Compact quantum subgroups of a co-amenable quantum group are co-amenable

Pekka Salmi

Quantum group

Let $\mathbb{G} = (M, \Gamma, \phi, \psi)$ be a (locally compact) quantum group:

- M is a von Neumann algebra
- ► $\Gamma: M \to M \overline{\otimes} M$ is a co-multiplication on M, ie, a normal, unital *-homomorphism such that

 $(\Gamma\otimes id)\Gamma=(id\otimes \Gamma)\Gamma$

φ and *ψ* are left and right Haar weights.
 We denote

 $L^{\infty}(\mathbb{G}) = M$ and $L^{1}(\mathbb{G}) = M_{*}$.

GNS-construction applied to (M, ϕ) gives a Hilbert space, which we denote by L²(G). We identify L[∞](G) with its image under the natural representation on L²(G) and consider L[∞](G) \subseteq B(L²(G)).

Multiplicative unitary

There is a unitary operator on $L^2(\mathbb{G})\otimes L^2(\mathbb{G})$ such that

$$\Gamma(x) = W^*(1 \otimes x)W$$
 $(x \in L^{\infty}(\mathbb{G}))$

and satisfies the pentagonal relation

$$W_{12}W_{13}W_{23}=W_{23}W_{12}.$$

Define

$$C_0(\mathbb{G}) = \overline{\{ (\mathsf{id} \otimes \omega) W; \, \omega \in \mathsf{B}(\mathsf{L}^2(\mathbb{G}))_* \}}^{\|\cdot\|}$$

and $C(\mathbb{G}) = M(C_0(\mathbb{G}))$ (the multiplier algebra of $C_0(\mathbb{G})$). $C_0(\mathbb{G})$ gives the reduced C*-algebraic version of \mathbb{G} .

Comparision to yesterday's notation

- ► $A = C_0(\mathbb{G}).$
- ▶ $B = C_0(\mathbb{H}) = C(\mathbb{H})$ is a compact quantum subgroup.
- $\pi: C_0(\mathbb{G}) \to C(\mathbb{H})$ a surjective *-homomorphism such that

 $(\pi \otimes \pi)\Gamma_{\mathbb{G}} = \Gamma_{\mathbb{H}}\pi.$

Dual quantum group

The underlying C*-algebra of the dual quantum group $\widehat{\mathbb{G}}$ of \mathbb{G} is

$$\mathsf{C}_0(\widehat{\mathbb{G}}) = \overline{\{(\omega \otimes \mathsf{id}) \, W; \, \omega \in \mathsf{B}(\mathsf{L}^2(\mathbb{G}))_*\}}^{\|\cdot\|}.$$

 $L^{\infty}(\widehat{\mathbb{G}})$ is the weak^{*} closure of $C_0(\widehat{\mathbb{G}})$. Put $\widehat{W} = \Sigma W^*\Sigma$ so that the co-multiplication of $\widehat{\mathbb{G}}$ is given by

$$\widehat{\Gamma} \colon \mathsf{L}^{\infty}(\widehat{\mathbb{G}}) \to \mathsf{L}^{\infty}(\widehat{\mathbb{G}}) \overline{\otimes} \mathsf{L}^{\infty}(\widehat{\mathbb{G}})$$
$$\widehat{\Gamma}(x) = \widehat{W}^*(1 \otimes x) \widehat{W}.$$

It can be shown that there exist Haar weights for $\widehat{\mathbb{G}}$ and so $\widehat{\mathbb{G}}$ is a quatum group.

Pontryagin's duality holds: $\widehat{\widehat{\mathbb{G}}} = \mathbb{G}$.

Duality between commutative and co-commutative

Let G be a locally compact group. Now

$$egin{aligned} &\mathcal{W}\xi(oldsymbol{s},t) = \xi(oldsymbol{s},oldsymbol{s}^{-1}t) \ &\widehat{\mathcal{W}}\xi(oldsymbol{s},t) = \xi(toldsymbol{s},t) \end{aligned} (\xi \in \mathsf{L}^2(G imes G), \, oldsymbol{s},t \in G). \end{aligned}$$

Define

$$\omega_{\xi,\zeta}(x) = (x\xi \mid \zeta), \qquad (x \in \mathsf{B}(\mathsf{L}^2(G)), \, \xi, \zeta \in \mathsf{L}^2(G)).$$

Then

$$(\mathsf{id}\otimes\omega_{\xi,\zeta})W=M_{\overline{\zeta}*\check{\xi}}$$

where $M_{\overline{\zeta}*\check{\xi}}$ is pointwise multiplication by $\overline{\zeta}*\check{\xi} \in A(G) \subseteq C_0(G)$. On the other hand

$$(\omega_{\xi,\zeta}\otimes \mathsf{id})W = \lambda(\xi\overline{\zeta})$$

where $\lambda(\xi\overline{\zeta})$ is the convolution by $\xi\overline{\zeta} \in L^1(G)$.

Compact and discrete quantum groups

A quantum group \mathbb{G} is compact if the C*-algebra $C_0(\mathbb{G})$ is unital.

A quantum group $\mathbb G$ is discrete if its dual $\widehat{\mathbb G}$ is compact.

A commutative quantum groups $\mathbb{G} = G$ is compact iff *G* is a compact group; \mathbb{G} is discrete iff *G* is discrete.

A co-commutative quantum group $\mathbb{G} = \widehat{G}$ is compact iff *G* is discrete, and \mathbb{G} is discrete iff *G* is compact.

A quantum group \mathbb{G} is co-amenable if there is a bounded approximate identity in $L^1(\mathbb{G})$. This is equivalent to $C_0(\mathbb{G})^*$ being unital and to the existence of a non-zero multiplicative functional on $C_0(\mathbb{G})$.

All commutative quantum groups and all discrete quantum groups are co-amenable.

A co-commutative quantum group $\mathbb{G} = \widehat{G}$ is co-amenable iff *G* is amenable.

Involution on $L^1(\mathbb{G})$

The antipode $S: C_0(\mathbb{G}) \subseteq \text{dom}(S) \to C_0(\mathbb{G})$ is a closed, densely defined operator. For every $\sigma \in B(L^2(\mathbb{G}))_*$, $(\text{id} \otimes \sigma)W \in \text{dom } S$ and

$$S((\mathsf{id}\otimes\sigma)W) = (\mathsf{id}\otimes\sigma)W^*.$$

For every $\omega \in L^1(\mathbb{G})$, define $\overline{\omega}$ by $\overline{\omega}(a) = \overline{\omega(a^*)}$, $a \in C_0(\mathbb{G})$. Following Kustermans (01), define

$$L^1_*(\mathbb{G}) = \{ \omega \in L^1(\mathbb{G}); \text{there is } \eta \in L^1(\mathbb{G}) \text{ such that} \ \overline{\omega}(S(x)) = \eta(x) \text{ for every } x \in \text{dom}(S) \}.$$

We obtain an involution $\omega \mapsto \omega^* \colon L^1_*(\mathbb{G}) \to L^1_*(\mathbb{G})$ by $\omega^* = \overline{\omega}S$. $L^1_*(\mathbb{G})$ is a Banach *-algebra with respect to the norm $\|\omega\|_* = \max\{\|\omega\|, \|\omega^*\|\}.$

First lemma

Recall that $W \in M(C_0(\mathbb{G}) \otimes C_0(\widehat{\mathbb{G}}))$, and define

$$au \colon L^1_*(\mathbb{H}) \to C(\widehat{\mathbb{G}}), \qquad au(\omega) = (\omega \pi \otimes \mathrm{id}) W.$$

When $\mathbb{G} = G$ is a commutative quantum group and $\mathbb{H} = H$ is its subgroup,

$$au(f)\xi(s) = \int_H f(h)\xi(h^{-1}s) \, dh \qquad (f \in \mathsf{L}^1(H), \xi \in \mathsf{L}^2(G)).$$

Lemma

The map τ is a *-isomorphism from $L^1_*(\mathbb{H})$ into $C(\widehat{\mathbb{G}})$.

Extension to $C_0(\widehat{\mathbb{H}})$

Let $U \in B(L^2(\mathbb{H}) \otimes L^2(\mathbb{H}))$ be the left multiplicative unitary associated with \mathbb{H} . Since $\widehat{\mathbb{H}}$ is discrete (and hence co-amenable), the universal

C^{*}-completion of $L^1_*(\mathbb{H})$ is just $C_0(\widehat{\mathbb{H}})$. Therefore there is a *-homomorphism $\rho \colon C_0(\widehat{\mathbb{H}}) \to C(\widehat{\mathbb{G}})$ such that

$$ho((\omega \otimes \operatorname{id})U) = \tau(\omega) = (\omega\pi \otimes \operatorname{id})W \qquad (\omega \in L^1_*(\mathbb{H})).$$

It follows that

$$(\mathsf{id}\otimes
ho)U = (\pi\otimes \mathsf{id})W$$

in $M(C(\mathbb{H})\otimes C_0(\widehat{\mathbb{G}})).$

Embedding $C_0(\widehat{\mathbb{H}})$ to $C(\widehat{\mathbb{G}})$

Theorem

The map ρ is a non-degenerate *-isomorphism from $C_0(\widehat{\mathbb{H}})$ to $C(\widehat{\mathbb{G}})$ and

$$(\rho \otimes \rho)\widehat{\Gamma}_{B} = \widehat{\Gamma}\rho.$$

Proof.

Matrix coefficients of the irreducible unitary representations of $\ensuremath{\mathbb{H}}$:

$$\mu_{pq}^{lpha}$$
 $(lpha \in I, 1 \leq p, q \leq n(lpha)).$

 $B_0 := \operatorname{span}\{u_{pq}^{\alpha}\}$ is a Hopf *-algebra, which is dense in $C(\mathbb{H})$. For every α in I and $0 \le p, q \le n(\alpha)$, there is ω_{pq}^{α} in $L^1(\mathbb{H})$ such that

$$\omega_{pq}^{\alpha}(\boldsymbol{u}_{rs}^{\beta}) = \delta_{\alpha}^{\beta}\delta_{p}^{r}\delta_{q}^{s}.$$

The functional ω_{pq}^{α} is in fact in $L^{1}_{*}(\mathbb{H})$ because $(\omega_{pq}^{\alpha})^{*} = \omega_{qp}^{\alpha}$.

Proof continued

Let

$$\widehat{B}_0 = \operatorname{span} \{ \omega_{pq}^{lpha}; \, lpha, p, q \} \subseteq L^1_*(\mathbb{H}).$$

Then

$$\widehat{B}_0 \cong \operatorname{alg-} \bigoplus M_{n(\alpha)}.$$

Therefore \widehat{B}_0 has a unique C*-completion:

$$C_0(\widehat{\mathbb{H}}) \cong c_0 - \bigoplus M_{n(\alpha)}.$$

Since $\tau: \widehat{B}_0 \to C(\widehat{\mathbb{G}})$ is a *-isomorphism, it follows from the uniqueness of the C*-completion of \widehat{B}_0 that $\rho: C_0(\widehat{\mathbb{H}}) \to C(\widehat{\mathbb{G}})$ is a *-isomorphism. \widehat{B}_0

Proof continued

Claim: $(\rho \otimes \rho)\widehat{\Gamma}_{\mathbb{H}} = \widehat{\Gamma}\rho$. For every $\omega \in L^1_*(\mathbb{H})$,

$$\widehat{\Gamma}\rho((\omega \otimes \mathrm{id})U) = \widehat{\Gamma}((\omega\pi \otimes \mathrm{id})W) = \widehat{W}^*(1 \otimes (\omega\pi \otimes \mathrm{id})W)\widehat{W}$$
$$= \Sigma W((\omega\pi \otimes \mathrm{id})W \otimes 1)W^*\Sigma$$
$$= \Sigma((\omega\pi \otimes \mathrm{id} \otimes \mathrm{id})W_{23}W_{12}W_{23}^*)\Sigma$$
$$= \Sigma((\omega\pi \otimes \mathrm{id} \otimes \mathrm{id})W_{12}W_{13})\Sigma$$

by the pentagonal equation. Since $(\pi \otimes id)W = (id \otimes \rho)U$,

$$\begin{split} \widehat{\Gamma}\rho\big((\omega\otimes \mathrm{id})U\big) &= (\omega\pi\otimes \mathrm{id}\otimes \mathrm{id})W_{13}W_{12} \\ &= (\omega\otimes \mathrm{id}\otimes \mathrm{id})(\mathrm{id}\otimes\rho\otimes\rho)U_{13}U_{12} \\ &= (\rho\otimes\rho)\widehat{\Gamma}_{\mathbb{H}}\big((\omega\otimes \mathrm{id})U\big). \end{split}$$

The claim follows because the elements $(\omega \otimes id)U$ with ω in $L^1_*(\mathbb{H})$ are dense in $C_0(\widehat{\mathbb{H}})$.

Since $\widehat{\mathbb{H}}$ is discrete, $C(\widehat{\mathbb{H}}) = L^{\infty}(\widehat{\mathbb{H}})$.

Lemma

The weak* topology and the strict topology agree on bounded sets of $C(\widehat{\mathbb{H}}).$

Amenability

The quantum group \mathbb{G} is said to be *amenable* if there exists a state *m* of L^{∞}(\mathbb{G}) such that

 $m(\omega \otimes \mathrm{id})\Gamma(x) = \omega(1)m(x) \qquad (\omega \in L^1(\mathbb{G}), x \in L^\infty(\mathbb{G})).$

Such a state is called a *left invariant mean* on $L^{\infty}(\mathbb{G})$.

$$\mathbb{G} \text{ co-amenable } \implies \widehat{\mathbb{G}} \text{ amenable}$$

[Bedos-Tuset].

$$\mathbb{G}$$
 amenable $\stackrel{?}{\Longrightarrow} \widehat{\mathbb{G}}$ co-amenable

The implication is true when $\mathbb G$ is commutative [Leptin] or discrete [Tomatsu].

Co-amenability is inherited by compact quantum subgroups

Theorem

Suppose that \mathbb{H} is a compact quantum subgroup of a co-amenable quantum group \mathbb{G} . Then also \mathbb{H} is co-amenable.

Proof.

By [Tomatsu] it suffices to show that $\widehat{\mathbb{H}}$ is amenable. Since \mathbb{G} is co-amenable, $\widehat{\mathbb{G}}$ is amenable and so there is a state *m* of $C(\widehat{\mathbb{G}})$ such that

$$m(\sigma \otimes id)\widehat{\Gamma}(x) = \sigma(1)m(x) \qquad (\sigma \in L^1(\widehat{\mathbb{G}}), x \in C(\widehat{\mathbb{G}})).$$

Claim: $m\rho$ is a left invariant mean on $C(\widehat{\mathbb{H}}) = L^{\infty}(\widehat{\mathbb{H}})$.

Let $\omega \in L^1(\widehat{\mathbb{H}})$. Since "weak* = strictly", there is $\sigma \in L^1(\widehat{\mathbb{G}}) = L^{\infty}(\widehat{\mathbb{G}})_*$ such that $\omega = \sigma \rho$. Now for every $x \in C(\widehat{\mathbb{H}})$

$$m\rho(\omega \otimes \mathrm{id})\widehat{\Gamma}_{\mathbb{H}}(x) = m(\sigma \otimes \mathrm{id})(\rho \otimes \rho)\widehat{\Gamma}_{\mathbb{H}}(x)$$
$$= m(\sigma \otimes \mathrm{id})\widehat{\Gamma}\rho(x) = \sigma(1)m\rho(x) = \omega(1)m\rho(x)$$

because *m* is left invariant. Therefore $m\rho$ is a left invariant mean on $C(\widehat{\mathbb{H}}) = L^{\infty}(\widehat{\mathbb{H}})$ and so $\widehat{\mathbb{H}}$ is amenable.