an overview

Volker Runde

Amenability

Connesamenability

Dual Banach algebras

Connesamenability Normal virtue

Representation theory

Open questions

Proposition

Let \mathfrak{A} be a dual Banach algebra,

Dual Banach algebras: an overview

Volker Runde

Amenability

Connesamenability

Dual Banach algebras

Connesamenability Normal virtua

Representation theory

Open questions

Proposition

Let \mathfrak{A} be a dual Banach algebra, and let \mathfrak{B} be a norm closed,

Dual Banach algebras: an overview

Volker Runde

Amenability

Connesamenability

Dual Banach algebras

Connesamenability Normal virtu

Representation theory

Open questions

Proposition

Let ${\mathfrak A}$ be a dual Banach algebra, and let ${\mathfrak B}$ be a norm closed, amenable

Dual Banach algebras: an overview

Volker Runde

Amenability

Connesamenability

Dual Banach algebras

Connesamenability Normal virtu

Representation theory

Open questions

Proposition

Let \mathfrak{A} be a dual Banach algebra, and let \mathfrak{B} be a norm closed, amenable subalgebra of \mathfrak{A}

Dual Banach algebras: an overview

Volker Runde

Amenability

Connesamenability

Dual Banach algebras

Connesamenability Normal virtu

Representation theory

Open questions

Proposition

Let \mathfrak{A} be a dual Banach algebra, and let \mathfrak{B} be a norm closed, amenable subalgebra of \mathfrak{A} that is weak^{*} dense in \mathfrak{A} .

Dual Banach algebras: an overview

Volker Runde

Amenability

Connesamenability

Dual Banach algebras

Connesamenability Normal virtua

Representation theory

Open questions

Proposition

Let \mathfrak{A} be a dual Banach algebra, and let \mathfrak{B} be a norm closed, amenable subalgebra of \mathfrak{A} that is weak^{*} dense in \mathfrak{A} . Then \mathfrak{A} is Connes-amenable.

Dual Banach algebras: an overview

Volker Runde

Amenability

Connesamenability

Dual Banach algebras

Connesamenability Normal virtua diagonals

Representation theory

Open questions

Proposition

Let \mathfrak{A} be a dual Banach algebra, and let \mathfrak{B} be a norm closed, amenable subalgebra of \mathfrak{A} that is weak^{*} dense in \mathfrak{A} . Then \mathfrak{A} is Connes-amenable.

▲ロト ▲帰 ト ▲ヨト ▲ヨト - ヨ - の々ぐ

Corollary

Dual Banach algebras: an overview

Volker Runde

Amenability

Connesamenability

Dual Banach algebras

Connesamenability Normal virtua diagonals

Representation theory

Open questions

Proposition

Let \mathfrak{A} be a dual Banach algebra, and let \mathfrak{B} be a norm closed, amenable subalgebra of \mathfrak{A} that is weak^{*} dense in \mathfrak{A} . Then \mathfrak{A} is Connes-amenable.

▲ロト ▲帰 ト ▲ヨト ▲ヨト - ヨ - の々ぐ

Corollary

If \mathfrak{A} is amenable

Dual Banach algebras: an overview

Volker Runde

Amenability

Connesamenability

Dual Banach algebras

Connesamenability Normal virtua diagonals

Representation theory

Open questions

Proposition

Let \mathfrak{A} be a dual Banach algebra, and let \mathfrak{B} be a norm closed, amenable subalgebra of \mathfrak{A} that is weak^{*} dense in \mathfrak{A} . Then \mathfrak{A} is Connes-amenable.

▲ロト ▲帰 ト ▲ヨト ▲ヨト - ヨ - の々ぐ

Corollary

If \mathfrak{A} is amenable and Arens regular.

Dual Banach algebras: an overview

Volker Runde

Amenability

Connesamenability

Dual Banach algebras

Connesamenability Normal virtua diagonals

Representation theory

Open questions

Proposition

Let \mathfrak{A} be a dual Banach algebra, and let \mathfrak{B} be a norm closed, amenable subalgebra of \mathfrak{A} that is weak^{*} dense in \mathfrak{A} . Then \mathfrak{A} is Connes-amenable.

▲ロト ▲帰 ト ▲ヨト ▲ヨト - ヨ - の々ぐ

Corollary

If \mathfrak{A} is amenable and Arens regular. Then \mathfrak{A}^{**} is Connes-amenable.

Dual Banach algebras: an overview

Volker Runde

Amenability

Connesamenability

Dual Banach algebras

Connesamenability Normal virtua diagonals

Representation theory

Open questions

Proposition

Let \mathfrak{A} be a dual Banach algebra, and let \mathfrak{B} be a norm closed, amenable subalgebra of \mathfrak{A} that is weak^{*} dense in \mathfrak{A} . Then \mathfrak{A} is Connes-amenable.

Corollary

If \mathfrak{A} is amenable and Arens regular. Then \mathfrak{A}^{**} is Connes-amenable.

Theorem (VR, 2001)

Dual Banach algebras: an overview

Volker Runde

Amenability

Connesamenability

Dual Banach algebras

Connesamenability Normal virtua diagonals

Representation theory

Open questions

Proposition

Let \mathfrak{A} be a dual Banach algebra, and let \mathfrak{B} be a norm closed, amenable subalgebra of \mathfrak{A} that is weak^{*} dense in \mathfrak{A} . Then \mathfrak{A} is Connes-amenable.

Corollary

If \mathfrak{A} is amenable and Arens regular. Then \mathfrak{A}^{**} is Connes-amenable.

Theorem (VR, 2001)

Suppose that ${\mathfrak A}$ is Arens regular

Dual Banach algebras: an overview

Volker Runde

Amenability

Connesamenability

Dual Banach algebras

Connesamenability Normal virtua diagonals

Representation theory

Open questions

Proposition

Let \mathfrak{A} be a dual Banach algebra, and let \mathfrak{B} be a norm closed, amenable subalgebra of \mathfrak{A} that is weak^{*} dense in \mathfrak{A} . Then \mathfrak{A} is Connes-amenable.

Corollary

If \mathfrak{A} is amenable and Arens regular. Then \mathfrak{A}^{**} is Connes-amenable.

Theorem (VR, 2001)

Suppose that \mathfrak{A} is Arens regular and an ideal in \mathfrak{A}^{**} .

Dual Banach algebras: an overview

Volker Runde

Amenability

Connesamenability

Dual Banach algebras

Connesamenability Normal virtua diagonals

Representation theory

Open questions

Proposition

Let \mathfrak{A} be a dual Banach algebra, and let \mathfrak{B} be a norm closed, amenable subalgebra of \mathfrak{A} that is weak^{*} dense in \mathfrak{A} . Then \mathfrak{A} is Connes-amenable.

Corollary

If \mathfrak{A} is amenable and Arens regular. Then \mathfrak{A}^{**} is Connes-amenable.

Theorem (VR, 2001)

Suppose that \mathfrak{A} is Arens regular and an ideal in \mathfrak{A}^{**} . Then the following are equivalent:

Dual Banach algebras: an overview

Volker Runde

Amenability

Connesamenability

Dual Banach algebras

Connesamenability Normal virtua diagonals

Representation theory

Open questions

Proposition

Let \mathfrak{A} be a dual Banach algebra, and let \mathfrak{B} be a norm closed, amenable subalgebra of \mathfrak{A} that is weak^{*} dense in \mathfrak{A} . Then \mathfrak{A} is Connes-amenable.

Corollary

If \mathfrak{A} is amenable and Arens regular. Then \mathfrak{A}^{**} is Connes-amenable.

Theorem (VR, 2001)

Suppose that \mathfrak{A} is Arens regular and an ideal in \mathfrak{A}^{**} . Then the following are equivalent:

1 \mathfrak{A} is amenable;

Dual Banach algebras: an overview

Volker Runde

Amenability

Connesamenability

Dual Banach algebras

Connesamenability Normal virtua diagonals

Representation theory

Open questions

Proposition

Let \mathfrak{A} be a dual Banach algebra, and let \mathfrak{B} be a norm closed, amenable subalgebra of \mathfrak{A} that is weak^{*} dense in \mathfrak{A} . Then \mathfrak{A} is Connes-amenable.

Corollary

If ${\mathfrak A}$ is amenable and Arens regular. Then ${\mathfrak A}^{**}$ is Connes-amenable.

Theorem (VR, 2001)

Suppose that \mathfrak{A} is Arens regular and an ideal in \mathfrak{A}^{**} . Then the following are equivalent:

- **1** \mathfrak{A} is amenable;
- **2** \mathfrak{A}^{**} is Connes-amenable.

Dual Banac algebras: a
Volker Rund
Connes- amenability Normal virtua diagonals

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

◆□▶ ◆□▶ ◆□▶ ◆□▶ □□ - のへぐ

Dual Banach algebras: an overview

Volker Runde

Amenability

Connesamenability

Dual Banach algebras

Connesamenability Normal virtua diagonals

Representation theory

Open questions

Corollary

Let E be reflexive

Dual Banach algebras: an overview

Volker Runde

Amenability

Connesamenability

Dual Banach algebras

Connesamenability Normal virtu diagonals

Representation theory

Open questions

Corollary

Let E be reflexive and have the approximation property.

Dual Banach algebras: an overview

Volker Runde

Amenability

Connesamenability

Dual Banach algebras

Connesamenability Normal virtua diagonals

Representation theory

Open questions

Corollary

Let *E* be reflexive and have the approximation property. Then the following are equivalent:

Dual Banach algebras: an overview

Volker Runde

Amenability

Connesamenability

Dual Banach algebras

Connesamenability Normal virtua diagonals

Representation theory

Open questions

Corollary

Let *E* be reflexive and have the approximation property. Then the following are equivalent:

▲ロト ▲帰 ト ▲ヨト ▲ヨト - ヨ - の々ぐ

1 $\mathcal{K}(E)$ is amenable;

Dual Banach algebras: an overview

Volker Runde

Amenability

Connesamenability

Dual Banach algebras

Connesamenability Normal virtua diagonals

Representation theory

Open questions

Corollary

Let *E* be reflexive and have the approximation property. Then the following are equivalent:

▲ロト ▲帰 ト ▲ヨト ▲ヨト - ヨ - の々ぐ

1 $\mathcal{K}(E)$ is amenable;

2 $\mathcal{B}(E)$ is Connes-amenable.
Dual Banach algebras: an overview

Volker Runde

Amenability

Connesamenability

Dual Banach algebras

Connesamenability Normal virtua diagonals

Representation theory

Open questions

Corollary

Let *E* be reflexive and have the approximation property. Then the following are equivalent:

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

1 $\mathcal{K}(E)$ is amenable;

2 $\mathcal{B}(E)$ is Connes-amenable.

Example (N. Grønbæk, BEJ, & G. A. Willis, 1994)

Dual Banach algebras: an overview

Volker Runde

Amenability

Connesamenability

Dual Banach algebras

Connesamenability Normal virtua diagonals

Representation theory

Open questions

Corollary

Let *E* be reflexive and have the approximation property. Then the following are equivalent:

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

1 $\mathcal{K}(E)$ is amenable;

2 $\mathcal{B}(E)$ is Connes-amenable.

Example (N. Grønbæk, BEJ, & G. A. Willis, 1994)

Let $p,q\in(1,\infty)\setminus\{2\}$

Dual Banach algebras: an overview

Volker Runde

Amenability

Connesamenability

Dual Banach algebras

Connesamenability Normal virtua diagonals

Representation theory

Open questions

Corollary

Let *E* be reflexive and have the approximation property. Then the following are equivalent:

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

1 $\mathcal{K}(E)$ is amenable;

2 $\mathcal{B}(E)$ is Connes-amenable.

Example (N. Grønbæk, BEJ, & G. A. Willis, 1994)

Let $p,q\in(1,\infty)\setminus\{2\}$ such that p
eq q.

Dual Banach algebras: an overview

Volker Runde

Amenability

Connesamenability

Dual Banach algebras

Connesamenability Normal virtua diagonals

Representation theory

Open questions

Corollary

Let *E* be reflexive and have the approximation property. Then the following are equivalent:

1 $\mathcal{K}(E)$ is amenable;

2 $\mathcal{B}(E)$ is Connes-amenable.

Example (N. Grønbæk, BEJ, & G. A. Willis, 1994)

Let $p, q \in (1, \infty) \setminus \{2\}$ such that $p \neq q$. Then $\mathcal{K}(\ell^p \oplus \ell^q)$ is not amenable.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Dual Banach algebras: an overview

Volker Runde

Amenability

Connesamenability

Dual Banach algebras

Connesamenability Normal virtua diagonals

Representation theory

Open questions

Corollary

Let *E* be reflexive and have the approximation property. Then the following are equivalent:

1 $\mathcal{K}(E)$ is amenable;

2 $\mathcal{B}(E)$ is Connes-amenable.

Example (N. Grønbæk, BEJ, & G. A. Willis, 1994)

Let $p, q \in (1, \infty) \setminus \{2\}$ such that $p \neq q$. Then $\mathcal{K}(\ell^p \oplus \ell^q)$ is not amenable. Hence, $\mathcal{B}(\ell^p \oplus \ell^q)$ is not Connes-amenable.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Dual Banach algebras: an overview
Dual Banach algebras Connes- amenability Normal virtual diagonals

Volker Runde

Amenability

Connesamenability

Dual Banach algebras

Connesamenability Normal virtual diagonals

Representation theory

Open questions

Proposition

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

Dual Banach algebras: an overview

Volker Runde

Amenability

Connesamenability

Dual Banach algebras

Connesamenability Normal virtual diagonals

Representation theory

Open questions

Proposition

Suppose that \mathfrak{A} has a normal virtual diagonal.

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Dual Banach algebras: an overview

Volker Runde

Amenability

Connesamenability

Dual Banach algebras

Connesamenability Normal virtual diagonals

Representation theory

Open questions

Proposition

Suppose that ${\mathfrak A}$ has a normal virtual diagonal. Then ${\mathfrak A}$ is Connes-amenable.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへ⊙

Dual Banach algebras: an overview

Volker Runde

Amenability

Connesamenability

Dual Banach algebras Connesamenability

Normal virtual diagonals

Representation theory

Open questions

Proposition

Suppose that ${\mathfrak A}$ has a normal virtual diagonal. Then ${\mathfrak A}$ is Connes-amenable.

▲ロト ▲帰 ト ▲ヨト ▲ヨト - ヨ - の々ぐ

Theorem (VR, 2003)

Dual Banach algebras: an overview

Volker Runde

Amenability

Connesamenability

Dual Banach algebras Connes-

Amenability Normal virtual diagonals

Representation theory

Open questions

Proposition

Suppose that ${\mathfrak A}$ has a normal virtual diagonal. Then ${\mathfrak A}$ is Connes-amenable.

Theorem (VR, 2003)

The following are equivalent for a locally compact group G:

Dual Banach algebras: an overview

Volker Runde

Amenability

Connesamenability

Dual Banach algebras Connes-

Normal virtual diagonals

Representation theory

Open questions

Proposition

Suppose that ${\mathfrak A}$ has a normal virtual diagonal. Then ${\mathfrak A}$ is Connes-amenable.

Theorem (VR, 2003)

The following are equivalent for a locally compact group G:

▲ロト ▲帰 ト ▲ヨト ▲ヨト - ヨ - の々ぐ

1 *G* is amenable;

Dual Banach algebras: an overview

Volker Runde

Amenability

Connesamenability

Dual Banach algebras Connes-

amenability Normal virtual diagonals

Representation theory

Open questions

Proposition

Suppose that ${\mathfrak A}$ has a normal virtual diagonal. Then ${\mathfrak A}$ is Connes-amenable.

Theorem (VR, 2003)

The following are equivalent for a locally compact group G:

▲ロト ▲帰 ト ▲ヨト ▲ヨト - ヨ - の々ぐ

1 *G* is amenable;

2 M(G) is Connes-amenable;

Dual Banach algebras: an overview

Volker Runde

Amenability

Connesamenability

Dual Banach algebras Connes-

amenability Normal virtual diagonals

Representation theory

Open questions

Proposition

Suppose that ${\mathfrak A}$ has a normal virtual diagonal. Then ${\mathfrak A}$ is Connes-amenable.

Theorem (VR, 2003)

The following are equivalent for a locally compact group G:

- **1** *G* is amenable;
- **2** M(G) is Connes-amenable;
- **3** M(G) has a normal virtual diagonal.

Dual Banach algebras: an overview

Volker Runde

Amenability

Connesamenability

Dual Banach algebras Connes-

amenability Normal virtual diagonals

Representation theory

Open questions

Proposition

Suppose that ${\mathfrak A}$ has a normal virtual diagonal. Then ${\mathfrak A}$ is Connes-amenable.

Theorem (VR, 2003)

The following are equivalent for a locally compact group G:

- **1** *G* is amenable;
- **2** M(G) is Connes-amenable;
- **3** M(G) has a normal virtual diagonal.

Corollary

Dual Banach algebras: an overview

Volker Runde

Amenability

Connesamenability

Dual Banach algebras Connes-

amenability Normal virtual diagonals

Representation theory

Open questions

Proposition

Suppose that ${\mathfrak A}$ has a normal virtual diagonal. Then ${\mathfrak A}$ is Connes-amenable.

Theorem (VR, 2003)

The following are equivalent for a locally compact group G:

- **1** *G* is amenable;
- **2** M(G) is Connes-amenable;
- **3** M(G) has a normal virtual diagonal.

Corollary

 $\ell^1(G)$ is amenable

Dual Banach algebras: an overview

Volker Runde

Amenability

Connesamenability

Dual Banach algebras Connes-

amenability Normal virtual diagonals

Representation theory

Open questions

Proposition

Suppose that ${\mathfrak A}$ has a normal virtual diagonal. Then ${\mathfrak A}$ is Connes-amenable.

Theorem (VR, 2003)

The following are equivalent for a locally compact group G:

- **1** *G* is amenable;
- **2** M(G) is Connes-amenable;
- **3** M(G) has a normal virtual diagonal.

Corollary

 $\ell^1(G)$ is amenable if and only if

Dual Banach algebras: an overview

Volker Runde

Amenability

Connesamenability

Dual Banach algebras Connes-

amenability Normal virtual diagonals

Representation theory

Open questions

Proposition

Suppose that ${\mathfrak A}$ has a normal virtual diagonal. Then ${\mathfrak A}$ is Connes-amenable.

Theorem (VR, 2003)

The following are equivalent for a locally compact group G:

- **1** *G* is amenable;
- **2** M(G) is Connes-amenable;
- **3** M(G) has a normal virtual diagonal.

Corollary

 $\ell^1(G)$ is amenable if and only if it is Connes-amenable.

Dual Banach algebras: an overview
Dual Banach algebras Connes- amenability Normal virtual diagonals

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへぐ

Dual Banach algebras: an overview	Definition
Dual Banach algebras Connes- amenability Normal virtual diagonals	
Open questions	

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへぐ

Dual Banach algebras: an overview

Volker Runde

Amenability

Connesamenability

Dual Banach algebras

Connesamenability Normal virtual diagonals

Representation theory

Open questions

Definition

A bounded continuous function $f: G \to \mathbb{C}$

Dual Banach algebras: an overview

Volker Runde

Amenability

Connesamenability

Dual Banach algebras

Connesamenability Normal virtual diagonals

Representation theory

Open questions

Definition

A bounded continuous function $f : G \to \mathbb{C}$ is called weakly almost periodic

Dual Banach algebras: an overview

Volker Runde

Amenability

Connesamenability

Dual Banach algebras

Connesamenability Normal virtual diagonals

Representation theory

Open questions

Definition

A bounded continuous function $f : G \to \mathbb{C}$ is called weakly almost periodic if $\{L_x f : x \in G\}$

Dual Banach algebras: an overview

Volker Runde

Amenability

Connesamenability

Dual Banach algebras

Connesamenability Normal virtual diagonals

Representation theory

Open questions

Definition

A bounded continuous function $f : G \to \mathbb{C}$ is called weakly almost periodic if $\{L_x f : x \in G\}$ is relatively weakly compact in $\mathcal{C}_b(G)$.

Dual Banach algebras: an overview

Volker Runde

Amenability

Connesamenability

Dual Banacl algebras

amenability Normal virtual diagonals

Representation theory

Open questions

Definition

A bounded continuous function $f : G \to \mathbb{C}$ is called weakly almost periodic if $\{L_x f : x \in G\}$ is relatively weakly compact in $\mathcal{C}_b(G)$. We set

 $WAP(G) := \{ f \in C_b(G) : f \text{ is weakly almost periodic} \}.$

▲ロト ▲帰 ト ▲ヨト ▲ヨト 三三 - のへぐ

Dual Banach algebras: an overview

Volker Runde

Amenability

Connesamenability

Dual Banach algebras

Connesamenability Normal virtual diagonals

Representation theory

Open questions

Definition

A bounded continuous function $f : G \to \mathbb{C}$ is called weakly almost periodic if $\{L_x f : x \in G\}$ is relatively weakly compact in $\mathcal{C}_b(G)$. We set

 $WAP(G) := \{ f \in C_b(G) : f \text{ is weakly almost periodic} \}.$

Remark

Dual Banach algebras: an overview

Volker Runde

Amenability

Connesamenability

Dual Banach algebras

Connesamenability Normal virtual diagonals

Representation theory

Open questions

Definition

A bounded continuous function $f : G \to \mathbb{C}$ is called weakly almost periodic if $\{L_x f : x \in G\}$ is relatively weakly compact in $\mathcal{C}_b(G)$. We set

 $WAP(G) := \{ f \in C_b(G) : f \text{ is weakly almost periodic} \}.$

Remark

WAP(G) is a commutative C^* -algebra.

Dual Banach algebras: an overview

Volker Runde

Amenability

Connesamenability

Dual Banach algebras

Connesamenability Normal virtual diagonals

Representation theory

Open questions

Definition

A bounded continuous function $f : G \to \mathbb{C}$ is called weakly almost periodic if $\{L_x f : x \in G\}$ is relatively weakly compact in $\mathcal{C}_b(G)$. We set

 $WAP(G) := \{ f \in C_b(G) : f \text{ is weakly almost periodic} \}.$

Remark

WAP(G) is a commutative C^* -algebra. Its character space wG

Dual Banach algebras: an overview

Volker Runde

Amenability

Connesamenability

Dual Banach algebras

Connesamenability Normal virtual diagonals

Representation theory

Open questions

Definition

A bounded continuous function $f : G \to \mathbb{C}$ is called weakly almost periodic if $\{L_x f : x \in G\}$ is relatively weakly compact in $\mathcal{C}_b(G)$. We set

 $WAP(G) := \{ f \in C_b(G) : f \text{ is weakly almost periodic} \}.$

Remark

WAP(G) is a commutative C^* -algebra. Its character space wG is a compact semigroup

Dual Banach algebras: an overview

Volker Runde

Amenability

Connesamenability

Dual Banach algebras

Connesamenability Normal virtual diagonals

Representation theory

Open questions

Definition

A bounded continuous function $f : G \to \mathbb{C}$ is called weakly almost periodic if $\{L_x f : x \in G\}$ is relatively weakly compact in $\mathcal{C}_b(G)$. We set

 $WAP(G) := \{ f \in C_b(G) : f \text{ is weakly almost periodic} \}.$

Remark

WAP(G) is a commutative C^* -algebra. Its character space wG is a compact semigroup with separately continuous multiplication

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Dual Banach algebras: an overview

Volker Runde

Amenability

Connesamenability

Dual Banach algebras

Connesamenability Normal virtual diagonals

Representation theory

Open questions

Definition

A bounded continuous function $f : G \to \mathbb{C}$ is called weakly almost periodic if $\{L_x f : x \in G\}$ is relatively weakly compact in $\mathcal{C}_b(G)$. We set

 $WAP(G) := \{ f \in C_b(G) : f \text{ is weakly almost periodic} \}.$

Remark

WAP(G) is a commutative C^* -algebra. Its character space wG is a compact semigroup with separately continuous multiplication containing G as a dense subsemigroup.

Dual Banach algebras: an overview

Volker Runde

Amenability

Connesamenability

Dual Banach algebras

Connesamenability Normal virtual diagonals

Representation theory

Open questions

Definition

A bounded continuous function $f : G \to \mathbb{C}$ is called weakly almost periodic if $\{L_x f : x \in G\}$ is relatively weakly compact in $\mathcal{C}_b(G)$. We set

 $WAP(G) := \{ f \in C_b(G) : f \text{ is weakly almost periodic} \}.$

Remark

WAP(G) is a commutative C*-algebra. Its character space wG is a compact semigroup with separately continuous multiplication containing G as a dense subsemigroup. This turns WAP(G)* $\cong M(wG)$

Dual Banach algebras: an overview

Volker Runde

Amenability

Connesamenability

Dual Banach algebras

Connesamenability Normal virtual diagonals

Representation theory

Open questions

Definition

A bounded continuous function $f : G \to \mathbb{C}$ is called weakly almost periodic if $\{L_x f : x \in G\}$ is relatively weakly compact in $\mathcal{C}_b(G)$. We set

 $WAP(G) := \{ f \in C_b(G) : f \text{ is weakly almost periodic} \}.$

Remark

WAP(G) is a commutative C^* -algebra. Its character space wG is a compact semigroup with separately continuous multiplication containing G as a dense subsemigroup.

This turns $WAP(G)^* \cong M(wG)$ into a dual Banach algebra.

Dual Banach algebras: an overview
Dual Banach algebras Connes- amenability Normal virtual diagonals

Dual Banach algebras: an overview

Volker Runde

Amenability

Connesamenability

Dual Banach algebras

Connesamenability Normal virtual

diagonals Representatio

theory

Open questions

Proposition

The following are equivalent:

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <
Dual Banach algebras: an overview

Volker Runde

Amenability

Connesamenability

Dual Banach algebras

Connesamenability Normal virtual diagonals

Representation theory

Open questions

Proposition

The following are equivalent:

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

1 *G* is amenable;

Dual Banach algebras: an overview

Volker Runde

Amenability

Connesamenability

Dual Banach algebras

amenability Normal virtual diagonals

Representation theory

Open questions

Proposition

The following are equivalent:

1 *G* is amenable;

2 WAP $(G)^*$ is Connes-amenable.

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Dual Banach algebras: an overview

Volker Runde

Amenability

Connesamenability

Dual Banach algebras

amenability Normal virtual diagonals

Representation theory

Open questions

Proposition

The following are equivalent:

1 *G* is amenable;

2 WAP $(G)^*$ is Connes-amenable.

◆□▶ ◆□▶ ◆三▶ ◆三▶ →三 ● のへで

Theorem (VR, 2006)

Dual Banach algebras: an overview

Volker Runde

Amenability

Connesamenability

Dual Banach algebras

Connesamenability Normal virtual diagonals

Representation theory

Open questions

Proposition

The following are equivalent:

1 *G* is amenable;

2 WAP $(G)^*$ is Connes-amenable.

Theorem (VR, 2006)

Suppose that G has small invariant neighborhoods,

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Dual Banach algebras: an overview

Volker Runde

Amenability

Connesamenability

Dual Banach algebras

amenability Normal virtual diagonals

Representation theory

Open questions

Proposition

The following are equivalent:

1 *G* is amenable;

2 WAP $(G)^*$ is Connes-amenable.

Theorem (VR, 2006)

Suppose that G has small invariant neighborhoods, e.g, is compact,

Dual Banach algebras: an overview

Volker Runde

Amenability

Connesamenability

Dual Banach algebras

Connesamenability Normal virtual diagonals

Representation theory

Open questions

Proposition

The following are equivalent:

1 *G* is amenable;

2 WAP $(G)^*$ is Connes-amenable.

Theorem (VR, 2006)

Suppose that G has small invariant neighborhoods, e.g, is compact, discrete,

Dual Banach algebras: an overview

Volker Runde

Amenability

Connesamenability

Dual Banach algebras

Connesamenability Normal virtual diagonals

Representation theory

Open questions

Proposition

The following are equivalent:

1 *G* is amenable;

2 WAP $(G)^*$ is Connes-amenable.

Theorem (VR, 2006)

Suppose that G has small invariant neighborhoods, e.g, is compact, discrete, or abelian.

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Dual Banach algebras: an overview

Volker Runde

Amenability

Connesamenability

Dual Banach algebras

Connesamenability Normal virtual diagonals

Representation theory

Open questions

Proposition

The following are equivalent:

1 *G* is amenable;

2 WAP $(G)^*$ is Connes-amenable.

Theorem (VR, 2006)

Suppose that G has small invariant neighborhoods, e.g, is compact, discrete, or abelian. Then the following are equivalent:

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Dual Banach algebras: an overview

Volker Runde

Amenability

Connesamenability

Dual Banach algebras

amenability Normal virtual diagonals

Representation theory

Open questions

Proposition

The following are equivalent:

1 *G* is amenable;

2 WAP $(G)^*$ is Connes-amenable.

Theorem (VR, 2006)

Suppose that G has small invariant neighborhoods, e.g, is compact, discrete, or abelian. Then the following are equivalent:

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

1 WAP(G)* has a normal virtual diagonal;

Dual Banach algebras: an overview

Volker Runde

Amenability

Connesamenability

Dual Banach algebras

amenability Normal virtual diagonals

Representation theory

Open questions

Proposition

The following are equivalent:

1 *G* is amenable;

2 WAP $(G)^*$ is Connes-amenable.

Theorem (VR, 2006)

Suppose that G has small invariant neighborhoods, e.g, is compact, discrete, or abelian. Then the following are equivalent:

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

1 WAP(G)* has a normal virtual diagonal;

2 *G* is compact.

Dual Banach algebras: an overview
Volker Runde
Dual Banach algebras Connes- amenability Normal virtual diagonals

◆□▶ ◆□▶ ◆□▶ ◆□▶ □□ - のへぐ

Dual Banach algebras: an overview Definition Normal virtual diagonals

▲ロト ▲圖 ト ▲ ヨト ▲ ヨト ― ヨー つくぐ

Dual Banach algebras: an overview

Volker Runde

Amenability

Connesamenability

Dual Banach algebras

Connesamenability Normal virtual diagonals

Representation theory

Open questions

Definition

A bounded continuous function $f: G \to \mathbb{C}$

Dual Banach algebras: an overview

Volker Runde

Amenability

Connesamenability

Dual Banach algebras

Connesamenability Normal virtual diagonals

Representation theory

Open questions

Definition

A bounded continuous function $f : G \to \mathbb{C}$ is called almost periodic

Dual Banach algebras: an overview

Volker Runde

Amenability

Connesamenability

Dual Banach algebras

amenability Normal virtual diagonals

Representation theory

Open questions

Definition

A bounded continuous function $f : G \to \mathbb{C}$ is called almost periodic if $\{L_x f : x \in G\}$

Dual Banach algebras: an overview

Volker Runde

Amenability

Connesamenability

Dual Banach algebras

amenability Normal virtual diagonals

Representation theory

Open questions

Definition

A bounded continuous function $f : G \to \mathbb{C}$ is called almost periodic if $\{L_x f : x \in G\}$ is relatively compact in $\mathcal{C}_b(G)$.

Dual Banach algebras: an overview

Volker Runde

Amenability

Connesamenability

Dual Banach algebras

Connesamenability Normal virtual diagonals

Representation theory

Open questions

Definition

A bounded continuous function $f : G \to \mathbb{C}$ is called almost periodic if $\{L_x f : x \in G\}$ is relatively compact in $\mathcal{C}_b(G)$. We set

 $AP(G) := \{ f \in C_b(G) : f \text{ is almost periodic} \}.$

Dual Banach algebras: an overview

Volker Runde

Amenability

Connesamenability

Dual Banach algebras

Connesamenability Normal virtual diagonals

Representation theory

Open questions

Definition

A bounded continuous function $f : G \to \mathbb{C}$ is called almost periodic if $\{L_x f : x \in G\}$ is relatively compact in $\mathcal{C}_b(G)$. We set

 $AP(G) := \{ f \in C_b(G) : f \text{ is almost periodic} \}.$

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

We call G minimally weakly almost periodic

Dual Banach algebras: an overview

Volker Runde

Amenability

Connesamenability

Dual Banach algebras

Connesamenability Normal virtual diagonals

Representation theory

Open questions

Definition

A bounded continuous function $f : G \to \mathbb{C}$ is called almost periodic if $\{L_x f : x \in G\}$ is relatively compact in $\mathcal{C}_b(G)$. We set

 $\mathsf{AP}(G) := \{ f \in \mathcal{C}_b(G) : f \text{ is almost periodic} \}.$

We call G minimally weakly almost periodic (m.w.a.p.)

Dual Banach algebras: an overview

Volker Runde

Amenability

Connesamenability

Dual Banach algebras

Connesamenability Normal virtual diagonals

Representation theory

Open questions

Definition

A bounded continuous function $f : G \to \mathbb{C}$ is called almost periodic if $\{L_x f : x \in G\}$ is relatively compact in $\mathcal{C}_b(G)$. We set

 $AP(G) := \{ f \in C_b(G) : f \text{ is almost periodic} \}.$

We call G minimally weakly almost periodic (m.w.a.p.) if

 $WAP(G) = AP(G) + C_0(G).$

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Dual Banach algebras: an overview

Volker Runde

Amenability

Connesamenability

Dual Banach algebras

Connesamenability Normal virtual diagonals

Representation theory

Open questions

Definition

A bounded continuous function $f : G \to \mathbb{C}$ is called almost periodic if $\{L_x f : x \in G\}$ is relatively compact in $\mathcal{C}_b(G)$. We set

 $AP(G) := \{ f \in C_b(G) : f \text{ is almost periodic} \}.$

We call G minimally weakly almost periodic (m.w.a.p.) if

 $WAP(G) = AP(G) + C_0(G).$

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Dual Banach algebras: an overview

Volker Runde

Amenability

Connesamenability

Dual Banach algebras

Connesamenability Normal virtual diagonals

Representation theory

Open questions

Proposition

Suppose that G is amenable

Dual Banach algebras: an overview

Volker Runde

Amenability

Connesamenability

Dual Banach algebras

Connesamenability Normal virtual diagonals

Representation theory

Open questions

Proposition

Suppose that G is amenable and m.w.a.p.

Dual Banach algebras: an overview

Volker Runde

Amenability

Connesamenability

Dual Banach algebras

Connesamenability Normal virtual diagonals

Representatio

Open

Proposition

Suppose that G is amenable and m.w.a.p. Then WAP(G) has a normal virtual diagonal.

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Dual Banach algebras: an overview

Volker Runde

Amenability

Connesamenability

Dual Banach algebras Connes-

Normal virtual diagonals

Representation theory

Open questions

Proposition

Suppose that G is amenable and m.w.a.p. Then WAP(G) has a normal virtual diagonal.

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Examples

Dual Banach algebras: an overview

Volker Runde

Amenability

Connesamenability

Dual Banach algebras

amenability Normal virtual diagonals

Representation theory

Open questions

Proposition

Suppose that G is amenable and m.w.a.p. Then WAP(G) has a normal virtual diagonal.

▲ロト ▲帰 ト ▲ヨト ▲ヨト 三三 - のへぐ

Examples

1 All compact groups are m.w.a.p..

Dual Banach algebras: an overview

Volker Runde

Amenability

Connesamenability

Dual Banach algebras

amenability Normal virtual diagonals

Representation theory

Open questions

Proposition

Suppose that G is amenable and m.w.a.p. Then WAP(G) has a normal virtual diagonal.

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Examples

All compact groups are m.w.a.p..

```
2 SL(2, \mathbb{R}) is m.w.a.p.,
```

Dual Banach algebras: an overview

Volker Runde

Amenability

Connesamenability

Dual Banach algebras Connes-

amenability Normal virtual diagonals

Representation theory

Open questions

Proposition

Suppose that G is amenable and m.w.a.p. Then WAP(G) has a normal virtual diagonal.

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Examples

1 All compact groups are m.w.a.p..

2 SL $(2, \mathbb{R})$ is m.w.a.p., but not amenable.

Dual Banach algebras: an overview

Volker Runde

Amenability

Connesamenability

Dual Banach algebras Connes-

amenability Normal virtual diagonals

Representation theory

Open questions

Proposition

Suppose that G is amenable and m.w.a.p. Then WAP(G) has a normal virtual diagonal.

Examples

- **1** All compact groups are m.w.a.p..
- **2** SL $(2, \mathbb{R})$ is m.w.a.p., but not amenable.
- **3** The motion group $\mathbb{R}^N \rtimes SO(N)$ is m.w.a.p. for $N \ge 2$

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Dual Banach algebras: an overview

Volker Runde

Amenability

Connesamenability

Dual Banach algebras

amenability Normal virtual diagonals

Representation theory

Open questions

Proposition

Suppose that G is amenable and m.w.a.p. Then WAP(G) has a normal virtual diagonal.

Examples

- **1** All compact groups are m.w.a.p..
- **2** SL $(2, \mathbb{R})$ is m.w.a.p., but not amenable.
- 3 The motion group $\mathbb{R}^N \rtimes SO(N)$ is m.w.a.p. for $N \ge 2$ and amenable.

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Dual Banach algebras: an overview

Volker Runde

Amenability

Connesamenability

Dual Banach algebras

amenability Normal virtual diagonals

Representation theory

Open questions

Proposition

Suppose that G is amenable and m.w.a.p. Then WAP(G) has a normal virtual diagonal.

Examples

- **1** All compact groups are m.w.a.p..
- **2** SL $(2, \mathbb{R})$ is m.w.a.p., but not amenable.
- **3** The motion group $\mathbb{R}^N \rtimes SO(N)$ is m.w.a.p. for $N \ge 2$ and amenable.

Question

Dual Banach algebras: an overview

Volker Runde

Amenability

Connesamenability

Dual Banach algebras Connes-

amenability Normal virtual diagonals

Representation theory

Open questions

Proposition

Suppose that G is amenable and m.w.a.p. Then WAP(G) has a normal virtual diagonal.

Examples

- **1** All compact groups are m.w.a.p..
- **2** SL $(2, \mathbb{R})$ is m.w.a.p., but not amenable.
- **3** The motion group $\mathbb{R}^N \rtimes SO(N)$ is m.w.a.p. for $N \ge 2$ and amenable.

Question

Does $WAP(G)^*$ have a normal virtual diagonal

Dual Banach algebras: an overview

Volker Runde

Amenability

Connesamenability

Dual Banach algebras Connes-

amenability Normal virtual diagonals

Representation theory

Open questions

Proposition

Suppose that G is amenable and m.w.a.p. Then WAP(G) has a normal virtual diagonal.

Examples

- **1** All compact groups are m.w.a.p..
- **2** SL(2, \mathbb{R}) is m.w.a.p., but not amenable.
- **3** The motion group $\mathbb{R}^N \rtimes SO(N)$ is m.w.a.p. for $N \ge 2$ and amenable.

Question

Does $WAP(G)^*$ have a normal virtual diagonal if and only if G is amenable and m.w.a.p.?

Daws' representation theorem

Dual Banach algebras: an overview
Representation theory

(ロ)、(型)、(E)、(E)、 E、 の(の)

Daws' representation theorem

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへぐ
Dual Banach algebras: an overview

Volker Runde

Amenability

Connesamenability

Dual Banach algebras

Connesamenability Normal virtua diagonals

Representation theory

Open questions

Recall...

 $\mathcal{B}(E)$ is a dual Banach algebra for reflexive E,

Dual Banach algebras: an overview

Volker Runde

Amenability

Connesamenability

Dual Banach algebras

Connesamenability Normal virtua diagonals

Representation theory

Open questions

Recall...

 $\mathcal{B}(E)$ is a dual Banach algebra for reflexive E, as is each weak^{*} closed subalgebra of it.

Dual Banach algebras: an overview

Volker Runde

Amenability

Connesamenability

Dual Banach algebras

Connesamenability Normal virtua diagonals

Representation theory

Open questions

Recall...

 $\mathcal{B}(E)$ is a dual Banach algebra for reflexive E, as is each weak^{*} closed subalgebra of it.

▲ロト ▲帰 ト ▲ヨト ▲ヨト - ヨ - の々ぐ

Theorem (M. Daws, 2007)

Dual Banach algebras: an overview

Volker Runde

Amenability

Connesamenability

Dual Banach algebras

Connesamenability Normal virtua diagonals

Representation theory

Open questions

Recall...

 $\mathcal{B}(E)$ is a dual Banach algebra for reflexive E, as is each weak^{*} closed subalgebra of it.

▲ロト ▲帰 ト ▲ヨト ▲ヨト - ヨ - の々ぐ

Theorem (M. Daws, 2007)

Let \mathfrak{A} be a dual Banach algebra.

Dual Banach algebras: an overview

Volker Runde

Amenability

Connesamenability

Dual Banach algebras

Connesamenability Normal virtua diagonals

Representation theory

Open questions

Recall. . .

 $\mathcal{B}(E)$ is a dual Banach algebra for reflexive E, as is each weak^{*} closed subalgebra of it.

▲ロト ▲帰 ト ▲ヨト ▲ヨト - ヨ - の々ぐ

Theorem (M. Daws, 2007)

Let \mathfrak{A} be a dual Banach algebra. Then there are

Dual Banach algebras: an overview

Volker Runde

Amenability

Connesamenability

Dual Banach algebras

Connesamenability Normal virtua diagonals

Representation theory

Open questions

Recall...

 $\mathcal{B}(E)$ is a dual Banach algebra for reflexive E, as is each weak^{*} closed subalgebra of it.

Theorem (M. Daws, 2007)

Let ${\mathfrak A}$ be a dual Banach algebra. Then there are a reflexive Banach space E

Dual Banach algebras: an overview

Volker Runde

Amenability

Connesamenability

Dual Banach algebras

Connesamenability Normal virtua diagonals

Representation theory

Open questions

Recall. . .

 $\mathcal{B}(E)$ is a dual Banach algebra for reflexive E, as is each weak^{*} closed subalgebra of it.

Theorem (M. Daws, 2007)

Let \mathfrak{A} be a dual Banach algebra. Then there are a reflexive Banach space E and an isometric,

Dual Banach algebras: an overview

Volker Runde

Amenability

Connesamenability

Dual Banach algebras

Connesamenability Normal virtua diagonals

Representation theory

Open questions

Recall. . .

 $\mathcal{B}(E)$ is a dual Banach algebra for reflexive E, as is each weak^{*} closed subalgebra of it.

Theorem (M. Daws, 2007)

Let \mathfrak{A} be a dual Banach algebra. Then there are a reflexive Banach space E and an isometric, weak*-weak* continuous

Dual Banach algebras: an overview

Volker Runde

Amenability

Connesamenability

Dual Banach algebras Connes-

Normal virtua diagonals

Representation theory

Open questions

Recall...

 $\mathcal{B}(E)$ is a dual Banach algebra for reflexive E, as is each weak^{*} closed subalgebra of it.

Theorem (M. Daws, 2007)

Let \mathfrak{A} be a dual Banach algebra. Then there are a reflexive Banach space E and an isometric, weak*-weak* continuous algebra homomorphism $\pi : \mathfrak{A} \to \mathcal{B}(E)$.

Dual Banach algebras: an overview

Volker Runde

Amenability

Connesamenability

Dual Banach algebras

amenability Normal virtua diagonals

Representation theory

Open questions

Recall. . .

 $\mathcal{B}(E)$ is a dual Banach algebra for reflexive E, as is each weak^{*} closed subalgebra of it.

Theorem (M. Daws, 2007)

Let \mathfrak{A} be a dual Banach algebra. Then there are a reflexive Banach space E and an isometric, weak*-weak* continuous algebra homomorphism $\pi : \mathfrak{A} \to \mathcal{B}(E)$.

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

In short...

Dual Banach algebras: an overview

Volker Runde

Amenability

Connesamenability

Dual Banach algebras Connes-

Normal virtua diagonals

Representation theory

Open questions

Recall. . .

 $\mathcal{B}(E)$ is a dual Banach algebra for reflexive E, as is each weak^{*} closed subalgebra of it.

Theorem (M. Daws, 2007)

Let \mathfrak{A} be a dual Banach algebra. Then there are a reflexive Banach space E and an isometric, weak*-weak* continuous algebra homomorphism $\pi : \mathfrak{A} \to \mathcal{B}(E)$.

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

In short...

Every dual Banach algebra

Dual Banach algebras: an overview

Volker Runde

Amenability

Connesamenability

Dual Banach algebras Connes-

Normal virtua diagonals

Representation theory

Open questions

Recall...

 $\mathcal{B}(E)$ is a dual Banach algebra for reflexive E, as is each weak^{*} closed subalgebra of it.

Theorem (M. Daws, 2007)

Let \mathfrak{A} be a dual Banach algebra. Then there are a reflexive Banach space E and an isometric, weak*-weak* continuous algebra homomorphism $\pi : \mathfrak{A} \to \mathcal{B}(E)$.

In short...

Every dual Banach algebra "is" a subalgebra of $\mathcal{B}(E)$ for some reflexive E.

Dual Banach algebras: an overview
Representatior theory

Dual Banach algebras: an overview Recall. . . Representation theory

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへぐ

Open questions

		· · · · · ·	
In	ecti	VITV	
····J	000	vicy,	

Dual Banach algebras: an overview

Volker Runde

Amenability

Connesamenability

Dual Banach algebras Connesamenability Normal virtual diagonals

Representation theory

Open questions

Recall...

A von Neumann algebra $\mathfrak{M}\subset\mathcal{B}(\mathfrak{H})$ is called injective

◆□▶ ◆□▶ ◆□▶ ◆□▶ □□ - のへぐ

Dual Banach algebras: an overview

Volker Runde

Amenability

Connesamenability

Dual Banach algebras Connesamenability Normal virtual diagonals

Representation theory

Open questions

Recall...

A von Neumann algebra $\mathfrak{M} \subset \mathcal{B}(\mathfrak{H})$ is called injective if there is a norm one projection $\mathcal{E} : \mathcal{B}(\mathfrak{H}) \to \mathfrak{M}'$.

Dual Banach algebras: an overview

Volker Runde

Amenability

Connesamenability

Dual Banach algebras Connesamenability Normal virtual diagonals

Representation theory

Open questions

Recall...

A von Neumann algebra $\mathfrak{M} \subset \mathcal{B}(\mathfrak{H})$ is called injective if there is a norm one projection $\mathcal{E} : \mathcal{B}(\mathfrak{H}) \to \mathfrak{M}'$.

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Question

Dual Banach algebras: an overview

Volker Runde

Amenability

Connesamenability

Dual Banach algebras Connesamenability Normal virtual

Representation theory

Open questions

Recall...

A von Neumann algebra $\mathfrak{M} \subset \mathcal{B}(\mathfrak{H})$ is called injective if there is a norm one projection $\mathcal{E} : \mathcal{B}(\mathfrak{H}) \to \mathfrak{M}'$.

▲ロト ▲帰 ト ▲ヨト ▲ヨト - ヨ - の々ぐ

Question

How does the notion of injectivity extend to dual Banach algebras?

Dual Banach algebras: an overview

Volker Runde

Amenability

Connesamenability

Dual Banach algebras Connesamenability Normal virtual

Representation theory

Open questions

Recall...

A von Neumann algebra $\mathfrak{M} \subset \mathcal{B}(\mathfrak{H})$ is called injective if there is a norm one projection $\mathcal{E} : \mathcal{B}(\mathfrak{H}) \to \mathfrak{M}'$.

▲ロト ▲帰 ト ▲ヨト ▲ヨト - ヨ - の々ぐ

Question

How does the notion of injectivity extend to dual Banach algebras? And how does this extended notion

Dual Banach algebras: an overview

Volker Runde

Amenability

Connesamenability

Dual Banach algebras Connesamenability Normal virtual diagonals

Representation theory

Open questions

Recall...

A von Neumann algebra $\mathfrak{M} \subset \mathcal{B}(\mathfrak{H})$ is called injective if there is a norm one projection $\mathcal{E} : \mathcal{B}(\mathfrak{H}) \to \mathfrak{M}'$.

Question

How does the notion of injectivity extend to dual Banach algebras? And how does this extended notion relate to Connes-amenability?

Dual Banach algebras: an overview

Volker Runde

Amenability

Connesamenability

Dual Banach algebras

Normal virtua diagonals

Representation theory

Open questions

Theorem (J. Tomiyama, 1970)

◆□▶ ◆□▶ ◆□▶ ◆□▶ □□ - のへぐ

Dual Banach algebras: an overview

Volker Runde

Amenability

Connesamenability

Dual Banach algebras

Connesamenability Normal virtua diagonals

Representation theory

Open questions

Theorem (J. Tomiyama, 1970)

Let \mathfrak{A} be a C^* -algebra,

Dual Banach algebras: an overview

Volker Runde

Amenability

Connesamenability

Dual Banach algebras

Connesamenability Normal virtua diagonals

Representation theory

Open questions

Theorem (J. Tomiyama, 1970)

Let \mathfrak{A} be a C^* -algebra, let \mathfrak{B} be a C^* -subalgebra of \mathfrak{A} ,

Dual Banach algebras: an overview

Volker Runde

Amenability

Connesamenability

Dual Banach algebras

amenability Normal virtua diagonals

Representation theory

Open questions

Theorem (J. Tomiyama, 1970)

Let \mathfrak{A} be a C^* -algebra, let \mathfrak{B} be a C^* -subalgebra of \mathfrak{A} , and let $\mathcal{E} : \mathfrak{A} \to \mathfrak{B}$ be a norm one projection,

Dual Banach algebras: an overview

Volker Runde

Amenability

Connesamenability

Dual Banach algebras

amenability Normal virtua diagonals

Representation theory

Open questions

Theorem (J. Tomiyama, 1970)

Let \mathfrak{A} be a C^* -algebra, let \mathfrak{B} be a C^* -subalgebra of \mathfrak{A} , and let $\mathcal{E} : \mathfrak{A} \to \mathfrak{B}$ be a norm one projection, an expectation.

Dual Banach algebras: an overview

Volker Runde

Amenability

Connesamenability

Dual Banach algebras

amenability Normal virtua diagonals

Representation theory

Open questions

Theorem (J. Tomiyama, 1970)

Let \mathfrak{A} be a C^* -algebra, let \mathfrak{B} be a C^* -subalgebra of \mathfrak{A} , and let $\mathcal{E} : \mathfrak{A} \to \mathfrak{B}$ be a norm one projection, an expectation. Then

 $\mathcal{E}(abc) = a(\mathcal{E}b)c$ $(a, c \in \mathfrak{B}, b \in \mathfrak{A}).$

Dual Banach algebras: an overview

Volker Runde

Amenability

Connesamenability

Dual Banach algebras

Connesamenability Normal virtua diagonals

Representation theory

Open questions

Theorem (J. Tomiyama, 1970)

Let \mathfrak{A} be a C^* -algebra, let \mathfrak{B} be a C^* -subalgebra of \mathfrak{A} , and let $\mathcal{E} : \mathfrak{A} \to \mathfrak{B}$ be a norm one projection, an expectation. Then

 $\mathcal{E}(abc) = a(\mathcal{E}b)c$ $(a, c \in \mathfrak{B}, b \in \mathfrak{A}).$

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Definition

Dual Banach algebras: an overview

Volker Runde

Amenability

Connesamenability

Dual Banach algebras

amenability Normal virtua diagonals

Representation theory

Open questions

Theorem (J. Tomiyama, 1970)

Let \mathfrak{A} be a C^* -algebra, let \mathfrak{B} be a C^* -subalgebra of \mathfrak{A} , and let $\mathcal{E} : \mathfrak{A} \to \mathfrak{B}$ be a norm one projection, an expectation. Then

 $\mathcal{E}(abc) = a(\mathcal{E}b)c$ $(a, c \in \mathfrak{B}, b \in \mathfrak{A}).$

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Definition

Let \mathfrak{A} be a Banach algebra,

Dual Banach algebras: an overview

Volker Runde

Amenability

Connesamenability

Dual Banach algebras Connesamenability

Normal virtua diagonals

Representation theory

Open questions

Theorem (J. Tomiyama, 1970)

Let \mathfrak{A} be a C^* -algebra, let \mathfrak{B} be a C^* -subalgebra of \mathfrak{A} , and let $\mathcal{E} : \mathfrak{A} \to \mathfrak{B}$ be a norm one projection, an expectation. Then

 $\mathcal{E}(abc) = a(\mathcal{E}b)c$ $(a, c \in \mathfrak{B}, b \in \mathfrak{A}).$

Definition

Let \mathfrak{A} be a Banach algebra, and let \mathfrak{B} be a closed subalgebra. A bounded projection $\mathcal{Q}:\mathfrak{A}\to\mathfrak{B}$

Dual Banach algebras: an overview

Volker Runde

Amenability

Connesamenability

Dual Banach algebras Connesamenability

Normal virtua diagonals

Representation theory

Open questions

Theorem (J. Tomiyama, 1970)

Let \mathfrak{A} be a C^* -algebra, let \mathfrak{B} be a C^* -subalgebra of \mathfrak{A} , and let $\mathcal{E} : \mathfrak{A} \to \mathfrak{B}$ be a norm one projection, an expectation. Then

 $\mathcal{E}(abc) = a(\mathcal{E}b)c$ $(a, c \in \mathfrak{B}, b \in \mathfrak{A}).$

Definition

Let \mathfrak{A} be a Banach algebra, and let \mathfrak{B} be a closed subalgebra. A bounded projection $\mathcal{Q} : \mathfrak{A} \to \mathfrak{B}$ is called a quasi-expectation

Dual Banach algebras: an overview

Volker Runde

Amenability

Connesamenability

Dual Banach algebras Connesamenability

diagonals Representation

theory

Open questions

Theorem (J. Tomiyama, 1970)

Let \mathfrak{A} be a C^* -algebra, let \mathfrak{B} be a C^* -subalgebra of \mathfrak{A} , and let $\mathcal{E} : \mathfrak{A} \to \mathfrak{B}$ be a norm one projection, an expectation. Then

 $\mathcal{E}(abc) = a(\mathcal{E}b)c$ $(a, c \in \mathfrak{B}, b \in \mathfrak{A}).$

Definition

Let \mathfrak{A} be a Banach algebra, and let \mathfrak{B} be a closed subalgebra. A bounded projection $\mathcal{Q}: \mathfrak{A} \to \mathfrak{B}$ is called a quasi-expectation if

 $\mathcal{Q}(abc) = a(\mathcal{Q}b)c$ $(a, c \in \mathfrak{B}, b \in \mathfrak{A}).$

Dual Banach algebras: an overview
Representation theory

Dual Banach algebras: an overview

Volker Runde

Amenability

Connesamenability

Dual Banach algebras Connesamenability Normal virtual

Representation theory

Open questions

"Definition"

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ = ● ● ●

Dual Banach algebras: an overview

Volker Runde

Amenability

Connesamenability

Dual Banach algebras Connes-

amenability Normal virtua diagonals

Representation theory

Open questions

"Definition"

We call \mathfrak{A} "injective"

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへぐ

Dual Banach algebras: an overview

Volker Runde

Amenability

Connesamenability

Dual Banach algebras Connes-

Normal virtua diagonals

Representation theory

Open questions

"Definition"

We call \mathfrak{A} "injective" if there are a reflexive Banach space E,

"Definition"

Dual Banach algebras: an overview

Volker Runde

Amenability

Connesamenability

Dual Banach algebras Connesamenability Normal virtual diagonals

Representation theory

Open questions

We call \mathfrak{A} "injective" if there are a reflexive Banach space E, an isometric, weak*-weak* continuous algebra homomorphism $\pi : \mathfrak{A} \to \mathcal{B}(E)$,
"Definition"

Dual Banach algebras: an overview

Volker Runde

Amenability

Connesamenability

Dual Banach algebras Connesamenability Normal virtual diagonals

Representation theory

Open questions

We call \mathfrak{A} "injective" if there are a reflexive Banach space E, an isometric, weak*-weak* continuous algebra homomorphism $\pi : \mathfrak{A} \to \mathcal{B}(E)$, and a quasi-expectation $\mathcal{Q} : \mathcal{B}(E) \to \pi(\mathfrak{A})'$.

"Definition"

Easy

Dual Banach algebras: an overview

Volker Runde

Amenability

Connesamenability

Dual Banach algebras

amenability Normal virtual diagonals

Representation theory

Open questions

We call \mathfrak{A} "injective" if there are a reflexive Banach space E, an isometric, weak*-weak* continuous algebra homomorphism $\pi : \mathfrak{A} \to \mathcal{B}(E)$, and a quasi-expectation $\mathcal{Q} : \mathcal{B}(E) \to \pi(\mathfrak{A})'$.

"Definition"

Dual Banach algebras: an overview

Volker Runde

Amenability

Connesamenability

Dual Banach algebras

amenability Normal virtua diagonals

Representation theory

Open questions

We call \mathfrak{A} "injective" if there are a reflexive Banach space E, an isometric, weak*-weak* continuous algebra homomorphism $\pi : \mathfrak{A} \to \mathcal{B}(E)$, and a quasi-expectation $\mathcal{Q} : \mathcal{B}(E) \to \pi(\mathfrak{A})'$.

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Easy

Connes-amenability implies "injectivity",

"Definition"

Dual Banach algebras: an overview

Volker Runde

Amenability

Connesamenability

Dual Banach algebras

amenability Normal virtua diagonals

Representation theory

Open questions

We call \mathfrak{A} "injective" if there are a reflexive Banach space E, an isometric, weak*-weak* continuous algebra homomorphism $\pi : \mathfrak{A} \to \mathcal{B}(E)$, and a quasi-expectation $\mathcal{Q} : \mathcal{B}(E) \to \pi(\mathfrak{A})'$.

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Easy

Connes-amenability implies "injectivity", but...

"Definition"

Dual Banach algebras: an overview

Volker Runde

Amenability

Connesamenability

Dual Banach algebras

Connesamenability Normal virtua diagonals

Representation theory

Open questions

We call \mathfrak{A} "injective" if there are a reflexive Banach space E, an isometric, weak*-weak* continuous algebra homomorphism $\pi : \mathfrak{A} \to \mathcal{B}(E)$, and a quasi-expectation $\mathcal{Q} : \mathcal{B}(E) \to \pi(\mathfrak{A})'$.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Easy

Connes-amenability implies "injectivity", but...

Example

"Definition"

Dual Banach algebras: an overview

Volker Runde

Amenability

Connesamenability

Dual Banach algebras

amenability Normal virtua diagonals

Representation theory

Open questions

We call \mathfrak{A} "injective" if there are a reflexive Banach space E, an isometric, weak*-weak* continuous algebra homomorphism $\pi : \mathfrak{A} \to \mathcal{B}(E)$, and a quasi-expectation $\mathcal{Q} : \mathcal{B}(E) \to \pi(\mathfrak{A})'$.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Easy

Connes-amenability implies "injectivity", but...

Example

For $p,q\in(1,\infty)\setminus\{2\}$ with p
eq q,

"Definition"

Dual Banach algebras: an overview

Volker Runde

Amenability

Connesamenability

Dual Banach algebras

amenability Normal virtua diagonals

Representation theory

Open questions

We call \mathfrak{A} "injective" if there are a reflexive Banach space E, an isometric, weak*-weak* continuous algebra homomorphism $\pi : \mathfrak{A} \to \mathcal{B}(E)$, and a quasi-expectation $\mathcal{Q} : \mathcal{B}(E) \to \pi(\mathfrak{A})'$.

Easy

Connes-amenability implies "injectivity", but...

Example

For $p,q\in(1,\infty)\setminus\{2\}$ with p
eq q, $\mathcal{B}(\ell^p\oplus\ell^q)$ is not Connes-amenable,

"Definition"

Dual Banach algebras: an overview

Volker Runde

Amenability

Connesamenability

Dual Banach algebras

amenability Normal virtua diagonals

Representation theory

Open questions

We call \mathfrak{A} "injective" if there are a reflexive Banach space E, an isometric, weak*-weak* continuous algebra homomorphism $\pi : \mathfrak{A} \to \mathcal{B}(E)$, and a quasi-expectation $\mathcal{Q} : \mathcal{B}(E) \to \pi(\mathfrak{A})'$.

Easy

Connes-amenability implies "injectivity", but...

Example

For $p, q \in (1, \infty) \setminus \{2\}$ with $p \neq q$, $\mathcal{B}(\ell^p \oplus \ell^q)$ is not Connes-amenable, but trivially "injective".

Representation theory

Dual Banach algebras: an overview

Volker Runde

Amenability

Connesamenability

Dual Banach algebras Connes-

amenability Normal virtua diagonals

Representation theory

Open questions

Definition (M. Daws, 2007)

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへぐ

Dual Banach algebras: an overview

Volker Runde

Amenability

Connesamenability

Dual Banach algebras

Connesamenability Normal virtua diagonals

Representation theory

Open questions

Definition (M. Daws, 2007)

A dual Banach algebra $\mathfrak A$ is called injective if,

Dual Banach algebras: an overview

Volker Runde

Amenability

Connesamenability

Dual Banach algebras Connesamenability

Representation theory

Open questions

Definition (M. Daws, 2007)

A dual Banach algebra ${\mathfrak A}$ is called injective if, for each reflexive Banach space E

▲ロト ▲帰 ト ▲ヨト ▲ヨト - ヨ - の々ぐ

Dual Banach algebras: an overview

Volker Runde

Amenability

Connesamenability

Dual Banach algebras Connesamenability Normal virtual diagonals

Representation theory

Open questions

Definition (M. Daws, 2007)

A dual Banach algebra \mathfrak{A} is called injective if, for each reflexive Banach space E and for each weak*-weak* continuous algebra homomorphism $\pi : \mathfrak{A} \to \mathcal{B}(E)$,

Dual Banach algebras: an overview

Volker Runde

Amenability

Connesamenability

Dual Banach algebras Connesamenability Normal virtual

Representation theory

Open questions

Definition (M. Daws, 2007)

A dual Banach algebra \mathfrak{A} is called injective if, for each reflexive Banach space E and for each weak*-weak* continuous algebra homomorphism $\pi : \mathfrak{A} \to \mathcal{B}(E)$, there is a quasi-expectation $\mathcal{Q} : \mathcal{B}(E) \to \pi(\mathfrak{A})'$.

Dual Banach algebras: an overview

Volker Runde

Amenability

Connesamenability

Dual Banach algebras

amenability Normal virtua diagonals

Representation theory

Open questions

Definition (M. Daws, 2007)

A dual Banach algebra \mathfrak{A} is called injective if, for each reflexive Banach space E and for each weak*-weak* continuous algebra homomorphism $\pi : \mathfrak{A} \to \mathcal{B}(E)$, there is a quasi-expectation $\mathcal{Q} : \mathcal{B}(E) \to \pi(\mathfrak{A})'$.

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Theorem (M. Daws, 2007)

Dual Banach algebras: an overview

Volker Runde

Amenability

Connesamenability

Dual Banach algebras Connes-

Normal virtua diagonals

Representation theory

Open questions

Definition (M. Daws, 2007)

A dual Banach algebra \mathfrak{A} is called injective if, for each reflexive Banach space E and for each weak*-weak* continuous algebra homomorphism $\pi : \mathfrak{A} \to \mathcal{B}(E)$, there is a quasi-expectation $\mathcal{Q} : \mathcal{B}(E) \to \pi(\mathfrak{A})'$.

Theorem (M. Daws, 2007)

The following are equivalent for a dual Banach algebra \mathfrak{A} :

Dual Banach algebras: an overview

Volker Runde

Amenability

Connesamenability

Dual Banach algebras Connesamenability

Normal virtua diagonals

Representation theory

Open questions

Definition (M. Daws, 2007)

A dual Banach algebra \mathfrak{A} is called injective if, for each reflexive Banach space E and for each weak*-weak* continuous algebra homomorphism $\pi : \mathfrak{A} \to \mathcal{B}(E)$, there is a quasi-expectation $\mathcal{Q} : \mathcal{B}(E) \to \pi(\mathfrak{A})'$.

Theorem (M. Daws, 2007)

The following are equivalent for a dual Banach algebra Ω:
1 Ω is injective;

Dual Banach algebras: an overview

Volker Runde

Amenability

Connesamenability

Dual Banach algebras Connesamenability

Normal virtua diagonals

Representation theory

Open questions

Definition (M. Daws, 2007)

A dual Banach algebra \mathfrak{A} is called injective if, for each reflexive Banach space E and for each weak*-weak* continuous algebra homomorphism $\pi : \mathfrak{A} \to \mathcal{B}(E)$, there is a quasi-expectation $\mathcal{Q} : \mathcal{B}(E) \to \pi(\mathfrak{A})'$.

Theorem (M. Daws, 2007)

The following are equivalent for a dual Banach algebra \mathfrak{A} :

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

1 \mathfrak{A} *is injective;*

2 A is Connes-amenable.

Dual Banach algebras: an overview
Connes- amenability
Dual Banach algebras
Representation theory
Open questions

◆□ ▶ < 圖 ▶ < 圖 ▶ < 圖 ▶ < 圖 • 의 Q @</p>

Question

Volker Runde

Amenability

Connesamenability

Dual Banach algebras Connesamenability

Normal virtua diagonals

Representation theory

Open questions

Dual Banach algebras: an overview

Volker Runde

Amenability

Connesamenability

Dual Banach algebras

Connesamenability Normal virtua diagonals

Representation theory

Open questions

Question

Does von Neumann's bicommutant theorem extend to general dual Banach algebras?

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ● の Q ()

Dual Banach algebras: an overview

Volker Runde

Amenability

Connesamenability

Dual Banach algebras Connesamenability

Normal virtua diagonals

Representation theory

Open questions

Question

Does von Neumann's bicommutant theorem extend to general dual Banach algebras?

▲ロト ▲圖 ト ▲ ヨト ▲ ヨト ― ヨー つくぐ

Example

Dual Banach algebras: an overview

Volker Runde

Amenability

Connesamenability

Dual Banach algebras

Connesamenability Normal virtua diagonals

Representation theory

Open questions

Question

Does von Neumann's bicommutant theorem extend to general dual Banach algebras?

Example

Let

$$\mathfrak{A} := \left\{ \left[\begin{smallmatrix} a & b \\ 0 & c \end{smallmatrix}
ight] : a, b, c \in \mathbb{C}
ight\}.$$

▲ロト ▲帰 ト ▲ヨト ▲ヨト 三三 - のへぐ

Dual Banach algebras: an overview

Volker Runde

Amenability

Connesamenability

Dual Banach algebras Connes-

Normal virtua diagonals

Representation theory

Open questions

Question

Does von Neumann's bicommutant theorem extend to general dual Banach algebras?

Example

Let

$$\mathfrak{A} := \left\{ \left[\begin{smallmatrix} a & b \\ 0 & c \end{smallmatrix}
ight\} : a, b, c \in \mathbb{C}
ight\}.$$

▲ロト ▲帰 ト ▲ヨト ▲ヨト 三三 - のへぐ

Then $\mathfrak{A} \subset \mathcal{B}(\mathbb{C}^2)$ is a dual Banach algebra,

Dual Banach algebras: an overview

Volker Runde

Amenability

Connesamenability

Dual Banach algebras Connes-

Normal virtua diagonals

Representation theory

Open questions

Question

Does von Neumann's bicommutant theorem extend to general dual Banach algebras?

Example

Let

$$\mathfrak{A} := \left\{ \left[\begin{smallmatrix} a & b \\ 0 & c \end{smallmatrix}
ight\} : a, b, c \in \mathbb{C}
ight\}.$$

▲ロト ▲帰 ト ▲ヨト ▲ヨト 三三 - のへぐ

Then $\mathfrak{A} \subset \mathcal{B}(\mathbb{C}^2)$ is a dual Banach algebra, but $\mathfrak{A}'' = \mathcal{B}(\mathbb{C}^2)$.

Dual Banach algebras: an overview

Volker Runde

Amenability

Connesamenability

Dual Banach algebras

Connesamenability Normal virtua diagonals

Representation theory

Open questions

Question

Does von Neumann's bicommutant theorem extend to general dual Banach algebras?

Example

Let

$$\mathfrak{A} := \left\{ \left[\begin{smallmatrix} a & b \\ 0 & c \end{smallmatrix}
ight] : a, b, c \in \mathbb{C}
ight\}.$$

Then $\mathfrak{A} \subset \mathcal{B}(\mathbb{C}^2)$ is a dual Banach algebra, but $\mathfrak{A}'' = \mathcal{B}(\mathbb{C}^2)$.

Theorem (M. Daws, 2010)

Dual Banach algebras: an overview

Volker Runde

Amenability

Connesamenability

Dual Banach algebras Connes-

amenability Normal virtua diagonals

Representation theory

Open questions

Question

Does von Neumann's bicommutant theorem extend to general dual Banach algebras?

Example

Let

$$\mathfrak{A} := \left\{ \left[\begin{smallmatrix} a & b \\ 0 & c \end{smallmatrix}
ight\} : a, b, c \in \mathbb{C} \right\}.$$

Then $\mathfrak{A} \subset \mathcal{B}(\mathbb{C}^2)$ is a dual Banach algebra, but $\mathfrak{A}'' = \mathcal{B}(\mathbb{C}^2)$.

Theorem (M. Daws, 2010)

Let \mathfrak{A} be a unital dual Banach algebra.

Dual Banach algebras: an overview

Volker Runde

Amenability

Connesamenability

Dual Banach algebras Connes-

amenability Normal virtua diagonals

Representation theory

Open questions

Question

Does von Neumann's bicommutant theorem extend to general dual Banach algebras?

Example

Let

$$\mathfrak{A} := \left\{ \left[\begin{smallmatrix} a & b \\ 0 & c \end{smallmatrix}
ight] : a, b, c \in \mathbb{C}
ight\}.$$

Then $\mathfrak{A} \subset \mathcal{B}(\mathbb{C}^2)$ is a dual Banach algebra, but $\mathfrak{A}'' = \mathcal{B}(\mathbb{C}^2)$.

Theorem (M. Daws, 2010)

Let \mathfrak{A} be a unital dual Banach algebra. Then there are

Dual Banach algebras: an overview

Volker Runde

Amenability

Connesamenability

Dual Banach algebras

Normal virtua diagonals

Representation theory

Open questions

Question

Does von Neumann's bicommutant theorem extend to general dual Banach algebras?

Example

Let

$$\mathfrak{A} := \left\{ \left[\begin{smallmatrix} a & b \\ 0 & c \end{smallmatrix}
ight\} : a, b, c \in \mathbb{C} \right\}.$$

Then $\mathfrak{A} \subset \mathcal{B}(\mathbb{C}^2)$ is a dual Banach algebra, but $\mathfrak{A}'' = \mathcal{B}(\mathbb{C}^2)$.

Theorem (M. Daws, 2010)

Let $\mathfrak A$ be a unital dual Banach algebra. Then there are a reflexive Banach space E

Dual Banach algebras: an overview

Volker Runde

Amenability

Connesamenability

Dual Banach algebras Connes-

Normal virtua diagonals

Representation theory

Open questions

Question

Does von Neumann's bicommutant theorem extend to general dual Banach algebras?

Example

Let

$$\mathfrak{A} := \left\{ \left[\begin{smallmatrix} a & b \\ 0 & c \end{smallmatrix}
ight] : a, b, c \in \mathbb{C}
ight\}.$$

Then $\mathfrak{A} \subset \mathcal{B}(\mathbb{C}^2)$ is a dual Banach algebra, but $\mathfrak{A}'' = \mathcal{B}(\mathbb{C}^2)$.

Theorem (M. Daws, 2010)

Let \mathfrak{A} be a unital dual Banach algebra. Then there are a reflexive Banach space E and a unital,

Dual Banach algebras: an overview

Volker Runde

Amenability

Connesamenability

Dual Banach algebras Connes-

Normal virtua diagonals

Representation theory

Open questions

Question

Does von Neumann's bicommutant theorem extend to general dual Banach algebras?

Example

Let

$$\mathfrak{A} := \left\{ \left[\begin{smallmatrix} a & b \\ 0 & c \end{smallmatrix}
ight\} : a, b, c \in \mathbb{C} \right\}.$$

Then $\mathfrak{A} \subset \mathcal{B}(\mathbb{C}^2)$ is a dual Banach algebra, but $\mathfrak{A}'' = \mathcal{B}(\mathbb{C}^2)$.

Theorem (M. Daws, 2010)

Let \mathfrak{A} be a unital dual Banach algebra. Then there are a reflexive Banach space E and a unital, isometric,

Dual Banach algebras: an overview

Volker Runde

Amenability

Connesamenability

Dual Banach algebras Connes-

Normal virtua diagonals

Representation theory

Open questions

Question

Does von Neumann's bicommutant theorem extend to general dual Banach algebras?

Example

Let

$$\mathfrak{A} := \left\{ \left[\begin{smallmatrix} a & b \\ 0 & c \end{smallmatrix}
ight\} : a, b, c \in \mathbb{C} \right\}.$$

Then $\mathfrak{A} \subset \mathcal{B}(\mathbb{C}^2)$ is a dual Banach algebra, but $\mathfrak{A}'' = \mathcal{B}(\mathbb{C}^2)$.

Theorem (M. Daws, 2010)

Let \mathfrak{A} be a unital dual Banach algebra. Then there are a reflexive Banach space E and a unital, isometric, weak*-weak* continuous

Dual Banach algebras: an overview

Volker Runde

Amenability

Connesamenability

Dual Banach algebras Connesamenability

Normal virtua diagonals

Representation theory

Open questions

Question

Does von Neumann's bicommutant theorem extend to general dual Banach algebras?

Example

Let

$$\mathfrak{A} := \left\{ \left[\begin{smallmatrix} a & b \\ 0 & c \end{smallmatrix}
ight\} : a, b, c \in \mathbb{C} \right\}.$$

Then $\mathfrak{A} \subset \mathcal{B}(\mathbb{C}^2)$ is a dual Banach algebra, but $\mathfrak{A}'' = \mathcal{B}(\mathbb{C}^2)$.

Theorem (M. Daws, 2010)

Let \mathfrak{A} be a unital dual Banach algebra. Then there are a reflexive Banach space E and a unital, isometric, weak*-weak* continuous algebra homomorphism $\pi : \mathfrak{A} \to \mathcal{B}(E)$

Dual Banach algebras: an overview

Volker Runde

Amenability

Connesamenability

Dual Banach algebras Connesamenability

Normal virtua diagonals

Representation theory

Open questions

Question

Does von Neumann's bicommutant theorem extend to general dual Banach algebras?

Example

Let

$$\mathfrak{A} := \left\{ \left[\begin{smallmatrix} a & b \\ 0 & c \end{smallmatrix}
ight\} : a, b, c \in \mathbb{C} \right\}.$$

Then $\mathfrak{A} \subset \mathcal{B}(\mathbb{C}^2)$ is a dual Banach algebra, but $\mathfrak{A}'' = \mathcal{B}(\mathbb{C}^2)$.

Theorem (M. Daws, 2010)

Let \mathfrak{A} be a unital dual Banach algebra. Then there are a reflexive Banach space E and a unital, isometric, weak*-weak* continuous algebra homomorphism $\pi : \mathfrak{A} \to \mathcal{B}(E)$ such that $\pi(\mathfrak{A}) = \pi(\mathfrak{A})''$.

Uniqueness of the predual, I

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへぐ

Uniqueness of the predual, I

Dual Banach algebras: an overview Question Open questions

◆□▶ ◆□▶ ◆□▶ ◆□▶ □□ - のへぐ
Dual Banach algebras: an overview

Volker Runde

Amenability

Connesamenability

Dual Banach algebras

Connesamenability Normal virtua diagonals

Representation theory

Open questions

Question

Let \mathfrak{A} be a dual Banach algebra with predual \mathfrak{A}_* .

Dual Banach algebras: an overview

Volker Runde

Amenability

Connesamenability

Dual Banach algebras

amenability Normal virtua diagonals

Representation theory

Open questions

Question

Let ${\mathfrak A}$ be a dual Banach algebra with predual ${\mathfrak A}_*.$ To what extent is ${\mathfrak A}_*$ unique?

Dual Banach algebras: an overview

Volker Runde

Amenability

Connesamenability

Dual Banach algebras

Connesamenability Normal virtual diagonals

Representation theory

Open questions

Question

Let ${\mathfrak A}$ be a dual Banach algebra with predual ${\mathfrak A}_*.$ To what extent is ${\mathfrak A}_*$ unique?

Example

・ロト ・ 画 ・ ・ 画 ・ ・ 画 ・ うらぐ

Dual Banach algebras: an overview

Volker Runde

Amenability

Connesamenability

Dual Banach algebras Connesamenability Normal virtual

Representation

Open questions

Question

Let \mathfrak{A} be a dual Banach algebra with predual \mathfrak{A}_* . To what extent is \mathfrak{A}_* unique?

▲ロト ▲帰 ト ▲ヨト ▲ヨト - ヨ - の々ぐ

Example

Let E be a Banach space with two different preduals,

Dual Banach algebras: an overview

Volker Runde

Amenability

Connesamenability

Dual Banach algebras Connesamenability

Representatio

Open questions

Question

Let \mathfrak{A} be a dual Banach algebra with predual \mathfrak{A}_* . To what extent is \mathfrak{A}_* unique?

Example

Let *E* be a Banach space with two different preduals, e.g., $E = \ell^1$.

Dual Banach algebras: an overview

Volker Runde

Amenability

Connesamenability

Dual Banach algebras Connesamenability Normal virtual

Representation theory

Open questions

Question

Let ${\mathfrak A}$ be a dual Banach algebra with predual ${\mathfrak A}_*.$ To what extent is ${\mathfrak A}_*$ unique?

Example

Let *E* be a Banach space with two different preduals, e.g., $E = \ell^1$. Equip *E* with the zero product.

Dual Banach algebras: an overview

Volker Runde

Amenability

Connesamenability

Dual Banach algebras Connesamenability Normal virtual

Representation theory

Open questions

Question

Let ${\mathfrak A}$ be a dual Banach algebra with predual ${\mathfrak A}_*.$ To what extent is ${\mathfrak A}_*$ unique?

Example

Let *E* be a Banach space with two different preduals, e.g., $E = \ell^1$.

Equip E with the zero product.

Then E is dual Banach algebra,

Dual Banach algebras: an overview

Volker Runde

Amenability

Connesamenability

Dual Banach algebras Connesamenability Normal virtual

Representation theory

Open questions

Question

Let ${\mathfrak A}$ be a dual Banach algebra with predual ${\mathfrak A}_*.$ To what extent is ${\mathfrak A}_*$ unique?

Example

Let *E* be a Banach space with two different preduals, e.g., $E = \ell^1$.

Equip E with the zero product.

Then E is dual Banach algebra, necessarily with two different preduals.

Dual Banach algebras: an overview

Volker Runde

Amenability

Connesamenability

Dual Banach algebras Connes-

amenability Normal virtua diagonals

Representation theory

Open questions

Theorem (G. Godefroy & P. D. Saphar, 1988)

If E is reflexive,

Dual Banach algebras: an overview

Volker Runde

Amenability

Connesamenability

Dual Banach algebras Connes-

Normal virtua diagonals

Representation theory

Open questions

Theorem (G. Godefroy & P. D. Saphar, 1988)

If E is reflexive, then $E \hat{\otimes} E^*$ is the unique

Dual Banach algebras: an overview

Volker Runde

Amenability

Connesamenability

Dual Banach algebras Connes-

Normal virtua diagonals

Representation theory

Open questions

Theorem (G. Godefroy & P. D. Saphar, 1988)

If *E* is reflexive, then $E \hat{\otimes} E^*$ is the unique isometric

Dual Banach algebras: an overview

Volker Runde

Amenability

Connesamenability

Dual Banach algebras Connesamenability

Representation theory

Open questions

Theorem (G. Godefroy & P. D. Saphar, 1988)

If *E* is reflexive, then $E \otimes E^*$ is the unique isometric predual of $\mathcal{B}(E)$.

Dual Banach algebras: an overview

Volker Runde

Amenability

Connesamenability

Dual Banac algebras Connes-

amenability Normal virtua diagonals

Representation theory

Open questions

Theorem (G. Godefroy & P. D. Saphar, 1988)

If *E* is reflexive, then $E \hat{\otimes} E^*$ is the unique isometric predual of $\mathcal{B}(E)$.

Theorem (M. Daws, 2007)

Dual Banach algebras: an overview

Volker Runde

Amenability

Connesamenability

Dual Banac algebras

amenability Normal virtua diagonals

Representation theory

Open questions

Theorem (G. Godefroy & P. D. Saphar, 1988)

If *E* is reflexive, then $E \hat{\otimes} E^*$ is the unique isometric predual of $\mathcal{B}(E)$.

Theorem (M. Daws, 2007)

If E is reflexive

Dual Banach algebras: an overview

Volker Runde

Amenability

Connesamenability

Dual Banaci algebras

amenability Normal virtua diagonals

Representation theory

Open questions

Theorem (G. Godefroy & P. D. Saphar, 1988)

If *E* is reflexive, then $E \hat{\otimes} E^*$ is the unique isometric predual of $\mathcal{B}(E)$.

▲ロト ▲帰 ト ▲ヨト ▲ヨト - ヨ - の々ぐ

Theorem (M. Daws, 2007)

If E is reflexive and has the approximation property,

Dual Banach algebras: an overview

Volker Runde

Amenability

Connesamenability

Dual Banac algebras

Connesamenability Normal virtua diagonals

Representation theory

Open questions

Theorem (G. Godefroy & P. D. Saphar, 1988)

If *E* is reflexive, then $E \hat{\otimes} E^*$ is the unique isometric predual of $\mathcal{B}(E)$.

Theorem (M. Daws, 2007)

If E is reflexive and has the approximation property, then $E\hat{\otimes}E^*$ is the unique

Dual Banach algebras: an overview

Volker Runde

Amenability

Connesamenability

Dual Banac algebras

amenability Normal virtua diagonals

Representation theory

Open questions

Theorem (G. Godefroy & P. D. Saphar, 1988)

If *E* is reflexive, then $E \hat{\otimes} E^*$ is the unique isometric predual of $\mathcal{B}(E)$.

Theorem (M. Daws, 2007)

If *E* is reflexive and has the approximation property, then $E \hat{\otimes} E^*$ is the unique isomorphic

Dual Banach algebras: an overview

Volker Runde

Amenability

Connesamenability

Dual Banac algebras

amenability Normal virtua diagonals

Representation theory

Open questions

Theorem (G. Godefroy & P. D. Saphar, 1988)

If *E* is reflexive, then $E \hat{\otimes} E^*$ is the unique isometric predual of $\mathcal{B}(E)$.

Theorem (M. Daws, 2007)

If *E* is reflexive and has the approximation property, then $E \hat{\otimes} E^*$ is the unique isomorphic predual of $\mathcal{B}(E)$

Dual Banach algebras: an overview

Volker Runde

Amenability

Connesamenability

Dual Banacl algebras

amenability Normal virtua diagonals

Representation theory

Open questions

Theorem (G. Godefroy & P. D. Saphar, 1988)

If *E* is reflexive, then $E \hat{\otimes} E^*$ is the unique isometric predual of $\mathcal{B}(E)$.

Theorem (M. Daws, 2007)

If *E* is reflexive and has the approximation property, then $E \hat{\otimes} E^*$ is the unique isomorphic predual of $\mathcal{B}(E)$ turning it into a dual Banach algebra.

Dual Banach algebras Connes- amenability Normal virtual
Open questions

◆□▶ ◆□▶ ◆□▶ ◆□▶ □□ - のへぐ

Dual Banach algebras: an overview

Volker Runde

Amenability

Connesamenability

Dual Banach algebras

Connesamenability Normal virtua diagonals

Representation theory

Open questions

Question

Does every Connes-amenable dual Banach algebra contain

Dual Banach algebras: an overview

Volker Runde

Amenability

Connesamenability

Dual Banach algebras

Connesamenability Normal virtua diagonals

Representation theory

Open questions

Question

Does every Connes-amenable dual Banach algebra contain a closed,

Dual Banach algebras: an overview

Volker Runde

Amenability

Connesamenability

Dual Banach algebras

Connesamenability Normal virtua diagonals

Representation theory

Open questions

Question

Does every Connes-amenable dual Banach algebra contain a closed, weak * dense,

Dual Banach algebras: an overview

Volker Runde

Amenability

Connesamenability

Dual Banach algebras

Connesamenability Normal virtua diagonals

Representation theory

Open questions

Question

Does every Connes-amenable dual Banach algebra contain a closed, weak * dense, amenable

Dual Banach algebras: an overview

Volker Runde

Amenability

Connesamenability

Dual Banach algebras

Connesamenability Normal virtua diagonals

Representation theory

Open questions

Question

Does every Connes-amenable dual Banach algebra contain a closed, weak* dense, amenable subalgebra?

Dual Banach algebras: an overview

Volker Runde

Amenability

Connesamenability

Dual Banach algebras

Connesamenability Normal virtua diagonals

Representation theory

Open questions

Question

Does every Connes-amenable dual Banach algebra contain a closed, weak* dense, amenable subalgebra?

◆□▶ ◆□▶ ◆三▶ ◆三▶ →三 ● ● ●

Question

Dual Banach algebras: an overview

Volker Runde

Amenability

Connesamenability

Dual Banach algebras

Connesamenability Normal virtua diagonals

Representation theory

Open questions

Question

Does every Connes-amenable dual Banach algebra contain a closed, weak* dense, amenable subalgebra?

▲ロト ▲帰 ト ▲ヨト ▲ヨト - ヨ - の々ぐ

Question

Let \mathfrak{A} be Arens regular

Dual Banach algebras: an overview

Volker Runde

Amenability

Connesamenability

Dual Banach algebras

Connesamenability Normal virtua diagonals

Representation theory

Open questions

Question

Does every Connes-amenable dual Banach algebra contain a closed, weak* dense, amenable subalgebra?

Question

Let ${\mathfrak A}$ be Arens regular such that ${\mathfrak A}^{**}$ is Connes-amenable.

Dual Banach algebras: an overview

Volker Runde

Amenability

Connesamenability

Dual Banach algebras

Connesamenability Normal virtua diagonals

Representation theory

Open questions

Question

Does every Connes-amenable dual Banach algebra contain a closed, weak* dense, amenable subalgebra?

Question

Let ${\mathfrak A}$ be Arens regular such that ${\mathfrak A}^{**}$ is Connes-amenable. Is ${\mathfrak A}$ amenable?

Dual Banach algebras: an overview

Volker Runde

Amenability

Connesamenability

Dual Banach algebras

Connesamenability Normal virtua diagonals

Representation theory

Open questions

Question

Does every Connes-amenable dual Banach algebra contain a closed, weak* dense, amenable subalgebra?

Question

Let ${\mathfrak A}$ be Arens regular such that ${\mathfrak A}^{**}$ is Connes-amenable. Is ${\mathfrak A}$ amenable?

▲ロト ▲帰 ト ▲ヨト ▲ヨト - ヨ - の々ぐ

Theorem (VR, 2001)

Dual Banach algebras: an overview

Volker Runde

Amenability

Connesamenability

Dual Banach algebras

Connesamenability Normal virtua diagonals

Representation theory

Open questions

Question

Does every Connes-amenable dual Banach algebra contain a closed, weak* dense, amenable subalgebra?

Question

Let ${\mathfrak A}$ be Arens regular such that ${\mathfrak A}^{**}$ is Connes-amenable. Is ${\mathfrak A}$ amenable?

Theorem (VR, 2001)

Suppose that every bounded linear map from ${\mathfrak A}$ to ${\mathfrak A}^*$ is weakly compact

Dual Banach algebras: an overview

Volker Runde

Amenability

Connesamenability

Dual Banach algebras

Connesamenability Normal virtua diagonals

Representation theory

Open questions

Question

Does every Connes-amenable dual Banach algebra contain a closed, weak* dense, amenable subalgebra?

Question

Let ${\mathfrak A}$ be Arens regular such that ${\mathfrak A}^{**}$ is Connes-amenable. Is ${\mathfrak A}$ amenable?

Theorem (VR, 2001)

Suppose that every bounded linear map from \mathfrak{A} to \mathfrak{A}^* is weakly compact and that \mathfrak{A}^{**} has a normal virtual diagonal.

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Dual Banach algebras: an overview

Volker Runde

Amenability

Connesamenability

Dual Banach algebras

Connesamenability Normal virtua diagonals

Representation theory

Open questions

Question

Does every Connes-amenable dual Banach algebra contain a closed, weak* dense, amenable subalgebra?

Question

Let ${\mathfrak A}$ be Arens regular such that ${\mathfrak A}^{**}$ is Connes-amenable. Is ${\mathfrak A}$ amenable?

Theorem (VR, 2001)

Suppose that every bounded linear map from \mathfrak{A} to \mathfrak{A}^* is weakly compact and that \mathfrak{A}^{**} has a normal virtual diagonal. Then \mathfrak{A} is amenable.
Dual Banach algebras: an overview

Volker Runde

Amenability

Connesamenability

Dual Banach algebras

Connesamenability Normal virtua diagonals

Representation theory

Open questions

Recall. . .

A von Neumann algebra $\mathfrak{M} \subset \mathcal{B}(\mathfrak{H})$ is injective

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Dual Banach algebras: an overview

Volker Runde

Amenability

Connesamenability

Dual Banach algebras

Connesamenability Normal virtua diagonals

Representation theory

Open questions

Recall. . .

A von Neumann algebra $\mathfrak{M}\subset\mathcal{B}(\mathfrak{H})$ is injective if and only if

▲ロト ▲帰 ト ▲ヨト ▲ヨト - ヨ - の々ぐ

Dual Banach algebras: an overview

Volker Runde

Amenability

Connesamenability

Dual Banach algebras

Connesamenability Normal virtua diagonals

Representation theory

Open questions

Recall...

A von Neumann algebra $\mathfrak{M} \subset \mathcal{B}(\mathfrak{H})$ is injective if and only if there is an expectation $\mathcal{E} : \mathcal{B}(\mathfrak{H}) \to \mathfrak{M}$.

▲ロト ▲帰 ト ▲ヨト ▲ヨト - ヨ - の々ぐ

Dual Banach algebras: an overview

Volker Runde

Amenability

Connesamenability

Dual Banach algebras

Connesamenability Normal virtua diagonals

Representation theory

Open questions

Recall...

A von Neumann algebra $\mathfrak{M} \subset \mathcal{B}(\mathfrak{H})$ is injective if and only if there is an expectation $\mathcal{E} : \mathcal{B}(\mathfrak{H}) \to \mathfrak{M}$.

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Question

Dual Banach algebras: an overview

Volker Runde

Amenability

Connesamenability

Dual Banach algebras

Connesamenability Normal virtua diagonals

Representation theory

Open questions

Recall. . .

A von Neumann algebra $\mathfrak{M} \subset \mathcal{B}(\mathfrak{H})$ is injective if and only if there is an expectation $\mathcal{E} : \mathcal{B}(\mathfrak{H}) \to \mathfrak{M}$.

Question

Consider the following property of a unital dual Banach algebra \mathfrak{A} :

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Dual Banach algebras: an overview

Volker Runde

Amenability

Connesamenability

Dual Banach algebras

Connesamenability Normal virtua diagonals

Representation theory

Open questions

Recall. . .

A von Neumann algebra $\mathfrak{M} \subset \mathcal{B}(\mathfrak{H})$ is injective if and only if there is an expectation $\mathcal{E} : \mathcal{B}(\mathfrak{H}) \to \mathfrak{M}$.

Question

Consider the following property of a unital dual Banach algebra \mathfrak{A} :

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

For each reflexive Banach space E,

Dual Banach algebras: an overview

Volker Runde

Amenability

Connesamenability

Dual Banach algebras

amenability Normal virtua diagonals

Representation theory

Open questions

Recall. . .

A von Neumann algebra $\mathfrak{M} \subset \mathcal{B}(\mathfrak{H})$ is injective if and only if there is an expectation $\mathcal{E} : \mathcal{B}(\mathfrak{H}) \to \mathfrak{M}$.

Question

Consider the following property of a unital dual Banach algebra \mathfrak{A} :

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

For each reflexive Banach space E, and for each unital,

Dual Banach algebras: an overview

Volker Runde

Amenability

Connesamenability

Dual Banach algebras

amenability Normal virtua diagonals

Representation theory

Open questions

Recall. . .

A von Neumann algebra $\mathfrak{M} \subset \mathcal{B}(\mathfrak{H})$ is injective if and only if there is an expectation $\mathcal{E} : \mathcal{B}(\mathfrak{H}) \to \mathfrak{M}$.

Question

Consider the following property of a unital dual Banach algebra \mathfrak{A} :

For each reflexive Banach space E, and for each unital, weak*-weak* continuous algebra homomorphism $\pi : \mathfrak{A} \to \mathcal{B}(E)$,

Dual Banach algebras: an overview

Volker Runde

Amenability

Connesamenability

Dual Banach algebras Connes-

Normal virtua diagonals

Representation theory

Open questions

Recall. . .

A von Neumann algebra $\mathfrak{M} \subset \mathcal{B}(\mathfrak{H})$ is injective if and only if there is an expectation $\mathcal{E} : \mathcal{B}(\mathfrak{H}) \to \mathfrak{M}$.

Question

Consider the following property of a unital dual Banach algebra \mathfrak{A} :

For each reflexive Banach space E, and for each unital, weak*-weak* continuous algebra homomorphism $\pi : \mathfrak{A} \to \mathcal{B}(E)$, there is a quasi-expectation $\mathcal{Q} : \mathcal{B}(E) \to \overline{\pi(\mathfrak{A})}$.

Dual Banach algebras: an overview

Volker Runde

Amenability

Connesamenability

Dual Banach algebras Connesamenability

Normal virtua diagonals

Representation theory

Open questions

A von Neumann algebra $\mathfrak{M} \subset \mathcal{B}(\mathfrak{H})$ is injective if and only if there is an expectation $\mathcal{E} : \mathcal{B}(\mathfrak{H}) \to \mathfrak{M}$.

Question

Recall. . .

Consider the following property of a unital dual Banach algebra \mathfrak{A} :

For each reflexive Banach space E, and for each unital, weak*-weak* continuous algebra homomorphism $\pi : \mathfrak{A} \to \mathcal{B}(E)$, there is a quasi-expectation $\mathcal{Q} : \mathcal{B}(E) \to \pi(\mathfrak{A})$.

How does this property relate to injectivity?

Dual Banach algebras: an overview
Open questions

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへぐ

Dual Banach algebras: an overview

Volker Runde

Amenability

Connesamenability

Dual Banach algebras

Connesamenability Normal virtua diagonals

Representation theory

Open questions

Question

For which G is B(G) Connes-amenable?

Dual Banach algebras: an overview

Volker Runde

Amenability

Connesamenability

Dual Banach algebras Connesamenability Normal virtual

Representation theory

Open questions

Question

For which G is B(G) Connes-amenable?

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Conjecture

Dual Banach algebras: an overview

Volker Runde

Amenability

Connesamenability

Dual Banach algebras

Connesamenability Normal virtua diagonals

Representation theory

Open questions

Question

For which G is B(G) Connes-amenable?

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Conjecture

B(G) is Connes-amenable

Dual Banach algebras: an overview

Volker Runde

Amenability

Connesamenability

Dual Banach algebras

Connesamenability Normal virtua diagonals

Representation theory

Open questions

Question

For which G is B(G) Connes-amenable?

Conjecture

B(G) is Connes-amenable if and only if

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Dual Banach algebras: an overview

Volker Runde

Amenability

Connesamenability

Dual Banach algebras

amenability Normal virtua diagonals

Representation theory

Open questions

Question

For which G is B(G) Connes-amenable?

Conjecture

B(G) is Connes-amenable if and only if G has an abelian subgroup of finite index.

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Dual Banach algebras: an overview

Volker Runde

Amenability

Connesamenability

Dual Banach algebras

Connesamenability Normal virtua diagonals

Representation theory

Open questions

Question

For which G is B(G) Connes-amenable?

Conjecture

B(G) is Connes-amenable if and only if G has an abelian subgroup of finite index.

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Theorem (F. Uygul, 2007)

Dual Banach algebras: an overview

Volker Runde

Amenability

Connesamenability

Dual Banach algebras

Connesamenability Normal virtua diagonals

Representation theory

Open questions

Question

For which G is B(G) Connes-amenable?

Conjecture

B(G) is Connes-amenable if and only if G has an abelian subgroup of finite index.

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Theorem (F. Uygul, 2007)

The following are equivalent

Dual Banach algebras: an overview

Volker Runde

Amenability

Connesamenability

Dual Banach algebras

Connesamenability Normal virtua diagonals

Representation theory

Open questions

Question

For which G is B(G) Connes-amenable?

Conjecture

B(G) is Connes-amenable if and only if G has an abelian subgroup of finite index.

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Theorem (F. Uygul, 2007)

The following are equivalent for discrete G:

Dual Banach algebras: an overview

Volker Runde

Amenability

Connesamenability

Dual Banach algebras

Connesamenability Normal virtua diagonals

Representation theory

Open questions

Question

For which G is B(G) Connes-amenable?

Conjecture

B(G) is Connes-amenable if and only if G has an abelian subgroup of finite index.

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Theorem (F. Uygul, 2007)

The following are equivalent for discrete G:

1 B(G) is Connes-amenable;

Dual Banach algebras: an overview

Volker Runde

Amenability

Connesamenability

Dual Banach algebras

Connesamenability Normal virtua diagonals

Representation theory

Open questions

Question

For which G is B(G) Connes-amenable?

Conjecture

B(G) is Connes-amenable if and only if G has an abelian subgroup of finite index.

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Theorem (F. Uygul, 2007)

The following are equivalent for discrete G:

- **1** B(G) is Connes-amenable;
- **2** *G* has an abelian subgroup of finite index.