Correspondence between compact quantum subgroups and invariant C*-subalgebras

Pekka Salmi

Outline

- 1. Compact quantum subgroups from left invariant C*-subalgebras
- 2. Left invariant C*-subalgebras from compact quantum subgroups
- 3. Correspondence

Set-up

Let (A, Γ) be a co-amenable quantum group, and let X be a non-zero, left invariant C*-subalgebra of A. So

 $(\mu \otimes id)\Gamma(x) \in X$ for every $\mu \in A^*, x \in X$.

Denote the state space of A by S(A). Define

$$F_0 = \{ \mu \in S(A); (id \otimes \mu) \Gamma(x) = x \text{ for every } x \in X \}$$

$$F = \operatorname{span} F_0$$

Lemma

The subspace F is a weak*-closed subalgebra of A*.

Sketch of construction

If F_{\perp} is a two-sided ideal, $B = A/F_{\perp}$ is a unital C*-algebra. Then we can define a co-multiplication Γ_B on *B* by

$$\Gamma_B \pi = (\pi \otimes \pi) \Gamma$$

where $\pi: A \rightarrow B = A/F_{\perp}$ is the quotien map.

If X satisfies a further condition of co-normality, F_{\perp} is an ideal.

Commutative and co-commutative cases

In the commutative case

 $A = C_0(G)$ for locally compact group G $X = C_0(G/H)$ for compact subgroup H of G F = M(H) X always co-normal $A/F_\perp = C(H)$

In the co-commutative case

 $A = C^*(G)$ for amenable locally compact group G $X = C^*(H)$ for open subgroup H of G F = B(G)-functions constant on double cosets of H X co-normal iff H normal $A/F_{\perp} = C^*(G/H)$ if H normal

Co-normality

We say that the left invariant C^* -subalgebra X is co-normal if

$$W(x \otimes 1)W^* \in M(X \otimes B_0(H))$$
 $(x \in X).$

- Vaes–Vainermann give a similar definition in the von Neumann algebraic context.
- In the commutative case, every left invariant C*-subalgebra is automatically co-normal.
- In the co-amenable, co-commutative case, an invariant C*-subalgebra C*(H) of C*(G) is co-normal if and only if the open subgroup H is normal.

Identify the C*-algebra A with its canonical image in the the universal enveloping von Neumann algebra A^{**} .

Lemma

Suppose that X is co-normal. For every $\mu \in F_0$ and $a \in A^{**}$ such that $\mu(a^*a) \neq 0$, the functional μ_a defined by

$$\mu_{m{a}}(m{b}) = rac{\mu(m{a}^*m{b}m{a})}{\mu(m{a}^*m{a})} \qquad (m{b}\inm{A})$$

is in F_0 .

Compact quantum subgroups from invariant C*-subalgebras

Theorem

Suppose that (A, Γ) is a co-amenable quantum group and that X is non-zero, co-normal, left invariant C*-subalgebra of A. Then

$$I = \{ a \in A; \mu(a^*a) = 0 \text{ for every } \mu \in F \}$$

is a closed two-sided ideal of A and coincides with

$$F_{\perp} = \{ a \in A; \mu(a) = 0 \text{ for every } \mu \in F \}.$$

The quotient map $\pi: A \to A/I$ induces a quantum group structure on B = A/I and (B, Γ_B, π) is a compact quantum subgroup of (A, Γ) .

Note that *I* is a closed left ideal and F_{\perp} is self-adjoint. So if $I = F_{\perp}$ then *I* is a two-sided ideal.

 $I \subseteq F_{\perp}$ follows from the Schwarz inequality:

 $\mu(a^*a) \ge \mu(a^*)\mu(a)$

for $\mu \in S(A)$ and $a \in A$. The converse can be shown by using the previous lemma.

A/I is a unital C*-algebra

Since $I = F_{\perp}$ is a two-sided ideal, B = A/I is a C*-algebra and $B^* = (A/F_{\perp})^* \cong F$.

Claim: B is unital.

Pick $x \in X \setminus \{0\}$ and let $\nu \in A^*$ such that $\nu(x) \neq 0$. Put

$$e = rac{(
u \otimes \mathrm{id})\Gamma(x)}{
u(x)}$$

Since $e \in X$ by left invariance,

$$\mu(ae) = rac{\mu(a)\muig((
u\otimes \mathsf{id})\mathsf{\Gamma}(x)ig)}{
u(x)} = \mu(a)$$

for every *a* in *A* and μ in *F*₀. (*X* is contained in the multiplicative domain of every μ in *F*₀.) Therefore e + I is a right identity in *A*/*I*. The left side is similar.

B = A/I is a compact quantum subgroup

Define

$$\Gamma_B \pi(a) = (\pi \otimes \pi) \Gamma(a) \qquad (a \in A).$$

The map Γ_B is well defined because $F \cong B^*$ is a subalgebra of A^* . Properties of Γ imply that Γ_B is a co-multiplication that satisfies the "cancellation laws"

$$\overline{\operatorname{span}}\,\Gamma_B(B)(B\otimes 1)=\overline{\operatorname{span}}\,\Gamma_B(B)(1\otimes B)=B\otimes B.$$

Since *B* is unital, there is a state ϕ_B of *B* that is both left and right invariant.

It is not clear that ϕ_B is faithful, but the kernel of ϕ_B can be quotient out so that we obtain compact quantum subgroup B_r of A:

$$A \rightarrow B \rightarrow B_r$$
.

Since A is co-amenable, so is B_r . Therefore, in fact, $B_r = B$.

Set-up for the converse

Let (B, Γ_B, π) be a compact quantum subgroup of a co-amenable quantum group (A, Γ) . Let $F = (\ker \pi)^{\perp} \subseteq A^*$ and $F_0 = F \cap S(A)$. Then $X = \{ x \in A; (id \otimes \mu)\Gamma(x) = x \text{ for every } \mu \in F_0 \}.$

is a closed self-adjoint subspace of *A* that is left invariant. Let ϕ_B be the Haar state of *B*. Put $\theta = \phi_B \pi \in F_0$. Define $P: A \rightarrow A$ by

$$P(a) = (\mathrm{id} \otimes \theta)\Gamma(a) \qquad (a \in A).$$

Remark: θ is an idempotent state of *A*.

Invariant C*-subalgebras from compact quantum subgroups

Recall that a map from a C*-algebra onto its C*-subalgebra is called a conditional expectation if it is a projection of norm 1.

Theorem

Suppose that (B, Γ_B, π) is a compact quantum subgroup of a co-amenable quantum group (A, Γ) .

- The subspace X associated with B is a non-zero, co-normal, left invariant C*-subalgebra of A.
- ► $P: A \rightarrow X$ is a conditional expectation such that $(id \otimes P)\Gamma = \Gamma P.$

Uniqueness results

$$egin{aligned} X \rightsquigarrow (B_X, \Gamma_X, \pi_X) \ (B, \Gamma_B, \pi) \rightsquigarrow X_B \end{aligned}$$

Theorem

If there is a conditional expectation $P \colon A \to X$ such that $(id \otimes P)\Gamma = \Gamma P$, then $X_{B_X} = X$.

Theorem

$$(B_{X_B}, \Gamma_{X_B}, \pi_{X_B}) \cong (B, \Gamma_B, \pi).$$

Corollary

{compact quantum subgroup of (A, Γ) } \longleftrightarrow {non-zero, co-normal, left invariant C*-subalgebra X of A with conditional expectation P: $A \rightarrow X$ such that $(id \otimes P)\Gamma = \Gamma P$ }