
Linear Analysis I: Example Sheet 1
If you want your answers marked (or “commented upon”) please hand them in at the end
of the lecture on Monday 5th October. We will discuss the sheet in detail on Thursday
8th October. This are preliminary dates! We will discuss as a group how to handle the
dates.

Some of the questions below are marked as [Revision]. I do not mean to be pejorative
by this, but I cannot think of a better word. In an ideal world this would really be
“revision” for everyone, but you have all done different optional courses, so I am unsure
as to what you know.

In any event, please make sure that you really can do these questions. I will provide
model answers after tutorials, and if everyone is having difficulty, I will make time in
lectures to discuss the material.

Question 1: The following will get you to prove lots of “algebra of limits” type results
for normed vector spaces. These get rather tedious after a while, but we will repeatedly
use them in the course, so it is important that you are happy with them.

Let V be a vector space with norm ‖ · ‖. Prove the following:

1. If (xn) is a sequence in V tending to x, and µ is a scalar, then µxn → µx;

2. If (xn) and (yn) are sequences in V tending to x and y, respectively, then xn + yn →
x+ y;

3. If (xn) is a sequence in V tending to x, then ‖xn‖ → ‖x‖.

Question 2: Recall that K is either the field of real numbers R, or the field of complex
numbers C. We define CK([0, 1]) to be the vector space of continuous functions from [0, 1]
to K. For f ∈ CK([0, 1]), define

‖f‖∞ = sup
t∈[0,1]

|f(t)|.

Prove carefully that ‖ · ‖∞ is a norm on CK([0, 1]).

Question 3: We define Kn to be the vector space of length n column vectors with entries
in K. If we think of n as being the set {0, 1, · · · , n − 1}, then we can think of Kn as
being the collection of all maps from n to K. With “pointwise” operations, this becomes
a vector space.

Analogously, for an abstract set I, we define KI to be the vector space of all maps
from I to K. In particular, we have the vector space K[0,1], which contains CK([0, 1]) as
a subspace. Do you think that the definition

‖f‖∞ = sup
t∈[0,1]

|f(t)| (f ∈ K[0,1]),

makes sense? Think about this. . .
What happens if we define f ∈ K[0,1] by

f(t) =

{
0 : t = 0,

1/t : 0 < t ≤ 1.

We define `∞([0, 1]) to be the set of all functions f ∈ K[0,1] such that f is bounded.
We can then define ‖ ·‖∞ on `∞([0, 1]) as above. Prove that ‖ ·‖∞ is a norm on `∞([0, 1]).
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Question 4: [Revision] Recall that we define the norm ‖ · ‖2 on Kn by

‖x‖2 =
( n∑

i=1

|xi|2
)1/2

(x = (xi) ∈ Kn).

This just gives the Euclidean distance, which is the usual way of measuring distance in
R2 or R3, for example. Prove that (Kn, ‖ · ‖2) is complete.

Hint: We know that K is complete. So we can show that K2 is complete by working
“co-ordinate wise”. Now generalise. Also compare with the proof in lectures that `p is
complete (for Kn you don’t have to worry about convergence, but the principle is similar).

Question 5: Let K[X] be the space of polynomials over K. In lectures, we defined the
norm ‖ · ‖1 on K[X] as follows. Let p ∈ K[X], so that p(X) = anX

n + an−1X
n−1 + · · ·+

a1X + a0, say. We define

‖p‖1 =
n∑

i=0

|ai|.

Do you think that K[X] with this norm is complete? If you want a challenge, think about
this before looking at the next line.

For n ≥ 1, let pn be the polynomial

pn(X) =
1

2n
Xn +

1

2n−1
Xn−1 + · · ·+ 1

4
X2 +

1

2
X.

Show that (pn) is a Cauchy sequence. Does (pn) converge to a limit in K[X]?

Question 6: We define c0 to be the collection of sequences in K which converge to 0.
Check that you are happy that c0 is a vector space. We define the norm ‖ · ‖∞ on c0 by

‖(xn)‖∞ = sup
n
|xn| ((xn) ∈ c0).

Why does this make sense? Show that c0 is complete. Hint: Adapt the proof from
lectures that `p is complete. This is quite a hard question!

Question 7: [Revision] As normed spaces are metric spaces, and Banach spaces are
complete metric spaces, you should have a good grasp of metric space theory. The
following is very useful.

Let (X, d) be a metric space, and let Y ⊆ X be a subset. The restriction of d to Y
turns Y into a metric space in its own right. What does it mean for Y to be closed in
X? What does it mean for Y to be open in X? If X is complete, show that Y is closed
in X if and only if Y is complete.

Question 8: [Revision] In the course, abstract compact topological spaces will play
an important role. This question is preparation, and asks you to think about compact
metric spaces.

The following are two common definitions of what it means for a metric space (X, d)
to be compact.

1. Let I be some set and let (Ui)i∈I be a collection of open subsets of X such that
X =

⋃
i∈I Ui (this is to say that (Ui) is an open cover of X). Then X is compact if

we can always find i1, · · · , in such that X = Ui1 ∪ · · · ∪ Uin (this is to say that (Ui)
admits a finite subcover).

2. Let (xn)∞n=1 be some sequence in X. Then X is compact if we can always find a
subsequence n(1) < n(2) < · · · such that (xn(k))

∞
k=1 is convergent.
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Condition 1 will make sense for any topological space, but condition 2 is usually easier to
work with in metric spaces. If you fancy a challenge, prove that 1 and 2 are equivalent
in a metric space.

For example, working in [0, 1], if we define

xn =

{
0 : n is even,

1 : n is odd,

then (xn) does not converge, but the subsequences (x2n) and (x2n+1) both converge to,
respectively, 0 and 1. In fact, [0, 1] is compact. Working in R, if we let xn = n for all n,
then clearly xn has no convergent subsequence, and so R is not compact.

If (X, d) is a metric space, we say that a subset Y ⊆ X is compact if Y is compact for
the metric inherited from X. Show that if Y is compact, then Y is closed in X.

The Bolzano–Weierstraß theorem states that if (xn) is a bounded sequence of real
numbers, then (xn) has a convergent subsequence. Use this result to prove that a subset
Y ⊆ R is compact (for the usual metric on R) if and only if Y is closed and bounded.

The Heine–Borel theorem tells us that a subset Y ⊆ (Rn, ‖ · ‖2) is compact if and
only if Y is closed and bounded. Prove this. Hint: Work co-ordinate wise. If (xn) is
a bounded sequence in (Rn, ‖ · ‖2), then the Bolzano–Weierstraß theorem allows us to
pick a subsequence such that the first co-ordinate convergences. Then pick a further
subsequence such that the second co-ordinate convergences, and so forth. Compare with
question 4 above.

Prove the same result for (Cn, ‖ · ‖2). Hint: Is there really any difference between
(Cn, ‖ · ‖2) and (R2n, ‖ · ‖2)?
Question 9: We shall now apply these ideas. Let (X, d) be a metric space, and let
CK(X) be the vector space of all continuous functions from X to K. Check that you are
happy that this is a vector space.

[Revision] We say that f ∈ CK(X) is uniformly continuous if for each ε > 0 there
exists δ > 0 such that whenever x, y ∈ X satisfy d(x, y) ≤ δ, we have that |f(x)−f(y)| ≤
ε. Show that as X is compact, every f ∈ CK(X) is uniformly continuous.

Let (fn) be a sequence in CK(X), and let f ∈ CK(X). We say that fn converges
uniformly to f if for each ε > 0, there exists N such that |fn(x) − f(x)| ≤ ε for any
x ∈ X and n ≥ N . Alternatively, define ‖ · ‖∞ on CK(X) by

‖f‖∞ = sup
x∈X
|f(x)| (f ∈ CK(X)).

Check that you are happy that ‖ · ‖∞ is a norm. Then fn converges uniformly to f if and
only if ‖fn − f‖∞ → 0. Part of the power of Linear Analysis is in developing a common
language that allows lots of diverse ideas from analysis to be expressed in a unified way.
This is one example.

[Revision] Show that, as X is compact, we can equivalently define

‖f‖∞ = max
x∈X
|f(x)| (f ∈ CK(X)).

That is, show that any f ∈ CK(X) attains its supremum.
[Hard] Show that CK(X) is a Banach space for the norm ‖ · ‖∞. We will, eventually,

prove a generalised version of this result in lectures.
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Linear Analysis I: Example Sheet 2
To be handed in at the lecture on ??? October, if you want comments on your answers.

The final two questions are quite similar: please try to do one, but if you run short of
time, leave the other.

Question 1: Let E and F be normed vector spaces, and let T : E → F be a bounded
linear map. The first line of the following is the original definition of the norm of T .
Prove carefully that the other expressions really are equal:

‖T‖ = sup
{‖T (x)‖
‖x‖

: x ∈ E, x 6= 0
}

= sup
{
‖T (x)‖ : x ∈ E, ‖x‖ ≤ 1

}
= sup

{
‖T (x)‖ : x ∈ E, ‖x‖ = 1

}
.

Furthermore, show carefully that ‖T (x)‖ ≤ ‖T‖‖x‖ for x ∈ E.

Question 2: Let E be a normed vector space, and let φ : E → K be a linear map.
Remember that φ is bounded if and only if φ is continuous. When φ is bounded, show
that

kerφ = {x ∈ E : φ(x) = 0} = φ−1
(
{0}
)

is closed.
Now suppose that φ is linear, and we know that kerφ is closed in E. We shall show

that φ is bounded. Firstly, if kerφ = E, show that φ is bounded.
Now suppose that kerφ 6= E. Let x0 ∈ E \ kerφ. Show that every vector x ∈ E can

be written as
x = λx0 + y

for some λ ∈ K and y ∈ kerφ. (Hint: Show that x − φ(x0)
−1φ(x)x0 ∈ kerφ). Suppose,

towards a contradiction, that φ is not bounded, so we can find a sequence (xn) in E with
‖xn‖ ≤ 1 and |φ(xn)| ≥ n for each n. By writing each xn = λnx0 + yn for some λn ∈ K
and yn ∈ kerφ, derive a contradiction.

We conclude that a linear map φ : E → K is bounded if and only if kerφ is closed.

Question 3: Let E be a normed vector space, let φ ∈ E∗, and let ψ : E → K be a linear
map. Show that if kerφ ⊆ kerψ, then ψ = λφ for some λ ∈ K, and hence in particular,
ψ ∈ E∗. Hint: As in the previous question, if φ(x0) 6= 0 for some x0 ∈ E, then we can
express every x ∈ E as x = µx0 + y for some µ ∈ K and y ∈ kerφ. What, then, is ψ(x)?

Question 4: This question will show that we cannot take θ = 1 in the statement of
Lemma 1.17. Let E = c0 and let F be the subspace of all sequences (xn) ∈ c0 such that∑∞

n=1 2−nxn = 0. Consider the linear map

f : c0 → K, f
(
(xn)

)
=
∞∑

n=1

2−nxn ((xn) ∈ c0).

Show that f is bounded with ‖f‖ ≤ 1. Hence conclude that F is closed.
If Lemma 1.17 held with θ = 1, then strictly speaking, we would ask for a vector

x0 ∈ E with ‖x0‖ ≤ 1 and such that ‖x0 − y‖ > 1 for each y ∈ F . Setting y = 0, we
get a contradiction. Instead, we will show that even if we only ask that ‖x0 − y‖ ≥ 1 for
each y ∈ F , we get a contradiction.
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Towards a contradiction, suppose that we have x0 ∈ E with ‖x0 − y‖ ≥ 1 for each
y ∈ F . Show that f(x0) = 1, and then use this to argue that ‖x0‖ > 1, giving a
contradiction. Hint: For each ε > 0, show that there exists z ∈ E with ‖z‖ ≤ 1 and
|f(z)| > 1 − ε. Write z = λx0 + y for some λ ∈ K and y ∈ F , and hence show that
|f(x0)| > 1− ε.
Question 5: We work in the Banach space c0. Define subspaces

Y =
{

(xn)∞n=1 ∈ c0 : x2k−1 = 0 for k = 1, 2, 3, · · ·
}

Z =
{

(xn)∞n=1 ∈ c0 : x2k = k2x2k−1 for k = 1, 2, 3, · · ·
}
.

Show that Y and Z are closed subspaces.
Show that the vector x = (1, 0, 1/4, 0, 1/9, 0, 1/16, 0, · · · ) is in the closure of the

subspace Y + Z. That is, for each ε > 0, you need to find y ∈ Y and z ∈ Z with
‖x− (y + z)‖∞ < ε.

Show, however, that x is not in Y + Z. This shows that Y + Z is not closed: so the
sum of two closed subspaces need not be closed itself.

Question 6: Show that c∗0 = `1. That is, for a = (an) ∈ `1, define φa : c0 → K by

φa(x) =
∞∑

n=1

anxn (x = (xn) ∈ c0).

Show that φa is linear, bounded, and that ‖φa‖ ≤ ‖a‖1. Hence the map `1 → c∗0; a 7→ φa

is linear and bounded. We wish to show that this is a bijection and an isometry.
So, let φ ∈ c∗0. Considering the proof in lectures that (`p)∗ = `q, show that there exists

a ∈ `1 with φ = φa and ‖a‖1 = ‖φ‖.
Question 7: Recall that `∞ is the space of all bounded scalar sequences (xn) with the
norm ‖ · ‖∞. Show, using a similar argument to Question 6, that (`1)∗ = `∞.
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Linear Analysis I: Example Sheet 3
Question 1: Let E be a normed vector space, let F be a subspace of E, and let x0 ∈ E.
Define

d(x0, F ) = inf
{
‖x0 − y‖ : y ∈ F

}
.

Show that

d(x0, F ) ≥ sup
{
|φ(x0)| : φ ∈ E∗, ‖φ‖ ≤ 1, φ(y) = 0∀ y ∈ F

}
.

Define a map ψ : lin{F, x0} → K by

ψ(λx0 + y) = λd(x0, F ) (λ ∈ K, y ∈ F ).

Show that this is well-defined and linear. Show that ‖ψ‖ ≤ 1. By applying the Hahn-
Banach theorem, conclude that

d(x0, F ) = sup
{
|φ(x0)| : φ ∈ E∗, ‖φ‖ ≤ 1, φ(y) = 0∀ y ∈ F

}
.

Question 2: Let 1 ≤ p < ∞, and define a map S : `p → `p by setting S(x) = y
where, if x = (xn) and y = (yn) then y1 = 0 and yn = xn−1 for n ≥ 2. That is, if
x = (x1, x2, x3, · · · ), then y = (0, x1, x2, x3, · · · ). For obvious reasons, S is called the
“right shift”.

Show that S is linear, bounded, and satisfies ‖S‖ = 1.
Show that there is a bounded linear map T ∈ B(`p) such that T ◦ S is the identity on

`p. Is S ◦ T the identity? Is S invertible in B(`p)?

Question 3: Let X be a compact topological space. Fix f ∈ CK(X), and define Mf :
CK(X) → CK(X) by setting Mf (g) = gf for g ∈ CK(X), where gf is the (pointwise)
product of f and g.

Show that Mf ∈ B(CK(X)), and calculate ‖Mf‖.
Question 4: Use the notation as in Question 3. Show that if

inf
{
|f(x)| : x ∈ X

}
> 0,

then there exists h ∈ CK(X) with MhMf = MfMh being the identity on CK(X). Hint:
Try h = f−1.

If inf
{
|f(x)| : x ∈ X

}
= 0, then is Mf invertible? Hint: Let 1 ∈ CK(X) be the

constant function which is one everywhere. If M−1
f exists, what is M−1

f (1)?

Question 5: Let E and F be normed spaces, and let T ∈ B(E,F ). Show that the
following are equivalent:

1. T is invertible, that is, there exists S ∈ B(F,E) with ST and TS being the identities
on E and F , respectively;

2. T is surjective, and there exists M > 0 such that, for all x ∈ E,

M−1‖x‖ ≤ ‖T (x)‖ ≤M‖x‖.

Hint: If (2) holds, first show that T must be bijective, so that T−1 exists as a linear map.
Then show that T−1 must be bounded.

Question 6: We define a measure space to be a triple (X,R, µ) where X is a set, R is
a σ-algebra on X and µ is a measure defined on R. Let Y ∈ R, and define RY by

RY = {S ∩ Y : S ∈ R}.
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Show that RY is a σ-algebra on Y . Define µY : RY → [0,∞] by µY (S) = µ(S ∩ Y ) for
S ∈ RY (so µY is simply the restriction of µ to Y ). Show that µY is a measure on RY .
Hence (Y,RY , µY ) is a measure space.

Question 7: Let (X,R, µ) be a measure space. Let N ⊆ X be a set such that, for some
F ∈ R with µ(F ) = 0, we have that N ⊆ F . We say that N is a null set. Define R to
be the collection of sets E ∪N where E ∈ R, and N ⊆ X is a null set. Show that:

1. If (Nn) is a sequence of null sets, then
⋃

nNn is null.

2. If E ∪N ∈ R, and M is null, then (E ∪N) \M ∈ R.

Show that R is a σ-algebra.
Define µ : R→ [0,∞] by µ(E ∪N) = µ(E) for E ∈ R and any null set N . Show that

µ is a measure on R.
We say that a measure µ on R is complete when every null set is in R. Check quickly

that µ is complete: it is the completion of µ. You might like to check that the measure
we construct in Theorem 2.5 is complete.

Bonus questions

Let E be a normed space. Let E∗∗ = (E∗)∗, the bidual of E. We define a map
J : E → E∗∗ as follows. For x ∈ E, we want that J(x) ∈ (E∗)∗, so J(x) should be a map
E∗ → K. Let this be the map

J(x) : E∗ → K, f 7→ f(x).

More compactly, we might write J(x)(f) = f(x).

Question 8: Show that J : E → E∗∗ is linear. Show that J is an isometry, so that
‖J(x)‖ = ‖x‖ for x ∈ E.

When J is surjective, we say that E is reflexive. Notice that any reflexive space is
Banach. To make matters complicated, James proved in the 1950s that there are spaces
E such that there is an isomorphism from E to E∗∗, but such that J is not surjective.
So, informally, E and E∗∗ can “be the same” without being reflexive!

Question 9: Let 1 < p < ∞. Show carefully that `p is reflexive. (Informally, as
(`p)∗ = `q and (`q)∗ = `p, we are done. BUT you must show that actually the map J is
surjective).
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Linear Analysis I: Example Sheet 4
Question 1: The following is a really useful characterisation of a Banach space. Firstly,
let E be a Banach space, and let (xn)∞n=1 be a sequence of vectors in E such that∑∞

n=1 ‖xn‖ < ∞. Show that
∑∞

n=1 xn converges. That is, you need to show that the
partial sums ( N∑

n=1

xn

)
N∈N

form a Cauchy-sequence in E.
We now show the converse. That is, if E is a normed space such that, whenever (xn)

is a sequence in E with
∑

n ‖xn‖ < ∞, we have that
∑

n xn converges, then actually E
is a Banach space. To show this, let (zn) be a Cauchy sequence in E. Show that we can
find 1 = n(1) < n(2) < · · · such that, if

x1 = z1, xk = zn(k) − zn(k−1) (k ≥ 2),

then
∑

n ‖xn‖ < ∞. What is
∑N

n=1 xn? Conclude that if z =
∑

n xn (which exists by
assumption) that z is the limit of the Cauchy sequence (zn). So E is a Banach space.

Informally, we say that “E is a Banach space if and only if every absolutely convergent
sum converges.”

Question 2: Let X be a compact (Hausdorff) space. Let φ : X → X be a continuous
map. Show that we can define a linear map T : CR(X) → CR(X) by

T (f) = g where g(x) = f(φ(x)) (x ∈ X).

Show that T is bounded, and find ‖T‖.
We call T a composition operator (with symbol φ).

Bonus Question 3: With notation as in Question 2, now let X = [0, 1] and let φ be
defined by

φ(t) =
1

2
+

t− 1
2

2
(0 ≤ t ≤ 1).

So φ(1/2) = 1/2, φ(0) = 1/4 and φ(1) = 3/4. It might help you to sketch the graph of
φ. Define T as in Question 2. Let T 2 = TT, T 3 = TTT and so forth.

Show that for each f ∈ CR([0, 1]),

lim
n→∞

T n(f) = g

where g(t) = f(1/2) for all t ∈ [0, 1]. That is, g is a constant function. Hint: Remember
(or look up on Wikipedia) the proof of the contraction mapping theorem. What are the
iterates of φ?

Is it true that (T n)∞n=1 converges in the Banach space B(CR([0, 1]))? Hint: If the limit
exists, we know what it must be by the previous paragraph. Then estimate norms.

Question 4: Let (X,R, µ) be a measure space. Let f : X → R be a simple function (see
the definition from the lectures). Show carefully that f is measurable, and that f takes
finitely many values.

Conversely, show that if f : X → R is measurable and takes finitely many values, then
f is a simple function.

In particular, show that if (Ak)
n
k=1 is any collection of subsets of R, and (tk)

n
k=1 ⊆ R,

then

f =
n∑

k=1

tkχAk
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is simple (even if the (Ak) are not pairwise disjoint).

Question 5: Let X be a set, let R = 2X , and let µ be the counting measure on R, so
µ(A) is the size of A, if A is finite, and is ∞ otherwise. Which functions f : X → R are
measurable?

Let f : X → [0,∞) be a simple function. Show that f is integrable if and only if f
is zero except at finitely many points of X. Conversely, show that if f : X → [0,∞) is
any function which is zero except at finitely many points, then f is an integrable, simple
function.

Question 6: Let (X,R, µ) be a measure space. A function f : X → R is measurable
if f−1(U) ∈ R for any open set U ⊆ R. Let f : X → R be a function such that
f−1((x, y)) ∈ R for any x, y ∈ R with x < y. By thinking about the proof of Corollary 2.7,
show that f is measurable.

Question 7: We work with notation as in Question 5. Which measurable functions
f : X → [0,∞) are integrable? What about functions f : X → R? You might find it
easier to assume that X = N here.

Show that if X = N, then we can identify `1 with the space of integrable functions
f : X → R.

Bonus Question: Let (X,R, µ) be a measure space. Let f, g : X → R be measurable.
Show that f + g is measurable. To do this, you might like to first prove that

(f + g)−1((a,∞)) =
⋃
q∈Q

{x ∈ X : q < f(x) and a− q < g(x)}.

Use this to show that (f+g)−1((a,∞)) ∈ R. Similarly, show that (f+g)−1((−∞, a)) ∈ R.
Use this to show that (f + g)−1((a, b)) ∈ R for any open interval (a, b). Now follows the
proof of Corollary 2.7 to show that f + g is measurable.

Show that {x ∈ X : f(x) ≥ g(x)} ∈ R. Hint: It might help to show first that

{x ∈ X : f(x) ≥ g(x)} =
⋂

q∈Q,q>0

⋃
r∈Q

{x ∈ X : f(x) > r > g(x)− q}.

Prove that also fg is measurable. This is a bit of a beast!
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Linear Analysis I: Example Sheet 5
Question 1: Let (an) be a sequence in R. Recall that (or define, if you have haven’t
seen these before)

lim sup
n

an = lim
n→∞

(
sup
k≥n

ak

)
, lim inf

n
an = lim

n→∞

(
inf
k≥n

ak

)
.

As (supk≥n ak) is a decreasing sequence in n, the limit exists (or is −∞) and so lim supn

is well-defined. Similarly for lim inf.
Suppose that (an) converges. Prove that

lim
n

an = lim sup
n

an = lim inf
n

an.

Let (an) be any sequence of positive reals. Show that

lim inf
n

an ≤ lim sup
n

an,

where these may be ±∞. Finally, show that if

lim inf
n

an = lim sup
n

an,

then (an) converges.

Question 2: Use the monotone convergence theorem to evaluate
∫

R f(x) dµ(x) for the
following. You may assume that the Lebesgue integral of a continuous function on a
bounded interval is the same as the Riemann integral, and use any standard results from
Calculus to evaluate integrals.

1. f(x) = e−|x|. Hint: Consider the sequence of functions fn(x) = e−|x|χ[−n,n].

2. f(x) = x−1/2χ(0,1]. Hint: Consider the sequence fn(x) = x−1/2χ[1/n,1].

Similarly, establish that the following have finite integral (although you will find it difficult
to evaluate to an exact value).

1. f(x) = e−x2
. Hint: Consider fn(x) = e−x2

χ[−n,n], and crudely estimate this.

2. f(x) = x−2 sin(x)χ[π,∞). Hint: Consider fn(x) = x−2 sin(x)χ[π,π+n], and also the
functions gn(x) = x−2χ[π,π+n]. Be careful here, as f is not positive, so you need to
deal with f+ and f−.

Finally, show that the following are not Lebesgue integrable (that is, they have infinite
integrals).

1. f(x) = x−1χ[1,∞).

2. f(x) = log(x)χ[1,∞).

Question 3: Recall that f(x) = sin(x)/x is a continuous functions R → R, as by
L’Hopital’s rule, f(x)→ 1 as x→ 0. The Riemann integral is defined as∫ ∞

−∞
f(x) dx := lim

X→∞

∫ X

−X

f(x) dx.

1



It is a result from complex analysis (using contour integration) that∫ ∞

−∞
f(x) dx = π/2.

However, we saw in lectures that f is not Lebesgue integrable. This is because if f+ and
f− are, respectively, the positive and negative parts of f , then f+ and/or f− do not have
finite integral. Carefully prove this. Hint: We know that, say, for x ≥ 0, we have that
sin(x)/x ≥ 0 if and only if sin(x) ≥ 0, which is if and only if 2nπ ≤ x ≤ (2n + 1)π, for
some n ∈ Z. So we can write down f+ and f− explicitly, and then we can use, say, the
monotone convergence theorem to work out the integral of f+ and f−.

Question 4: For each n, let fn(x) = n3/2x(1 + n2x2)−1 for x ∈ [0, 1]. By using the
Dominated Convergence Theorem, find

lim
n

∫ 1

0

fn(x) dx.

Hint: To get something which bounds all the fn, either guess, or try g(x) = supn fn(x),
and show that g has finite integral.

Question 5: Use the Dominated Convergence Theorem to show that f : [0, 4] → R,
defined by

f(x) =

{
0 : x = 0,

x−1/2 sin(1/x) : 0 < x ≤ 4,

is integrable. Hint: Set fn(x) = x−1/2 sin(1/x)χ(1/n,4], so fn → f pointwise.

Question 6: Define fn : [0, 1]→ [0,∞) by

fn(x) =

{
n : 0 ≤ x ≤ 1/n,

0 : x > 1/n.

Show that fn(x)→ 0 almost everywhere, but that∫ 1

0

fn dµ = 1,

for all n. Why can we not apply either the Monotone or the Dominated Convergence
Theorems in this case?

Question 7: Let (X,R, µ) be a measure space, and let Y ∈ R. On a previous example
sheet, we saw how to define the sub-measure space (Y,RY , µY ). Let f : X → R be
measurable, and let fY be the restriction of f to Y . Show that fY is measurable with
respect to RY . Show that fχY : X → R is measurable with respect to R. Show that∫

Y

fY dµY =

∫
X

fχY dµ.

(Hint: Check first for simple functions, and then use MCT.) Hence integrating with
respect to a sub-measure space, or just multiplying by the characteristic function of a
measurable subset, gives the same answer.
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Linear Analysis I: Example Sheet 6
Question 1: Let (X,R, µ) be a measure space. Let f : X → [0,∞) be measurable. For
each A ∈ R, the indicator function χA is measurable, and so fχA is also measurable. So
we can define a map µf : X → [0,∞] by

µf (A) =

∫
X

fχA dµ (A ∈ R).

The integral might be infinite, but as fχA ≥ 0, it is well-defined.
Show that µf is a measure: you need to prove countable additivity, for which the

monotone convergence theorem should prove useful. That is, if (An) is a sequence of
pairwise disjoint sets in R, then show that µf (

⋃
n An) =

∑
n µf (An). Hint: Use fn =

fχA1∪···∪An .
Furthermore, show that if g is a simple function, then∫

X

g dµf =

∫
X

gf dµ.

Conclude (using Monotone convergence) that this holds for any integrable function g :
X → R.

Later in the course, we will give an exact condition for when a measure on X can be
written as µf .

Question 2: Let (X,R, µ) be a measure space. A function f : X → R is essentially
bounded if there exists K > 0 such that |f | ≤ K almost everywhere. The inf of such K
is called the essential supremum of f , and is denoted by

ess-supx∈X |f(x)| or simply ess-supX |f |.

Let f be essentially bounded, and suppose that g : X → R is measurable and inte-
grable. Show that fg is integrable, and that∫

X

|fg| dµ ≤
(

ess-supX |f |
) ∫

X

|g| dµ.

Hint: If you have trouble dealing with the “almost everywhere” part, try first to do the
question assuming that f is actually bounded.

Question 3: We define Lebesgue measure on R3 by identifying R3 with R × R × R.
The volume of a measurable set A ⊆ R3 is then simply the integral of the characteristic
function of A. Carefully apply Fubini’s Theorem to find the volumes of the sets:

1. {(x, y, z) : 0 ≤ z ≤ 2− x2 − y2}.

2. {(x, y, z) : x + y + z ≤ 1, x ≥ 0, y ≥ 0, z ≥ 0}.
Note: This is very computational, and maybe you won’t learn much, so skip it if you’re
short of time.

Question 4: Let (X,R, µ) and (Y,S, λ) be finite measure spaces. Let f : X → R be
R-measurable, and let g : Y → R be S-measurable. Let h : X × Y → R be defined
by h(x, y) = f(x)g(y). You might like to think about why h is automatically (R ⊗ S)-
measurable, but I think a formal proof of this is quite hard!

Suppose that f and g are integrable with respect to µ and λ, respectively. Use Fubini
to show that ∫

X×Y

h d(µ⊗ λ) =

∫
X

f dµ

∫
Y

g dλ.
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Question 5: Define f : [0, 1]2 → R by

f(x, y) =

{
x2−y2

(x2+y2)2
: (x, y) 6= (0, 0),

0 : otherwise.

Show by calculation that∫ 1

0

∫ 1

0

f(x, y) dx dy 6=
∫ 1

0

∫ 1

0

f(x, y) dy dx.

Why can we not apply Fubini’s Theorem in this case?

Question 6: Let (X,R, µ) and (Y,S, λ) be finite measure spaces, and let E ∈ R ⊗ S.
For each x ∈ X, let Ex = {y ∈ Y : (x, y) ∈ E}, a cross-section of E. Show that the
following are equivalent:

1. (µ⊗ λ)(E) = 0;

2. λ(Ex) = 0 for almost all x with respect to µ (that is, µ({x ∈ X : λ(Ex) 6= 0}) = 0).

Hint: The measure of E is simply the integral of the indicator function of E. So carefully
apply Fubini.

Question 7: Let X be a set, and let R be a σ-algebra on X. For x ∈ X, define a map
δx : R→ [0,∞) by

δx(A) =

{
1 : x ∈ A,

0 : x 6∈ A.

Show that δx is a measure. It is often called the “Dirac Delta Measure at x”. Why might
it get this name?

Determine the completion of δx (that is, what are the null sets for δx?)
For a measurable function f : X → [0,∞), what is

∫
X

f dδx? Which functions
f : X → R are integrable for δx?

Such measures behave very differently from Lebesgue measure.

Question 8: Let A ⊆ R be a Lebesgue measurable set with finite Lebesgue measure.
Show that for ε > 0, we can find an open set U with A ⊆ U and µ(U) < µ(A) + ε. Hint:
Think about the definition of the Lebesgue measure and its relationship to Lebesgue
outer measure.

Show that for ε > 0, we can find a compact (that is, closed and bounded) set K with
K ⊆ A and µ(K) > µ(A)− ε. Hint: Suppose first that A is bounded, say A ⊆ [−n, n] for
some n. Then let A0 = [−n, n]\A, so by the first part of the question, we can find an open
U0 with A0 ⊆ U0 and µ(U0) < µ(A0)+ε. Then K = [−n, n]\U0 will work: why? Now try
to handle the general case (if A has finite measure, show that µ(A) = limn µ(A∩[−n, n])).

Conclude that

sup{µ(K) : K ⊆ A is compact } = µ(A) = inf{µ(U) : A ⊆ U is open }.

This shows that µ is a regular measure. We will learn more about regular measures later
in the course.
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Linear Analysis I: Example Sheet 7
Question 1: Consider the set N together with the trivial σ-algebra consisting of all
subsets of N. Let (ωn) be a sequence of positive reals (that is, ωn ≥ 0 for each n), with
(ωn) ∈ `1. Show that we may define a measure µ by

µ(A) =
∑
n∈A

ωn (A ⊆ N).

We think of this as a “weighted” counting measure. What are the null sets for this
measure?

Question 2: This follows on from Question 1. Determine when a function f : N → C
is in Lp(µ). Describe, briefly, the space Lp(µ). Comment: This might take you a long
time if you are 100% rigourous. I’m more interested in seeing that you understand what’s
going on than in having everything perfect!

Question 3: Let (X,R, µ) be a finite measure space. Show that if 1 ≤ p < r <∞, then
Lr(µ) ⊆ Lp(µ). Hint: Given a function f ∈ Lr(µ), write

f = fχ{x:|f(x)|≤1} + fχ{x:|f(x)|>1},

then think about whether these two functions are in Lp(µ). Alternative: Try to use the
Holder inequality!

Question 4: By considering R with Lebesgue measure, or otherwise, show that the
conclusions of Question 3 no longer hold if we are not working with a finite measure
space. Hint: Consider first the case when p = 1, so you want to find a function f ∈ Lr(µ)
such that

∫
R |f | dµ = ∞. A good place to look is at functions like f(x) = x−1. Now

generalise to other values of p.

Question 5: Let (R,R, µ) be Lebesgue measure on the real line. Let f : R → R be a
Lebesgue integrable function. Define a map λ : R → R by

λ(E) =

∫
E

f dµ (E ∈ R).

You saw something similar on a previous Question Sheet. Show quickly (which means,
don’t give me all the details) that λ is a signed measure. Let A ∪ B be a Hahn-
Decomposition for λ. How can we relate the sets A and B to the function f?

Question 6: Let (R,R, µ) be Lebesgue measure on the real line. Show, quickly, that we
can define a measure ν on R by

ν(A) =

∫
A

|x| dµ(x) (A ∈ R).

Show that ν << µ. However, show that for any ε > 0, there does not exist δ > 0 such
that µ(A) ≤ δ implies that ν(A) ≤ ε. Hint: Consider A = (t, t + δ) for very large t.
Remark: Naively, we might think of this as a naive notion of “absolute continuity”!

Question 7: Let (X,R) be a set with a σ-algebra, and let µ, λ be finite measures on R.
Show that the following are equivalent:

1. µ << λ and λ << µ;

2. A ∈ R is µ-null if and only if it is λ-null;

1



3. there exists a measurable function f : X → (0,∞) (note that I am not using [0,∞)
or [0,∞]) such that λ(A) =

∫
A
f dµ for all A ∈ R.

Hint: To show (3) from (1), apply the Radon-Nikodym Theorem, and then think if you
can adjust the resulting function to satisfy (3).

Bonus Question 8: This gets you to construct a weird measure: this is fun, because
we haven’t seen many examples of measures. But it’s also quite a long question.

Let (R,R, µ) be Lebesgue measure on the real line. Let (rn) be an enumeration of the
rationals. For each n, let

An = (rn − 2−n, rn + 2−n), fn = 2nχAn .

Hence fn ≥ 0 and
∫

R fn dµ = 2.
Let B be the set of x ∈ R such that x is in infinitely many of the sets An. Show that

B =
∞⋂

n=1

∞⋃
k=n

Ak.

Using Proposition 2.3, show that µ(B) = 0, as

µ
( ∞⋃

k=n

Ak

)
≤

∞∑
k=n

µ(Ak) =
∞∑

k=n

21−k = 2−n.

Hence show that
∑

n fn <∞ almost everywhere.
Define a measure λ : R → [0,∞] by

λ(A) =
∞∑

n=1

∫
A

fn dµ.

For a < b, show that λ((a, b)) = ∞. Hint: There must be infinitely many rational
numbers in the open set (a, b). Conclude that λ(U) =∞ for any open set U ⊆ R.

Show now that for A ∈ R, we have that λ(A) = 0 if and only if µ(A ∩
⋃

nAn) = 0.
But µ(

⋃
nAn) = 2, so

⋃
nAn is much smaller than R, and so there are lots of sets D ∈ R

with µ(D) large but λ(D) = 0. (I am trying to justify that λ is quite complicated).
Conclude that λ << µ. Hence absolutely continuous measures can be pretty nasty!
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Linear Analysis I: Example Sheet 8
Question 1: Let (R,R, µ) be Lebesgue measure on the real line. Let X be the subset
of L1(µ) consisting of those f ∈ L1(µ) such that, for some K > 0, we have that |f | ≤ K
almost everywhere (loosely, we could write f ∈ L1(µ) ∩ L∞(µ)). Hence X is also a
subspace of L1(µ).

Show that f : R→ [0,∞) defined by

f(x) =

{
n1/2 : (n+ 1)−1 < x ≤ n−1 for some n ∈ N,
0 : otherwise,

is in L1(µ). Hence, or otherwise, show carefully show that X 6= L1(µ).
Show, however, that X is dense in L1(µ). Hint: Try a proof by contradiction.

Question 2: This continues from Question 1. Show that the mapping

T (f) = g where g(t) =

∫
[0,t]

f dµ (t ≥ 0),

is a well-defined map X → CK([0,∞)). Hint: The tricky part is to show that g is
continuous.

As usual, we give CK([0,∞)) the ‖ · ‖∞ norm. Show that T is linear and bounded.
What is ‖T‖?

Does the definition of T make sense on L1(µ)? Hint: This is tricky! Try to use the
fact that X is dense in L1(µ).

Question 3: With notation as from Question 1: for 1 < p < ∞, let Xp ⊆ Lp(µ) have
the same definition as X. Show quickly that Xp is a subspace. Use Question 1, and the
fact that Lp(µ)∗ = Lq(µ), to show that Xp is dense in Lp(µ). Hint: You need to show
that if g ∈ Lq(µ) is non-zero, then we can find f ∈ Xp with

∫
R fg dµ 6= 0.

Question 4: We show that C([0, 1]) is not dense in L∞([0, 1]) (over either R or C). Let
f : [0, 1]→ [−1, 1] be defined by

f(x) =

{
0 : x = 0,

sin(1/x) : 0 < x ≤ 1.

As f is continuous, except at 0, it is measurable. Clearly f is bounded everywhere, so
f ∈ L∞([0, 1]). By considering what happens at zero, show that for any g ∈ C([0, 1]), we
have that ‖f − g‖∞ ≥ 1. Hint: This is relatively simple if you use the supremum norm.
You’ll have to work a bit harder to get the result in the essential-supremum norm. Try
to show ‖f − g‖∞ ≥ 1/2, say, first.

Question 5: Let ([0, 1],R, µ) be the restriction of the Lebesgue measure to [0, 1]. Let
f ∈ L∞(µ). Show that f ∈ Lp(µ) for 1 ≤ p <∞, and sup{‖f‖p : 1 ≤ p <∞} <∞.

Conversely, suppose that f : [0, 1] → K is measurable, that f ∈ Lp(µ) for each
1 ≤ p < ∞, and that sup{‖f‖p : 1 ≤ p < ∞} < ∞. Show that f ∈ L∞(µ). Hint: Try a
proof by contradiction. It might help to show first that if 0 < t ≤ 1, then supp≥1 t

1/p = 1.
Finally, show that if f ∈ L∞(µ), then

‖f‖∞ = lim
p→∞
‖f‖p.

1



Question 6: We know that (`1)∗ = `∞, so it might be tempting to believe that (`∞)∗ =
`1. This is impossible, as `∞ is not separable1, while `1 is. However, let us give a more
direct argument.

Treat c0 as a (closed) subspace of `∞. Let A ⊆ N be infinite, so χA ∈ `∞, but χA 6∈ c0.
Show that

d(χA, c0) := inf
{
‖χA − x‖∞ : x ∈ c0

}
= 1.

Show that the linear map defined by

φ : c0 + KχA = {x+ tχA : x ∈ c0, t ∈ K} → K, φ(x+ tχA) = t,

is well-defined, and that ‖φ‖ = 1. Hence, by the Hahn-Banach Theorem, show that there
exists ψ ∈ (`∞)∗ such that

ψ(χA) = 1, ψ(x) = 0 (x ∈ c0).

Show that there cannot exist (an) ∈ `1 such that

ψ(x) =
∞∑

n=1

anxn (x = (xn) ∈ `∞).

1Look this up if you don’t know what it means
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Linear Analysis I: Example Sheet 9
Question 1: Let K be a compact space. Let (fn) be a sequence of positive functions in
CR(K), and let f ∈ CR(K) be such that for each x ∈ K,

f1(x) ≤ f2(x) ≤ · · · , f(x) = lim
n
fn(x).

Show that
λ(f) = lim

n
λ(fn) (λ ∈ CR(K)∗).

Hint: Use the Riesz Representation Theorem, Hahn-Decomposition, and Monotone Con-
vergence.

Question 2: Let K be a compact space, let (fn) be a sequence in CC(K), let f ∈ CC(K)
and let M > 0 be such that

‖fn‖∞ ≤M (n ∈ N), f(x) = lim
n
fn(x) (x ∈ K).

Show that
λ(f) = lim

n
λ(fn) (λ ∈ CR(K)∗).

Hint: Use the Riesz Representation Theorem, Hahn-Decomposition, Dominated Conver-
gence, and take positive and negative parts.

Question 3: Let K = [0, 1] and for each n, define fn ∈ CR(K) by

fn(x) =


n2x : 0 ≤ x ≤ 1/n,

2n− n2x : 1/n ≤ x ≤ 2/n,

0 : x > 2/n.

Show that fn(x) → 0 for each x ∈ K, but that there exists µ ∈ CR(K)∗ such that
µ(fn) 6→ 0. Hint: Sketch fn.

Question 4: Let K be a topological space. We shall1 define the Borel σ-algebra on
K to be the σ-algebra generated by open sets in K; again we write B(K) for this. In
particular, we get B(K).

Given two topological spaces K and L, we shall say that a map f : K → L is Borel if
f−1(E) ∈ B(K) for each E ∈ B(L).

Now let K be a compact space, and consider K with the Borel σ-algebra B(K). Show
that f : K → K is measurable if and only if f is Borel.

Question 5: Let E and F be Banach spaces, and let T ∈ B(E,F ). Show that there exists
S ∈ B(F ∗, E∗) with the following property: for φ ∈ F ∗, we have that S(φ) = ψ ∈ E∗,
where

ψ(x) = φ
(
T (x)

)
(x ∈ E).

We call S the adjoint of T , and write S = T ∗.

Question 6: Let (X,R, µ) be a measure space. We say that E ∈ R is an atom if
µ(E) 6= 0, and if F ∈ R with F ⊆ E then either µ(F ) = µ(E) or µ(F ) = 0.

Suppose that for some x ∈ X, we have that {x} ∈ R. Show that {x} is an atom if
and only if µ({x}) 6= 0.

1There is a debate in the literature here: some authors use the compact sets as the generating sets. If K is itself
compact, then these two definitions of course agree. If you want, check that the definitions agree on K as well.
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Let E ∈ R be an atom. Let (En)∞n=1 be a partition of E; that is, En ∈ R and En ⊆ E
for each n, for n 6= m we have En ∩ Em = ∅, and finally

⋃
nEn = E. If µ is finite, show

that there exists a unique n0 with En0 being an atom.
Is this still true if µ is not finite? Or, an easier question, where (if at all) did you use

that µ is finite in your proof?

Question 7: This follows on from Question 6. Let K be a compact Hausdorff space,
and let µ be a finite, regular (positive) Borel measure. Let E ∈ B(K) be an atom. Show
that there exists a closed set F ⊆ E which is an atom.

Suppose, towards a contradiction, that x ∈ F implies that {x} is not an atom. Show
that for each x ∈ F there exists an open set Ux with x ∈ Ux and µ(Ux) < µ(F ).

As F is compact, and {Ux : x ∈ F} is an open cover, there exist x1, · · · , xn in
F with Ux1 ∪ · · · ∪ Uxn ⊇ F . Let Aj = Uxj

∩ F for 1 ≤ j ≤ n, let B1 = A1 and
Bj = Aj \ (A1 ∪ · · · ∪ Aj−1) for j ≥ 2. Why is (Bj)

n
j=1 a partition of F? Show that

µ(Bj) < µ(F ) for each j, and hence derive a contradiction (think about Question 6 here).
Hence show that if E ∈ B(K) is an atom, then there exists a unique x ∈ E with {x}

being an atom, and µ(E \ {x}) = 0.

The following two questions get you to explore something quite subtle; they are
hence optional (but interesting!)

Question 8: Let K be a compact space. Given a Borel map ψ : K → K and µ ∈MC(K),
show that

ψ(µ) : B(K)→ C, A 7→ µ(ψ−1(A)) (A ∈ B(K))

defines a measure on B(K). Do you think that ψ(µ) need be regular? What if ψ is even
continuous?

Question 9: This uses the notation of Question 5, and continued from Question 8. Let
ψ : K → K be a continuous map. Show that we can define Sψ : CK(K)→ CK(K) by

Sψ(f) = f ◦ ψ (f ∈ CK(K)).

Show that Sψ is bounded. What is ‖Sψ‖?
Calculate what S∗ψ is: you will need to use the proof of the Riesz-representation theo-

rem. (Actually, to give a 100% correct answer is very hard!)
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Bonus question 1: This gives a proof of Urysohn’s Lemma, and is very much an optional
question. A topological space K is normal if, whenever E and F are disjoint closed sets,
we can find disjoint open sets U and V such that E ⊆ U and F ⊆ V .

First, we show that if K is compact (and Hausdorff) then K is normal. Let E and
F be disjoint closed sets. Pick x ∈ E, and for each y ∈ F , as K is Hausdorff, we can
find disjoint open sets Uy and Vy such that x ∈ Uy and y ∈ Vy. Hence

⋃
y∈F Vy is an

open cover of F . Conclude that we can find disjoint open sets U and V with x ∈ U and
F ⊆ V . Now apply a similar argument to show that K is normal.

Now we attack Urysohn’s Lemma. Let E and F be disjoint closed subsets of K. We
aim to find a continuous function f : K → [0, 1] such that f ≡ 0 on E and f ≡ 1 on F .

Let D = {m2−n : m,n ∈ N,m < 2n} ⊆ (0, 1). As K is normal, show that there exists
an open set U1/2 such that E ⊆ U1/2, and if U1/2 is the closure of U1/2, then F ∩U1/2 = ∅.

Again using normality, show that there exist open sets U1/4 and U3/4 such that E ⊆
U1/4 ⊆ U1/4 ⊆ U1/2 and U1/2 ⊆ U3/4 ⊆ U3/4 ⊆ K \ F .

Continue inductively to find a family {Ur}r∈D of open sets, such that

E ⊆ Ur ⊆ Ur ⊆ Us ⊆ Us ⊆ K \ F

whenever r, s ∈ D with r < s. Hint: At each stage n, choose Um/2n for all m such that
we haven’t yet dealt with m2−n.

We define f : K → [0, 1] by

f(x) =

{
inf{r ∈ D : x ∈ Ur} : x ∈

⋃
r Ur,

1 : otherwise.

Show that f has the required properties.

Bonus question 2: I mentioned the Borel hierarchy in lectures. Let us defined it here.
Fix a compact Hausdorff space K (although normally we define the following on a Polish
space: as far as Borel sets are concerned, there is only one Polish space, which we can
take to be the unit interval [0, 1]: this is hard enough!) Define

Σ0
1 = Open sets in K,

Π0
1 = {A ⊆ K : K \ A ∈ Σ0

1} = Closed sets,

A ∈ Σ0
2 ⇔ ∃(An) ⊆ Π0

1, A =
⋃
n

An,

Π0
2 = {A ⊆ K : K \ A ∈ Σ0

2}.

We can continue for any countable ordinal2 α:

A ∈ Σ0
α ⇔ ∃(An) ⊆

⋃
β<α

Π0
β, A =

⋃
n

An,

Π0
α = {A ⊆ K : K \ A ∈ Σ0

α}.

Prove that A ∈ Π0
α if and only if we can find (An) ⊆

⋃
β<α Σ0

β with A =
⋂
nAn.

Let µ be a finite (positive) measure defined on B(K). Suppose that µ is outer regular,
which means that

µ(E) = inf
{
µ(U) : E ⊆ U open in K

}
(E ∈ B(K)).

2If you don’t know what this means, then just consider the natural numbers.
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By using that µ is finite, show that µ must also be inner regular, that is,

µ(E) = sup
{
µ(A) : A ⊆ E closed in K

}
(E ∈ B(K)).

So µ is regular if and only if it is outer regular.
We shall make a temporary definition: E ∈ B(K) is µ-regular if

µ(E) = inf
{
µ(U) : E ⊆ U open in K

}
.

Show that every open set is µ-regular.
Now suppose that K is a metric space (or just that K = [0, 1] with the usual topology).

Then it is a fact that every closed set can be written as an intersection of a countable
family of open sets.3 Show that every member of Π0

1 is µ-regular.

Claim 1: Let (An) be a sequence of µ-regular sets. Then A =
⋃
nAn is µ-regular.

Prove this as follows: for ε > 0, show that for each n, we can find Un open with
An ⊆ Un with µ(Un \ An) < ε2−n. Let U =

⋃
n Un, so U is open. Show that A ⊆ U and

µ(U) < µ(A) + ε. Conclude that A is µ-regular.

Claim 2: Let A1, · · · , An be µ-regular sets. Then A1 ∩ · · · ∩ An is µ-regular.
Prove this as follows: by induction, it is enough to prove the n = 2 case. For i = 1, 2,

let Ui be open with Ai ⊆ Ui. Show that

(U1 ∩ U2) \ (A1 ∩ A2) ⊆ (U1 \ A1) ∪ (U2 \ A2),

and hence show that

µ
(
(U1 ∩ U2) \ (A1 ∩ A2)

)
≤ µ(U1 \ A1) + µ(U2 \ A2).

Then prove the claim.

Claim 3: Let (An) be a sequence of µ-regular measures. Then A =
⋂
nAn is µ-regular.

Prove this as follows: Let B1 = A1 and Bn = A1∩· · ·∩An for n ≥ 2. By claim 2, each
Bn is µ-regular, we have that B1 ⊇ B2 ⊇ · · · , and A =

⋂
nBn. For ε > 0, show that we

can find n with µ(Bn\A) < ε/2 and that we can find an open set U with µ(U \Bn) < ε/2.
Show that A ⊆ U and that µ(U \ A) < ε. Conclude that A is µ-regular.

So we have shown that each member of Σ0
1 and Π0

1 is µ-regular, and that countable
intersections and unions of µ-regular sets are µ-regular. Conclude, by induction, that
each member of Σ0

α, or Π0
α, is µ-regular for each α ∈ N.

If you know about ordinals, then use transfinite induction (up to ω1) to show that
each member of Σ0

α, or Π0
α, is µ-regular for each α < ω1. It’s a theorem that{

Borel sets
}

=
⋃
α<ω1

Σ0
α =

⋃
α<ω1

Π0
α,

as long as K is a separable, complete metric space (e.g. K = [0, 1]).
We conclude that if 4 there exists a compact Hausdorff space K and a finite measure

defined on B(K) which is not regular, then K cannot be a metric space! This explains
why I will not give a counter-example!

3Prove this! Just use the metric.
4I have not found such an example in the literature, but maybe I haven’t looked very hard!
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Linear Analysis I: Example Sheet 10
Question 1: We used a similar argument to the following in lectures, and also on
Example Sheet 8. Let E and G be Banach spaces, and let F ⊆ E be a subspace which
is dense. Let T : F → G be a bounded linear map. Show that we can extend T to give
a bounded linear map E → G. Show that such an extension must be unique. Hint: The
model answers to Question 3, Sheet 8 sketched this in a special case. So try to do the
general case, and check all the details!

Question 2: Define f : [0, 1] → C by

f(t) =

{
exp(t) : 0 ≤ t ≤ 1/2,

exp(1− t) : 1/2 ≤ t ≤ 1.

Thus f is periodic. Calculate the Fourier transform of f .
By using Fejer’s Theorem, and evaluating at t = 0 and t = 1/2, show that

∞∑
k=1

1

1 + 16π2k2
=

1

4(e1/2 − 1)
− 3

8
.

(It is at least plausible that I’ve messed this up, so don’t assume that you are wrong if
you get a different answer).

Question 3: Let f(t) = et for 0 ≤ t ≤ 1; show that f ∈ L2([0, 1]) and compute ‖f‖2.
Find F(f), and hence deduce that

∞∑
n=1

1

1 + 4π2n2
=

3− e

4(e− 1)
.

Question 4: I used the following in lectures, but didn’t really justify it. Recall that
T is [0, 1] with the end points identified. So we can think of functions in CC(T) as
being continuous, periodic functions (or continuous functions f : [0, 1] → C such that
f(0) = f(1)). As the set {0, 1} has only two points, it has Lebesgue measure zero. It
follows easily that Lp([0, 1]) and Lp(T) can be identified. (Check this if you wish).

In lectures, I repeatedly used the fact that CC(T) is dense in L2(T) = L2([0, 1]). Prove
this. Hint: We know that CC([0, 1]) is dense in L2([0, 1]). So for f ∈ L2([0, 1]) and ε > 0,
there exists g ∈ CC([0, 1]) with ‖f − g‖2 < ε. Approximate g by something in CC(T).

Question 5: Let (fn) be a sequence in CC([0, 1]) converging to f with respect to the
‖ · ‖∞ norm. Suppose each fn is differentiable (to be precise, on (0, 1), or suppose each
fn is periodic) with a continuous derivative, and f ′n → g ∈ CC([0, 1]) with respect to the
‖ · ‖∞ norm. Show that f is differentiable with derivative g.

Hint: Try using the Fundamental Theorem of Calculus: this tells us that if the integral
of g is f , then f is differentiable with derivative g.

Question 6: I might have said a few words about this in lectures. We now dip our
toes in the waters which you’ll come to in MATH5016 next term. The Open Mapping
Theorem states that for Banach spaces E and F , and a bounded linear map T : E → F ,
if T is bijective, then T−1 (which always exists as a linear map) is bounded.

For n ≥ 1 let xn = (x
(n)
m )m∈Z ∈ c0(Z) be defined by

x(n)
m =

{
1 : |m| ≤ n,

0 : |m| > n.

1



Then xn ∈ `1(Z) so that F−1(xn) makes sense. Show that ‖F−1(xn)‖1 is large (a crude
estimate is all that’s required!)

Hence, by using a result from lectures that F is injective, and assuming the Open
Mapping Theorem, show that F does not map L1([0, 1]) onto c0(Z).

Thinking more about Riesz Representation

Here are a couple of questions exploring the complex Riesz Representation Theorem:
we didn’t really prove everything in lectures (and so this won’t be on the exam!) so it’s
interesting to see how to do so.

Question i: For a compact (Hausdorff) space K let MC(K) be the space of finite,
complex, regular Borel measures on K. For µ ∈ MC(K) define φµ ∈ CC(K)∗ by

φµ(f) =

∫
K

f dµ (f ∈ CC(K)).

Let g : K → C be a simple function (of course, not assumed continuous!) with
‖g‖∞ ≤ 1. Show that ∣∣∣ ∫

K

g dµ
∣∣∣ ≤ ‖µ‖.

Now let f ∈ CC(K) with ‖f‖∞ ≤ 1. Show that we can find a sequence (gn) of simple
functions with gn → f pointwise, and with |gn| ≤ |f | everywhere for each n. (Hint:
Apply our “canonical” method for getting simple functions, but taking account of real
and imaginary parts, etc.) Conclude, by using the Dominated Convergence Theorem,
that |φµ(f)| ≤ ‖µ‖. Conclude that ‖φµ‖ ≤ ‖µ‖.

Question ii: Did anyone notice an omission from the lectures? I claimed that MK(K)
is a vector space. Certainly, if µ, λ are finite regular measures, then µ + λ makes sense
and is finite. However, why is µ + λ regular? We prove this here!

Firstly, prove the following useful lemma. Let τ be a positive Borel measure. Show
that τ is regular if and only if, for each E ∈ B(K) and ε > 0, we can find an open set U
and a closed set C with C ⊆ E ⊆ U and with τ(U \ C) < ε.

Now prove a second useful lemma. For a signed measure τ , we defined |τ | = τ+ + τ−,
where τ+ and τ− are defined by way of a Hahn-Decomposition for τ . Show that

|τ |(E) = sup
{
τ(U)− τ(V ) : U, V ∈ B(K), U ∩ V = ∅, U ∪ V = E

}
(E ∈ B(K)).

So we don’t actually need a Hahn-Decomposition to define |τ | (and this works for any
measure on any σ-algebra).

Now prove a third useful lemma. Let τ ∈ MR(K). Show that τ is regular (defined to
mean that τ+ and τ− are regular) if and only if |τ | is regular (hint: use the first lemma).

Let µ, λ ∈ MR(K), and let τ = µ+λ. Using the 2nd lemma, show that |τ | ≤ |µ|+ |λ|.
Deduce, using the 3rd lemma, that τ is regular.

Show the same for complex measures: this is easier, as we can directly take real and
imaginary parts.

If you want to see a self-contained proof of the (full version) of the Riesz representation
theorem in the complex case, then you can look in Rudin, “Real and complex analysis”.
However, be warned that Rudin uses different (but equivalent!) notions for what “regular”
means. The proof is very clever, but rather synthetic (and would have taken too long to
cover in lectures, sadly). Here’s half the proof:
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Question iii: Let K be compact and Hausdorff, and let λ ∈ CC(K) with ‖λ‖ = 1. It
is possible1 to construct a positive Φ ∈ CR(K)∗ with the property that for any f ∈ CC(K),

|λ(f)| = Φ(|f |) ≤ ‖f‖∞,

where |f |(x) = |f(x)| for each x ∈ K. Show that ‖Φ‖ = 1.
We can then apply Riesz representation to find some a regular, positive Borel measure

µ0 with

Φ(g) =

∫
K

g dµ0 (g ∈ CR(K)).

As ‖Φ‖ = 1, we have that µ0(K) = 1.
We can hence form that space L1(µ0). There is a natural map CC(K) → L1(µ0); let

X be the image, so that X is a subspace2 of L1(µ0). Show that the map

φ : X → C; f 7→ λ(f)

is linear and bounded. What is ‖φ‖? Using that L1(µ0)
∗ ∼= L∞(µ0) (and Hahn-Banach),

show that there exists h ∈ L∞(µ0) with

λ(f) =

∫
K

fh dµ0 (f ∈ CC(K)).

Let µ = hµ0, so µ is the complex measure with

µ(E) =

∫
K

χEh dµ0.

This is regular: this isn’t too hard to show, if you adopt the philosophy of question ii.
We immediately see that

λ(f) =

∫
K

f dµ (f ∈ CC(K)).

Finally, show that ‖h‖∞ = 1 (hint: what is ‖φ‖?) Deduce that ‖µ‖ = 1 = ‖λ‖ (hint: Use
Question i).

More on Fourier analysis

The following questions are structured around things which you will find in the book
“Fourier Analysis” by T.W. Körner (lots of copies available in the library!) These ques-
tions are not on the syllabus of the course, but are interesting, I think.

Question A: Let (an) ∈ `1(Z) be a sequence such that (nan) ∈ `1(Z) as well (for example,
an = n−3 for each n). Let f = F−1((an)). Show that f is differentiable.

To do this, we use Question 5. Let

fn(t) =
n∑

k=−n

ake
−2πikt.

Hence fn → f by Fejer’s Theorem (or a corollary thereof). Calculate the derivative of fn,
and hence show that f ′n → g for some g ∈ CC(T). Hence finish by applying Question 5.

1See Rudin’s book; the construction is very similar to how we defined λ+ given λ ∈ CR(K).
2Actually, dense, but we don’t need this.
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Question B: The thinking behind Question 6 is that if (an) is a sufficiently “nice”
sequence, then we can differentiate, term by term, the Fourier series of f = F−1((an)).
Suppose for the moment we believe that we can always do this. Define a sequence (an)
by

an =

{
(r!)−1 : n = (r!)2 for some r ∈ N,

0 : otherwise.

Show that (an) ∈ `1(Z), and hence that f =
∑

n ane
−2πint converges in CC([0, 1]). For-

mally, we see that

f ′(t) = −2πi
∑

n

nane
−2πint = −2πi

∞∑
r=1

(r!)2(r!)−1e−2πit(r!)2 .

However, this in no sense converges!
In fact, if you consult “Fourier Analysis”, Chapter 11, you will find a proof that f

is in fact differentiable nowhere! The initial discovery of such functions (remember, f
is continuous!) was a shock to mathematicians, and lead, in part, to the formalism of
modern analysis.

Question C: Let X be the subspace of CC(T) spanned by functions of the form t 7→ e2πint,
for n ∈ Z. We saw in lectures that, because of Fejer’s Theorem, X is dense in CC(T).

Now let f : [0, 1] → R be continuous (but not necessarily periodic) and define g ∈
CC(T) by

g(t) =

{
f(2t) : 0 ≤ t ≤ 1/2,

f(2− 2t) : 1/2 ≤ t ≤ 0.

Fix ε > 0. Then we can find h ∈ X with ‖g − h‖∞ < ε. We know that on the interval
[0, 1] and for n ∈ Z, we have that

K∑
k=0

(2πint)k

k!

converges uniformly to e2πint, as K → ∞. Use this to approximate h by a complex
polynomial in t.

By taking real parts, and thinking about the definition of g, show that we have ap-
proximated f be a real polynomial.

This is the Weierstrauss Approximation Theorem, see “Fourier Analysis”, Chapter 4.
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