Linear Analysis I: Worked Solutions 1

I do not intend to give worked solutions to every question. However, I will give full solutions to any [Revision] questions.

Question 1: For a normed vector space $(V,\|\cdot\|)$, show that if $\left(x_{n}\right)$ is a sequence in V tending to x, and μ is a scalar, then $\mu x_{n} \rightarrow \mu x$.
Answer: If $\mu=0$, then the result is obvious, so we may suppose that $|\mu|>0$. Let $\epsilon>0$, so as $x_{n} \rightarrow x$, there exists an $N>0$ such that $\left\|x_{n}-x\right\|<\epsilon|\mu|^{-1}$ whenever $n \geq N$. Then $\left\|\mu x_{n}-\mu x\right\|=|\mu|\left\|x_{n}-x\right\|<\epsilon$. As $\epsilon>0$ was arbitrary, we conclude that $\mu x_{n} \rightarrow \mu x$, as required.

The other answers are similar.
Question 3: Do you think that the definition

$$
\|f\|_{\infty}=\sup _{t \in[0,1]}|f(t)| \quad\left(f \in \mathbb{K}^{[0,1]}\right),
$$

makes sense???
Answer: No, because we have said nothing about f. For example, we could have that

$$
f(t)= \begin{cases}0 & : t=0 \\ 1 / t & : 0<t \leq 1\end{cases}
$$

This is a function $[0,1] \rightarrow \mathbb{R}$, and the set $\{|f(t)|: t \in[0,1]\}$ is simply $\{0\} \cup[1, \infty)$, so the supremum is ∞, that is, it doesn't really exist.

We define $\ell^{\infty}([0,1])$ to be the bounded functions $[0,1] \rightarrow \mathbb{K}$. Then the supremum does exist, and it is not too hard to check that it is a norm.

Question 4: [Revision] Recall that we define the norm $\|\cdot\|_{2}$ on \mathbb{K}^{n} by

$$
\|x\|_{2}=\left(\sum_{i=1}^{n}\left|x_{i}\right|^{2}\right)^{1 / 2} \quad\left(x=\left(x_{i}\right) \in \mathbb{K}^{n}\right)
$$

Prove that $\left(\mathbb{K}^{n},\|\cdot\|_{2}\right)$ is complete.
Answer: Let $\left(x_{k}\right)$ be a Cauchy-sequence in $\left(\mathbb{K}^{n},\|\cdot\|_{2}\right)$. For each k, x_{k} is a vector in \mathbb{K}^{n}, say that

$$
x_{k}=\left(\begin{array}{c}
x_{k, 1} \\
x_{k, 2} \\
\vdots \\
x_{k, n}
\end{array}\right) .
$$

For $\epsilon>0$, there exists $N>0$ such that $\left\|x_{j}-x_{k}\right\|_{2} \leq \epsilon$ for $j, k \geq N$. That is,

$$
\left(\sum_{i=1}^{n}\left|x_{j, i}-x_{k, i}\right|^{2}\right)^{1 / 2} \leq \epsilon \quad(j, k \geq N)
$$

Fix t between 1 and n, so that

$$
\left|x_{j, t}-x_{k, t}\right| \leq\left(\sum_{i=1}^{n}\left|x_{j, i}-x_{k, i}\right|^{2}\right)^{1 / 2} \leq \epsilon \quad(j, k \geq N)
$$

Hence $\left(x_{k, t}\right)_{k=1}^{\infty}$ is a Cauchy-sequence in \mathbb{K}, and hence converges to, say, a_{t}. Let

$$
x=\left(\begin{array}{c}
a_{1} \\
a_{2} \\
\vdots \\
a_{n}
\end{array}\right) \in \mathbb{K}^{n} .
$$

Then

$$
\begin{aligned}
\lim _{k}\left\|x-x_{k}\right\|_{2} & =\lim _{k}\left(\sum_{i=1}^{n}\left|a_{i}-x_{k, i}\right|^{2}\right)^{1 / 2}=\left(\lim _{k} \sum_{i=1}^{n}\left|a_{i}-x_{k, i}\right|^{2}\right)^{1 / 2} \\
& =\left(\sum_{i=1}^{n} \lim _{k}\left|a_{i}-x_{k, i}\right|^{2}\right)^{1 / 2}=0
\end{aligned}
$$

as required.
Question 5: Let $\mathbb{K}[X]$ be the space of polynomials over \mathbb{K}. For $p(X)=a_{n} X^{n}+$ $a_{n-1} X^{n-1}+\cdots+a_{1} X+a_{0} \in \mathbb{K}[X]$, we define

$$
\|p\|_{1}=\sum_{i=0}^{n}\left|a_{i}\right| .
$$

For $n \geq 1$, let p_{n} be the polynomial

$$
p_{n}(X)=\frac{1}{2^{n}} X^{n}+\frac{1}{2^{n-1}} X^{n-1}+\cdots+\frac{1}{4} X^{2}+\frac{1}{2} X .
$$

Show that $\left(p_{n}\right)$ is a Cauchy sequence. Does $\left(p_{n}\right)$ converge to a limit in $\mathbb{K}[X]$?
Answer: For $n>m$, we calculate that

$$
\left\|p_{n}-p_{m}\right\|_{1}=\sum_{i=m+1}^{n} \frac{1}{2^{i}}=2^{-m} \sum_{i=1}^{n-m} 2^{-i} \leq 2^{-m} .
$$

Hence $\left(p_{n}\right)$ is a Cauchy sequence in $\left(\mathbb{K}[X],\|\cdot\|_{1}\right)$.
Let $p(X)=a_{k} X^{k}+a_{k-1} X^{k-1}+\cdots+a_{0} \in \mathbb{K}[X]$ be some polynomial. Then, for large n,

$$
\left\|p-p_{n}\right\|_{1}=\left|a_{0}\right|+\sum_{i=1}^{k}\left|a_{i}-2^{-i}\right|+\sum_{i=k+1}^{n} 2^{-i} \geq \sum_{i=k+1}^{n} 2^{-i} \geq 2^{-k-1}
$$

Thus we see that $p_{n} \nrightarrow p$. As p was arbitrary, we conclude that $\left(p_{n}\right)$ does not converge to any member of $\mathbb{K}[X]$. So ($\mathbb{K}[X],\|\cdot\|_{1}$) is not complete.

Actually, we have used nothing about the structure of the polynomials here. The completion would be simply the Banach space ℓ^{1}.
Question 6: We define c_{0} to be the collection of sequences in \mathbb{K} which converge to 0 , with the norm

$$
\left\|\left(x_{n}\right)\right\|_{\infty}=\sup _{n}\left|x_{n}\right| \quad\left(\left(x_{n}\right) \in c_{0}\right) .
$$

Show that c_{0} is complete.
Answer: Let $\left(x_{n}\right)$ be a Cauchy-sequence in c_{0}. Hence, for each $n, x_{n} \in c_{0}$, say that $x_{n}=$ $\left(x_{k}^{(n)}\right)_{k=1}^{\infty}$, so that $\lim _{k} x_{k}^{(n)}=0$. For $\epsilon>0$, there exists $N>0$ such that $\left\|x_{n}-x_{m}\right\|_{\infty} \leq \epsilon$ for $n, m \geq N$. For k fixed, we see that

$$
\left|x_{k}^{(n)}-x_{k}^{(m)}\right| \leq \sup _{j}\left|x_{j}^{(n)}-x_{j}^{(m)}\right|=\left\|x_{n}-x_{m}\right\|_{\infty} \leq \epsilon
$$

so we see that $\left(x_{k}^{(n)}\right)_{n=1}^{\infty}$ is a Cauchy-sequence in \mathbb{K}, and so converges to a_{k} say.
We first check that $\lim _{k} a_{k}=0$, so that $\left(a_{k}\right) \in c_{0}$. Let $\epsilon>0$, so for some $N>0$, we have that $\left\|x_{n}-x_{m}\right\|_{\infty} \leq \epsilon$ for $n, m \geq N$. Then $\lim _{k} x_{k}^{(N)}=0$, so there exists $M>0$ such that $\left|x_{k}^{(N)}\right| \leq \epsilon$ for $k \geq M$. For $k \geq M$, we see that

$$
\left|a_{k}-x_{k}^{(N)}\right|=\lim _{n}\left|x_{k}^{(n)}-x_{k}^{(N)}\right| \leq \lim _{n}\left\|x_{n}-x_{N}\right\|_{\infty} \leq \epsilon
$$

We conclude that

$$
\left|a_{k}\right| \leq\left|a_{k}-x_{k}^{(N)}\right|+\left|x_{k}^{(N)}\right| \leq 2 \epsilon \quad(k \geq M) .
$$

As $\epsilon>0$ was arbitrary, we conclude that $\lim _{k} a_{k}=0$, as required.
Finally, we check that $\lim _{n}\left\|x_{n}-\left(a_{k}\right)\right\|=0$. Let $\epsilon>0$, so, again, there exists $N>0$ such that $\left\|x_{n}-x_{m}\right\|_{\infty} \leq \epsilon$ for $n, m \geq N$. Let $k \geq 1$, and let $n \geq N$, so that

$$
\left|x_{k}^{(n)}-a_{k}\right|=\lim _{m}\left|x_{k}^{(n)}-x_{k}^{(m)}\right| \leq \lim _{m}\left\|x_{n}-x_{m}\right\|_{\infty} \leq \epsilon .
$$

As k was arbitrary, we see that

$$
\left\|x_{n}-\left(a_{k}\right)\right\|_{\infty}=\sup _{k}\left|x_{k}^{(n)}-a_{k}\right| \leq \epsilon .
$$

As $n \geq N$ was arbitrary, we conclude that $\lim _{n}\left\|x_{n}-\left(a_{k}\right)\right\|=0$, as required.
Question 7: Let (X, d) be a metric space, and let $Y \subseteq X$ be a subset. The restriction of d to Y turns Y into a metric space in its own right. What does it mean for Y to be closed in X ? What does it mean for Y to be open in X ? If X is complete, show that Y is closed in X if and only if Y is complete.
Answer: Y is closed in X if whenever $\left(y_{n}\right)$ is a sequence in Y converging to $x \in X$, then actually $x \in Y$.
Y is open in X if for each $y \in Y$, there exists $\epsilon>0$ such that

$$
B(y, \epsilon)=\{x \in X: d(x, y)<\epsilon\} \subseteq Y .
$$

Let X be complete. Suppose that Y is closed in X. If $\left(y_{n}\right)$ is Cauchy in Y, then $\left(y_{n}\right)$ is Cauchy in X, and so converges to $x \in X$. As Y is closed, $x \in Y$, so we see that every Cauchy sequence in Y converges in Y. Hence Y is complete.

Conversely, suppose that Y is complete, and let $\left(y_{n}\right)$ be a sequence in Y converging to $x \in X$. Then $\left(y_{n}\right)$ is Cauchy, so as Y is complete, $\left(y_{n}\right)$ converges to $y \in Y$. Then $d(x, y)=\lim _{n} d\left(x, y_{n}\right)=0$, so that $x=y$, and hence Y is closed.

Question 8: A metric space (X, d) is compact if whenever $\left(x_{n}\right)_{n=1}^{\infty}$ is a sequence in X, we can find a subsequence $n(1)<n(2)<\cdots$ such that $\left(x_{n(k)}\right)_{k=1}^{\infty}$ is convergent.

If (X, d) is a metric space, we say that a subset $Y \subseteq X$ is compact if Y is compact for the metric inherited from X. Show that if Y is compact, then Y is closed in X.
Answer: Let $\left(y_{n}\right)$ be a sequence in Y converging to $x \in X$. As Y is compact, there exists $n(1)<n(2)<\cdots$ such that $\left(y_{n(k)}\right)$ is convergent in Y, say to $y \in Y$. Clearly $\left(y_{n(k)}\right)$ also converges to x, so as above, $x=y$. Hence Y is closed.

Question 8 cont.: The Bolzano-Weierstraß theorem states that if $\left(x_{n}\right)$ is a bounded sequence of real numbers, then $\left(x_{n}\right)$ has a convergent subsequence. Use this result to prove that a subset $Y \subseteq \mathbb{R}$ is compact (for the usual metric on \mathbb{R}) if and only if Y is closed and bounded.

Answer: If Y is compact, then by the above, it is closed. If Y is not bounded, then for every n, we can find $y_{n} \in Y$ with $\left|y_{n}\right|>n$. Then $\left(y_{n}\right)$ can not have any convergent subsequences, so Y cannot be compact, a contradiction. Hence Y is bounded.

Conversely, let Y be closed and bounded. Let $\left(y_{n}\right)$ be a sequence in Y. As Y is bounded, so is $\left(y_{n}\right)$, and hence the Bolzano-Weierstraß theorem tells us that a subsequence $\left(y_{n(k)}\right)$ converges, say to $y \in \mathbb{R}$. As Y is closed, $y \in Y$, and so we may conclude that Y is compact.
Question 8 cont.: The Heine-Borel theorem tells us that a subset $Y \subseteq\left(\mathbb{R}^{n},\|\cdot\|_{2}\right)$ is compact if and only if Y is closed and bounded. Prove this.
Answer: If Y is compact, then much the same argument as above shows that Y is closed and bounded. Conversely, let Y be closed and bounded, say that for $M>0$, each $y \in Y$ satisfies $\|y\|_{2} \leq M$. Let $\left(y_{k}\right)$ be a sequence in Y. For each k, let $y_{k}=\left(y_{k, 1}, \cdots, y_{k, n}\right)$ (here I am using row vectors, instead of column vectors, for space reasons). For each k,

$$
\left|y_{k, 1}\right| \leq\left\|y_{k, 1}\right\|_{2} \leq M,
$$

so we see that $\left(y_{k, 1}\right)$ is a bounded sequence in \mathbb{R}. By Bolzano-Weierstraß, we can find a subsequence $k_{1}(1)<k_{1}(2)<\cdots$ such that $\left(y_{k_{1}(j), 1}\right)_{j=1}^{\infty}$ converges.

Similarly, $\left(y_{k_{1}(j)}, 2\right)$ is a bounded sequence in \mathbb{R}, and so we can find a subsequence $k_{2}(1)<k_{2}(2)<\cdots$ of $\left(k_{1}(j)\right)$, such that $\left(y_{k_{2}(j), 2}\right)_{j=1}^{\infty}$ converges. As $\left(k_{2}(j)\right)$ is a subsequence of $\left(k_{1}(j)\right)$, we also have that $\left(y_{k_{2}(j), 1}\right)_{j=1}^{\infty}$ converges.

Continuing, we can ultimately find a subsequence $k_{n}(1)<k_{n}(2)<\cdots$ such that $\left(y_{k_{n}(j), i}\right)_{j=1}^{\infty}$ converges for each i, say $\lim _{j} y_{k_{n}(j), i}=z_{i}$. Let $z=\left(z_{1}, \cdots, z_{n}\right) \in \mathbb{R}^{n}$, so as in Question 4 above, we thus have that $\lim _{j}\left(y_{k_{n}(j)}\right)=z$. Thus Y is compact, as required.
Question 8 cont.: Prove the same result for $\left(\mathbb{C}^{n},\|\cdot\|_{2}\right)$.
Answer: Define a map $\theta: \mathbb{C}^{n} \rightarrow \mathbb{R}^{2 n}$ as follows. Let $x=\left(x_{1}, \cdots, x_{n}\right) \in \mathbb{C}^{n}$, so for each i, we have that $x_{i}=y_{i}+\imath z_{i}$ say, where $\imath^{2}=-1$. Let

$$
\theta(x)=\left(y_{1}, z_{1}, y_{2}, z_{2}, \cdots, y_{n}, z_{n}\right) \in \mathbb{R}^{2 n} .
$$

The θ is a bijection. Furthermore, θ is a distance preserving map for the metrics induced by $\|\cdot\|_{2}$. Hence $Y \subseteq \mathbb{C}^{n}$ is compact, or closed and bounded, if and only if $\theta(Y) \subseteq \mathbb{R}^{2 n}$ is compact, or closed and bounded, respectively. The claim in the question follows at once.

Question 9: We shall now apply these ideas. Let (X, d) be a metric space, and let $C_{\mathbb{K}}(X)$ be the vector space of all continuous functions from X to \mathbb{K}.

We say that $f \in C_{\mathbb{K}}(X)$ is uniformly continuous if for each $\epsilon>0$ there exists $\delta>0$ such that whenever $x, y \in X$ satisfy $d(x, y) \leq \delta$, we have that $|f(x)-f(y)| \leq \epsilon$. Show that as X is compact, every $f \in C_{\mathbb{K}}(X)$ is uniformly continuous.
Answer: Suppose not, so that some $f \in C_{\mathbb{K}}(X)$ is not uniformly continuous. That is, there exists some $\epsilon>0$ such that for each $\delta>0$, we can find $x, y \in X$ with $d(x, y) \leq \delta$, but $|f(x)-f(y)|>\epsilon$. Hence for each n, we can find $x_{n}, y_{n} \in X$ with $d\left(x_{n}, y_{n}\right) \leq 1 / n$ and $\left|f\left(x_{n}\right)-f\left(y_{n}\right)\right|>\epsilon$. As X is compact, we can find a subsequence $n(1)<n(2)<\cdots$ such that $\left(x_{n(k)}\right)_{k=1}^{\infty}$ converges in X. Similarly, we can find a subsequence $(m(k))$ or $(n(k))$ such that $\left(y_{m(k)}\right)_{k=1}^{\infty}$ converges. Let

$$
x=\lim _{k} x_{m(k)}=\lim _{k} x_{n(k)}, \quad y=\lim _{k} x_{m(k)} .
$$

Notice that

$$
d(x, y)=\lim _{k} d\left(x_{m(k)}, y_{m(k)}\right) \leq \lim _{k} 1 / m(k)=0,
$$

so that $x=y$. As f is continuous, we have that

$$
f(x)=\lim _{k} f\left(x_{m(k)}\right), \quad f(y)=\lim _{k} f\left(y_{m(k)}\right),
$$

and so we have that

$$
0=|f(x)-f(y)|=\lim _{k}\left|f\left(x_{m(k)}\right)-f\left(y_{m(k)}\right)\right| \geq \epsilon,
$$

giving us our required contradiction.
Question 9 cont.: Show that any $f \in C_{\mathbb{K}}(X)$ attains its supremum.
Answer: By the definition of the supremum, for each n, we can find $x_{n} \in X$ with

$$
\left|f\left(x_{n}\right)\right|>\sup _{x \in X}|f(x)|-\frac{1}{n}
$$

We can find a subsequence $\left(x_{n(k)}\right)$ which converges to, say, $y \in X$. As f is continuous,

$$
|f(y)|=\lim _{k} \left\lvert\, f\left(\left.x_{n(k)}\left|\geq \lim _{k} \sup _{x \in X}\right| f(x)\left|-\frac{1}{n(k)}=\sup _{x \in X}\right| f(x) \right\rvert\,,\right.\right.
$$

as required.

Linear Analysis I: Worked Solutions 2

Question 1: Let E and F be normed vector spaces, and let $T: E \rightarrow F$ be a bounded linear map. The first line of the following is the original definition of the norm of T. Prove carefully that the other expressions really are equal:

$$
\begin{aligned}
\|T\| & =\sup \left\{\frac{\|T(x)\|}{\|x\|}: x \in E, x \neq 0\right\} \\
& =\sup \{\|T(x)\|: x \in E,\|x\| \leq 1\} \\
& =\sup \{\|T(x)\|: x \in E,\|x\|=1\} .
\end{aligned}
$$

Answer: We show that the 2nd and 3rd expressions are equal. Set

$$
K_{2}=\sup \{\|T(x)\|: x \in E,\|x\| \leq 1\}, \quad K_{3}=\sup \{\|T(x)\|: x \in E,\|x\|=1\} .
$$

As we are taking the supremum over a smaller set, clearly $K_{3} \leq K_{2}$. For $x \in E$ with $\|x\| \leq 1$, let $y=x /\|x\|$, so that $\|y\|=1$. Then $\|T(y)\|=\|T(x)\| /\|x\| \geq\|T(x)\|$ as $1 /\|x\| \geq 1$. This shows that $K_{3} \geq K_{2}$, so that actually $K_{2}=K_{3}$.
Question 2: Let E be a normed vector space, and let $\phi: E \rightarrow \mathbb{K}$ be a linear map. When ϕ is bounded, show that

$$
\operatorname{ker} \phi=\{x \in E: \phi(x)=0\}=\phi^{-1}(\{0\})
$$

is closed.
Answer: Quick proof: as ϕ is continuous, and $\{0\}$ is closed, we have that $\phi^{-1}(\{0\})$ is closed. Longer proof: Let $\left(x_{n}\right) \subseteq \operatorname{ker} \phi$ with $x_{n} \rightarrow x$. Then $\left\|x_{n}-x\right\| \rightarrow 0$, so $\left|\phi\left(x_{n}-x\right)\right| \leq\|\phi\|\left\|x_{n}-x\right\| \rightarrow$ 0 . However, $\phi\left(x_{n}\right)=0$ for each n, so $|\phi(x)|=0$, so $x \in \operatorname{ker} \phi$.
Question continued: Now suppose that ϕ is linear, and we know that ker ϕ is closed in E. We shall show that ϕ is bounded. Firstly, if $\operatorname{ker} \phi=E$, show that ϕ is bounded.
Answer: If $\operatorname{ker} \phi=E$ then $\phi=0$, and so ϕ is obviously bounded!
Question continued: Now suppose that $\operatorname{ker} \phi \neq E$. Let $x_{0} \in E \backslash \operatorname{ker} \phi$. Show that every vector $x \in E$ can be written as

$$
x=\lambda x_{0}+y
$$

for some $\lambda \in K$ and $y \in \operatorname{ker} \phi$. Suppose, towards a contradiction, that ϕ is not bounded, so we can find a sequence $\left(x_{n}\right)$ in E with $\left\|x_{n}\right\| \leq 1$ and $\left|\phi\left(x_{n}\right)\right| \geq n$ for each n. By writing each $x_{n}=\lambda_{n} x_{0}+y_{n}$ for some $\lambda_{n} \in \mathbb{K}$ and $y_{n} \in \operatorname{ker} \phi$, derive a contradiction.
Answer: Following the hint, we calculate that

$$
\phi\left(x-\phi\left(x_{0}\right)^{-1} \phi(x) x_{0}\right)=\phi(x)-\phi\left(x_{0}\right)^{-1} \phi(x) \phi\left(x_{0}\right)=0 .
$$

So $y=x-\phi\left(x_{0}\right)^{-1} \phi(x) x_{0} \in \operatorname{ker} \phi$, and then

$$
x=\frac{\phi(x)}{\phi\left(x_{0}\right)} x_{0}+y,
$$

as claimed.
We write $x_{n}=\lambda_{n} x_{0}+y_{n}$ as suggested. Then $\left\|\lambda_{n} x_{0}+y_{n}\right\| \leq 1$ for each n, and $\left|\phi\left(x_{n}\right)\right|=$ $\left|\lambda_{n}\right|\left|\phi\left(x_{0}\right)\right| \geq n$ for each n. All we know is that $\operatorname{ker} \phi$ is closed. So lets look at

$$
z_{n}=\lambda_{n}^{-1} x_{n}=x_{0}+\lambda_{n}^{-1} y_{n} .
$$

Then

$$
\left\|z_{n}\right\|=\left|\lambda_{n}\right|^{-1}\left\|x_{n}\right\| \leq\left|\lambda_{n}\right|^{-1} \leq \frac{\left|\phi\left(x_{0}\right)\right|}{n} \rightarrow 0 .
$$

However, then $\left\|x_{0}+\lambda_{n}^{-1} y_{n}\right\| \rightarrow 0$, so as each vector $\left(-\lambda_{n}^{-1} y_{n}\right) \in \operatorname{ker} \phi$, and this is a closed subspace, we conclude that $x_{0} \in \operatorname{ker} \phi$. This is a contradiction.

Question 3: Let E be a normed vector space, let $\phi \in E^{*}$, and let $\psi: E \rightarrow \mathbb{K}$ be a linear map. Show that if $\operatorname{ker} \phi \subseteq \operatorname{ker} \psi$, then $\psi=\lambda \phi$ for some $\lambda \in \mathbb{K}$, and hence in particular, $\psi \in E^{*}$.
Answer: If $\operatorname{ker} \phi=E$ then $\phi=0$, and $E \subseteq \operatorname{ker} \psi$, so $\operatorname{ker} \psi=E$ and hence $\psi=0=0 \phi$, as required.

If $\phi \neq 0$ then pick $x_{0} \in E$ with $\phi\left(x_{0}\right) \neq 0$. For $x \in E$, notice that $x-\phi\left(x_{0}\right)^{-1} \phi(x) x_{0} \in$ $\operatorname{ker} \phi \subseteq \operatorname{ker} \psi$, and so

$$
0=\psi\left(x-\phi\left(x_{0}\right)^{-1} \phi(x) x_{0}\right)=\psi(x)-\frac{\psi\left(x_{0}\right)}{\phi\left(x_{0}\right)} \phi(x)
$$

As x was arbitrary, we conclude that $\psi=\psi\left(x_{0}\right) \phi\left(x_{0}\right)^{-1} \phi$ as required.
Question 4: Let $E=c_{0}$ and let F be the subspace of all sequences $\left(x_{n}\right) \in c_{0}$ such that $\sum_{n=1}^{\infty} 2^{-n} x_{n}=0$. Consider the linear map

$$
f: c_{0} \rightarrow \mathbb{K}, \quad f\left(\left(x_{n}\right)\right)=\sum_{n=1}^{\infty} 2^{-n} x_{n} \quad\left(\left(x_{n}\right) \in c_{0}\right)
$$

Show that f is bounded with $\|f\| \leq 1$, and hence that F is closed.
Answer: We have that

$$
\left|f\left(\left(x_{n}\right)\right)\right| \leq \sum_{n} 2^{-n}\left|x_{n}\right| \leq\left\|\left(x_{n}\right)\right\|_{\infty} \sum_{n} 2^{-n}=\left\|\left(x_{n}\right)\right\|_{\infty}
$$

so $\|f\| \leq 1$, and hence $F=\operatorname{ker} f$ is closed.
Question continued: Suppose that there exists $x_{0} \in E$ with $\left\|x_{0}\right\| \leq 1$ and $\left\|x_{0}-y\right\| \geq 1$ for each $y \in F$. Show that $f\left(x_{0}\right)=1$, and hence derive a contradiction.
Answer: Let $\epsilon>0$, and pick N such that $\sum_{n=1}^{N} 2^{-n}>1-\epsilon$. Define $y=\left(y_{n}\right)$ by setting $y_{n}=1$ if $n \leq N$, and $y_{n}=0$ otherwise. Then $\lim _{n} y_{n}=0$, so that $y \in c_{0}$. Then $f(y)=\sum_{n=1}^{N} 2^{-n}>1-\epsilon$, and $\|y\|_{\infty}=1$. As in question 2 above, observe that $z=x_{0}-f(y)^{-1} f\left(x_{0}\right) y \in F$, so by the hypthosis,

$$
1 \leq\left\|x_{0}-z\right\|=\left\|x_{0}-x_{0}+f(y)^{-1} f\left(x_{0}\right) y\right\|=|f(y)|^{-1}\left|f\left(x_{0}\right)\right|\|y\|<\frac{\left|f\left(x_{0}\right)\right|}{1-\epsilon}
$$

Hence $\left|f\left(x_{0}\right)\right|>1-\epsilon$, so as $\epsilon>0$ was arbitrary, we conclude that $\left|f\left(x_{0}\right)\right| \geq 1$.
But, now let $x_{0}=\left(x_{n}\right) \in c_{0}$, so $\lim _{n} x_{n}=0$. Hence, for some M, we have that $\left|x_{n}\right|<\frac{1}{2}$ for $n>M$. As $\left\|x_{0}\right\| \leq 1$, we have that $\left|x_{n}\right| \leq 1$ for every n. Hence

$$
1 \leq\left|f\left(x_{0}\right)\right|=\left|\sum_{n=1}^{M} 2^{-n} x_{n}+\sum_{n>M} 2^{-n} x_{n}\right| \leq \sum_{n=1}^{M} 2^{-n}+\frac{1}{2} \sum_{n>M} 2^{-n}<1
$$

a contradiction.
Question 5: We work in the Banach space c_{0}. Define subspaces

$$
\begin{aligned}
& Y=\left\{\left(x_{n}\right)_{n=1}^{\infty} \in c_{0}: x_{2 k-1}=0 \text { for } k=1,2,3, \cdots\right\} \\
& Z=\left\{\left(x_{n}\right)_{n=1}^{\infty} \in c_{0}: x_{2 k}=k^{2} x_{2 k-1} \text { for } k=1,2,3, \cdots\right\} .
\end{aligned}
$$

Show that Y and Z are closed subspaces.
Answer: For each k, the map

$$
\phi_{k}: c_{0} \rightarrow \mathbb{K}, \quad\left(x_{n}\right) \mapsto x_{2 k-1}
$$

is linear and bounded (as $\left\|\phi_{k}\right\|=1$). Then Y is the intersection $\bigcap_{k \geq 1} \operatorname{ker} \phi_{k}$, which is closed, as each $\operatorname{ker} \phi_{k}$ is closed.

Similarly, define

$$
\psi_{k}: c_{0} \rightarrow \mathbb{K}, \quad\left(x_{n}\right) \mapsto x_{2 k}-k^{2} x_{2 k-1}
$$

Clearly ψ_{k} is linear, and $\left|\psi_{k}\left(\left(x_{n}\right)\right)\right| \leq\left|x_{2 k}\right|+k^{2}\left|x_{2 k-1}\right| \leq\left(k^{2}+1\right)\left\|\left(x_{n}\right)\right\|_{\infty}$, so ψ_{k} is bounded (and actually, $\left\|\psi_{k}\right\|=k^{2}+1$). Then $Z=\bigcap_{k \geq 1} \operatorname{ker} \psi_{k}$ is also closed.
Question continued: Show that the vector $x=(1,0,1 / 4,0,1 / 9,0,1 / 16,0, \cdots)$ is in the closure of the subspace $Y+Z$. That is, for each $\epsilon>0$, you need to find $y \in Y$ and $z \in Z$ with $\|x-(y+z)\|_{\infty}<\epsilon$.
Answer: Let $x=\left(x_{n}\right)$, so that $x_{2 k}=0$ for each k, and $x_{2 k-1}=1 / k^{2}$, for each k. Pick $\epsilon>0$, and pick K with $1 / K^{2}<\epsilon$.

We have little choice but to set $z=\left(1,1,1 / 4,1,1 / 9,1, \cdots, 1 / K^{2}, 1,0,0, \cdots\right)$, that is,

$$
z_{2 k-1}=1 / k^{2}, \quad z_{2 k}=1 \quad(1 \leq k \leq K)
$$

and $z_{2 k-1}=z_{2 k}=0$ for $k>K$. Thus $z \in Z$. Then we set $y=(0,1,0,1, \cdots, 1,0,0, \cdots)$, that is, $y_{2 k-1}=0$ for all k, and $y_{2 k}=1$ for $1 \leq k \leq K$, while $y_{2 k}=0$ for $k>K$. Thus $y \in Y$. Then $y+z=\left(1,0,1 / 4,0,1 / 9,0, \cdots, 1 / K^{2}, 0,0, \cdots\right)$, so $\|x-(y+z)\|_{\infty}=1 /(K+1)^{2}<\epsilon$, as required.
Question continued: Show, however, that x is not in $Y+Z$.
Answer: Suppose that we can find $y \in Y$ and $z \in Z$ with $x=y+z$. As $y_{2 k-1}=0$ for all k, we must have that $z_{2 k-1}=x_{2 k-1}=1 / k^{2}$ for all k. As $z \in Z$, we have that $z_{2 k}=k^{2} z_{2 k-1}=1$ for all k. However, $z \in c_{0}$, so $z_{k} \rightarrow 0$ as $k \rightarrow \infty$, a contradiction.
Question 6: Show that $c_{0}^{*}=\ell^{1}$. That is, for $a=\left(a_{n}\right) \in \ell^{1}$, define $\phi_{a}: c_{0} \rightarrow \mathbb{K}$ by

$$
\phi_{a}(x)=\sum_{n=1}^{\infty} a_{n} x_{n} \quad\left(x=\left(x_{n}\right) \in c_{0}\right) .
$$

Show that ϕ_{a} is linear, bounded, and that $\left\|\phi_{a}\right\| \leq\|a\|_{1}$.
Answer: Notice that ϕ_{a} is defined, as

$$
\left|\sum_{n=1}^{\infty} a_{n} x_{n}\right| \leq \sum_{n=1}^{\infty}\left|a_{n}\right|\left|x_{n}\right| \leq \sum_{n=1}^{\infty}\|x\|_{\infty}\left|a_{n}\right|=\|a\|_{1}\|x\|_{\infty} .
$$

Thus also ϕ_{a} is bounded, with $\left\|\phi_{a}\right\| \leq\|a\|_{1}$. Also, ϕ_{a} is linear, for given $x=\left(x_{n}\right), y=\left(y_{n}\right) \in c_{0}$ and $t \in \mathbb{K}$,

$$
\phi_{a}(x+t y)=\sum_{n=1}^{\infty} a_{n}\left(x_{n}+t y_{n}\right)=\sum_{n=1}^{\infty} a_{n} x_{n}+t \sum_{n=1}^{\infty} a_{n} y_{n}=\phi_{a}(x)+t \phi_{a}(y)
$$

Question continued: Hence the map $\ell^{1} \rightarrow c_{0}^{*} ; a \mapsto \phi_{a}$ is linear and bounded. We wish to show that this is a bijection and an isometry.
Answer: Let $\phi \in c_{0}^{*}$. For each n, let $e_{n} \in c_{0}$ be the sequence which is zero, except that in the nth place, we have 1 . Let $a_{n}=\phi\left(e_{n}\right)$ for all n.

Fix some large $N \in \mathbb{N}$. For each n, define

$$
x_{n}= \begin{cases}0 & : a_{n}=0 \text { or } n>N, \\ \overline{a_{n}} / a_{n} & : a_{n} \neq 0 .\end{cases}
$$

Thus $\lim _{n} x_{n}=0$, so $x=\left(x_{n}\right) \in c_{0}$. Notice also that $\left|x_{n}\right|=1$ or 0 for all n, so $\|x\|_{\infty} \leq 1$. Finally, notice that

$$
x=\sum_{n=1}^{N} x_{n} e_{n} .
$$

Thus

$$
\phi(x)=\sum_{n=1}^{N} \phi\left(x_{n} e_{n}\right)=\sum_{n=1}^{N} x_{n} \phi\left(e_{n}\right)=\sum_{n=1}^{N} x_{n} a_{n}=\sum_{n=1}^{N} a_{n} \overline{a_{n}} / a_{n}=\sum_{n=1}^{N}\left|a_{n}\right| .
$$

But $|\phi(x)| \leq\|\phi\|\|x\|_{\infty} \leq\|\phi\|$. By letting N tend to infinity, we conclude that

$$
\sum_{n=1}^{\infty}\left|a_{n}\right| \leq\|\phi\| .
$$

So $a=\left(a_{n}\right) \in \ell^{1}$ with $\|a\|_{1} \leq\|\phi\|$.
For any $y=\left(y_{n}\right) \in c_{0}$, we observe that

$$
\left\|y-\sum_{n=1}^{N} y_{n} e_{n}\right\|_{\infty}=\sup _{n>N}\left|y_{n}\right|
$$

which converges to 0 as $N \rightarrow \infty$, because $\lim _{n} y_{n}=0$. So

$$
y=\sum_{n=1}^{\infty} y_{n} e_{n}
$$

which convergence in norm. As ϕ is bounded and hence continuous,

$$
\phi(y)=\sum_{n=1}^{\infty} \phi\left(y_{n} e_{n}\right)=\sum_{n=1}^{\infty} y_{n} a_{n}=\phi_{a}(y) .
$$

So $\phi_{a}=\phi$, and so the map $\ell^{1} \rightarrow c_{0}^{*}$ is surjective. Notice also that $\|\phi\|=\left\|\phi_{a}\right\| \leq\|a\|_{1} \leq\|\phi\|$, so we have equality throughout. Hence our map $\ell^{1} \rightarrow c_{0}^{*}$ is an isometry, and hence injective, and so bijective.
Question 7: Recall that ℓ^{∞} is the space of all bounded scalar sequences $\left(x_{n}\right)$ with the norm $\|\cdot\|_{\infty}$. Show that $\left(\ell^{1}\right)^{*}=\ell^{\infty}$.
Answer: For $u=\left(u_{n}\right) \in \ell^{\infty}$ define $\phi_{u}: \ell^{1} \rightarrow \mathbb{K}$ by

$$
\phi_{u}(x)=\sum_{n=1}^{\infty} x_{n} u_{n} \quad\left(x=\left(x_{n}\right) \in \ell^{1}\right) .
$$

This is well-defined, as

$$
\left|\sum_{n=1}^{\infty} x_{n} u_{n}\right| \leq\|u\|_{\infty}\|x\|_{1}
$$

and so we see that $\phi_{u} \in\left(\ell^{1}\right)^{*}$ with $\left\|\phi_{u}\right\| \leq\|u\|_{\infty}$.
Let $\phi \in\left(\ell^{1}\right)^{*}$, let $e_{n} \in \ell^{1}$ be the usual sequence which is zero, apart from a one in the nth place. Let $u_{n}=\phi\left(e_{n}\right)$, so that $\left|u_{n}\right| \leq\|\phi\|\left\|e_{n}\right\|=\|\phi\|$. Hence $u=\left(u_{n}\right) \in \ell^{\infty}$ with $\|u\|_{\infty} \leq\|\phi\|$. Let $x=\left(x_{n}\right) \in \ell^{1}$ and observe that

$$
\lim _{N}\left\|x-\sum_{n=1}^{N} x_{n} e_{n}\right\|_{1}=\lim _{N} \sum_{n=N+1}^{\infty}\left|x_{n}\right|=0
$$

as $\sum_{n}\left|x_{n}\right|$ converges. Thus

$$
\phi(x)=\lim _{N} \sum_{n=1}^{N} \phi\left(x_{n} e_{n}\right)=\lim _{N} \sum_{n=1}^{N} x_{n} u_{n}=\phi_{u}(x) .
$$

As $x \in \ell^{1}$ was arbitrary, we conclude that $\phi=\phi_{u}$ and that

$$
\left\|\phi_{u}\right\| \leq\|u\|_{\infty} \leq\|\phi\|=\left\|\phi_{u}\right\|
$$

Hence the map $\ell^{\infty} \rightarrow\left(\ell^{1}\right)^{*} ; u \mapsto \phi_{u}$ is an isometric isomorphism of Banach spaces, as required.

Linear Analysis I: Worked Solutions 3

Answer 1: Let $\phi \in E^{*}$ with $\|\phi\| \leq 1$ and $\phi(y)=0$ for all $y \in F$. Then, for $y \in F$,

$$
\left|\phi\left(x_{0}\right)\right|=\left|\phi\left(x_{0}-y\right)\right| \leq\|\phi\|\left\|x_{0}-y\right\| \leq\left\|x_{0}-y\right\| .
$$

Hence taking the infimum, we conclude that

$$
\left|\phi\left(x_{0}\right)\right| \leq d\left(x_{0}, F\right),
$$

as required. We define $\psi: \operatorname{lin}\left\{F, x_{0}\right\} \rightarrow \mathbb{K}$ by

$$
\psi\left(\lambda x_{0}+y\right)=\lambda d\left(x_{0}, F\right) \quad(\lambda \in \mathbb{K}, y \in F) .
$$

If $x_{0} \in F$, then $d\left(x_{0}, F\right)=0$, so $\psi=0$. Otherwise, if $\lambda x_{0}+y=\mu x_{0}+z$ then $(\lambda-\mu) x_{0}=$ $z-y \in F$, and so $\lambda=\mu$, so we can conclude that ψ is well-defined. Obviously ψ is linear. Let $\lambda \in \mathbb{K}$ and $y \in F$. If $\lambda=0$ then $\psi\left(\lambda x_{0}+y\right)=0 \leq\left\|\lambda x_{0}+y\right\|$. Otherwise, we have that

$$
d\left(x_{0}, F\right) \leq\left\|x_{0}+\lambda^{-1} y\right\|=|\lambda|^{-1}\left\|\lambda x_{0}+y\right\|
$$

and so $|\lambda| d\left(x_{0}, F\right)=\left|\psi\left(\lambda x_{0}+y\right)\right| \leq\left\|\lambda x_{0}+y\right\|$. Hence $\|\psi\| \leq 1$. By the Hahn-Banach theorem, there exists $\phi \in E^{*}$ extending ψ with $\|\phi\| \leq\|\psi\| \leq 1$. As $\phi\left(x_{0}\right)=\psi\left(x_{0}\right)=$ $d\left(x_{0}, F\right)$, we are done.
Question 2: Let $1 \leq p<\infty$, and define a map $S: \ell^{p} \rightarrow \ell^{p}$ by setting $S(x)=y$ where, if $x=\left(x_{1}, x_{2}, x_{3}, \cdots\right)$, then $y=\left(0, x_{1}, x_{2}, x_{3}, \cdots\right)$. Show that S is linear, bounded, and satisfies $\|S\|=1$.

Show that there is a bounded linear map $T \in \mathcal{B}\left(\ell^{p}\right)$ such that $T \circ S$ is the identity on ℓ^{p}. Is $S \circ T$ the identity? Is S invertible in $\mathcal{B}\left(\ell^{p}\right)$?
Answer: Clearly S is linear, and observe that

$$
\|S(x)\|_{p}=\left(0^{p}+\sum_{n=1}^{\infty}\left|x_{n}\right|^{p}\right)^{1 / p}=\|x\|_{p} \quad\left(x \in \ell^{p}\right)
$$

so that S is even an isometry.
Let T be the "left-shift", that is, $T(x)=y$ where is $x=\left(x_{1}, x_{2}, x_{3}, \cdots\right)$ then $y=$ $\left(x_{2}, x_{3}, x_{4}, \cdots\right)$. Similarly T is linear, bounded and satisfies $\|T\| \leq 1$. Clearly $T S=I_{\ell^{p}}$ the identity on ℓ^{p}. However, $S T\left(x_{1}, x_{2}, \cdots\right)=\left(0, x_{2}, x_{3}, \cdots\right)$, so that $S T$ is not the identity.

Suppose that S is invertible with inverse S^{-1}. Then $S^{-1}=I_{\ell^{p}} S^{-1}=T S S^{-1}=T I_{\ell^{p}}=$ T, but then $S T=S S^{-1}=I_{\ell^{p}}$, a contradiction.
Question 3: Let X be a compact topological space (remember that we always assume the Hausdorff condition). Fix $f \in C_{\mathbb{K}}(X)$, and define $M_{f}: C_{\mathbb{K}}(X) \rightarrow C_{\mathbb{K}}(X)$ by setting $M_{f}(g)=g f$ for $g \in C_{\mathbb{K}}(X)$. Show that $M_{f} \in \mathcal{B}\left(C_{\mathbb{K}}(X)\right)$, and calculate $\left\|M_{f}\right\|$.
Answer: Clearly M_{f} is linear, and for $g \in C_{\mathbb{K}}(X)$,

$$
\left\|M_{f}(g)\right\|_{\infty}=\|f g\|_{\infty}=\sup _{x \in X}\left|f(x)\left\|g(x)\left|\leq\|f\|_{\infty} \sup _{x \in X}\right| g(x) \mid=\right\| f\left\|_{\infty}\right\| g \|_{\infty} .\right.
$$

Hence $\left\|M_{f}\right\| \leq\|f\|_{\infty}$. The constant function 1 is in $C_{\mathbb{K}}(X)$, with $\|1\|_{\infty}=1$, and we see that $M_{f}(1)=f$, so that $\left\|M_{f}\right\| \geq\left\|M_{f}(1)\right\|_{\infty}=\|f\|_{\infty}$. Hence $\left\|M_{f}\right\|=\|f\|_{\infty}$.
Question 4: Show that if

$$
\inf \{|f(x)|: x \in X\}>0
$$

then there exists $h \in C_{\mathbb{K}}(X)$ with $M_{h} M_{f}=M_{f} M_{h}$ being the identity on $C_{\mathbb{K}}(X)$. If $\inf \{|f(x)|: x \in X\}=0$, then is M_{f} invertible?
Answer: Let $h=f^{-1}$, so for $g \in C_{\mathbb{K}}(X)$,

$$
M_{h} M_{f}(g)=M_{h}(f g)=f h g=M_{f}(h g)=M_{f} M_{h}(g) .
$$

Hence $M_{h} M_{f}=M_{f} M_{h}$ and as $f h g=f f^{-1} g=g, M_{h} M_{f}$ is the identity on $C_{\mathbb{K}}(X)$.
Suppose now that $\inf \{|f(x)|: x \in X\}=0$, and yet $T=M_{f}^{-1}$ exists. Let $h=T(1)$, so that

$$
f h=M_{f}(h)=M_{f} T(1)=M_{f} M_{f}^{-1}(1)=1,
$$

and so $f(x) h(x)=1$ for all $x \in X$, that is, $h(x)=f(x)^{-1}$. Hence

$$
\inf \{|f(x)|: x \in X\}=\sup \left\{|f(x)|^{-1}: x \in X\right\}^{-1}=\|h\|_{\infty}^{-1}>0
$$

a contradiction.
Aside: Upon re-reading this, I realise that I have not used that X is compact. As X is compact, $|f|$ attains its minimum, so either f is bounded below, or there exists $x \in X$ with $f(x)=0$. This would make the proof a little easier.

Question 5: Let E and F be normed spaces, and let $T \in \mathcal{B}(E, F)$. Show that the following are equivalent:

1. T is invertible;
2. T is surjective, and there exists $M>0$ such that, for all $x \in E$,

$$
M^{-1}\|x\| \leq\|T(x)\| \leq M\|x\| .
$$

Answer: If (1) holds, then first note that for $y \in F$, then $T\left(T^{-1}(y)\right)=y$, so that T is surjective. For $x \in E$,

$$
\|x\|=\left\|T^{-1} T(x)\right\| \leq\left\|T^{-1}\right\|\|T(x)\| \leq\left\|T^{-1}\right\|\|T\|\|x\|,
$$

so that (2) holds with $M=\max \left\{\|T\|,\left\|T^{-1}\right\|\right\}$.
If (2) holds, then suppose that $T(x)=T(y)$ for $x, y \in E$. Then $T(x-y)=0$, so that $M^{-1}\|x-y\| \leq\|T(x-y)\|=0$, so that $\|x-y\|=0$, that is, $x=y$. Hence T is injective, and surjective, and so T^{-1} exists. By basic linear algebra, T^{-1} is linear. Then, for $y \in F$, let $x \in E$ be such that $T(x)=y$, so that

$$
\left\|T^{-1}(y)\right\|=\left\|T^{-1}(T(x))\right\|=\|x\| \leq M\|T(x)\|=M\|y\| .
$$

Hence T^{-1} is bounded, with $\left\|T^{-1}\right\| \leq M$.
Question 6: We define a measure space to be a triple (X, \mathcal{R}, μ) where X is a set, \mathcal{R} is a σ-algebra on X and μ is a measure defined on \mathcal{R}. Let $Y \in \mathcal{R}$, and define \mathcal{R}_{Y} by

$$
\mathcal{R}_{Y}=\{S \cap Y: S \in \mathcal{R}\} .
$$

Show that \mathcal{R}_{Y} is a σ-algebra on Y. Define $\mu_{Y}: \mathcal{R}_{Y} \rightarrow[0, \infty]$ by $\mu_{Y}(S)=\mu(S \cap Y)$ for $S \in \mathcal{R}_{Y}$. Show that μ_{Y} is a measure on \mathcal{R}_{Y}.
Answer: Clearly $\emptyset \in \mathcal{R}_{Y}$, and as $Y=X \cap Y$, we see that $Y \in \mathcal{R}_{Y}$. Let $S \cap Y, T \cap Y \in \mathcal{R}_{Y}$ so that $(S \cap Y) \backslash(T \cap Y)=(S \backslash T) \cap Y \in \mathcal{R}_{Y}$ as $S \backslash T \in \mathcal{R}$. If $\left(T_{n}\right)$ is a sequence in \mathcal{R}_{Y}, say $T_{n}=S_{n} \cap Y$ for some sequence $\left(S_{n}\right)$ in \mathcal{R}. Then $S=\bigcup_{n} S_{n} \in \mathcal{R}$, so that $\bigcup_{n} T_{n}=S \cap Y \in \mathcal{R}_{Y}$. Hence \mathcal{R}_{Y} is a σ-algebra on Y (notice that we didn't use that $Y \in \mathcal{R})$.

As $Y \in \mathcal{R}$, for $S \in \mathcal{R}$, we have that $S \cap Y \in \mathcal{R}$, so that $\mu(S \cap Y)$ is defined. Clearly $\mu_{Y}(\emptyset)=0$, and if ($S_{n} \cap Y$) is a sequence of pairwise-disjoint sets in Y, then

$$
\mu_{Y}\left(\bigcup_{n}\left(S_{n} \cap Y\right)\right)=\mu\left(\bigcup_{n}\left(S_{n} \cap Y\right)\right)=\sum_{n} \mu\left(S_{n} \cap Y\right)=\sum_{n} \mu_{Y}\left(S_{n} \cap Y\right)
$$

so that μ_{Y} is a measure.
Question 7: Let (X, \mathcal{R}, μ) be a measure space. Define $\overline{\mathcal{R}}$ to be the collection of sets $E \cup N$ where $E \in \mathcal{R}$, and $N \subseteq X$ is a null set. Show that:

1. If $\left(N_{n}\right)$ is a sequence of null sets, then $\bigcup_{n} N_{n}$ is null.
2. If $E \cup N \in \overline{\mathcal{R}}$, and M is null, then $(E \cup N) \backslash M \in \overline{\mathcal{R}}$.

Show that $\overline{\mathcal{R}}$ is a σ-algebra.
Answer: For (1), as each N_{n} is null, there exists $F_{n} \in \mathcal{R}$ with $N_{n} \subseteq F_{n}$ and $\mu\left(F_{n}\right)=0$.
Let $F=\bigcup_{n} F_{n}$ so that $\bigcup_{n} N_{n} \subseteq F$, and $\mu(F) \leq \sum_{n} \mu\left(F_{n}\right)=0$, as μ is a measure.
For (2), notice that

$$
(E \cup N) \backslash M=(E \backslash M) \cup(N \backslash M)
$$

Clearly $N \backslash M$ is null. As M is null, $M \subseteq F$ for some $F \in \mathcal{R}$ with $\mu(F)=0$. Then

$$
E \backslash M=(E \backslash F) \cup(F \backslash M),
$$

so as $F \backslash M \subseteq F$, we have that $F \backslash M$ is null. By (1), we see that $(F \backslash M) \cup(N \backslash M)$ is null. As $E \backslash F \in \mathcal{R}$, we conclude that $E \backslash M \in \overline{\mathcal{R}}$, as required.

Clearly $\emptyset, X \in \overline{\mathcal{R}}$. By (1), if $\left(E_{n} \cup N_{n}\right)$ is a sequence in $\overline{\mathcal{R}}$, then $\bigcup_{n}\left(E_{n} \cup N_{n}\right)=$ $\bigcup_{n} E_{n} \cup \bigcup_{n} N_{n} \in \overline{\mathcal{R}}$. Let $E_{1} \cup N_{1}, E_{2} \cup N_{2} \in \overline{\mathcal{R}}$, so that

$$
\left(E_{1} \cup N_{1}\right) \backslash\left(E_{2} \cup N_{2}\right)=\left(\left(E_{1} \cup N_{1}\right) \backslash E_{2}\right) \backslash N_{2} .
$$

By (2), if $\left(E_{1} \cup N_{1}\right) \backslash E_{2} \in \overline{\mathcal{R}}$, then $\left(E_{1} \cup N_{1}\right) \backslash\left(E_{2} \cup N_{2}\right) \in \overline{\mathcal{R}}$. Notice that

$$
\left(E_{1} \cup N_{1}\right) \backslash E_{2}=\left(E_{1} \backslash E_{2}\right) \cup\left(N_{1} \backslash E_{2}\right)
$$

Here $E_{1} \backslash E_{2} \in \mathcal{R}$ and $N_{1} \backslash E_{2} \subseteq N_{1}$ is null, so we are done.
Question continued: Define $\bar{\mu}: \overline{\mathcal{R}} \rightarrow[0, \infty]$ by $\bar{\mu}(E \cap N)=\mu(E)$ for $E \in \mathcal{R}$ and any null set N. Show that $\bar{\mu}$ is a measure on $\overline{\mathcal{R}}$.
Answer: First we should check that $\bar{\mu}$ is well-defined. That is, suppose that $E \cup N=E^{\prime} \cup$ N^{\prime} for some $E, E^{\prime} \in \mathcal{R}$ and null sets N and N^{\prime}. Then we can find $F, F^{\prime} \in \mathcal{R}$ with $N \subseteq F$, $N^{\prime} \subseteq F^{\prime}$ and $\mu(F)=\mu\left(F^{\prime}\right)=0$. Then $\mu(E) \leq \mu(E \cup F) \leq \mu(E)+\mu(F)=\mu(E)$, so that $\mu(E \cup F)=\mu(E)$. Similarly $\mu\left(E^{\prime} \cup F^{\prime}\right)=\mu\left(E^{\prime}\right)$. Finally, as $E \subseteq E \cup N=E^{\prime} \cup N^{\prime} \subseteq E^{\prime} \cup F^{\prime}$, we see that $\mu(E) \leq \mu\left(E^{\prime} \cup F^{\prime}\right)=\mu\left(E^{\prime}\right)$. By symmetry, also $\mu\left(E^{\prime}\right) \leq \mu(E)$, so we conclude that $\mu(E)=\mu\left(E^{\prime}\right)$. Hence $\bar{\mu}$ is well-defined.

Clearly $\bar{\mu}(\emptyset)=0$. Let $\left(A_{n}\right)$ be a sequence of pairwise disjoint sets in $\overline{\mathcal{R}}$, say $A_{n}=$ $E_{n} \cup N_{n}$, for each n, where $E_{n} \in \mathcal{R}$ and N_{n} is null. Then $\left(E_{n}\right)$ is pairwise disjoint. Observe that

$$
\bigcup_{n} A_{n}=\bigcup_{n} E_{n} \cup \bigcup_{n} N_{n}
$$

where as above, $N=\bigcup_{n} N_{n}$ is null. Thus

$$
\bar{\mu}\left(\bigcup A_{n}\right)=\mu\left(\bigcup E_{n}\right)=\sum_{n} \mu\left(E_{n}\right)=\sum_{n} \bar{\mu}\left(E_{n} \cup N_{n}\right)=\sum_{n} \bar{\mu}\left(A_{n}\right)
$$

So $\bar{\mu}$ is a measure.
Bonus Question 8: For $x, y \in E$ and $t \in \mathbb{K}$, we have, for $f \in E^{*}$,

$$
J(x+t y)(f)=f(x+t y)=f(x)+t f(y)=J(x)(f)+t J(y)(f)
$$

Thus $J(x+t y)=J(x)+t J(y)$, so that J is linear.
For $x \in E$,
$\|J(x)\|=\sup \left\{|J(x)(f)|: f \in E^{*},\|f\| \leq 1\right\}=\sup \left\{|f(x)|: f \in E^{*},\|f\| \leq 1\right\}=\|x\|$,
by using Corollary ??? from lectures.
Bonus Question 9: The isometric isomorphism from ℓ^{q} to $\left(\ell^{p}\right)^{*}$ is $u \mapsto \phi_{u}$ where, for $u=\left(u_{n}\right) \in \ell^{q}$, we have that

$$
\phi_{u}: \ell^{p} \rightarrow \mathbb{K}, \quad \phi_{u}\left(\left(x_{n}\right)\right)=\sum_{n=1}^{\infty} x_{n} u_{n}
$$

Let this be $\phi: \ell^{q} \rightarrow\left(\ell^{p}\right)^{*}$. Similarly, let $\psi: \ell^{p} \rightarrow\left(\ell^{q}\right)^{*}$.
We need to show that J is surjective. Let $F \in\left(\ell^{p}\right)^{* *}$. Define $g \in\left(\ell^{q}\right)^{*}$ by

$$
g\left(\phi^{-1}(f)\right)=F(f) \quad\left(f \in\left(\ell^{p}\right)^{*}\right)
$$

An equivalent (and less scary) way to define this is as

$$
g(u)=F\left(\phi_{u}\right) \quad\left(u \in \ell^{q}\right)
$$

Clearly g is linear, as both F and ϕ are. Also, g is bounded, as $\|g\| \leq\|F\|\|\phi\|=\|F\|$. So $g \in\left(\ell^{q}\right)^{*}$ as required.

Let $x=\left(x_{n}\right) \in \ell^{p}$ with $\psi_{x}=g$. Let $f \in\left(\ell^{p}\right)^{*}$, and let $u=\left(u_{n}\right) \in \ell^{q}$ with $\phi_{u}=f$. Then

$$
J(x)(f)=f(x)=\phi_{u}(x)=\sum_{n=1}^{\infty} x_{n} u_{n}=\psi_{x}(u)=g(u)=F\left(\phi_{u}\right)=F(f)
$$

As f was arbitrary, we conclude that $J(x)=F$. Thus J is surjective.

Linear Analysis I: Worked Solutions 4

Question 1: Let E be a Banach space, and let $\left(x_{n}\right)_{n=1}^{\infty}$ be a sequence of vectors in E such that $\sum_{n=1}^{\infty}\left\|x_{n}\right\|<\infty$. Show that $\sum_{n=1}^{\infty} x_{n}$ converges.
Answer: For $N<M$, we see that by the triangle inequality

$$
\left\|\sum_{n=N}^{M} x_{n}\right\| \leq \sum_{n=N}^{M}\left\|x_{n}\right\| \leq \sum_{n=N}^{\infty}\left\|x_{n}\right\|,
$$

which is small if N is large, as $\sum_{n}\left\|x_{n}\right\|<\infty$. So the sequence of partial sums

$$
\left(\sum_{n=1}^{N} x_{n}\right)_{N \geq 1}
$$

is a Cauchy sequence and hence converges, as E is a Banach space.
Question continued: Let $\left(z_{n}\right)$ be a Cauchy sequence in E. Show that we can find $1=n(1)<n(2)<\cdots$ such that, if

$$
x_{1}=z_{1}, \quad x_{k}=z_{n(k)}-z_{n(k-1)} \quad(k \geq 2)
$$

then $\sum_{n}\left\|x_{n}\right\|<\infty$. What is $\sum_{n=1}^{N} x_{n}$? Conclude that if $z=\sum_{n} x_{n}$ that z is the limit of the Cauchy sequence $\left(z_{n}\right)$.
Answer: As $\left(z_{n}\right)$ is a Cauchy sequence, for each m we can find N_{m} such that

$$
\left\|z_{k}-z_{l}\right\|<2^{-m} \quad\left(k, l \geq N_{m}\right)
$$

Set $n(1)=1$ as required, and then choose $n(k)$ arbitrarily, with the condition that $n(k) \geq N_{k}$ for all k, and $n(1)<n(2)<\cdots$. Then, as $x_{k}=z_{n(k)}-z_{n(k-1)}$ and $n(k)>$ $n(k-1) \geq N_{k-1}$, we see that $\left\|x_{k}\right\|<2^{-(k-1)}$. Thus

$$
\sum_{k}\left\|x_{k}\right\|=\left\|x_{1}\right\|+\sum_{k \geq 2}\left\|x_{k}\right\| \leq\left\|z_{1}\right\|+\sum_{k \geq 2} 2^{1-k}=1+\left\|z_{1}\right\|<\infty .
$$

Notice also that

$$
\sum_{n=1}^{N} x_{n}=z_{1}+\left(z_{n(2)}-z_{1}\right)+\left(z_{n(3)}-z_{n(2)}\right)+\cdots+\left(z_{n(N)}-z_{n(N-1)}\right)=z_{n(N)} .
$$

So if $z=\sum_{n} x_{n}$ then $\lim _{k} z_{n(k)}=z$, so $\left(z_{n(k)}\right)_{k}$ converges. This implies that $\left(z_{n}\right)$ converges, as required.

Question 2: Let X be a compact (Hausdorff) space. Let $\phi: X \rightarrow X$ be a continuous map. Show that we can define a linear map $T: C_{\mathbb{R}}(X) \rightarrow C_{\mathbb{R}}(X)$ by

$$
T(f)=g \quad \text { where } \quad g(x)=f(\phi(x)) .
$$

Show that T is bounded, and find $\|T\|$.
Proof: As ϕ is continuous, for $f: X \rightarrow \mathbb{R}$ continuous, $x \mapsto f(\phi(x))$ is continuous. So $T(f) \in C_{\mathbb{R}}(X)$.

We write $T(f)(x)=f(\phi(x))$ for $x \in X$, so that for $f_{1}, f_{2} \in C_{\mathbb{R}}(X)$ and $\lambda \in \mathbb{R}$, $T\left(f_{1}+\lambda f_{2}\right)(x)=f_{1}(\phi(x))+\lambda f_{2}(\phi(x))=T\left(f_{1}\right)(x)+\lambda T\left(f_{2}\right)(x)$. So T is linear.

Then notice that

$$
\|T(f)\|_{\infty}=\sup _{x \in X}|T(f)(x)|=\sup _{x}|f(\phi(x))| \leq \sup _{x}|f(x)|=\|f\|_{\infty},
$$

so T is bounded with $\|T\| \leq 1$. As $T(1)=1$, where 1 is the constant function, we see that $\|T\|=1$.

Bonus Question 3: With notation as in Question 2, now let $X=[0,1]$ and let ϕ be defined by

$$
\phi(t)=\frac{1}{2}+\frac{t-\frac{1}{2}}{2} \quad(0 \leq t \leq 1)
$$

So $\phi(1 / 2)=1 / 2, \phi(0)=1 / 4$ and $\phi(1)=3 / 4$. Define T as in Question 2. Let $T^{2}=$ $T T, T^{3}=T T T$ and so forth.

Show that for each $f \in C_{\mathbb{R}}([0,1])$,

$$
\lim _{n \rightarrow \infty} T^{n}(f)=g
$$

where $g(t)=f(1 / 2)$ for all $t \in[0,1]$. That is, g is a constant function.
Proof: Motivated by the contractive mapping theorem, we look at the iterates of ϕ. Clearly ϕ maps $[0,1]$ onto $[1 / 4,3 / 4]$. Then ϕ maps $[1 / 4,3 / 4]$ onto $[1 / 2-1 / 8,1 / 2+1 / 8]=$ $[3 / 8,5 / 8]$, so that ϕ^{2} maps $[0,1]$ onto $[3 / 8,5 / 8]$. We can show (by induction) that ϕ^{n} maps $[0,1]$ onto $\left[1 / 2-2^{-1-n}, 1 / 2+2^{-1-n}\right]$. For $f \in C_{\mathbb{R}}([0,1])$, as f is continuous at $1 / 2$, for each $\epsilon>0$ there exists N so that, for $n \geq N$, if $|t-1 / 2|<2^{-1-n}$ then $|f(t)-f(1 / 2)|<\epsilon$. Thus $\left|f\left(\phi^{n}(t)\right)-f(1 / 2)\right|<\epsilon$ for any $t \in[0,1]$, that is, $\left\|T^{n}(f)-g\right\|_{\infty}<\epsilon$. As this was true for all $n \geq N$, we see that $T^{n}(f) \rightarrow g$, as required.
Question continued: Is it true that $\left(T^{n}\right)$ converges in the Banach space $\mathcal{B}\left(C_{\mathbb{R}}([0,1])\right)$? Proof: Suppose that $T^{n} \rightarrow S$ in norm. Then, for each $f \in C_{\mathbb{R}}([0,1])$, we have that $T^{n}(f) \rightarrow S(f)$, so $S(f)(t)=f(1 / 2)$ for all $t \in[0,1]$. That is, S maps f to the constant function $t \mapsto f(1 / 2)$.

Hopefully, our intuition from the previous section is that the more f oscillates, the slower the convergence of $T^{n}(f)$ is. Let $N>0$ and let $f(t)=\sin (4 \pi N t)$ for $t \in[0,1]$. Then

$$
f(1 / 2)=\sin (2 \pi N)=0, \quad f(1 / 2+1 / 8 N)=\sin (2 \pi N+\pi / 2)=\sin (\pi / 2)=1 .
$$

Hence $T^{n}(f) \rightarrow 0$, so $S(f)=0$. Thus, as ϕ^{n} maps $[0,1]$ onto $\left[1 / 2-2^{-1-n}, 1 / 2+2^{-1-n}\right]$, if $1 / 8 N \leq 2^{-1-n}$, then $\left\|T^{n}(f)-0\right\|_{\infty}=1$. But $\|f\|_{\infty}=1$, so choose N with $1 / 8 N \leq 2^{-1-n}$ to see that

$$
\left\|T^{n}-S\right\| \geq\left\|T^{n}(f)-S(f)\right\|_{\infty}=1
$$

So $\left(T^{n}\right)$ does not converge to S.
Comment: Saying that $T^{n}(f)$ converges for each f is saying that $\left(T^{n}\right)$ converges in the strong operator topology. Clearly norm convergence implies strong operator convergence, and we have just seen that the converse doesn't hold.

Question 4: Let (X, \mathcal{R}, μ) be a measure space. Let $f: X \rightarrow \mathbb{R}$ be a simple function (see the definition from the lectures). Show carefully that f is measurable, and that f takes finitely many values.
Proof: Let $f=\sum_{k=1}^{n} t_{k} \chi_{A_{k}}$ where $\left(A_{k}\right)$ is a pairwise disjoint family in \mathcal{R} and $\left(t_{k}\right) \subseteq \mathbb{R}$. Let $A_{0}=X \backslash\left(A_{1} \cup \cdots \cup A_{n}\right) \in \mathcal{R}$. Let $U \subseteq \mathbb{R}$ be open, and define $E \subseteq\{0,1, \cdots, n\}$ by $0 \in E$ if and only if $0 \in U$, and for $1 \leq k \leq n, k \in E$ if and only if $t_{k} \in U$. You should hopefully see that

$$
f^{-1}(U)=\bigcup_{k \in E} A_{k} \in \mathcal{R}
$$

So f is measurable.

Clearly f only takes the values $\left\{t_{1}, t_{2}, \cdots, t_{k}\right\}$, and possibly also 0 if $A_{0} \neq \emptyset$.
Question continued: Conversely, show that if $f: X \rightarrow \mathbb{R}$ is measurable and takes finitely many values, then f is a simple function.
Proof: Suppose that f takes only the values $\left\{t_{1}, \cdots, t_{n}\right\}$. Let $A_{k}=f^{-1}\left(\left\{t_{k}\right\}\right)$, for $1 \leq k \leq n$. As $\left\{t_{k}\right\}$ is closed in \mathbb{R}, the set $\mathbb{R} \backslash\left\{t_{k}\right\}$ is open, and so

$$
X \backslash A_{k}=f^{-1}\left(\mathbb{R} \backslash\left\{t_{k}\right\}\right) \in \mathcal{R},
$$

so also $A_{k} \in \mathcal{R}$. (Remember that taking inverse images commutes with unions, intersections and set differences). By definition, $\left(A_{k}\right)$ is a pairwise disjoint family, and so clearly $f=\sum_{k=1}^{n} t_{k} \chi_{A_{k}}$ is a simple function.
Question continued: In particular, show that if $\left(A_{k}\right)_{k=1}^{n}$ is any collection of subsets of \mathcal{R}, and $\left(t_{k}\right)_{k=1}^{n} \subseteq \mathbb{R}$, then

$$
f=\sum_{k=1}^{n} t_{k} \chi_{A_{k}}
$$

is simple.
Proof: Just observe that f can only possibly take the values

$$
\left\{0, t_{1}, \cdots, t_{n}, t_{1}+t_{2}, \cdots, t_{1}+t_{n}, t_{2}+t_{3}, \cdots, t_{2}+t_{n}, \cdots, t_{1}+\cdots+t_{n}\right\},
$$

which is a finite set.
Question 5: Let X be a set, let $\mathcal{R}=2^{X}$, and let μ be the counting measure on \mathcal{R}, so $\mu(A)$ is the size of A, if A is finite, and is ∞ otherwise. Which functions $f: X \rightarrow \mathbb{R}$ are measurable?
Answer: As every subset of X is in \mathcal{R}, we see that any function $f: X \rightarrow \mathbb{R}$ is measurable.
Question Continued: Let $f: X \rightarrow[0, \infty)$ be a simple function. Show that f is integrable if and only if f is zero except at finitely many points of X. Conversely, show that if $f: X \rightarrow[0, \infty)$ is any function which is zero except at finitely many points, then f is an integrable, simple function.
Answer: Write a simple function $f: X \rightarrow[0, \infty)$ as

$$
f=\sum_{k=1}^{n} t_{k} \chi_{A_{k}},
$$

where we may assume the $\left(A_{k}\right)$ are pairwise disjoint. Then f is integrable if and only if $\mu\left(A_{k}\right)=\infty$ only when $t_{k}=0$. As μ is counting measure, we have that $\mu\left(A_{k}\right)=\infty$ if and only if A_{k} is infinite. Hence f is non-zero only on a finite set.

Conversely, if $f: X \rightarrow[0, \infty)$ is non-zero only on a finite set, say A, then we can write

$$
f=\sum_{x \in A} f(x) \chi_{\{x\}},
$$

a simple function.
Question 6: Let (X, \mathcal{R}, μ) be a measure space. A function $f: X \rightarrow \mathbb{R}$ is measurable if $f^{-1}(U) \in \mathcal{R}$ for any open set $U \subseteq \mathbb{R}$. Let $f: X \rightarrow \mathbb{R}$ be a function such that $f^{-1}((x, y)) \in \mathcal{R}$ for any $x, y \in \mathbb{R}$ with $x<y$. By thinking about the proof of Corollary 2.7, show that f is measurable.

Answer: Let $D=\{(a, b): a, b \in \mathbb{Q}, a<b\}$, a countable set of open sets in \mathbb{R}. Let $U \subseteq \mathbb{R}$ be open, so for $x \in U$, there exists $(a, b) \in D$ with $x \in(a, b)$ and $(a, b) \subseteq U$. Let $D_{U}=\{(a, b) \in D:(a, b) \subseteq U\}$, so that $U=\bigcup D_{U}$. Hence

$$
f^{-1}(U)=\bigcup f^{-1}\left(D_{U}\right) \in \mathcal{R}
$$

as D_{U} is countable and $f^{-1}(a, b) \in \mathcal{R}$ for each $(a, b) \in D$. Hence f is measurable.
Question 7: We work with notation as in Question 5. Which measurable functions $f: X \rightarrow[0, \infty)$ are integrable? What about functions $f: X \rightarrow \mathbb{R}$? You might find it easier to assume that $X=\mathbb{N}$ here.
Answer: Suppose that $f: X \rightarrow[0, \infty)$ is integrable. Let $A \subseteq X$ be a finite set, and let $f_{A}=f \chi_{A}$. Then f_{A} is non-zero only on A, so f_{A} is a simple function, and is integrable. By definition,

$$
\sum_{x \in A} f(x)=\sum_{x \in A} f(x) \mu(\{x\})=\int_{X} f_{A} d \mu \leq \int_{X} f d \mu<\infty .
$$

Hence we see that

$$
\sup _{A \subseteq X \text { finite }} \sum_{x \in A} f(x)<\infty .
$$

(This was perhaps a little unfair of me. For positive functions on an infinite, possibly uncountable, set, we define $\sum_{x \in X} f(x)$ to be the supremum. I doubt you have seen this before). Conversely, if this supremum is finite, then it is easy to check, by using the previous bit of the question, that if $g: X \rightarrow[0, \infty)$ is simple and integrable, with $g \leq f$, then $\int_{X} g d \mu$ is less than the supremum, and hence f is integrable.

By definition, $f: X \rightarrow \mathbb{R}$ is integrable if and only if f_{+}and f_{-}are, which is if and only if $|f|$ is integrable. That is, if

$$
\sup _{A \subseteq X \text { finite }} \sum_{x \in A}|f(x)|<\infty .
$$

Question Continued: Show that if $X=\mathbb{N}$, then we can identify ℓ^{1} with the space of integrable functions $f: X \rightarrow \mathbb{R}$.
Answer: $f: \mathbb{N} \rightarrow \mathbb{R}$ is integrable if and only if

$$
\sup _{A \subseteq \mathbb{N} \text { finite }} \sum_{n \in A}|f(n)|<\infty
$$

We claim that this is equivalent to $\sum_{n=1}^{\infty}|f(n)|<\infty$, that is, $f \in \ell^{1}$. Let us check this. Clearly, we have that

$$
\sum_{n=1}^{\infty}|f(n)|=\sup _{N} \sum_{n=1}^{N}|f(n)| \leq \sup _{A \subseteq \mathbb{N}} \sum_{\text {finite }} \sum_{n \in A}|f(n)| .
$$

Conversely, let $A \subseteq \mathbb{N}$ be finite, and let $N \leq \max (A)$, so that

$$
\sum_{n \in A}|f(n)| \leq \sum_{n=1}^{N}|f(n)| \leq \sum_{n=1}^{\infty}|f(n)|
$$

and so

$$
\sup _{A \subseteq \mathbb{N}} \sum_{\text {finite }} \sum_{n \in A}|f(n)| \leq \sum_{n=1}^{\infty}|f(n)| \text {. }
$$

Bonus Question: Let (X, \mathcal{R}, μ) be a measure space. Let $f, g: X \rightarrow \mathbb{R}$ be measurable. Show that $f+g$ is measurable.
Proof: We follow the hint; let $a \in \mathbb{R}$, and we try to prove that

$$
(f+g)^{-1}((a, \infty))=\{x \in X: a<f(x)+g(x)\}=\bigcup_{q \in \mathbb{Q}}\{x \in X: q<f(x) \text { and } a-q<g(x)\}
$$

Firstly, let $x \in X$ with $a<f(x)+g(x)$. We can find $\epsilon>0$ with $a+\epsilon<f(x)+g(x)$. Then pick $q \in \mathbb{Q}$ with $q<f(x)<q+\epsilon$ (which we can do as \mathbb{Q} is dense in \mathbb{R}). Then $g(x)>a+\epsilon-f(x)>a+\epsilon-q-\epsilon=a-q$, as required to show that x is in the left-hand side. Conversely, if $x \in X$ and $q \in \mathbb{Q}$ with $q<f(x)$ and $a-q<g(x)$, then $f(x)+g(x)>q+a-q=a$, as required to show that x is in the right-hand side. So we have proved the equality.

Thus

$$
(f+g)^{-1}((a, \infty))=\bigcup_{q \in \mathbb{Q}} f^{-1}((q, \infty)) \cap g^{-1}((a-q, \infty))
$$

For each $q \in \mathbb{Q}$, as f and g are measurable, $f^{-1}((q, \infty)) \in \mathcal{R}$ and $g^{-1}((a-q, \infty)) \in \mathcal{R}$. So $f^{-1}((q, \infty)) \cap g^{-1}\left((a-q, \infty) \in \mathcal{R}\right.$. As \mathbb{Q} is countable, we conclude $(f+g)^{-1}((a, \infty)) \in \mathcal{R}$.

Exactly the same sort of argument will show that $(f+g)^{-1}((-\infty, a) \in \mathcal{R}$ for each $a \in \mathbb{R}$. So also

$$
(f+g)^{-1}((a, b))=(f+g)^{-1}((a, \infty)) \cap(f+g)^{-1}((-\infty, b) \in \mathcal{R}
$$

for $a<b$. Finally, let $U \subseteq \mathbb{R}$ be open, so as in the proof of Corollary 2.7 we can write U as the countable union of open intervals. It follows that $f^{-1}(U) \in \mathcal{R}$, as required.
Question continued: Show that $\{x \in X: f(x) \geq g(x)\} \in \mathcal{R}$.
Proof: If f measurable and $C \subseteq \mathbb{R}$ is closed, then

$$
f^{-1}(C)=f^{-1}(\mathbb{R} \backslash(\mathbb{R} \backslash C))=X \backslash f^{-1}(\mathbb{R} \backslash C) \in \mathcal{R}
$$

as $\mathbb{R} \backslash C$ is open, and so $f^{-1}(\mathbb{R} \backslash C) \in \mathcal{R}$.
We follow the hint:

$$
\{x \in X: f(x) \geq g(x)\}=\bigcap_{q \in \mathbb{Q}, q>0} \bigcup_{r \in \mathbb{Q}}\{x \in X: f(x)>r>g(x)-q\} .
$$

To prove this, first let $x \in X$ with $f(x) \geq g(x)$. Then, for every $q \in \mathbb{Q}$ with $q>0$, we have that $f(x)>g(x)-q$, and so there exists $r \in \mathbb{Q}$ with $f(x)>r>g(x)-q$. So we have " \subseteq ". Conversely, suppose that for all $q \in \mathbb{Q}$ with $q>0$, for some $r \in \mathbb{Q}$, we have that $f(x)>r>g(x)-q$. In particular, $f(x)>g(x)-q$ for all $q>0$ with $q \in \mathbb{Q}$, so that $f(x) \geq g(x)$. Hence we have equality, as claimed.

Now, for $q, r \in \mathbb{Q}$ with $q>0$, we have that

$$
\begin{aligned}
\{x \in X: f(x)>r>g(x)-q\} & =\{x \in X: f(x)>r\} \cap\{x \in X: r+q>g(x)\} \\
& =f^{-1}((r, \infty)) \cap g^{-1}((-\infty, r+q)) \in \mathcal{R} .
\end{aligned}
$$

Hence, for $q \in \mathbb{Q}$ with $q>0$, we have that

$$
\bigcup_{r \in Q}\{x \in X: f(x)>r>g(x)-q\} \in \mathcal{R}
$$

as this is a countable union. Similarly, by taking a countable intersection, we see that

$$
\bigcap_{q \in \mathbb{Q}, q>0} \bigcup_{r \in \mathbb{Q}}\{x \in X: f(x)>r>g(x)-q\} \in \mathcal{R} .
$$

So $\{x \in X: f(x) \geq g(x)\} \in \mathcal{R}$, as required.
Question continued: Show that $f g$ is measurable.
Cheeky proof: Let Y be a topological space. We say that a map $f: X \rightarrow Y$ is measurable if $f^{-1}(U) \in \mathcal{R}$ for every open set $U \subseteq Y$. This generalises our definition for maps to \mathbb{R}.

Let $\alpha: X \rightarrow \mathbb{R}^{2}$ be the map $\alpha(x)=(f(x), g(x))$, and let $c: \mathbb{R}^{2} \rightarrow \mathbb{R}$ be some continuous map. In particular, we can take $c(t, s)=t+s$ or $c(t, s)=t s$, so that $c \circ \alpha=f+g$ or $f g$, respectively.

We first check that α is measurable. Firstly, let $a<b$ and $c<d$, so that

$$
\alpha^{-1}((a, b) \times(c, d))=\{x: a<f(x)<b, c<g(x)<d\}=f^{-1}((a, b)) \cap g^{-1}((c, d)),
$$

which is in \mathcal{R}, as f and g are measurable. Now we use our usual trick. Let $U \subseteq \mathbb{R}^{2}$ be open, and let $x \in U$. Then we can find rationals a, b, c, d with $x \in(a, b) \times(c, d) \subseteq U$. Hence

$$
U=\bigcup_{a, b, c, d \in \mathbb{Q},(a, b) \times(c, d) \subseteq U}(a, b) \times(c, d),
$$

which is a countable union. Hence

$$
\alpha^{-1}(U)=\bigcup_{a, b, c, d \in \mathbb{Q},(a, b) \times(c, d) \subseteq U} \alpha^{-1}((a, b) \times(c, d)),
$$

which is in \mathcal{R}.
Finally, consider $U \subseteq \mathbb{R}$ open. As c is continuous, $c^{-1}(U) \subseteq \mathbb{R}^{2}$ is open, and so $(c \alpha)^{-1}=\alpha^{-1} c^{-1}(U) \in \mathcal{R}$. Hence $c \alpha$ is measurable, as required.

Linear Analysis I: Worked Solutions 5

Question 1: Let $\left(a_{n}\right)$ be a convergent sequence of positive reals. Prove that

$$
\lim _{n} a_{n}=\limsup _{n} a_{n}=\liminf _{n} a_{n} .
$$

Let $\left(a_{n}\right)$ be any sequence of positive reals. Show that

$$
\underset{n}{\liminf } a_{n} \leq \limsup _{n} a_{n},
$$

where these may be $\pm \infty$. Show that if

$$
\liminf _{n} a_{n}=\limsup _{n} a_{n}
$$

then $\left(a_{n}\right)$ converges.
Answer: Let $\left(a_{n}\right)$ be convergent, with limit a. For $\epsilon>0$, there exists N_{ϵ} such that $\left|a_{n}-a\right|<\epsilon$ for $n \geq N_{\epsilon}$. Hence, for $m \geq N_{\epsilon}$,

$$
a+\epsilon \geq \sup _{n \geq m} a_{n} \geq a-\epsilon, \quad a-\epsilon \leq \inf _{n \geq m} a_{n} \leq a+\epsilon
$$

which is enough to ensure that

$$
\lim _{n} a_{n}=\limsup _{n} a_{n}=\liminf _{n} a_{n} .
$$

Now let $\left(a_{n}\right)$ be an arbitrary sequence in \mathbb{R}. Then, for all n,

$$
\inf _{k \geq n} a_{k} \leq \sup _{k \geq n} a_{k},
$$

and so, by taking the limit, $\liminf _{n} a_{n} \leq \limsup _{n} a_{n}$. Now suppose that $\liminf \operatorname{in}_{n} a_{n}=$ $\lim \sup _{n} a_{n}$, which means that for all $\epsilon>0$, there exists N_{ϵ} such that

$$
\left|\inf _{n \geq N_{\epsilon}} a_{n}-\sup _{n \geq N_{\epsilon}} a_{n}\right|=\sup _{n \geq N_{\epsilon}} a_{n}-\inf _{n \geq N_{\epsilon}} a_{n}<\epsilon .
$$

This implies that $\left|a_{n}-a_{m}\right|<\epsilon$ for any $n, m \geq N_{\epsilon}$. Hence $\left(a_{n}\right)$ is a Cauchy sequence, and hence converges.
Question 2: Use the monotone convergence theorem to evaluate $\int_{\mathbb{R}} f(x) d \mu(x)$ for the following.

1. $f(x)=e^{-|x|}$.

Answer: f is continuous and hence measurable. Let $f_{n}(x)=e^{-|x|} \chi_{[-n, n]}$, so that $f_{n} \uparrow f$, and hence by MCT

$$
\begin{aligned}
\int_{\mathbb{R}} f d \mu & =\lim _{n \rightarrow \infty} \int_{\mathbb{R}} f_{n} d \mu=\lim _{n \rightarrow \infty} \int_{-n}^{n} e^{-|x|} d x \\
& =\lim _{n \rightarrow \infty} \int_{-n}^{0} e^{x} d x+\int_{0}^{n} e^{-x} d x=\lim _{n \rightarrow \infty} 2\left(1-e^{-n}\right)=2 .
\end{aligned}
$$

2. $f(x)=x^{-1 / 2} \chi_{(0,1]}$.

Answer: f is continuous on $(0,1]$ and zero elsewhere, so as $(0,1]$ is measurable, f is measurable (check this if you don't believe it!) Let $f_{n}(x)=x^{-1 / 2} \chi_{[1 / n, 1]}$, so that $f_{n} \uparrow f$, and hence by MCT

$$
\begin{aligned}
\int_{\mathbb{R}} f d \mu & =\lim _{n \rightarrow \infty} \int_{\mathbb{R}} f_{n} d \mu=\lim _{n \rightarrow \infty} \int_{1 / n}^{1} x^{-1 / 2} d x \\
& =\lim _{n \rightarrow \infty}\left[2 x^{1 / 2}\right]_{x=1 / n}^{1}=\lim _{n \rightarrow \infty} 2-2 / \sqrt{n}=2 .
\end{aligned}
$$

Similarly, establish that the following have finite integral.

1. $f(x)=e^{-x^{2}}$.

Answer: f is continuous, so measurable. Let $f_{n}(x)=e^{-x^{2}} \chi_{[-n, n]}$. Then $f_{n} \uparrow f$, and so by MCT

$$
\begin{aligned}
\int_{\mathbb{R}} f d \mu & =\lim _{n \rightarrow \infty} \int_{\mathbb{R}} f_{n} d \mu=\lim _{n \rightarrow \infty} \int_{-n}^{n} e^{-x^{2}} d x=\lim _{n \rightarrow \infty} 2 \int_{0}^{n} e^{-x^{2}} d x \\
& \leq \lim _{n \rightarrow \infty} 2 \int_{0}^{1} 1 d x+2 \int_{1}^{n} e^{-x} d x=2+\lim _{n \rightarrow \infty} 2\left(e^{-1}-e^{-n}\right)=2+2 e^{-1}
\end{aligned}
$$

This uses that $-x^{2} \leq-x$ for $x \geq 1$, and that $e^{-x^{2}} \leq 1$ for $x \in[0,1]$.
2. $f(x)=x^{-2} \sin (x) \chi_{[\pi, \infty)}$.

Answer: f is the restriction of a continuous function to the measurable set $[\pi, \infty)$, and so f is measurable. Notice that $f(x) \geq 0$ if and only if $x<\pi$ or $\sin (x) \geq 0$, that is, if and only if $x<\pi$ or $2 k \pi \leq x \leq(2 k+1) \pi$ for some $k \in \mathbb{N}$. Hence let

$$
A=(-\infty, \pi) \cup \bigcup_{k \in \mathbb{N}}[2 k \pi,(2 k+1) \pi]
$$

so that

$$
f_{+}=f \chi_{A}, \quad f_{-}=-f \chi_{\mathbb{R} \backslash A}
$$

Then, by monotone convergence,

$$
\begin{aligned}
\int_{\mathbb{R}} f_{+} d \mu & =\int_{A} f d \mu=\lim _{n \rightarrow \infty} \sum_{k=1}^{n} \int_{2 k \pi}^{(2 k+1) \pi} x^{-2} \sin (x) d x \\
& \leq \lim _{n \rightarrow \infty} \sum_{k=1}^{n} \int_{2 k \pi}^{(2 k+1) \pi} x^{-2} d x=\lim _{n \rightarrow \infty} \sum_{k=1}^{n} \frac{1}{2 k \pi}-\frac{1}{(2 k+1) \pi} \\
& =\lim _{n \rightarrow \infty} \sum_{k=1}^{n} \frac{\pi}{2 k(2 k+1) \pi^{2}} \leq \sum_{k=1}^{\infty} k^{-2}<\infty .
\end{aligned}
$$

A similar argument applies to f_{-}.
Finally, show that the following are not Lebesgue integrable (that is, they have infinite integrals).

1. $f(x)=x^{-1} \chi_{[1, \infty)}$.

Answer: Let $f_{n}=x^{-1} \chi_{[1, n]}$, so $f_{n} \uparrow f$, and hence

$$
\int_{\mathbb{R}} f d \mu=\lim _{n \rightarrow \infty} \int_{1}^{n} \frac{1}{x} d x=\lim _{n \rightarrow \infty} \log (n)=\infty
$$

2. $f(x)=\log (x) \chi_{[1, \infty)}$.

Answer: Let $f_{n}=\log (x) \chi_{[1, n]}$, so $f_{n} \uparrow f$, and hence

$$
\int_{\mathbb{R}} f d \mu=\lim _{n \rightarrow \infty} \int_{1}^{n} \log (x) d x=\lim _{n \rightarrow \infty} n \log (n)-n+1=\infty .
$$

Question 3: Recall that $f(x)=\sin (x) / x$ is a continuous function $\mathbb{R} \rightarrow \mathbb{R}$. This is not Lebesgue integrable, as f_{+}and/or f_{-}do not have finite integral. Carefully prove this.
Answer: Notice that

$$
f(x) \geq 0 \Leftrightarrow\left\{\begin{array}{l}
x \geq 0,2 k \pi \leq x \leq(2 k+1) \pi \text { for some } k \in \mathbb{N} \\
x<0,(2 k+1) \pi \leq x \leq(2 k+2) \pi \text { for some } k \in \mathbb{Z}
\end{array}\right.
$$

So by Monotone convergence,

$$
\int_{\mathbb{R}} f_{+} d \mu=\lim _{n \rightarrow \infty} \sum_{k=0}^{n} \int_{2 k \pi}^{(2 k+1) \pi} \frac{\sin (x)}{x} d x+\int_{(-2 k-1) \pi}^{-2 k \pi} \frac{\sin (x)}{x} d x .
$$

Notice that

$$
\left(2 k+\frac{1}{4}\right) \pi \leq x \leq\left(2 k+\frac{3}{4}\right) \pi \quad \Longrightarrow \quad \sin (x) \geq \frac{1}{\sqrt{2}},
$$

and so

$$
\begin{aligned}
\int_{\mathbb{R}} f_{+} d \mu & \geq \sum_{k=0}^{\infty} \int_{(2 k+1 / 4) \pi}^{(2 k+3 / 4) \pi} \frac{1}{x \sqrt{2}} d x+\int_{(-2 k-3 / 4) \pi}^{(-2 k-1 / 4) \pi} \frac{1}{|x| \sqrt{2}} d x \\
& \geq \frac{1}{\sqrt{2}} \sum_{k=0}^{\infty} \frac{\pi / 2}{(2 k+3 / 4) \pi}+\frac{\pi / 2}{(2 k+1 / 4) \pi} \geq \sqrt{2} \sum_{k=1}^{\infty} \frac{1}{k}=\infty .
\end{aligned}
$$

It might be easier to see this if you draw a sketch!!
Question 4: For each n, let $f_{n}(x)=n^{3 / 2} x\left(1+n^{2} x^{2}\right)^{-1}$ for $x \in[0,1]$. By using the Dominated Convergence Theorem, find

$$
\lim _{n} \int_{0}^{1} f_{n}(x) d x
$$

Answer: For $0<x \leq 1$, consider the function

$$
\theta_{x}:[1, \infty) \rightarrow[0, \infty), \quad t \mapsto \frac{1}{t^{-3 / 2}+t^{1 / 2} x^{2}}
$$

which has a turning point at $\sqrt{3} / x$. We check that

$$
\theta_{x}(1)=\frac{1}{1+x^{2}}, \quad \theta_{x}(\sqrt{3} / x)=\frac{1}{3^{-3 / 4} x^{3 / 2}+3^{1 / 4} x^{3 / 2}}=\frac{1}{x^{3 / 2}\left(3^{-3 / 4}+3^{1 / 4}\right)},
$$

and clearly $\theta_{x}(t) \rightarrow 0$ as $t \rightarrow \infty$. So the maximum of θ_{x} is $\left(x^{3 / 2}\left(3^{-3 / 4}+3^{1 / 4}\right)\right)^{-1}$.
So if we define $g:[0,1] \rightarrow[0, \infty)$ by $g(0)=0$, and

$$
g(x)=\sup _{n} f_{n}(x)=\sup _{n} \frac{n^{3 / 2} x}{1+n^{2} x^{2}}=\sup _{n} x \theta_{x}(n),
$$

then we get the crude estimate that $g(x) \leq x^{-1 / 2}$ for $x>0$. Hence

$$
\int_{[0,1]} g d \mu=\left[2 x^{1 / 2}\right]_{0}^{1}=2 .
$$

So g is integrable, and $\left|f_{n}\right|=f_{n} \leq g$ for all n. So by Dominated Convergence,

$$
\lim _{n} \int_{[0,1]} f_{n} d \mu=\int_{[0,1]} \lim _{n} f_{n} d \mu=0 .
$$

Question 5: Use the Dominated Convergence Theorem to show that $f:[0,4] \rightarrow \mathbb{R}$, defined by

$$
f(x)= \begin{cases}0 & : x=0 \\ x^{-1 / 2} \sin (1 / x) & : 0<x \leq 4\end{cases}
$$

is integrable.
Answer: Set $f_{n}(x)=x^{-1 / 2} \sin (1 / x) \chi_{(1 / n, 4]}$, so $f_{n} \rightarrow f$ pointwise, but f_{n} does not increase to f, so we cannot apply the Monotone Convergence Theorem. Instead, we notice that $\left|f_{n}(x)\right| \leq x^{-1 / 2}$ for $0<x \leq 4$. So define

$$
g(x)= \begin{cases}x^{-1 / 2} & : 0<x \leq 4 \\ 0 & : x \leq 0, x>4\end{cases}
$$

We can use Monotone Convergence to show that

$$
\int_{\mathbb{R}} g d \mu=\lim _{n \rightarrow \infty} \int_{1 / n}^{4} x^{-1 / 2} d x=\lim _{n \rightarrow \infty} 2(2-1 / \sqrt{n})=4
$$

Hence g is integrable, and as $\left|f_{n}\right| \leq g$, each f_{n} is integrable. Apply the Dominated Convergence Theorem, we see that f is also integrable, as required.

Question 6: Define $f_{n}:[0,1] \rightarrow[0, \infty)$ by

$$
f_{n}(x)= \begin{cases}n & : 0 \leq x \leq 1 / n \\ 0 & : x>1 / n\end{cases}
$$

Show that $f_{n}(x) \rightarrow 0$ almost everywhere, but that

$$
\int_{0}^{1} f_{n} d \mu=1
$$

for all n. Why can we not apply either the Monotone or the Dominated Convergence Theorems in this case?
Answer: For $x>0$, if n is large enough, then $x>1 / n$, implying that $f_{n}(x)=0$. Hence $f_{n} \rightarrow 0$ except on $\{0\}$. But a singleton is a null set, so $f_{n} \rightarrow 0$ almost everywhere. However, as f_{n} is a simple function,

$$
\int_{0}^{1} f_{n} d \mu=n \mu([0,1 / n])=1
$$

for all n.
Clearly f_{n} is not an increasing sequence, so Monotone Convergence does not apply. Let

$$
g(x)=\sup _{n} f_{n}(x)=\sup \{n \in \mathbb{N}: x \leq 1 / n\}
$$

Hence $g(x)=n$ for $(n+1)^{-1}<x \leq 1 / n$, and so, for each N,

$$
\int_{0}^{1} g d \mu \geq \sum_{n=1}^{N} n\left(\frac{1}{n}-\frac{1}{n+1}\right)=\sum_{n=1}^{N} \frac{n}{n(n+1)}=\sum_{n=2}^{N+1} n^{-1} .
$$

This sum diverges (as $N \rightarrow \infty$), and so g has infinite integral. Hence we cannot bound the sequence $\left(f_{n}\right)$ by an integrable function, and so we cannot apply the Dominated Convergence Theorem.

Question 7: Let (X, \mathcal{R}, μ) be a measure space, and let $Y \in \mathcal{R}$. On a previous example sheet, we saw how to define the sub-measure space $\left(Y, \mathcal{R}_{Y}, \mu_{Y}\right)$. Let $f: X \rightarrow \mathbb{R}$ be measurable, and let f_{Y} be the restriction of f to Y. Show that f_{Y} is measurable with respect to \mathcal{R}_{Y}. Show that $f \chi_{Y}$ is measurable. Show that

$$
\int_{Y} f_{Y} d \mu_{Y}=\int_{X} f \chi_{Y} d \mu
$$

Hence integrating with respect to a sub-measure space, or just multiplying by the characteristic function of a measurable subset, gives the same answer.
Answer: Recall that $\mathcal{R}_{Y}=\{A \cap Y: A \in \mathcal{R}\}$, and μ_{Y} is simply the restriction of μ to Y. Firstly we check that f_{Y} is \mathcal{R}_{Y}-measurable. Let $U \subseteq \mathbb{R}$ be open, so that $f^{-1}(U) \in \mathcal{R}$, as f is \mathcal{R}-measurable. Hence

$$
f_{Y}^{-1}(U)=\{y \in Y: f(y) \in Y\}=f^{-1}(U) \cap Y \in \mathcal{R}_{Y}
$$

and so we conclude that f_{Y} is \mathcal{R}_{Y}-measurable.
Next we show that $f \chi_{Y}$ is \mathcal{R}-measurable. Again, let $U \subseteq \mathbb{R}$ be open with $0 \in U$, so that

$$
\begin{aligned}
\left(f \chi_{Y}\right)^{-1}(U) & =\left\{x \in X: f(x) \chi_{Y}(x) \in U\right\}=\{x \in Y: f(x) \in U\} \cup\{x \in X \backslash Y\} \\
& =\left(f^{-1}(U) \cap Y\right) \cup(X \backslash Y) \in \mathcal{R} .
\end{aligned}
$$

If $0 \notin U$, then

$$
\left(f \chi_{Y}\right)^{-1}(U)=\{x \in Y: f(x) \in U\}=f^{-1}(U) \cap Y \in \mathcal{R} .
$$

So $f \chi_{Y}$ is measurable (this uses that $Y \in \mathcal{R}$).
Let $f=\sum_{k=1}^{n} t_{k} \chi_{A_{k}}$ be a simple function, with the $\left(A_{k}\right)$ disjoint, so we have that

$$
\int_{Y} f_{Y} d \mu_{Y}=\sum_{k=1}^{n} t_{k} \mu_{Y}\left(A_{k} \cap Y\right)=\sum_{k=1}^{n} t_{k} \mu\left(A_{k} \cap Y\right)=\int_{X} f \chi_{Y} d \mu .
$$

If $f: X \rightarrow[0, \infty)$ is measurable, then let

$$
f_{n}=2^{-1}\left\lfloor 2^{n} f\right\rfloor \quad(n \in \mathbb{N}),
$$

so that each f_{n} is simple, and $f_{n} \uparrow f$. Obviously also $f_{n} \chi_{Y} \uparrow f \chi_{Y}$, so by the MCT,

$$
\int_{Y} f_{Y} d \mu_{Y}=\lim _{n} \int_{Y}\left(f_{n}\right)_{Y} d \mu_{Y}=\lim _{n} \int_{X} f_{n} \chi_{Y} d \mu=\int_{X} f \chi_{Y} d \mu .
$$

Finally, to handle a general measurable $f: X \rightarrow \mathbb{R}$, we simply consider positive and negative parts.

Linear Analysis I: Worked Solutions 6

Question 1: Let (X, \mathcal{R}, μ) be a measure space. Let $f: X \rightarrow[0, \infty)$ be measurable. For each $A \in \mathcal{R}$, define

$$
\mu_{f}(A)=\int_{X} f \chi_{A} d \mu \quad(A \in \mathcal{R})
$$

Show that μ_{f} is a measure.
Answer: Clearly $\mu_{f}(\emptyset)=0$. Let $\left(A_{n}\right)$ be a sequence of pairwise disjoint sets in \mathcal{R}, and let $A=\bigcup_{n} A_{n}$. Let $g=\chi_{A}$ and $f_{n}=\chi_{A_{1} \cup \cdots \cup A_{n}}$ for each n. Then

$$
A_{1} \cup \cdots \cup A_{n} \subseteq A_{1} \cup \cdots \cup A_{n+1} \Longrightarrow f_{n} \leq f_{n+1}, \quad(n \in \mathbb{N})
$$

so $\left(f_{n}\right)$ is an increasing sequence. If $x \in A$, then for some n, we have $x \in A_{n}$, and so $f_{n}(x) \rightarrow 1$. Thus $f_{n}(x) \rightarrow g(x)$. If $x \notin A$ then $x \notin A_{n}$ for each n, so that $0=g(x)=f_{n}(x)$ for all n. Thus $g=\chi_{A}=\lim _{n} f_{n}$.

As f is positive, we see that $f f_{n}$ increases to $f \chi_{A}$. By the Monotone Convergence Theorem,

$$
\mu_{f}(A)=\int_{X} f \chi_{A} d \mu=\lim _{n \rightarrow \infty} \int_{X} f f_{n} d \mu=\lim _{n \rightarrow \infty} \int_{X} f \chi_{A_{1} \cup \ldots \cup A_{n}} d \mu .
$$

As integration is linear,

$$
\mu_{f}(A)=\lim _{n \rightarrow \infty} \sum_{k=1}^{n} \int_{X} f \chi_{A_{k}} d \mu=\lim _{n \rightarrow \infty} \sum_{k=1}^{n} \mu_{f}\left(A_{k}\right)=\sum_{n=1}^{\infty} \mu_{f}\left(A_{n}\right) .
$$

So μ_{f} is countably additive, and hence a measure.
Question continued: Furthermore, show that if g is a simple function, then

$$
\int_{X} g d \mu_{f}=\int_{X} g f d \mu .
$$

Conclude (using Monotone convergence) that this holds for any integrable function g : $X \rightarrow \mathbb{R}$.
Answer: We can write a simple function as

$$
g=\sum_{k=1}^{n} a_{k} \chi_{A_{k}},
$$

for some pairwise disjoint $\left(A_{k}\right)$, and scalars $\left(a_{k}\right)$. Then, by definition, and using linearity,

$$
\int_{X} g d \mu_{f}=\sum_{k=1}^{n} a_{k} \mu_{f}\left(A_{k}\right)=\sum_{k=1}^{n} a_{k} \int_{X} f \chi_{A_{k}} d \mu=\int_{X} \sum_{k=1}^{n} a_{k} f \chi_{A_{k}} d \mu=\int_{X} f g d \mu .
$$

Now let $g: X \rightarrow[0, \infty)$ be measurable, and as usual, set

$$
g_{n}=\min \left(n, 2^{-n}\left\lfloor 2^{n} g\right\rfloor\right),
$$

so each g_{n} is simple, and $g_{n} \uparrow g$. Similarly, $g_{n} f \uparrow f g$. Thus, by Monotone Convergence,

$$
\int_{X} g d \mu_{f}=\lim _{n \rightarrow \infty} \int_{X} g_{n} d \mu_{f}=\lim _{n \rightarrow \infty} \int_{X} g_{n} f d \mu=\int_{X} g f d \mu,
$$

as required. The claim then follows by taking positive and negative parts.

Question 2: Let (X, \mathcal{R}, μ) be a measure space. A function $f: X \rightarrow \mathbb{R}$ is essentially bounded if there exists $K>0$ such that $|f| \leq K$ almost everywhere. The inf of such K is called the essential supremum of f, and is denoted by

$$
\operatorname{ess-sup}_{x \in X}|f(x)| \quad \text { or simply } \quad \operatorname{ess-sup}_{X}|f| .
$$

Let f be essentially bounded, and suppose that $g: X \rightarrow \mathbb{R}$ is measurable and integrable. Show that $f g$ is integrable, and that

$$
\int_{X}|f g| d \mu \leq\left(\operatorname{ess}^{-\sup _{X}}|f|\right) \int_{X}|g| d \mu .
$$

Answer: Let $\epsilon>0$, and set $K=\operatorname{ess-sup}_{X}|f|$. Then $|f| \leq K+\epsilon$ almost everywhere, so $A=\{x \in X:|f(x)| \geq K+\epsilon\}$ is a null set. Thus $f=f \chi_{X \backslash A}$ almost everywhere, and $\left|f \chi_{X \backslash A}\right| \leq K+\epsilon$.

Then $\left|f \chi_{X \backslash A} g\right| \leq(K+\epsilon)|g|$, and so

$$
\int_{X}\left|f \chi_{X \backslash A} g\right| d \mu \leq(K+\epsilon) \int_{X}|g| d \mu<\infty .
$$

As $\left|f \chi_{X \backslash A} g\right|=|f g|$ almost everywhere, we also have that

$$
\int_{X}|f g| d \mu=\int_{X}\left|f \chi_{X \backslash A} g\right| d \mu \leq(K+\epsilon) \int_{X}|g| d \mu
$$

As $\epsilon>0$ was arbitrary, we are done.
Question 3: We define Lebesgue measure on \mathbb{R}^{3} by identifying \mathbb{R}^{3} with $\mathbb{R} \times \mathbb{R} \times \mathbb{R}$. The volume of a measurable set $A \subseteq \mathbb{R}^{3}$ is then simply the integral of the characteristic function of A. Carefully apply Fubini's Theorem to find the volumes of the sets:

1. $\left\{(x, y, z): 0 \leq z \leq 2-x^{2}-y^{2}\right\}$.
2. $\{(x, y, z): x+y+z \leq 1, x \geq 0, y \geq 0, z \geq 0\}$.

Notice that these sets are bounded, so we can work in a finite measure space if we wish.
Answer: It is quite possible that I have made mistakes here, so check these integrals! For (1), we have, being careful,

$$
\text { Volume }=\int_{\mathbb{R}^{3}} \chi_{\left\{(x, y, z): 0 \leq z \leq 2-x^{2}-y^{2}\right\}} d \mu_{3},
$$

where here I write μ_{3} for Lebesgue measure on \mathbb{R}^{3}. The set we are integrating over is bounded, and hence has finite measure. So we can apply Fubini. Hence

$$
\text { Volume }=\int_{\mathbb{R}^{2}} \chi_{\left\{(x, y): x^{2}+y^{2} \leq 2\right\}}\left(\int_{0}^{2-x^{2}-y^{2}} 1 d z\right) d \mu_{2} .
$$

Then, for x fixed with $x^{2} \leq 2$, we have that $x^{2}+y^{2} \leq 2$ if and only if $\left(x^{2}-2\right)^{1 / 2} \leq y \leq$
$\left(2-x^{2}\right)^{1 / 2}$. Hence

$$
\begin{aligned}
\text { Volume } & =\int_{-\sqrt{2}}^{\sqrt{2}} \int_{\left(x^{2}-2\right)^{1 / 2}}^{\left(2-x^{2}\right)^{1 / 2}} \int_{0}^{2-x^{2}-y^{2}} 1 d z d y d x \\
& =\int_{-\sqrt{2}}^{\sqrt{2}} \int_{\left(x^{2}-2\right)^{1 / 2}}^{\left(2-x^{2}\right)^{1 / 2}} 2-x^{2}-y^{2} d y d x \\
& =\int_{-\sqrt{2}}^{\sqrt{2}} 2\left(2-x^{2}\right)^{1 / 2}\left(2-x^{2}\right)-\left[\frac{y^{3}}{3}\right]_{y=\left(x^{2}-2\right)^{1 / 2}}^{\left(2-x^{2}\right)^{1 / 2}} d x \\
& =\int_{-\sqrt{2}}^{\sqrt{2}} 2\left(2-x^{2}\right)^{3 / 2}-\frac{2}{3}\left(2-x^{2}\right)^{3 / 2} d x \\
& =\frac{4}{3} \int_{-\sqrt{2}}^{\sqrt{2}}\left(2-x^{2}\right)^{3 / 2} d x .
\end{aligned}
$$

Let $x=\sqrt{2} \sin (t)$, so that $d x / d t=\sqrt{2} \cos (t)$, and hence

$$
\begin{aligned}
\text { Area } & =\frac{4}{3} \int_{-\pi / 2}^{\pi / 2} 2^{3 / 2} \sqrt{2} \cos ^{4}(t) d t=\frac{16}{3} \int_{-\pi / 2}^{\pi / 2} \cos ^{4}(t) d t \\
& =\frac{2}{3} \int_{-\pi / 2}^{\pi / 2} \cos (4 t)+4 \cos (2 t)+3 d t=\frac{2}{3}\left[\frac{\sin (4 t)}{4}+2 \sin (2 t)+3 t\right]_{t=-\pi / 2}^{\pi / 2}=2 \pi
\end{aligned}
$$

If you'd seen this question in a Calculus Course, you would probably change into plane polar coordinates. There is a way to handle change of variables for Lebesgue (or more general) integrable functions. I haven't covered this in the course, in the interests of time, but in an easy form, it is rather similar to change of variables for Riemann integration. In a more complicated form, it is not very useful for practical calculations.

For (2), with much less justification this time, we have

$$
\begin{aligned}
\text { Volume } & =\int_{0}^{1} \int_{0}^{1-x} \int_{0}^{1-x-y} 1 d z d y d x=\int_{0}^{1} \int_{0}^{1-x} 1-x-y d y d x \\
& =\int_{0}^{1}(1-x)^{2}-\left[\frac{y^{2}}{2}\right]_{y=0}^{1-x} d x=\frac{1}{2} \int_{0}^{1}(1-x)^{2} d x=\frac{1}{2}\left[x-x^{2}+\frac{x^{3}}{3}\right]_{x=0}^{1}=\frac{1}{6} .
\end{aligned}
$$

Question 4: Let (X, \mathcal{R}, μ) and $(Y, \mathcal{S}, \lambda)$ be finite measure spaces. Let $f: X \rightarrow \mathbb{R}$ be \mathcal{R}-measurable, and let $g: Y \rightarrow \mathbb{R}$ be \mathcal{S}-measurable. Let $h: X \times Y \rightarrow \mathbb{R}$ be defined by $h(x, y)=f(x) g(y)$. Show that h is $(\mathcal{R} \otimes \mathcal{S})$-measurable. Suppose that f and g are integrable with respect to μ and λ, respectively. Use Fubini to show that

$$
\int_{X \times Y} h d(\mu \otimes \lambda)=\int_{X} f d \mu \int_{Y} g d \lambda .
$$

Answer: Let $U \subseteq \mathbb{R}$ be open. Consider the continuous map $\alpha: \mathbb{R}^{2} \rightarrow \mathbb{R}$ defined by $\alpha(x, y)=x y$. Consider also the map $\beta: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ defined by $\beta(x, y)=(f(x), g(y))$. Then $h=\alpha \beta$, and so $h^{-1}(U)=\beta^{-1} \alpha^{-1}(U)$. As α is continuous, $\alpha^{-1}(U)$ is open. Suppose that β is $\mathcal{R} \otimes \mathcal{S}$-measurable, in the sense that if $V \subseteq \mathbb{R} \times \mathbb{R}$ is open, then $\beta^{-1}(V) \in \mathcal{R} \otimes \mathcal{S}$. Then we have that $h^{-1}(U) \in \mathcal{R} \otimes \mathcal{S}$, showing that h is $\mathcal{R} \otimes \mathcal{S}$-measurable.

So we want β to be measurable. Let $U, V \subseteq \mathbb{R}$ be open, so that $f^{-1}(U) \in \mathcal{R}$ and $g^{-1}(V) \in \mathcal{S}$, as f and g are measurable. So, by the definition of $\mathcal{R} \otimes \mathcal{S}$, we have that
$\beta^{-1}(U \times V)=f^{-1}(U) \times g^{-1}(V) \in \mathcal{R} \otimes \mathcal{S}$. We now "exploit the rationals". Let $U \subseteq \mathbb{R}^{2}$ be open, let \mathcal{D} be the collection of all open intervals (a, b) with $a, b \in \mathbb{Q}$. Then

$$
U=\bigcup_{\{A, B \in \mathcal{D}: A \times B \subseteq U\}} A \times B,
$$

a countable union, so

$$
\beta^{-1}(U)=\bigcup_{\{A, B \in \mathcal{D}: A \times B \subseteq U\}} f^{-1}(A) \times g^{-1}(B)
$$

is in $\mathcal{R} \otimes \mathcal{S}$. Hence β is measurable.
As f and g are measurable, by Fubini (for positive functions) we see that

$$
\int_{X \times Y}|h| d(\mu \otimes \lambda)=\int_{X}|h|_{1} d \mu,
$$

where

$$
|h|_{1}(x)= \begin{cases}\int_{Y}|h|(x, y) d \lambda(y) & : \text { this is finite }, \\ 0 & : \text { otherwise }\end{cases}
$$

However, in this case

$$
\int_{Y}|h|(x, y) d \lambda(y)=\int_{Y}|f|(x)|g|(y) d \lambda(y)=|f(x)| \int_{Y}|g| d \lambda .
$$

Thus

$$
\begin{aligned}
\int_{X \times Y}|h| d(\mu \otimes \lambda) & =\int_{X}|f(x)| \int_{Y}|g| d \lambda d \mu(x) \\
& =\int_{X}|f(x)| d \mu(x) \int_{Y}|g(y)| d \lambda(y)<\infty .
\end{aligned}
$$

Hence h is integrable, and so by Fubini,

$$
\int_{X \times Y} h d(\mu \otimes \lambda)=\int_{X} f d \mu \int_{Y} g d \lambda,
$$

by just repeating the argument.
Question 5: Define $f:[0,1]^{2} \rightarrow \mathbb{R}$ by

$$
f(x, y)= \begin{cases}\frac{x^{2}-y^{2}}{\left(x^{2}+y^{2}\right)^{2}} & :(x, y) \neq(0,0) \\ 0 & : \text { otherwise }\end{cases}
$$

Show by calculation that

$$
\int_{0}^{1} \int_{0}^{1} f(x, y) d x d y \neq \int_{0}^{1} \int_{0}^{1} f(x, y) d y d x
$$

Why can we not apply Fubini's Theorem in this case?
Answer: We see that for $y>0$,

$$
\int_{0}^{1} \frac{x^{2}-y^{2}}{\left(x^{2}+y^{2}\right)^{2}} d x=\left[\frac{-x}{x^{2}+y^{2}}\right]_{x=0}^{1}=\frac{-1}{1+y^{2}} .
$$

Hence we have that

$$
\int_{0}^{1} \int_{0}^{1} \frac{x^{2}-y^{2}}{\left(x^{2}+y^{2}\right)^{2}} d x d y=\int_{0}^{1} \frac{-1}{1+y^{2}} d y=\left[-\tan ^{-1}(y)\right]_{y=0}^{1}=-\pi / 4
$$

By symmetry, we have that for $x>0$,

$$
\int_{0}^{1} \frac{x^{2}-y^{2}}{\left(x^{2}+y^{2}\right)^{2}} d y=\left[\frac{y}{x^{2}+y^{2}}\right]_{y=0}^{1}=\frac{1}{1+x^{2}}
$$

and consequently,

$$
\int_{0}^{1} \int_{0}^{1} \frac{x^{2}-y^{2}}{\left(x^{2}+y^{2}\right)^{2}} d y d x=\pi / 4
$$

We cannot apply Fubini's Theorem as $|f|$ has infinite integral over $[0,1]^{2}$, that is, f is NOT integrable. This follows as

$$
\begin{aligned}
\int_{0}^{1} \frac{\left|x^{2}-y^{2}\right|}{\left(x^{2}+y^{2}\right)^{2}} d x & =\int_{0}^{y} \frac{y^{2}-x^{2}}{\left(x^{2}+y^{2}\right)^{2}} d x+\int_{y}^{1} \frac{x^{2}-y^{2}}{\left(x^{2}+y^{2}\right)^{2}} d x \\
& =\left[\frac{x}{x^{2}+y^{2}}\right]_{x=0}^{y}+\left[\frac{-x}{x^{2}+y^{2}}\right]_{x=y}^{1} \\
& =\frac{y}{y^{2}+y^{2}}+\frac{-1}{1+y^{2}}-\frac{-y}{y^{2}+y^{2}}=\frac{1}{y}-\frac{1}{1+y^{2}} .
\end{aligned}
$$

Hence

$$
\int_{0}^{1} \int_{0}^{1} \frac{\left|x^{2}-y^{2}\right|}{\left(x^{2}+y^{2}\right)^{2}} d x d y=\int_{0}^{1} \frac{1}{y}-\frac{1}{1+y^{2}} d y=\infty-\int_{0}^{1} \frac{1}{1+y^{2}} d y=\infty
$$

Formally, we should use Monotone Convergence in this last calculation.
Question 6: Let (X, \mathcal{R}, μ) and $(Y, \mathcal{S}, \lambda)$ be finite measure spaces, and let $E \in \mathcal{R} \otimes \mathcal{S}$. For each $x \in X$, let $E_{x}=\{y \in Y:(x, y) \in E\}$, a cross-section of E. Show that the following are equivalent:

1. $(\mu \otimes \lambda)(E)=0$;
2. $\lambda\left(E_{x}\right)=0$ for almost all x with respect to μ (that is, $\mu\left(\left\{x \in X: \lambda\left(E_{x}\right) \neq 0\right\}\right)=0$).

Answer: Let $f=\chi_{E}$ a measurable function on $X \times Y$. By the results in lectures, we know that each E_{x} is in \mathcal{S}, so we can let $f_{x}=\chi_{E_{x}}$ a measurable function on Y. Notice that $f_{x}(y)=\chi_{E}(x, y)$ for $x \in X$ and $y \in F$. As f is positive and bounded, we can apply (the easiest form of) Fubini to see that

$$
\begin{aligned}
(\mu \otimes \lambda)(E) & =\int_{X \times Y} f d(\mu \otimes \lambda)=\int_{X} \int_{Y} f(x, y) d \lambda(y) d \mu(x) \\
& =\int_{X} \int_{Y} f_{x} d \lambda d \mu(x)=\int_{X} \lambda\left(E_{x}\right) d \mu(x) .
\end{aligned}
$$

So $(\mu \otimes \lambda)(E)=0$ if and only if $x \mapsto \lambda\left(E_{x}\right)$ has zero integral over X, which is if and only if $\lambda\left(E_{x}\right)=0$ for almost every x with respect to μ.
Question 7: Let X be a set, and let \mathcal{R} be a σ-algebra on X. For $x \in X$, define a map $\delta_{x}: \mathcal{R} \rightarrow[0, \infty)$ by

$$
\delta_{x}(A)= \begin{cases}1 & : x \in A \\ 0 & : x \notin A\end{cases}
$$

Show that δ_{x} is a measure.
Answer: Clearly $\delta_{x}(\emptyset)=0$. For $\left(A_{n}\right)$ a sequence of pairwise disjoint sets in \mathcal{R}, let $A=\bigcup_{n} A_{n}$. If $x \notin A$, then $x \notin A_{n}$ for all n, and so

$$
0=\delta_{x}(A)=\sum_{n} \delta_{x}\left(A_{n}\right)
$$

If $x \in A$, then by pairwise disjointness, there exists a unique n_{0} with $x \in A_{n_{0}}$. Then

$$
1=\delta_{x}(A)=\sum_{n} \delta_{x}\left(A_{n}\right)=\delta_{x}\left(A_{n_{0}}\right)=1,
$$

as required to show that δ_{x} is countably additive. So δ_{x} is a measure.
Question continued: Determine the completion of δ_{x} (that is, what are the null sets for δ_{x} ?)
Answer: This is slightly a trick question! If $\{x\} \in \mathcal{R}$, then also $X \backslash\{x\} \in \mathcal{R}$, and $\delta_{x}(X \backslash\{x\})=0$. It follows easily now that every set not containing x is null, as such sets are contained in $X \backslash\{x\}$. In the completed σ-algebra, every set is measurable, and δ_{x} is defined in the same way as before.

However, maybe \mathcal{R} is the trivial σ-algebra, $\mathcal{R}=\{X, \emptyset\}$. Then $\delta_{x}(X)=1$, so the only set in \mathcal{R} which has zero measure is \emptyset. So completing does nothing in this case.
Question continued: For a measurable function $f: X \rightarrow[0, \infty)$, what is $\int_{X} f d \delta_{x}$? Which functions $f: X \rightarrow \mathbb{R}$ are integrable for δ_{x} ?
Answer: Intuition suggests that $\int f d \delta_{x}=f(x)$. Let us prove this! For $A \in \mathcal{R}$, we have $\int \chi_{A} d \delta_{x}=\delta_{x}\left(\chi_{A}\right)=\chi_{A}(x)$. By taking linear combinations, it is easy to see that $\int g d \delta_{x}=g(x)$ for any simple function $g: X \rightarrow[0, \infty)$. We could now use Monotone Convergence, in the usual way.

However, let's be different, and use the definition of the integral. So, if $g \leq f$ and g is simple, then $\int g d \delta_{x}=g(x) \leq f(x)$, so by definition,

$$
\int f d \delta_{x} \leq f(x)
$$

Conversely, for $\epsilon>0$, notice that

$$
A=\{y \in X: f(x)-\epsilon \leq f(y) \leq f(x)\}=f^{-1}([f(x)-\epsilon, f(x)])
$$

is in \mathcal{R}, as f is measurable. Then $x \in A$, and for any $y \in A, f(y) \geq f(x)-\epsilon$. So

$$
f \chi_{A} \geq(f(x)-\epsilon) \chi_{A} \Longrightarrow \int f d \delta_{x} \geq(f(x)-\epsilon) \delta_{x}\left(\chi_{A}\right)=f(x)-\epsilon .
$$

As $\epsilon>0$ was arbitrary, we conclude that $\int f d \delta_{x}=f(x)$, as required.
Maybe (or maybe not!) you worry that we haven't used any facts about \mathcal{R} here! Well, if $\mathcal{R}=\{X, \emptyset\}$, then there are very few measurable functions $f: X \rightarrow[0, \infty)$. Indeed, a moment's thought shows that f must actually be constant (prove this!)

So any positive measurable function has a finite integral. By taking positive and negative parts, we see that any measure function $f: X \rightarrow \mathbb{R}$ is integrable, with $\int f d \delta_{x}=$ $f(x)$.
Question 8: Let $A \subseteq \mathbb{R}$ be a Lebesgue measurable set with finite Lebesgue measure. Show that for $\epsilon>0$, we can find an open set U with $A \subseteq U$ and $\mu(U)<\mu(A)+\epsilon$.
Answer: By the definition of Lebesgue outer measure, for $\epsilon>0$, we can find U, a countable union of open intervals, with $A \subseteq U$ and $\mu(U)<\mu(A)+\epsilon$. (This follows, as by definition, $\mu(A)$ is the infimum of $\mu(U)$ for such $U)$.

Question continued: Show that for $\epsilon>0$, we can find a compact (that is, closed and bounded) set K with $K \subseteq A$ and $\mu(K)>\mu(A)-\epsilon$.
Answer: Suppose first that A is bounded, that is, $A \subseteq[-n, n]$ for some $n>0$. Then let $B=[-n, n] \backslash A$ which is also Lebesgue measurable, so by the first bit of the question, we can find some open set U with $B \subseteq U$ and $\mu(U)<\mu(B)+\epsilon$. At this point, drawing a diagram may help! Then let $K=[-n, n] \backslash U=[-n, n] \cap(\mathbb{R} \backslash U)$ a closed and bounded set. For $k \in K$, we have that $k \in[-n, n]$ but $k \notin U$, so certainly $k \notin B$. Thus $k \in A$ (use the definition of B). So $K \subseteq A$. A bit of thought shows that $A \backslash K=U \cap A \subseteq U \backslash B$. Thus

$$
\mu(A \backslash K)=\mu(A)-\mu(K) \leq \mu(U \backslash B)=\mu(U)-\mu(B)<\epsilon
$$

so that $\mu(A)-\epsilon<\mu(K)$.
Let $A_{n}=A \cap[-n, n]$, so that $A_{1} \subseteq A_{2} \subseteq \cdots$ and $A=\bigcup_{n} A_{n}$. Then $\mu(A)=\lim _{n} \mu\left(A_{n}\right)$, and so as $\mu(A)<\infty$, there exists n with $\mu\left(A_{n}\right)>\mu(A)-\epsilon / 2$. As $A_{n} \subseteq[-n, n]$, then above shows that there exists a closed and bounded K with $K \subseteq A_{n} \subseteq A$ with $\mu(K)>\mu\left(A_{n}\right)-\epsilon / 2$. Thus $\mu(K)>\mu(A)-\epsilon$, as we want.
Question continued: Conclude that

$$
\sup \{\mu(K): K \subseteq A \text { is compact }\}=\mu(A)=\inf \{\mu(U): A \subseteq U \text { is open }\} .
$$

This shows that μ is a regular measure. We will learn more about regular measures later in the course.
Answer: This is immediate, as $\epsilon>0$ was arbitrary.

Linear Analysis I: Worked Solutions 7

Question 1: Consider the set \mathbb{N} together with the trivial σ-algebra consisting of all subsets of \mathbb{N}. Let $\left(\omega_{n}\right)$ be a sequence of positive reals, with $\left(\omega_{n}\right) \in \ell^{1}$. Show that we may define a measure μ by

$$
\mu(A)=\sum_{n \in A} \omega_{n} \quad(A \subseteq \mathbb{N}) .
$$

What are the null sets for this measure?
Proof: Firstly we remark that as $\omega_{n} \geq 0$ for all n, the order which we take the sum does not matter. Clearly $\mu(\emptyset)=0$; if $\left(A_{n}\right)$ is a pairwise disjoint collection of subsets of \mathbb{N}, and $A=\bigcup_{n} A_{n}$, then it is pretty clear that

$$
\sum_{n} \mu\left(A_{n}\right)=\sum_{n} \sum_{k \in A_{n}} \omega_{k}=\sum_{k \in A} \omega_{k} .
$$

Exercise: Give an $\epsilon-\delta$ proof of this!
We claim that $A \subseteq \mathbb{N}$ is null if and only if $\omega_{n}=0$ for each $n \in A$. The " if " case is easy; conversely, if $\mu(A)=0$ then $\sum_{n \in A} \omega_{n}=0$, so as each ω_{n} is positive, we must have that $\omega_{n}=0$ for each $n \in A$, as claimed.

Question 2: This follows on from Question 1. Determine when a function $f: \mathbb{N} \rightarrow \mathbb{C}$ is in $L^{p}(\mu)$. Describe, briefly, the space $\mathcal{L}^{p}(\mu)$.
Proof: Let's do this carefully (having told you not to bother being too careful, maybe it's good to see the details). Let $f: \mathbb{N} \rightarrow \mathbb{R}$ be simple, say

$$
f=\sum_{k=1}^{n} a_{k} \chi_{A_{k}}
$$

for some pairwise disjoint $\left(A_{k}\right)$. Then

$$
|f|^{p}=\sum_{k=1}^{n}\left|a_{k}\right|^{p} \chi_{A_{k}} \Longrightarrow \int|f|^{p} d \mu=\sum_{k=1}^{n}\left|a_{k}\right|^{p} \sum_{j \in A_{k}} \omega_{j}=\sum_{j \in \mathbb{N}}|f(j)|^{p} \omega_{j} .
$$

Now let $f: \mathbb{N} \rightarrow \mathbb{R}$ be arbitrary, and let $g \leq f$ be simple. Then

$$
\int|g|^{p} d \mu=\sum_{j \in \mathbb{N}}|g(j)|^{p} \omega_{j} \leq \sum_{j \in \mathbb{N}}|f(j)|^{p} \omega_{j} .
$$

By the definition of the integral, taking the supremum over such g, we conclude that

$$
\int|f|^{p} d \mu \leq \sum_{j \in \mathbb{N}}|f(j)|^{p} \omega_{j} .
$$

Conversely, let $n \in \mathbb{N}$, and define $g: \mathbb{N} \rightarrow \mathbb{R}$ by $g(j)=f(j)$ if $j \leq n$, and $g(j)=0$ otherwise. Then g is simple, so we see that

$$
\int|f|^{p} d \mu \geq \int|g|^{p} d \mu=\sum_{j=1}^{n}|f(j)|^{p} \omega_{j} .
$$

Letting $n \rightarrow \infty$, we have that

$$
\int|f|^{p} d \mu \geq \sum_{j \in \mathbb{N}}|f(j)|^{p} \omega_{j} .
$$

So we have equality. As usual, we could have used a Monotone Convergence argument instead.

So $f: \mathbb{N} \rightarrow \mathbb{C}$ is in $L^{p}(\mu)$ if and only if

$$
\sum_{j=1}^{\infty}|f(j)|^{p} \omega_{j}<\infty
$$

Then $\mathcal{L}^{p}(\mu)$ is $L^{p}(\mu)$, modulo functions which are equal almost everywhere. Using Question 1, we see that $f \sim g$ if and only if $f(j) \neq g(j)$ implies that $\omega_{j}=0$.

So, if we let $A=\left\{j \in \mathbb{N}: \omega_{j} \neq 0\right\}$, we could consider $\mathcal{L}^{p}(\mu)$ to be the space of functions $f: A \rightarrow \mathbb{C}$ with

$$
\sum_{j \in A}|f(j)|^{p} \omega_{j}<\infty
$$

Question 3: Let (X, \mathcal{R}, μ) be a finite measure space. Show that if $1 \leq p<r<\infty$, then $L^{r}(\mu) \subseteq L^{p}(\mu)$. Hint: Given a function $f \in L^{r}(\mu)$, write

$$
f=f \chi_{\{x:|f(x)| \leq 1\}}+f \chi_{\{x:|f(x)|>1\}}
$$

then think about whether these two functions are in $L^{p}(\mu)$.
Proof: We follow the hint. Let $f \in \mathcal{L}^{r}(\mu)$, and fix a representative of f. If $|f(x)|>1$, then $|f(x)|^{p} \leq|f(x)|^{r}$ as $p<r$. Thus

$$
\begin{aligned}
\int|f|^{p} d \mu & =\int_{\{x \in X:|f(x)| \leq 1\}}|f|^{p} d \mu+\int_{\{x \in X:|f(x)|>1\}}|f|^{p} d \mu \\
& \leq \int_{\{x \in X:|f(x)| \leq 1\}} 1 d \mu+\int_{\{x \in X:|f(x)|>1\}}|f|^{r} d \mu \\
& \leq \mu(\{x \in X:|f(x)| \leq 1\})+\|f\|_{r}^{r} \leq \mu(X)+\|f\|_{r}^{r}<\infty
\end{aligned}
$$

as μ is finite. Hence $f \in L^{p}(\mu)$ and so defines a member of $\mathcal{L}^{p}(\mu)$ (and notice that if $f \sim g$ in $\mathcal{L}^{r}(\mu)$, the same is true in $\left.\mathcal{L}^{p}(\mu)\right)$.
Question continued: Try to use the Holder inequality!
Proof: How might we use Holder? Well, let $s \in(1, \infty)$, so by Holder

$$
\int|f|^{p} d \mu=\int|f|^{p} 1 d \mu \leq\left(\int|f|^{p s} d \mu\right)^{1 / s}\left(\int 1^{t} d \mu\right)^{1 / t}
$$

where $1 / s+1 / t=1$, as usual. We only know that $\int|f|^{r} d \mu<\infty$, so it seems natural to let $p s=r$, that is, $s=r / p$. As $p<r$, we see that $r / p>1$, so s is in the interval $(1, \infty)$. Then $1 / t=1-1 / s=1-p / r$. Thus

$$
\int|f|^{p} d \mu \leq\left(\int|f|^{r} d \mu\right)^{p / r} \mu(X)^{1-p / r}<\infty
$$

as $\int|f|^{r}<\infty$ and $\mu(X)<\infty$.
Question 4: By considering \mathbb{R} with Lebesgue measure, or otherwise, show that the conclusions of Question 5 no longer hold if we are not working with a finite measure space.
Proof: We first do the $p=1$ case. So we try to find $f \in L^{r}(\mu)$ with $\int|f| d \mu=\infty$, so that $f \notin L^{1}(\mu)$. Try

$$
f(x)=x^{-1} \chi_{(1, \infty)} .
$$

Then (formally, we use Monotone convergence here)

$$
\int|f|^{r} d \mu=\lim _{n} \int_{1}^{n} x^{-r} d \mu=\lim _{n}\left[\frac{x^{1-r}}{1-r}\right]_{1}^{n}=\lim _{n} \frac{1-n^{1-r}}{r-1}=\frac{1}{r-1} .
$$

So $f \in L^{r}(\mu)$. However,

$$
\int|f| d \mu=\lim _{n} \int_{1}^{n} x^{-1} d \mu=\lim _{n}[\log (x)]_{1}^{n}=\lim _{n} \log (n)=\infty,
$$

so $f \notin L^{1}(\mu)$.
To do the general case, just use

$$
f(x)=x^{-1 / p} \chi_{(1, \infty)},
$$

so that $|f|^{p}=x^{-1} \chi_{(1, \infty)}$ while $|f|^{r}=x^{-r / p} \chi_{(1, \infty)}$, which has finite integral, as $r / p>1$.
Question 5: Let $(\mathbb{R}, \mathcal{R}, \mu)$ be Lebesgue measure on the real line. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a Lebesgue integrable function. Define a map $\lambda: \mathcal{R} \rightarrow \mathbb{R}$ by

$$
\lambda(E)=\int_{E} f d \mu \quad(E \in \mathcal{R})
$$

Show quickly that λ is a signed measure. Let $A \cup B$ be a Hahn-Decomposition for λ. How can we relate the sets A and B to the function f ?
Proof: Clearly $\lambda(\emptyset)=0$. Let $\left(E_{n}\right)$ be a pairwise disjoint sequence in \mathcal{R}, and let $E=$ $\bigcup_{n} E_{n}$. As the (E_{n}) are pairwise disjoint, we have that

$$
\left(f \chi_{E_{1} \cup \cdots \cup E_{n}}\right)_{ \pm}=\sum_{k=1}^{n} f_{ \pm} \chi_{E_{k}}, \quad\left(f \chi_{E}\right)_{ \pm}=f_{ \pm} \chi_{E}
$$

Then $\left(f \chi_{E_{1} \cup \ldots \cup E_{n}}\right)_{ \pm} \uparrow f_{ \pm} \chi_{E}$, so by Monotone convergence,

$$
\begin{aligned}
\sum_{k} \int_{E_{k}} f d \mu & =\sum_{k}\left(\int_{E_{k}} f_{+} d \mu-\int_{E_{k}} f_{-} d \mu\right)=\lim _{n} \sum_{k=1}^{n} \int f_{+} \chi_{E_{k}}-f_{-} \chi_{E_{k}} d \mu \\
& =\lim _{n} \int f_{+} \chi_{E_{1} \cup \ldots \cup E_{n}} d \mu-\lim _{n} \int f_{-} \chi_{E_{1} \cup \ldots \cup E_{n}} d \mu \\
& =\int f_{+} \chi_{E} d \mu-\int f_{-} \chi_{E} d \mu=\int f \chi_{E} d \mu,
\end{aligned}
$$

showing that λ is countably additive.
Let $A=\{x \in X: f(x) \geq 0\}$ and $B=\{x \in X: g(x)<0\}$. As f is measurable, $A \in \mathcal{R}$ and $B \in \mathcal{R}$. Then, for any $E \in \mathcal{R}$, we see that f is positive on $E \cap A$, and negative on $E \cap B$, so that

$$
\lambda(E \cap A)=\int_{E \cap A} f d \mu \geq 0, \quad \lambda(E \cap B) \leq 0
$$

So (A, B) is a Hahn-Decomposition.
Question 6: Let $(\mathbb{R}, \mathcal{R}, \mu)$ be Lebesgue measure on the real line. Show, quickly, that we can define a measure ν on \mathbb{R} by

$$
\nu(A)=\int_{A}|x| d \mu(x) \quad(A \in \mathcal{R})
$$

Show that $\nu \ll \mu$. However, show that for any $\epsilon>0$, there does not exist $\delta>0$ such that $\mu(A) \leq \delta$ implies that $\nu(A) \leq \epsilon$.
Proof: Clearly $\nu(\emptyset)=0$; if $\left(A_{n}\right)$ are pairwise disjoint, then for $A=\bigcup_{n} A_{n}$,

$$
\sum_{n} \nu\left(A_{n}\right)=\sum_{n} \int_{A_{n}}|x| d \mu(x)=\int_{A}|x| d \mu(x)=\nu(A)
$$

by Monotone Convergence, as

$$
\chi_{A_{1} \cup \ldots \cup A_{n}}|x| \uparrow \chi_{A}|x| .
$$

If $\mu(A)=0$, then $\nu(A)=\int|x| \chi_{A} d \mu(x)=0$, as $|x| \chi_{A}=0$ almost everywhere for μ. Hence $\nu \ll \mu$.

However, let $\delta>0$, and let $t>0$ be very large, so that

$$
\nu((t, t+\delta))=\int_{t}^{t+\delta} x d x \geq t \delta
$$

Thus, for all $\delta>0$, there exists $A \in \mathcal{R}$ with $\mu(A)=\delta$, but $\nu(A)$ arbitrarily large.
Question 7: Let (X, \mathcal{R}) be a set with a σ-algebra, and let μ, λ be finite measures on \mathcal{R}. Show that the following are equivalent:

1. $\mu \ll \lambda$ and $\lambda \ll \mu$;
2. $A \in \mathcal{R}$ is μ-null if and only if it is λ-null;
3. there exists a measurable function $f: X \rightarrow(0, \infty)$ (note that I am not using $[0, \infty)$ or $[0, \infty])$ such that $\lambda(A)=\int_{A} f d \mu$ for all $A \in \mathcal{R}$.
Proof: Clearly (1) if and only if (2). If (1) holds, then by applying Radon-Nikodym, we can find a measurable $f: X \rightarrow[0, \infty)$ such that

$$
\lambda(A)=\int_{A} f d \mu \quad(A \in \mathcal{R})
$$

Let $B=\{x \in X: f(x)=0\}$, so that

$$
\lambda(B)=\int_{B} f d \mu=\int_{B} 0 d \mu=0
$$

As $\mu \ll \lambda$, we also have that $\mu(B)=0$. Define $\tilde{f}: X \rightarrow(0, \infty)$ by

$$
\tilde{f}(x)= \begin{cases}f(x) & : x \notin B \\ 1 & : x \in B\end{cases}
$$

Then for $A \in \mathcal{R}$, we have

$$
\begin{aligned}
\int_{A} \tilde{f} d \mu & =\int_{A \cap B} 1 d \mu+\int_{A \backslash B} f d \mu=\mu(A \cap B)+\lambda(A \backslash B) \\
& =\lambda(A \backslash B)=\lambda(A)-\lambda(A \cap B)=\lambda(A),
\end{aligned}
$$

as $\mu(A \cap B) \leq \mu(B)=0$, and $\lambda(A \cap B) \leq \lambda(B)=0$. So we have shown (3).
Finally, suppose (3) holds. Let $A \in \mathcal{R}$ be such that $\mu(A)=0$, so clearly $\lambda(A)=0$. Conversely, if $\lambda(A)=0$, then for each $\epsilon>0$,

$$
\begin{aligned}
0 & =\lambda(A)=\int_{A} f d \mu=\int_{A \cap\{x \in X: f(x) \geq \epsilon\}} f d \mu+\int_{A \cap\{x \in X: f(x)<\epsilon\}} f d \mu \\
& \geq \epsilon \mu(A \cap\{x \in X: f(x) \geq \epsilon\}) .
\end{aligned}
$$

Hence $A \cap\{x \in X: f(x) \geq \epsilon\}$ is a μ-null set for each $\epsilon>0$. Thus

$$
A=\bigcup_{n=1}^{\infty} A \cap\{x \in X: f(x) \geq 1 / n\}
$$

is also a μ-null set, which follows as $f>0$ everywhere. Hence we have shown (2).
Question 8: Let $(\mathbb{R}, \mathcal{R}, \mu)$ be Lebesgue measure on the real line. Let $\left(r_{n}\right)$ be an enumeration of the rationals. For each n, let

$$
A_{n}=\left(r_{n}-2^{-n}, r_{n}+2^{-n}\right), \quad f_{n}=2^{n} \chi_{A_{n}}
$$

Hence $f_{n} \geq 0$ and $\int_{X} f_{n} d \mu=2$.
Let B be the set of $x \in \mathbb{R}$ such that x is in infinitely many of the sets A_{n}. Show that

$$
B=\bigcap_{n=1}^{\infty} \bigcup_{k=n}^{\infty} A_{k}
$$

Using Proposition 2.3, show that $\mu(B)=0$. Hence show that $\sum_{n} f_{n}<\infty$ almost everywhere.
Proof: If x is in infinitely many of the sets A_{n}, then for each n, we have $x \in \bigcup_{k=n}^{\infty}$, and so $x \in B$. Conversely, if $x \in B$, then for all $n, x \in \bigcup_{k=n}^{\infty}$, so we must have that x is in infinitely many A_{k}, as required.

We see that

$$
\mu(B)=\lim _{n \rightarrow \infty} \mu\left(\bigcup_{k=n}^{\infty} A_{k}\right) \leq \lim _{n \rightarrow \infty} \sum_{k=n}^{\infty} 2^{1-k}=\lim _{n \rightarrow \infty} 2^{-n}=0
$$

Finally, let $f(x)=\sum_{n} f_{n}(x)=\sum_{n} 2^{n} \chi_{A_{n}}(x)$, which we allow to be infinity. Then $f(x)=\infty$ if and only if x is in infinitely many of the A_{n}, which is if and only if $x \in B$. As $\mu(B)=0$, we see that $f<\infty$ almost everywhere.
Question continued: Define a measure $\lambda: \mathcal{R} \rightarrow[0, \infty]$ by

$$
\lambda(A)=\sum_{n=1}^{\infty} \int_{A} f_{n} d \mu
$$

For $a<b$, show that $\lambda((a, b))=\infty$. Hint: There must be infinitely many rational numbers in the open set (a, b). Conclude that $\lambda(U)=\infty$ for any open set $U \subseteq \mathbb{R}$.

Show, however, that $\lambda \ll \mu$. Hence absolutely continuous measures can be pretty nasty!
Proof: First notice that for $A \in \mathcal{R}$,

$$
\lambda(A)=\sum_{n=1}^{\infty} \int_{A} f_{n} d \mu=\sum_{n=1}^{\infty} \int_{A} 2^{n} \chi_{A_{n}} d \mu=\sum_{n=1}^{\infty} 2^{n} \mu\left(A \cap A_{n}\right)
$$

For $a<b$, let $X=\left\{n \in \mathbb{N}: a<r_{n}<b\right\}$, so that X is infinite. For $n \in X$, we see that

$$
A \cap A_{n}=A \cap\left(r_{n}-2^{-n}, r_{n}+2^{-n}\right)=\left(\max \left(a, r_{n}-2^{-n}\right), \min \left(b, r_{n}+2^{-n}\right)\right)
$$

If $2^{-n}<(b-a) / 2$, then we crudely estimate that

$$
\mu\left(A \cap A_{n}\right) \geq 2^{-n}
$$

Hence we conclude that

$$
\lambda(A) \geq \sum_{n \in X} 2^{n} \mu\left(A \cap A_{n}\right) \geq \sum_{n \in X} 1=\infty .
$$

If U is open, then we can find $a<b$ with $(a, b) \subseteq U$, so that

$$
\lambda(U) \geq \lambda((a, b))=\infty .
$$

However, if $\mu(A)=0$, then clearly $\lambda(A)=0$, so $\lambda \ll \mu$.

Linear Analysis I: Worked Solutions 8

Question 1: Let $(\mathbb{R}, \mathcal{R}, \mu)$ be Lebesgue measure on the real line. Let X be the subset of $L^{1}(\mu)$ consisting of those $f \in L^{1}(\mu)$ such that, for some $K>0$, we have that $|f| \leq K$ almost everywhere (loosely, we could write $f \in L^{1}(\mu) \cap L^{\infty}(\mu)$). Hence X is also a subspace of $\mathcal{L}^{1}(\mu)$.

Show that $f: \mathbb{R} \rightarrow[0, \infty)$ defined by

$$
f(x)= \begin{cases}n^{1 / 2} & :(n+1)^{-1}<x \leq n^{-1} \text { for some } n \in \mathbb{N} \\ 0 & : \text { otherwise }\end{cases}
$$

is in $L^{1}(\mu)$. Hence, or otherwise, show carefully show that $X \neq \mathcal{L}^{1}(\mu)$.
Show, however, that X is dense in $\mathcal{L}^{1}(\mu)$.
Answer: We see, again technically by Monotone Convergence, that

$$
\int_{\mathbb{R}}|f| d \mu=\sum_{n=1}^{\infty} n^{1 / 2}\left(\frac{1}{n}-\frac{1}{n+1}\right)=\sum_{n=1}^{\infty} \frac{n^{1 / 2}}{n(n+1)} \leq \sum_{n=1}^{\infty} n^{-3 / 2}<\infty .
$$

Hence $f \in L^{1}(\mu)$. However, for any n, we see that $|f|>n^{1 / 2}$ on, say, the interval $\left((n+2)^{-1},(n+1)^{-1}\right)$, which does not have measure zero. Hence there can exist no $K>0$ with $|f| \leq K$ almost everywhere.

Suppose there exists $g \in L^{1}(\mu)$ and $K>0$ with $|g| \leq K$ almost everywhere, and yet $f=g$ almost everywhere (so that f and g define the same vector in $\mathcal{L}^{1}(\mu)$). Then $|f| \leq K$ almost everywhere, which is a contradiction. So $f \notin X$.

Suppose there exists $h \in \mathcal{L}^{1}(\mu)$ and $\epsilon>0$, such that for every $g \in X$, we have $\|h-g\|_{1} \geq \epsilon$. In particular, for each $n \in \mathbb{N}$,

$$
h_{n}=h \chi_{\{x \in X:|h| \leq n\}} \in X,
$$

because $\left|h_{n}\right| \leq n$, and as $\left|h_{n}\right| \leq|h|$, also $h_{n} \in \mathcal{L}^{1}(\mu)$. Thus, for each n,

$$
\epsilon \leq\left\|h-h_{n}\right\|_{1}=\int_{\{x \in X:|h|>n\}}|h| d \mu .
$$

However, we clearly have that $\left|h_{n}\right| \uparrow|h|$, and so by Monotone Convergence,

$$
\int_{X}|h| d \mu=\lim _{n \rightarrow \infty} \int_{X}\left|h_{n}\right| d \mu
$$

Hence

$$
\epsilon \leq \lim _{n \rightarrow \infty} \int_{X}|h| \chi_{\{x \in X:|h|>n\}} d \mu=\lim _{n \rightarrow \infty} \int_{X}|h|-\left|h_{n}\right| d \mu=0,
$$

a contradiction.
Question 2: This continues from Question 1. Show that the mapping

$$
T(f)=g \quad \text { where } \quad g(t)=\int_{[0, t]} f d \mu \quad(t \geq 0)
$$

is a well-defined map $X \rightarrow C_{\mathbb{K}}([0, \infty))$.
As usual, we give $C_{\mathbb{K}}([0, \infty))$ the $\|\cdot\|_{\infty}$ norm. Show that T is linear and bounded. What is $\|T\|$?

Does the definition of T make sense on $\mathcal{L}^{1}(\mu)$?
My thanks to Thomas for pointing out that I did something a bit cheeky here. We haven't studied that space $C_{\mathbb{K}}([0, \infty))$ before, as $[0, \infty)$ is not compact. Here are some solutions out of this problem:

- Just work in $C_{\mathbb{K}}([0, N])$ for some N.
- If we interpret $C_{\mathbb{K}}([0, \infty))$ to mean the vector space of bounded continuous functions $[0, \infty) \rightarrow \mathbb{K}$, then actually $C_{\mathbb{K}}([0, \infty))$ is a Banach space: the proof I have still works in the non-compact case.
- The really sophisticated method might be to work with $[0, \infty]$, defined here as the one-point compactification ${ }^{1}$ of $[0, \infty)$. The $C_{\mathbb{K}}([0, \infty])$ can be identified with the space of continuous functions $f:[0, \infty) \rightarrow \mathbb{K}$ with $\lim _{t \rightarrow \infty} f(t)$ existing.
Proof: Obviously (because we are integrating) T is well-defined on $\mathcal{L}^{1}(\mu)$, and so also on X. Let $f \in X$, so there exists $K>0$ with $|f| \leq K$ a.e. and so for $t \geq 0$ and $h>0$, we have

$$
|g(t+h)-g(t)|=\left|\int_{(t, t+h]} f d \mu\right| \leq \int_{(t, t+h]}|f| d \mu \leq K h .
$$

Hence g is continuous. Clearly T is linear. We see that

$$
\|g\|_{\infty}=\sup _{t \geq 0}\left|\int_{[0, t]} f d \mu\right| \leq \sup _{t \geq 0} \int_{[0, t]}|f| d \mu \leq \int_{\mathbb{R}}|f| d \mu=\|f\|_{1} .
$$

Thus $\|T\| \leq 1$. If $f=\chi_{[0,1]}$, then

$$
g(t)=\int_{[0, t]} \chi_{[0,1]} d \mu=\mu([0,1] \cap[0, t])=\mu([0, \min (t, 1)])=\min (t, 1) .
$$

So $\|g\|_{\infty}=1=\|f\|_{1}$, and so $\|T\|=1$.
Finally, as X is dense in $\mathcal{L}^{1}(\mu)$, if $f \in \mathcal{L}^{1}(\mu)$, then there exists a sequence $\left(f_{n}\right)$ in X with $f_{n} \rightarrow f$. In particular, $\left(f_{n}\right)$ is Cauchy, so for $\epsilon>0$, there exists N such that $\left\|f_{n}-f_{m}\right\|<\epsilon$ for $n, m \geq N$. Then

$$
\left\|T\left(f_{n}\right)-T\left(f_{m}\right)\right\| \leq\left\|f_{n}-f_{m}\right\|<\epsilon \quad(n, m \geq N)
$$

So $\left(T\left(f_{n}\right)\right)$ is Cauchy in $C_{\mathbb{K}}([0, \infty))$, which is a Banach space, and hence converges to $T(f)$ say. This is well-defined, for if $g_{n} \rightarrow f$ as well, then for each $\epsilon>0$, there exists M with $\left\|f-f_{n}\right\|<\epsilon / 2$ and $\left\|f-g_{n}\right\|<\epsilon / 2$ for $n \geq M$. Thus $\left\|f_{n}-g_{n}\right\|<\epsilon$ for $n \geq M$, showing that $\left\|T\left(f_{n}\right)-T\left(g_{n}\right)\right\|<\epsilon$ for $n \geq M$. Hence $\lim _{n} T\left(f_{n}\right)=\lim _{n} T\left(g_{n}\right)$.

We can similarly show that T is linear, bounded, and that $\|T\|=1$.
However, notice that it's not obvious, just from the definition, that T is defined on $\mathcal{L}^{1}(\mu)$ (because why would we get a continuous function by integrating an \mathcal{L}^{1} function?)

Question 3: With notation as from Question 1: for $1<p<\infty$, let $X_{p} \subseteq \mathcal{L}^{p}(\mu)$ have the same definition as X. Show quickly that X_{p} is a subspace. By using Question 1, and the fact that $\mathcal{L}^{p}(\mu)^{*}=\mathcal{L}^{q}(\mu)$, show that X_{p} is dense in $\mathcal{L}^{p}(\mu)$.
Proof: It is simple to show that X_{p} is a subspace. If X_{p} is not dense, that we could find a non-zero $g \in \mathcal{L}^{p}(\mu)^{*}=\mathcal{L}^{q}(\mu)$ which kills all ${ }^{2}$ of X_{p}. We shall show that this is not possible, so that X_{p} is dense.

So suppose $g \in \mathcal{L}^{q}(\mu)$ is such that

$$
\int_{\mathbb{R}} f g d \mu=0 \quad\left(f \in X_{p}\right) .
$$

[^0]In particular, if $A \subseteq \mathbb{R}$ has finite measure, then $\chi_{A} \in X_{p}$, as $\left\|\chi_{A}\right\|_{p}=\mu(A)^{1 / p}<\infty$. Thus

$$
\int_{A} g d \mu=\int_{\mathbb{R}} \chi_{A} g d \mu=0 .
$$

So let $\epsilon>0$, let $B=\{x \in \mathbb{R}: g(x) \geq \epsilon\}$, and suppose towards a contradiction that $\mu(B) \neq 0$. Then

$$
0 \neq \mu(B)=\lim _{n \rightarrow \infty} \mu(B \cap[-n, n])
$$

so for some $n>0$, we have that $\mu(B \cap[-n, n])>0$. As $B \cap[-n, n]$ has finite measure, it follows that

$$
0=\int_{B \cap[-n, n]} g d \mu \geq \epsilon \mu(B \cap[-n, n])>0,
$$

a contradiction. Thus $\{x \in \mathbb{R}: g(x) \geq \epsilon\}$ is null for all $\epsilon>0$, and so $\{x \in \mathbb{R}: g(x)>0\}$ is null. ${ }^{3}$ Similarly, $\{x \in \mathbb{R}: g(x)<0\}$ is null. So $g=0$ a.e. as required.
Question 4: We show that $C([0,1])$ is not dense in $\mathcal{L}^{\infty}([0,1])$ (over either \mathbb{R} or $\left.\mathbb{C}\right)$. Let $f:[0,1] \rightarrow[-1,1]$ be defined by

$$
f(x)= \begin{cases}0 & : x=0 \\ \sin (1 / x) & : 0<x \leq 1\end{cases}
$$

As f is continuous, except at 0 , it is measurable. Clearly f is bounded everywhere, so $f \in \mathcal{L}^{\infty}([0,1])$. By considering what happens at zero, show that for any $g \in C([0,1])$, we have that $\|f-g\|_{\infty} \geq 1$.
Answer: Notice that

$$
f\left(\frac{1}{2 \pi n+\pi / 2}\right)=1, \quad f\left(\frac{1}{2 \pi n-\pi / 2}\right)=-1 \quad(n \in \mathbb{N})
$$

As g is continuous, for $\epsilon>0$, there exists $\delta>0$ such that $|g(0)-g(t)|<\epsilon$ when $|t|<\delta$. Then there exists n with $(2 \pi n+\pi / 2)^{-1}<\delta$, and $(2 \pi n-\pi / 2)^{-1}<\delta$, so

$$
\left|f\left(\frac{1}{2 \pi n+\pi / 2}\right)-g\left(\frac{1}{2 \pi n+\pi / 2}\right)\right| \geq|1-g(0)|-\epsilon
$$

and

$$
\left|f\left(\frac{1}{2 \pi n-\pi / 2}\right)-g\left(\frac{1}{2 \pi n-\pi / 2}\right)\right| \geq|-1-g(0)|-\epsilon
$$

so for some choice, we certainly get a number greater than $1-\epsilon$, and so we have that $\sup _{0 \leq t \leq 1}|f(t)-g(t)| \geq 1-\epsilon$.

However, we need to deal with essential supremums. Suppose for the moment that $g(0) \leq 0$. Then let N be such that $2 \pi N+\pi / 2>1 / \delta$, let $\gamma>0$ be small, and let

$$
A_{\epsilon}=\bigcup_{n \geq N}\left(\frac{1}{2 \pi n+\pi / 2+\gamma}, \frac{1}{2 \pi n+\pi / 2-\gamma}\right) .
$$

Then if γ is sufficiently small, we have that $t \in A_{\epsilon}$ implies that $f(t)>1-\epsilon$. Notice that A_{ϵ} is not a null set. Then, if $t \in A_{\epsilon}$, then

$$
|f(t)-g(t)| \geq|f(t)-g(0)|-|g(0)-g(t)| \geq 1-\epsilon-g(0)-\epsilon \geq 1-2 \epsilon
$$

[^1]Hence we see that

$$
{\operatorname{ess}-\sup _{[0,1]}}|f-g| \geq 1-2 \epsilon
$$

As $\epsilon>0$ was arbitrary, we conclude that $\|f-g\|_{\infty} \geq 1$ in $\mathcal{L}^{\infty}([0,1])$. A similar argument applies when $g(0) \geq 0$.
Question 5: Let $([0,1], \mathcal{R}, \mu)$ be the restriction of the Lebesgue measure to $[0,1]$. Let $f \in \mathcal{L}^{\infty}(\mu)$. Show that $f \in \mathcal{L}^{p}(\mu)$ for $1 \leq p<\infty$, and $\sup \left\{\|f\|_{p}: 1 \leq p<\infty\right\}<\infty$.
Answer: As $|f| \leq\|f\|_{\infty}$ almost everywhere, for any $p \geq 1$, we have $|f|^{p} \leq\|f\|_{\infty}^{p}$ almost everywhere. Hence

$$
\|f\|_{p}=\left(\int_{[0,1]}|f|^{p} d \mu\right)^{1 / p} \leq\left(\|f\|_{\infty}^{p}\right)^{1 / p}=\|f\|_{\infty}
$$

Question continued: Conversely, suppose that $f:[0,1] \rightarrow \mathbb{K}$ is measurable, that $f \in \mathcal{L}^{p}(\mu)$ for each $1 \leq p<\infty$, and that $\sup \left\{\|f\|_{p}: 1 \leq p<\infty\right\}<\infty$. Show that $f \in \mathcal{L}^{\infty}(\mu)$.
Answer: Let $K>0$, and suppose $A=\{x \in[0,1]:|f(x)| \geq K\}$ is not null. Hence $|f| \geq K \chi_{A}$, and so for $p \geq 1$, also $|f|^{p} \geq K^{p} \chi_{A}$, so

$$
K \mu(A)^{1 / p}=\left(K^{p} \mu(A)\right)^{1 / p}=\left(\int_{[0,1]} K^{p} \chi_{A} d \mu\right)^{1 / p} \leq\left(\int_{[0,1]}|f|^{p} d \mu\right)^{1 / p}=\|f\|_{p}
$$

For $0<t \leq 1$, we have that $\sup _{p \geq 1} t^{1 / p}=1$, so

$$
K=K \sup _{p \geq 1} \mu(A)^{1 / p} \leq \sup _{p \geq 1}\|f\|_{p}
$$

We hence conclude that

$$
\|f\|_{\infty} \leq \sup _{p \geq 1}\|f\|_{p}
$$

showing that $f \in \mathcal{L}^{\infty}(\mu)$.
Question continued: Finally, show that if $f \in \mathcal{L}^{\infty}(\mu)$, then

$$
\|f\|_{\infty}=\lim _{p \rightarrow \infty}\|f\|_{p}
$$

Answer: From the above, we saw that if $|f| \geq K$ on a non-null set, then

$$
K \leq \lim _{p \rightarrow \infty}\|f\|_{p}
$$

Hence we see that

$$
\|f\|_{\infty} \leq \liminf _{p \rightarrow \infty}\|f\|_{p}
$$

Conversely, by the first part, we see that

$$
\underset{p \rightarrow \infty}{\limsup }\|f\|_{p} \leq\|f\|_{\infty}
$$

In conclusion,

$$
\underset{p \rightarrow \infty}{\limsup }\|f\|_{p} \leq\|f\|_{\infty} \leq \liminf _{p \rightarrow \infty}\|f\|_{p} \leq \limsup _{p \rightarrow \infty}\|f\|_{p}
$$

so we have equality throughout, and by a previous sheet, $\|f\|_{p}$ tends to a limit, which must be $\|f\|_{\infty}$.
Question 6: We know that $\left(\ell^{1}\right)^{*}=\ell^{\infty}$, so it might be tempting to believe that $\left(\ell^{\infty}\right)^{*}=$ ℓ^{1}. This is impossible, as ℓ^{∞} is not separable, while ℓ^{1} is. However, let us give a more direct argument.

Treat c_{0} as a (closed) subspace of ℓ^{∞}. Let $A \subseteq \mathbb{N}$ be infinite, so $\chi_{A} \in \ell^{\infty}$, but $\chi_{A} \notin c_{0}$. Show that

$$
d\left(\chi_{A}, c_{0}\right):=\inf \left\{\left\|\chi_{A}-x\right\|_{\infty}: x \in c_{0}\right\}=1
$$

Answer: If $x \in c_{0}$ then for $\epsilon>0$, there exists N such that $\left|x_{n}\right|<\epsilon$ when $n \geq N$. Then, as A is infinite, there exists $n \in A$ with $n \geq N$, so that

$$
\left|\chi_{A}(n)-x_{n}\right|=\left|1-x_{n}\right| \geq 1-\epsilon .
$$

Hence $\left\|\chi_{A}-x_{n}\right\|_{\infty} \geq 1-\epsilon$, and so as $\epsilon>0$ was arbitrary, $\left\|\chi_{A}-x_{n}\right\|_{\infty} \geq 1$. Conversely, as $\left\|\chi_{A}\right\|_{\infty}=1$, taking $x=0$ gives $d\left(\chi_{A}, c_{0}\right)=1$.
Question continued: Show that the linear map defined by

$$
\phi: c_{0}+\mathbb{K} \chi_{A}=\left\{x+t \chi_{A}: x \in c_{0}, t \in \mathbb{K}\right\} \rightarrow \mathbb{K}, \quad \phi\left(x+t \chi_{A}\right)=t
$$

is well-defined, and that $\|\phi\|=1$. Hence, by the Hahn-Banach Theorem, show that there exists $\psi \in\left(\ell^{\infty}\right)^{*}$ such that

$$
\psi\left(\chi_{A}\right)=1, \quad \psi(x)=0 \quad\left(x \in c_{0}\right)
$$

Answer: If $x_{1}+t_{1} \chi_{A}=x_{2}+t_{2} \chi_{A}$, then either $t_{1}=t_{2}$, or otherwise, $\chi_{A}=\left(t_{1}-t_{2}\right)^{-1}\left(x_{2}-\right.$ $\left.x_{1}\right) \in c_{0}$, a contradiction. So ϕ is well-defined. If $t=0$, then $\chi\left(x+t \chi_{A}\right)=0 \leq\left\|x+t \chi_{A}\right\|$. For $t \neq 0$, from above, we have

$$
1 \leq\left\|t^{-1} x+\chi_{A}\right\|_{\infty}=\left|t^{-1}\right|\left\|x+t \chi_{A}\right\|_{\infty}
$$

and so $\left|\phi\left(x+t \chi_{A}\right)\right|=|t| \leq\left\|x+t \chi_{A}\right\|_{\infty}$, showing that $\|\phi\| \leq 1$. As $\left\|\phi\left(\chi_{A}\right)\right\|=1=\left\|\chi_{A}\right\|$, we have $\|\phi\|=1$. So let ψ be a Hahn-Banach extension to a member of $\left(\ell^{\infty}\right)^{*}$. Clearly ψ has the stated properties.
Question continued: Show that there cannot exist $\left(a_{n}\right) \in \ell^{1}$ such that

$$
\psi(x)=\sum_{n=1}^{\infty} a_{n} x_{n} \quad\left(x=\left(x_{n}\right) \in \ell^{\infty}\right)
$$

Answer: Suppose there does exist such an $\left(a_{n}\right)$. Then let $x_{n}=\overline{a_{n}}$ for each n, so as $\sum_{n}\left|a_{n}\right|<\infty$, clearly $\left(x_{n}\right) \in c_{0}$, and yet

$$
\psi(x)=\sum_{n} a_{n} x_{n}=\sum_{n}\left|a_{n}\right|^{2},
$$

so we must have $a_{n}=0$ for all n, giving that

$$
1=\psi\left(\chi_{A}\right)=\sum_{n \in A} a_{n}=0
$$

a contradiction.
So ψ is not a member of ℓ^{1}.

Linear Analysis I: Worked Solutions 9

Question 1: Let K be a compact space. Let $\left(f_{n}\right)$ be a sequence of positive functions in $C_{\mathbb{R}}(K)$, and let $f \in C_{\mathbb{R}}(K)$ be such that for each $x \in K$,

$$
f_{1}(x) \leq f_{2}(x) \leq \cdots, \quad f(x)=\lim _{n} f_{n}(x) .
$$

Show that

$$
\lambda(f)=\lim _{n} \lambda\left(f_{n}\right) \quad\left(\lambda \in C_{\mathbb{R}}(K)^{*}\right) .
$$

Hint: Use the Riesz Representation Theorem, Hahn-Decomposition, and Monotone Convergence.
Answer: By the Riesz Representation Theorem, there exists a finite, regular, Borel signed measure μ on K such that

$$
\lambda(g)=\int_{K} g d \mu \quad\left(g \in C_{\mathbb{R}}(K)\right) .
$$

By the Hahn-Decomposition, we can write $\mu=\mu_{+}-\mu_{-}$for some positive measures μ_{+} and μ_{-}. By the conditions on $\left(f_{n}\right)$ and f, the Monotone Convergence Theorem implies that

$$
\int_{K} f d \mu_{+}=\lim _{n} \int_{K} f_{n} d \mu_{+}, \quad \int_{K} f d \mu_{-}=\lim _{n} \int_{K} f_{n} d \mu_{-} .
$$

Hence

$$
\begin{aligned}
\lambda(f) & =\int_{K} f d \mu=\int_{K} f d \mu_{+}-\int_{K} f d \mu_{-}=\lim _{n} \int_{K} f_{n} d \mu_{+}-\int_{K} f_{n} d \mu_{-} \\
& =\lim _{n} \int_{K} f_{n} d \mu=\lim _{n} \lambda\left(f_{n}\right)
\end{aligned}
$$

as required.
Question 2: Let K be a compact space, let $\left(f_{n}\right)$ be a sequence in $C_{\mathbb{C}}(K)$, let $f \in C_{\mathbb{C}}(K)$ and let $M>0$ be such that

$$
\left\|f_{n}\right\|_{\infty} \leq M \quad(n \in \mathbb{N}), \quad f(x)=\lim _{n} f_{n}(x) \quad(x \in K)
$$

Show that

$$
\lambda(f)=\lim _{n} \lambda\left(f_{n}\right) \quad\left(\lambda \in C_{\mathbb{C}}(K)^{*}\right) .
$$

Hint: Use the Riesz Representation Theorem, Hahn-Decomposition, Dominated Convergence, and take positive and negative parts.
Answer: This is similar to Question 1. By the Riesz Representation Theorem for complex numbers, there exists a complex, regular, finite, Borel measure μ on K which induces λ. Split μ up as $\mu_{r}+i \mu_{i}$ for signed measures μ_{r} and μ_{i}. Then split these up as $\mu_{r}=\mu_{+}^{(r)}-\mu_{-}^{(r)}$ and $\mu_{r}=\mu_{+}^{(i)}-\mu_{-}^{(i)}$ for positive measures $\mu_{+}^{(r)}, \mu_{-}^{(r)}, \mu_{+}^{(i)}$ and $\mu_{-}^{(i)}$. By the conditions on $\left(f_{n}\right)$, as the constant function M is integrable on K (as all our measures are finite) we can apply the dominated convergence theorem to see that

$$
\int_{K} f d \mu_{+}^{(r)}=\lim _{n} \int_{K} f_{n} d \mu_{+}^{(r)}
$$

and for $\mu_{-}^{(r)}, \mu_{+}^{(i)}$ and $\mu_{-}^{(i)}$. The result then follows.

Question 3: Let $K=[0,1]$ and for each n, define $f_{n} \in C_{\mathbb{R}}(K)$ by

$$
f_{n}(x)= \begin{cases}n^{2} x & : 0 \leq x \leq 1 / n \\ 2 n-n^{2} x & : 1 / n \leq x \leq 2 / n \\ 0 & : x>2 / n\end{cases}
$$

Show that $f_{n}(x) \rightarrow 0$ for each $x \in K$, but that there exists $\mu \in C_{\mathbb{R}}(K)^{*}$ such that $\mu\left(f_{n}\right) \nrightarrow 0$.
Answer: We have that $f_{n}(0)=0$ for all n, while, if $t>0$, then for n sufficiently large, $f_{n}(t)=0$, as eventually $t>2 / n$. Hence $f_{n} \rightarrow 0$ pointwise.

However, define $\lambda \in C_{\mathbb{R}}(K)^{*}$ by integrating against Lebesgue Measure μ, say

$$
\lambda(f)=\int_{[0,1]} f d \mu \quad\left(f \in C_{\mathbb{R}}([0,1])\right)
$$

Then, for each n,

$$
\begin{aligned}
\lambda\left(f_{n}\right) & =\int_{0}^{1 / n} n^{2} x d x+\int_{1 / n}^{2 / n} 2 n-n^{2} x d x \\
& =\left[\frac{n^{2} x^{2}}{2}\right]_{x=0}^{1 / n}+\left[2 n x-\frac{n^{2} x^{2}}{2}\right]_{x=1 / n}^{2 / n}=\frac{1}{2}+4-2-2+\frac{1}{2}=1 .
\end{aligned}
$$

Question 4: Let K be a topological space. We shall define the Borel σ-algebra on K to be the σ-algebra generated by open sets in K; again we write $\mathcal{B}(K)$ for this. In particular, we get $\mathcal{B}(\mathbb{K})$.

Given two topological spaces K and L, we shall say that a map $f: K \rightarrow L$ is Borel if $f^{-1}(E) \in \mathcal{B}(K)$ for each $E \in \mathcal{B}(L)$.

Now let K be a compact space, and consider K with the Borel σ-algebra $\mathcal{B}(K)$. Show that $f: K \rightarrow \mathbb{K}$ is measurable if and only if f is Borel.
Answer: If f is measurable, then by definition, if $U \subseteq \mathbb{K}$ is open, then $f^{-1}(U) \in \mathcal{B}(K)$. But we need to show this for all Borel sets, for which a little trick is required. Define

$$
\mathcal{S}=\left\{A \subseteq \mathbb{K}: f^{-1}(A) \in \mathcal{B}(K)\right\} .
$$

We claim that this is a σ-algebra on K. Then it will contain all the open sets, and hence contains the σ-algebra generated by the open sets, that is, $\mathcal{B}(\mathbb{K}) \subseteq \mathcal{S}$, showing that f is Borel.

So how to prove the claim? Well, clearly $\emptyset, \mathbb{K} \in \mathcal{S}$. If $A \in \mathcal{S}$, then

$$
f^{-1}(\mathbb{K} \backslash A)=K \backslash f^{-1}(A) \in \mathcal{B}(K)
$$

so $\mathbb{K} \backslash A \in \mathcal{S}$. If $\left(A_{n}\right)_{n=1}^{\infty}$ is a sequence in \mathcal{S}, then

$$
f^{-1}\left(\bigcup_{n} A_{n}\right)=\bigcup_{n} f^{-1}\left(A_{n}\right) \in \mathcal{B}(K)
$$

so $\bigcup_{n} A_{n} \in \mathcal{S}$. So \mathcal{S} is a σ-algebra.
Conversely, let f be Borel. Then every open set is Borel in \mathbb{K}, and so automatically f is measurable.

Question 5: Let E and F be Banach spaces, and let $T \in \mathcal{B}(E, F)$. Show that there exists $S \in \mathcal{B}\left(F^{*}, E^{*}\right)$ with the following property: for $\phi \in F^{*}$, we have that $S(\phi)=\psi \in E^{*}$, where

$$
\psi(x)=\phi(T(x)) \quad(x \in E)
$$

We call S the adjoint of T, and write $S=T^{*}$.
Answer: As T and ϕ is linear, the map

$$
E \rightarrow \mathbb{K}, \quad x \mapsto \phi(T(x))
$$

is linear, and so ψ is linear. Then, for $x \in E$,

$$
|\psi(x)|=|\phi(T(x))| \leq\|\phi\|\|T(x)\| \leq\|\phi\|\|T\|\|x\| .
$$

As x was arbitrary, it follows that $\|\psi\| \leq\|\phi\|\|T\|$. So $\psi \in E^{*}$ as claimed.
It is easy to see that the map $\phi \mapsto \psi$ is linear, and so $S: F^{*} \rightarrow E^{*}$ is defined and linear. Then, for $\phi \in F^{*}$,

$$
\|S(\phi)\|=\|\psi\| \leq\|\phi\|\|T\|
$$

so S is bounded, and $\|S\| \leq\|T\|$.
If you wish, try to use the Hahn-Banach theorem to show that actually $\|S\|=\|T\|$ (this is a bit tricky: ask if you are interested).
Question 6: Let (X, \mathcal{R}, μ) be a measure space. We say that $E \in \mathcal{R}$ is an atom if $\mu(E) \neq 0$, and if $F \in \mathcal{R}$ with $F \subseteq E$ then either $\mu(F)=\mu(E)$ or $\mu(F)=0$.

Suppose that for some $x \in X$, we have that $\{x\} \in \mathcal{R}$. Show that $\{x\}$ is an atom if and only if $\mu(\{x\}) \neq 0$.
Answer: If $\mu(\{x\}) \neq 0$ then if $F \subseteq\{x\}$, either $F=\{x\}$, so $\mu(F)=\mu(\{x\})$, or $F=\emptyset$, so $\mu(\emptyset)=0$. Hence $\{x\}$ is an atom. Conversely, if $\{x\}$ is an atom, then by definition, $\mu(\{x\}) \neq 0$.
Question continued: Let $E \in \mathcal{R}$ be an atom. Let $\left(E_{n}\right)_{n=1}^{\infty}$ be a partition of E; that is, $E_{n} \in \mathcal{R}$ and $E_{n} \subseteq E$ for each n, for $n \neq m$ we have $E_{n} \cap E_{m}=\emptyset$, and finally $\bigcup_{n} E_{n}=E$. If μ is finite, show that there exists a unique n_{0} with $E_{n_{0}}$ being an atom.
Answer: Suppose that no E_{n} is an atom, so by definition, for each n, we can find $F_{n} \in \mathcal{R}$ with $F_{n} \subseteq E_{n}$, and with $0<\mu\left(F_{n}\right)<\mu\left(E_{n}\right)$. Let $F=\bigcup_{n} F_{n} \in \mathcal{R}$, so that

$$
0<\sum_{n} \mu\left(F_{n}\right)=\mu(F)=\sum_{n} \mu\left(F_{n}\right)<\sum_{n} \mu\left(E_{n}\right)=\mu(E),
$$

so $0<\mu(F)<\mu(E)$, which contradicts E being an atom.
So there exists n_{0} with $E_{n_{0}}$ being an atom. In particular, $\mu\left(E_{n_{0}}\right) \neq 0$. Then $E_{n_{0}} \in \mathcal{R}$ and $E_{n_{0}} \subseteq E$, so as E is an atom, $\mu\left(E_{n_{0}}\right)=\mu(E)$. Thus

$$
0=\mu\left(E \backslash E_{n_{0}}\right)=\sum_{n \neq n_{0}} \mu\left(E_{n}\right),
$$

showing that no other E_{n} can an atom (as they all have zero measure).
Question continued: Is this still true if μ is not finite?
Answer: Where did we use that E is finite? We actually used it in the final displayed equation! Indeed,

$$
\mu(E)=\mu\left(E_{n_{0}}\right)+\mu\left(E \backslash E_{n_{0}}\right)=\mu(E)+\mu\left(E \backslash E_{n_{0}}\right)
$$

for any measure, but we can only conclude that $\mu\left(E \backslash E_{n_{0}}\right)=0$ if $\mu(E)<\infty$.
A silly example is given by the following: let X be an infinite set, let \mathcal{R} be power set of X, and define μ on \mathcal{R} by $\mu(\emptyset)=0$ and $\mu(A)=\infty$ for any non-empty $A \subseteq X$. Then μ is a measure, and every non-empty set is an atom!

Question 7: This follows on from Question 6. Let K be a compact Hausdorff space, and let μ be a finite, regular (positive) Borel measure. Let $E \in \mathcal{B}(K)$ be an atom. Show that there exists a closed set $F \subseteq E$ which is an atom.
Answer: As μ is regular,

$$
\mu(E)=\sup \{\mu(F): F \subseteq E \text { is compact }\}
$$

As E is an atom, $\mu(E)>0$. So we can find $F \subseteq E$ compact with $\mu(F)>0$. As E is an atom, we must have that $\mu(F)=\mu(E)$. If F is not an atom, then we can find $G \in \mathcal{B}(K)$ with $G \subseteq F$ and $0<\mu(G)<\mu(F)$. Then $G \subseteq E$ and $\mu(G)<\mu(E)$, which contradicts E being an atom.
Question continued: Suppose, towards a contradiction, that $x \in F$ implies that $\{x\}$ is not an atom. Show that for each $x \in F$ there exists an open set U_{x} with $x \in U_{x}$ and $\mu\left(U_{x}\right)<\mu(F)$.

As F is compact, and $\left\{U_{x}: x \in F\right\}$ is an open cover, there exist x_{1}, \cdots, x_{n} in F with $U_{x_{1}} \cup \cdots \cup U_{x_{n}} \supseteq F$. Let $A_{j}=U_{x_{j}} \cap F$ for $1 \leq j \leq n$, let $B_{1}=A_{1}$ and $B_{j}=A_{j} \backslash\left(A_{1} \cup \cdots \cup A_{j-1}\right)$ for $j \geq 2$. Why is $\left(B_{j}\right)_{j=1}^{n}$ a partition of F ? Show that $\mu\left(B_{j}\right)<\mu(F)$ for each j, and hence derive a contradiction (think about Question 6 here).
Answer: By the above, this is equivalent to $\mu(\{x\})=0$ for all $x \in F$. As μ is regular,

$$
0=\mu(\{x\})=\inf \{\mu(U):\{x\} \subseteq U \text { is open }\} .
$$

So we can find U_{x} and open set with $x \in U_{x}$ and $\mu\left(U_{x}\right)$ as small as we like, certainly $\mu\left(U_{x}\right)<\mu(F)$.

Following the hint, we find $x_{1}, \cdots, x_{n} \in F$ with $F \subseteq U_{x_{1}} \cup \cdots \cup U_{x_{n}}$. By definition,

$$
F=\bigcup_{j} U_{x_{j}} \cap F=\bigcup_{j} A_{j}=\bigcup_{j} B_{j}
$$

and clearly the $\left(B_{j}\right)$ are pairwise disjoint. Then

$$
\mu\left(B_{j}\right) \leq \mu\left(A_{j}\right) \leq \mu\left(U_{x_{j}}\right)<\mu(F) .
$$

By the previous question, this is a contradiction, as one B_{j} must be an atom.
This contradiction shows that for some $x \in F$, we have that $\{x\}$ is an atom.
Question continued: Hence show that if $E \in \mathcal{B}(K)$ is an atom, then there exists a unique $x \in E$ with $\{x\}$ being an atom, and $\mu(E \backslash\{x\})=0$.
Answer: We have shown that if E is an atom, then there exists $x \in E$ with $\{x\}$ an atom. If $\mu(E) \neq \mu(\{x\})$, then $0<\mu(E \backslash\{x\})<\mu(E)$, contradicting E being an atom.
Question 8: Let K be a compact space. Given a Borel map $\psi: K \rightarrow K$ and $\mu \in M_{\mathbb{C}}(K)$, show (carefully) that

$$
\psi(\mu): \mathcal{B}(K) \rightarrow \mathbb{C}, \quad A \mapsto \mu\left(\psi^{-1}(A)\right) \quad(A \in \mathcal{B}(K))
$$

defines a measure on $\mathcal{B}(K)$.
Answer: As ψ is Borel, for $A \in \mathcal{B}(K)$, we have that $\psi^{-1}(A) \in \mathcal{B}(K)$, and so $\mu\left(\psi^{-1}(A)\right)$ is defined. Clearly $\psi(\mu)(\emptyset)=0$. Let $\left(A_{n}\right)$ be a sequence of pairwise disjoint sets in $\mathcal{B}(K)$. Then, as inverse images behave very nicely with respect to disjoint unions, we have

$$
\psi(\mu)\left(\bigcup_{n} A_{n}\right)=\mu \psi^{-1}\left(\bigcup_{n} A_{n}\right)=\mu\left(\bigcup_{n} \psi^{-1}\left(A_{n}\right)\right)=\sum_{n} \mu\left(\psi^{-1}\left(A_{n}\right)\right)=\sum_{n} \psi(\mu)\left(A_{n}\right) .
$$

So $\psi(\mu)$ is a measure.

Question continued: Do you think that $\psi(\mu)$ need be regular? What if ψ is even continuous?
Answer: There appears to no reason why $\psi(\mu)$ should be regular, as we know very little about what ψ^{-1} will do to compact sets, say.

If ψ is continuous, however, then we can argue as follows. Let $A \in \mathcal{B}(K)$. If $B \subseteq A$ then $\psi^{-1}(B) \subseteq \psi^{-1}(A)$, so automatically

$$
\mu\left(\psi^{-1}(A)\right) \geq \sup \left\{\mu\left(\psi^{-1}(B)\right): B \subseteq A \text { is compact }\right\} .
$$

As μ is regular, we know that

$$
\mu\left(\psi^{-1}(A)\right)=\sup \left\{\mu(C): C \subseteq \psi^{-1}(A) \text { is compact }\right\} .
$$

For $\epsilon>0$, pick $C \subseteq \psi^{-1}(A)$ compact with $\mu(C)>\mu\left(\psi^{-1}(A)\right)-\epsilon$. Then $\psi(C)$ is also compact ${ }^{1}$ and as $C \subseteq \psi^{-1}(A)$, we have that $\psi(C) \subseteq A$. Then let $D=\psi^{-1}(\psi(C))$ so that $C \subseteq D$. Then

$$
\mu\left(\psi^{-1}(\psi(C))\right)=\mu(D) \geq \mu(C)>\mu\left(\psi^{-1}(A)\right)-\epsilon
$$

As $\epsilon>0$ was arbitrary, we conclude that

$$
\mu\left(\psi^{-1}(A)\right) \leq \sup \left\{\mu\left(\psi^{-1}(B)\right): B \subseteq A \text { is compact }\right\}
$$

and so we actually have that equality. So $\psi(\mu)$ is inner regular.
We now use a trick which we saw a couple of sheets ago. Let $A^{\prime}=K \backslash A$, so $A^{\prime} \in \mathcal{B}(K)$, and hence

$$
\mu\left(\psi^{-1}\left(A^{\prime}\right)\right)=\sup \left\{\mu\left(\psi^{-1}(B)\right): B \subseteq A^{\prime} \text { is compact }\right\} .
$$

For $\epsilon>0$, we can hence find $B \subseteq A^{\prime}$ compact (hence closed) with $\mu\left(\psi^{-1}(B)\right)>$ $\mu\left(\psi^{-1}\left(A^{\prime}\right)\right)-\epsilon$. Let $U=K \backslash B$, so that U is open, and $A \subseteq U$. Then

$$
\begin{aligned}
\mu\left(\psi^{-1}(U)\right) & =\mu\left(\psi^{-1}(K)\right)-\mu\left(\psi^{-1}(B)\right)<\mu(K)-\mu\left(\psi^{-1}\left(A^{\prime}\right)\right)+\epsilon \\
& =\mu(K)+\epsilon-\mu\left(K \backslash \psi^{-1}(A)\right)=\mu(K)+\epsilon-\mu(K)+\mu\left(\psi^{-1}(A)\right) \\
& =\mu\left(\psi^{-1}(A)\right)+\epsilon
\end{aligned}
$$

As $\epsilon>0$ was arbitrary, we conclude that

$$
\mu\left(\psi^{-1}(A)\right)=\inf \left\{\mu\left(\psi^{-1}(U)\right): A \subseteq U \text { is open }\right\} .
$$

So $\psi(\mu)$ is regular in the case that ψ is continuous.
Question 9: This uses the notation of Question 5, and continued from Question 8. Let $\psi: K \rightarrow K$ be a continuous map. Show that we can define $S_{\psi}: C_{\mathbb{K}}(K) \rightarrow C_{\mathbb{K}}(K)$ by

$$
S_{\psi}(f)=f \circ \psi \quad\left(f \in C_{\mathbb{K}}(K)\right) .
$$

Show that S_{ψ} is bounded. What is $\left\|S_{\psi}\right\|$?
Answer: As ψ is continuous, for $f \in C_{\mathbb{K}}(K)$, we have that $f \circ \psi \in C_{\mathbb{K}}(K)$. Obviously S_{ψ} is linear. Then

$$
\|f \circ \psi\|_{\infty}=\sup _{t \in K}|f(\psi(t))| \leq \sup _{s \in K}|f(s)|=\|f\|_{\infty}
$$

So $\left\|S_{\psi}(f)\right\| \leq\|f\|_{\infty}$, so S_{ψ} is bounded with $\left\|S_{\psi}\right\| \leq 1$. Notice that if 1 denotes the constant function, then $S_{\psi}(1)=1$, and so actually $\left\|S_{\psi}\right\|=1$.

[^2]Question continued: Calculate what S_{ψ}^{*} is: you will need to use the proof of the Riesz-representation theorem.
Answer: Well, S_{ψ}^{*} should map from $M_{\mathbb{K}}(K)$ to $M_{\mathbb{K}}(K)$. So let $\mu \in M_{\mathbb{K}}(K)$ and let $\lambda=S_{\psi}^{*}(\mu)$. Then

$$
\int_{K} f d \lambda=S_{\psi}^{*}(\mu)(f)=\int_{K} f \circ \psi d \mu \quad\left(f \in C_{\mathbb{K}}(K)\right) .
$$

Following the vague hint, we might hope that $\lambda=\psi(\mu)$. Let's prove this!
Let's suppose that μ is positive! By (the proof of) the Riesz Representation Theorem, for $U \subseteq K$ open

$$
\begin{aligned}
\lambda(U) & =\sup \left\{\lambda(f): f \in C_{\mathbb{K}}(K), 0 \leq f \leq \chi_{U}, \operatorname{supp}(f) \subseteq U\right\} \\
& =\sup \left\{\int_{K} f \circ \psi d \mu: f \in C_{\mathbb{K}}(K), 0 \leq f \leq \chi_{U}, \operatorname{supp}(f) \subseteq U\right\}
\end{aligned}
$$

Now, if $0 \leq f \leq \chi_{U}$ and $\operatorname{supp}(f) \subseteq U$, then

$$
0 \leq f(\psi(s)) \leq \chi_{U}(\psi(s))=\chi_{\psi^{-1}(U)} .
$$

If $t \in \operatorname{supp}(f \circ \psi)$ then there exists $\left(t_{n}\right)$ with $t_{n} \rightarrow t$ and $f\left(\psi\left(t_{n}\right)\right) \neq 0$ for each n. Then $\psi\left(t_{n}\right) \rightarrow \psi(t)$, so $\psi(t) \in \operatorname{supp}(f)$, that is, $t \in \psi^{-1}(\operatorname{supp}(f)) \subseteq \psi^{-1}(U) .\left[^{2}\right]$ So, setting $g=f \circ \psi$, we see that

$$
\begin{aligned}
\lambda(U) & \leq \sup \left\{\int_{K} g d \mu: g \in C_{\mathbb{K}}(K), 0 \leq g \leq \chi_{\psi^{-1}(U)}, \operatorname{supp}(g) \subseteq \psi^{-1}(U)\right\} \\
& =\mu\left(\psi^{-1}(U)\right)
\end{aligned}
$$

Conversely, let $0 \leq g \leq \chi_{\psi^{-1}(U)}$ with $\operatorname{supp}(g) \subseteq \psi^{-1}(U)$. We cannot expect to find $f \in C_{\mathbb{K}}(K)$ with $g=f \circ \psi$. But we only need to find f with $f \circ \psi \geq g$ (as ultimately we take an supremum), and of course with f continuous, $0 \leq f \leq \chi_{U}$ and $\operatorname{supp}(f) \subseteq U$. For the moment, let's assume that we can do this!

So we have $f \in C_{\mathbb{K}}(K)$ with $0 \leq f \leq \chi_{U}, \operatorname{supp}(f) \subseteq U$, and $f \circ \psi \geq g$. Thus

$$
\lambda(U) \geq \sup \left\{\int_{K} g(t) d \mu(t): g \in C_{\mathbb{K}}(K), 0 \leq g \leq \chi_{\psi^{-1}(U)}, \operatorname{supp}(g) \subseteq \psi^{-1}(U)\right\}
$$

So we conclude that $\lambda(U)=\mu\left(\psi^{-1}(U)\right)$ for open U.
By the previous question, we know that $\psi(\mu)$ is a regular measure. We now also know that $\psi(\mu)(U)=\lambda(U)$ for all open sets U, and that λ is regular. So, for any $E \in \mathcal{B}(K)$, we have

$$
\lambda(E)=\inf \{\lambda(U): E \subseteq U \text { is open }\}=\inf \left\{\mu\left(\psi^{-1}(U)\right): E \subseteq U \text { is open }\right\}=\psi(\mu)(E)
$$

So $\psi(\mu)=\lambda$, as required.
I think ${ }^{3}$ that the general case follows by taking real and imaginary parts, and then using the Hahn-Decomposition.

Okay, so it remains to prove that we can construct such a g. The following is very much off syllabus, but if you are interested, it is hopefully interesting!

[^3]Recall the setup of the Riesz Representation theorem. We have a compact space K, the Borel σ-algebra $\mathcal{B}(K)$, and a positive $\lambda \in C_{\mathbb{K}}(K)^{*}$. We define an outer measure μ^{*} by, for $U \subseteq K$ open,

$$
\mu^{*}(U)=\sup \left\{\lambda(f): f \in C_{\mathbb{K}}(K), 0 \leq f \leq \chi_{U}, \operatorname{supp}(f) \subseteq U\right\} .
$$

We had a lemma in the lectures which, vaguely, justified this definition; the weird condition on the support of f is, basically, because it makes a certain proof work! Then for arbitrary $E \subseteq K$, we define

$$
\mu^{*}(E)=\inf \left\{\mu^{*}(U): K \subseteq U, U \text { is open }\right\} .
$$

Then μ^{*} is an outer measure, and every member of $\mathcal{B}(K)$ is μ^{*}-measurable, so if we let μ be the restriction of μ^{*} to $\mathcal{B}(K)$, then μ is a measure.

Let's think about this, and apply Urysohn's Lemma repeatedly. Let $U \subseteq K$ be open, and let f be continuous with $0 \leq f \leq \chi_{U}$ and $\operatorname{supp}(f) \subseteq U$.

Then, immediately, Urysohn, applied to the closed sets $\operatorname{supp}(f)$ and $K \backslash U$, yields a continuous function $g: K \rightarrow[0,1]$ with $g \equiv 0$ on $K \backslash U$ and $g \equiv 1$ on $\operatorname{supp}(f)$. Then clearly $0 \leq f \leq g \leq \chi_{U}$, but we do not have that $\operatorname{supp}(g) \subseteq U$, because $\operatorname{supp}(g)$ involves a closure. So g is not a "valid test function".

We have to study the proof of Urysohn. Recall that the key idea is that K, being compact, is normal, so given disjoint closed sets E and F, we can find disjoint open sets W and V with $E \subseteq W$ and $F \subseteq V$. We apply this to $\operatorname{supp}(f)$ and $K \backslash U$ to find disjoint open sets W and V with $\operatorname{supp}(f) \subseteq W$ and $K \backslash \underline{U} \subseteq V$. Let \bar{V} be the closure of V. As $V \subseteq K \backslash W$ which is closed, $\bar{V} \subseteq K \backslash W$, and so \bar{V} is disjoint from $\operatorname{supp}(f)$.

Applying Urysohn to the disjoint closed $\operatorname{sets} \operatorname{supp}(f)$ and \bar{V}, we find a continuous $g: K \rightarrow[0,1]$ with $g \equiv 1$ on $\operatorname{supp}(f)$ and $g \equiv 0$ on \bar{V}. In particular, $g \equiv 0$ on V, and so $\{x: g(x) \neq 0\} \subseteq K \backslash V$, a closed set. Hence $\operatorname{supp}(g) \subseteq K \backslash V$, so as $K \backslash U \subseteq V$, it follows that $K \backslash V \subseteq U$, and so $\operatorname{supp}(g) \subseteq U$.

In summary, given any continuous f with $0 \leq f \leq \chi_{U}$ and $\operatorname{supp}(f) \subseteq U$, we can find a continuous g with $g \equiv 1$ on $\operatorname{supp}(f), 0 \leq g \leq \chi_{U}$ and $\operatorname{supp}(g) \subseteq U$.

In fact, we have proved more. Given any closed set F contained in U, we can find a continuous g with $g \equiv 1$ on $F, 0 \leq g \leq \chi_{U}$ and $\operatorname{supp}(g) \subseteq U$. Call this g_{F}. It follows immediately that

$$
\mu(U)=\sup \left\{\lambda\left(g_{F}\right): F \subseteq U \text { is closed }\right\} .
$$

So why not define μ^{*} in this way? I think because it is hard to motivate, and because it makes life very difficult later on: when showing that μ^{*} is an outer measure, I think the proof really uses the freedom to use arbitrary continuous functions f, and not just these special functions g_{F}.

However, now we can complete the proof above. Recall that we have $0 \leq g \leq \chi_{\psi^{-1}(U)}$ with $\operatorname{supp}(g) \subseteq \psi^{-1}(U)$. We seek f with $0 \leq f \leq \chi_{U}, \operatorname{supp}(f) \subseteq U$ and with $f \circ \psi \geq g$. If you play with this for a while, it seems natural to define

$$
F=\text { closure of }\{\psi(x): g(x)>0\} .
$$

If $F \subseteq U$, then can let $f=g_{F}$. Then if $g(x)>0$ then $\psi(x) \in F$ so $f(\psi(x))=1$, showing that $f \circ \psi \geq g$, as required.

So it remains to show that $F \subseteq U$. We again assume that K is a metric space. If $F \nsubseteq U$, then we can find $x \in F$ with $x \notin U$. Hence there exists a sequence $\left(x_{n}\right)$ with $\psi\left(x_{n}\right) \rightarrow x$ and $g\left(x_{n}\right)>0$ for each n. So $\left(x_{n}\right)$ is a sequence in the compact set $\operatorname{supp}(g)$, so we may suppose, by moving to a subsequence, that x_{n} converges, say to y. Then $\psi(y)=\lim _{n} \psi\left(x_{n}\right)=x$. As $y \in \operatorname{supp}(g) \subseteq \psi^{-1}(U)$, it follows that $x=\psi(y) \in U$, a contradiction as required.

Linear Analysis I: Worked Solutions 10

Question 1: Let E and G be Banach spaces, and let $F \subseteq E$ be a subspace which is dense. Let $T: F \rightarrow G$ be a bounded linear map. Show that we can extend T to give a bounded linear map $E \rightarrow G$. Show that such an extension must be unique.

Answer: First we show uniqueness. Let $T_{1}, T_{2}: E \rightarrow G$ be extensions. Let $x \in E$, so as F is dense, we can find a sequence $\left(x_{n}\right)$ in F with $\lim _{n} x_{n}=x$. Then as T_{1} and T_{2} are continuous,

$$
T_{1}(x)=\lim _{n} T_{1}\left(x_{n}\right)=\lim _{n} T\left(x_{n}\right)=\lim _{n} T_{2}\left(x_{n}\right)=T_{2}(x) .
$$

As x was arbitrary, $T_{1}=T_{2}$.
Now to existence. We extend T be continuity. Let $x \in E$, so we can find a sequence $\left(x_{n}\right)$ in F with $x_{n} \rightarrow x$. In particular, $\left(x_{n}\right)$ is Cauchy, so for $\epsilon>0$, there exists N_{ϵ} such that $\left\|x_{n}-x_{m}\right\|<\epsilon$ if $n, m \geq N_{\epsilon}$. Then

$$
\left\|T\left(x_{n}\right)-T\left(x_{m}\right)\right\|=\left\|T\left(x_{n}-x_{m}\right)\right\| \leq\|T\|\left\|x_{n}-x_{m}\right\|<\epsilon\|T\| \quad\left(n, m \geq N_{\epsilon}\right) .
$$

Hence $\left(T\left(x_{n}\right)\right)$ is a Cauchy sequence in G, which is a Banach space, and so $T\left(x_{n}\right) \rightarrow \hat{T}(x)$ say. Notice that

$$
\|\hat{T}(x)\|=\lim _{n}\left\|T\left(x_{n}\right)\right\| \leq\|T\| \lim _{n}\left\|x_{n}\right\|=\|T\|\|x\|
$$

Firstly, we note that if $x \in F$ to start with, then $\hat{T}(x)=\lim _{n} T\left(x_{n}\right)=T(x)$, so \hat{T} and T agree on F. If now $x \in E$ is arbitrary, and $\left(y_{n}\right)$ is another sequence converging to x, then for $\epsilon>0$, there exists N such that both $\left\|x_{n}-x\right\|<\epsilon$, and $\left\|y_{n}-x\right\|<\epsilon$, for $n \geq N$. Hence $\left\|x_{n}-y_{n}\right\|<2 \epsilon$ for $n \geq N$, and so $\left(x_{n}-y_{n}\right)$ is a sequence converging to 0 . Hence $T\left(x_{n}-y_{n}\right) \rightarrow 0$, and so $\lim _{n} T\left(x_{n}\right)=\lim _{n} T\left(y_{n}\right)$. Hence \hat{T} is well-defined.

Finally, if $x, y \in E$ and $\alpha \in \mathbb{K}$, then if $x_{n} \rightarrow x$ and $y_{n} \rightarrow y$ with $\left(x_{n}\right)$ and $\left(y_{n}\right)$ sequences in F, then $\alpha x_{n}+y_{n} \rightarrow \alpha x+y$, and so

$$
\hat{T}(\alpha x+y)=\lim _{n} T\left(\alpha x_{n}+y_{n}\right)=\lim _{n} \alpha T\left(x_{n}\right)+\lim _{n} T\left(y_{n}\right)=\alpha \hat{T}(x)+\hat{T}(y),
$$

showing that \hat{T} is linear. We showed above that \hat{T} was bounded. So \hat{T} is our extension.
Actually, this argument would also show the following: if X and Y are metric spaces, $X_{0} \subseteq X$ is dense, $f: X_{0} \rightarrow Y$ is continuous, and Y is complete, then f has a unique extension to all of X. I thought that you would have seen this in the Topology course, but apparently not.

Question 2: Define $f:[0,1] \rightarrow \mathbb{C}$ by

$$
f(t)= \begin{cases}\exp (t) & : 0 \leq t \leq 1 / 2 \\ \exp (1-t) & : 1 / 2 \leq t \leq 1\end{cases}
$$

Thus f is periodic. Calculate the Fourier transform of f.
By using Fejer's Theorem, and evaluating at $t=0$ and $t=1 / 2$, show that

$$
\sum_{k=1}^{\infty} \frac{1}{1+16 \pi^{2} k^{2}}=\frac{1}{4\left(e^{1 / 2}-1\right)}-\frac{3}{8}
$$

Answer: Notice that $f(1-t)=f(t)$ for $1 / 2 \leq t \leq 1$. So

$$
\begin{aligned}
\hat{f}(n) & =\int_{0}^{1} f(t) e^{2 \pi i n t} d t=\int_{0}^{1 / 2} f(t) e^{2 \pi i n t} d t+\int_{1 / 2}^{1} f(1-t) e^{2 \pi i n t} d t \\
& =\int_{0}^{1 / 2} f(t) e^{2 \pi i n t} d t+\int_{0}^{1 / 2} f(s) e^{2 \pi i n(1-s)} d s \\
& =\int_{0}^{1 / 2} f(t)\left(e^{2 \pi i n t}+e^{-2 \pi i n t}\right) d t
\end{aligned}
$$

Now,

$$
\int_{0}^{1 / 2} e^{t} e^{2 \pi i n t} d t=\left[\frac{e^{t(1+2 \pi i n)}}{1+2 \pi i n}\right]_{t=0}^{1 / 2}=\frac{e^{1 / 2+\pi i n}-1}{1+2 \pi i n}=\frac{e^{1 / 2}(-1)^{n}-1}{1+2 \pi i n}
$$

Putting these together, we get

$$
\hat{f}(n)=\frac{e^{1 / 2}(-1)^{n}-1}{1+2 \pi i n}+\frac{e^{1 / 2}(-1)^{-n}-1}{1-2 \pi i n}=\frac{2\left((-1)^{n} e^{1 / 2}-1\right)}{1+4 \pi^{2} n^{2}} .
$$

You could also do the integral directly, of course!
We consider the partial sums at 0 ,

$$
\sum_{k=-n}^{n} \hat{f}(k) e^{-2 \pi i k 0}=\sum_{k=-n}^{n} \hat{f}(k)=\sum_{k=-n}^{n} 2 \frac{(-1)^{k} e^{1 / 2}-1}{1+4 \pi^{2} k^{2}}
$$

This is (absolutely) convergent, so the Cesaro sums converge to the same limit, and hence by Fejer's Theorem,

$$
1=f(0)=2 \sum_{k=-\infty}^{\infty} \frac{(-1)^{k} e^{1 / 2}-1}{1+4 \pi^{2} k^{2}}=2\left(e^{1 / 2}-1\right)+4 \sum_{k=1}^{\infty} \frac{(-1)^{k} e^{1 / 2}-1}{1+4 \pi^{2} k^{2}} .
$$

Re-arrange, and we get

$$
3-2 e^{1 / 2}=4 \sum_{k=1}^{\infty} \frac{(-1)^{k} e^{1 / 2}-1}{1+4 \pi^{2} k^{2}} .
$$

If we evaluate at $1 / 2$ instead, we get

$$
\begin{aligned}
f(1 / 2) & =e^{1 / 2}=2 \sum_{k=-\infty}^{\infty}(-1)^{k} \frac{(-1)^{k} e^{1 / 2}-1}{1+4 \pi^{2} k^{2}}=2 \sum_{k=-\infty}^{\infty} \frac{e^{1 / 2}-(-1)^{k}}{1+4 \pi^{2} k^{2}} \\
& =2\left(e^{1 / 2}-1\right)+4 \sum_{k=1}^{\infty} \frac{e^{1 / 2}-(-1)^{k}}{1+4 \pi^{2} k^{2}}
\end{aligned}
$$

and so

$$
2-e^{1 / 2}=4 \sum_{k=1}^{\infty} \frac{e^{1 / 2}-(-1)^{k}}{1+4 \pi^{2} k^{2}}
$$

Adding these two, and taking even parts, we get

$$
5-3 e^{1 / 2}=4 \sum_{k=1}^{\infty} \frac{(-1)^{k} e^{1 / 2}-1+e^{1 / 2}-(-1)^{k}}{1+4 \pi^{2} k^{2}}=8 \sum_{k=1}^{\infty} \frac{e^{1 / 2}-1}{1+16 \pi^{2} k^{2}} .
$$

We conclude

$$
\sum_{k=1}^{\infty} \frac{1}{1+16 \pi^{2} k^{2}}=\frac{5-3 e^{1 / 2}}{8\left(e^{1 / 2}-1\right)}=\frac{1}{4\left(e^{1 / 2}-1\right)}-\frac{3}{8}
$$

At least, if I haven't made a mistake!
Question 3: Let $f(t)=e^{t}$ for $0 \leq t \leq 1$; show that $f \in \mathcal{L}^{2}([0,1])$ and compute $\|f\|_{2}$. Find $\mathcal{F}(f)$, and hence deduce that

$$
\sum_{n=1}^{\infty} \frac{1}{1+4 \pi^{2} n^{2}}=\frac{3-e}{4(e-1)} .
$$

Answer: We have that

$$
\|f\|_{2}^{2}=\int_{0}^{1}\left|e^{t}\right|^{2} d t=\int_{0}^{1} e^{2 t} d t=\left[\frac{e^{2 t}}{2}\right]_{t=0}^{1}=\frac{e^{2}-1}{2} .
$$

So $f \in \mathcal{L}^{2}([0,1])$. Also

$$
\hat{f}(n)=\int_{0}^{1} e^{t} e^{2 \pi i n t} d t=\left[\frac{\exp (t(1+2 \pi i n))}{1+2 \pi i n}\right]_{t=0}^{1}=\frac{\exp (1+2 \pi i n)-1}{1+2 \pi i n}=\frac{e-1}{1+2 \pi i n} .
$$

So by Parseval (that is, the Fourier transform is an isometry $\left.\mathcal{L}^{2}([0,1]) \rightarrow \ell^{2}(\mathbb{Z})\right)$,

$$
\frac{e^{2}-1}{2}=\|f\|_{2}^{2}=\|\mathcal{F}(f)\|_{2}^{2}=\sum_{n=-\infty}^{\infty} \frac{(e-1)^{2}}{1+4 \pi^{2} n^{2}}=(e-1)^{2}+2 \sum_{n=1}^{\infty} \frac{(e-1)^{2}}{1+4 \pi^{2} n^{2}} .
$$

And so we see that

$$
\begin{aligned}
\sum_{n=1}^{\infty} \frac{1}{1+4 \pi^{2} n^{2}} & =\frac{1}{2(e-1)^{2}}\left(\frac{e^{2}-1}{2}-(e-1)^{2}\right)=\frac{(e-1)(e+1)}{4(e-1)^{2}}-\frac{1}{2} \\
& =\frac{e+1}{4(e-1)}-\frac{1}{2}=\frac{e+1-2(e-1)}{4(e-1)}=\frac{3-e}{4(e-1)}
\end{aligned}
$$

Question 4: Show that $C_{\mathbb{C}}(\mathbb{T})$ is dense in $\mathcal{L}^{2}(\mathbb{T})=\mathcal{L}^{2}([0,1])$.
Proof: We know that $C_{\mathbb{C}}([0,1])$ is dense in $\mathcal{L}^{2}([0,1])$. So for $f \in \mathcal{L}^{2}([0,1])$ and $\epsilon>0$, there exists $g \in C_{\mathbb{C}}([0,1])$ with $\|f-g\|_{2}<\epsilon$. Pick $\delta>0$ small and define $h:[0,1] \rightarrow \mathbb{C}$ by

$$
h(t)= \begin{cases}g(t) & : 0 \leq t \leq 1-\delta \\ g(t) \frac{1-t}{\delta}+g(0) \frac{t-1+\delta}{\delta} & : 1-\delta \leq t \leq 1\end{cases}
$$

In words, h is g, except that we chop it off at $1-\delta$ and linearly interpolate between $g(1-\delta)$ and $g(0)$ to get a periodic function.

Then h is continuous, and $h(1)=g(0)=h(0)$, so $h \in C_{\mathbb{C}}(\mathbb{T})$. Furthermore, for $1-\delta \leq t \leq 1$, we see that

$$
\begin{aligned}
|h(t)-g(t)| & =\left|g(t) \frac{1-t}{\delta}+g(0) \frac{t-1+\delta}{\delta}-g(t)\right| \\
& \leq|g(t)| \frac{\delta-(1-t)}{\delta}+|g(0)| \frac{t-1+\delta}{\delta} \leq|g(t)|+|g(0)| \leq 2\|g\|_{\infty} .
\end{aligned}
$$

Hence

$$
\|h-g\|_{2}=\left(\int_{1-\delta}^{1}|h(t)-g(t)|^{2} d \mu(t)\right)^{1 / 2} \leq\left(4\|g\|_{\infty}^{2} \delta\right)^{1 / 2}=2 \sqrt{\delta}\|g\|_{\infty},
$$

which is $\leq \epsilon$ if δ is sufficiently small. Hence

$$
\|f-h\|_{2} \leq 2 \epsilon
$$

as required.
Question 5: Let $\left(f_{n}\right)$ be a sequence in $C_{\mathbb{C}}([0,1])$ converging to f with respect to the $\|\cdot\|_{\infty}$ norm. Suppose each f_{n} is differentiable (to be precise, on (0,1), or suppose each f_{n} is periodic) with a continuous derivative, and $f_{n}^{\prime} \rightarrow g \in C_{\mathbb{C}}([0,1])$ with respect to the $\|\cdot\|_{\infty}$ norm. Show that f is differentiable with derivative g.
Answer: For $0 \leq t \leq 1$, define

$$
h(t)=\int_{0}^{t} g(x) d x+f(0) .
$$

Hence $h \in C_{\mathbb{C}}([0,1])$. For $\epsilon>0$, there exists N such that both $\left\|f_{n}^{\prime}-g\right\|_{\infty}<\epsilon$ and $\left\|f_{n}-f\right\|_{\infty}<\epsilon$, when $n \geq N$. Hence for $0 \leq t \leq 1$ and $n \geq N$,

$$
\begin{aligned}
\left|h(t)-f_{n}(t)\right| & =\left|h(t)-\int_{0}^{t} f_{n}^{\prime}(x) d x-f_{n}(0)\right| \leq\left|\int_{0}^{t} g(x)-f_{n}^{\prime}(x) d x\right|+\left|f(0)-f_{n}(0)\right| \\
& \leq t\left\|g-f_{n}^{\prime}\right\|_{\infty}+\left\|f-f_{n}\right\|_{\infty}<(1+t) \epsilon \leq 2 \epsilon
\end{aligned}
$$

Hence $\left\|h-f_{n}\right\|_{\infty} \leq 2 \epsilon$ for $n \geq N$. So $h=\lim _{n} f_{n}=f$, and clearly h is differentiable with derivative g, as required.
Question 6: For $n \geq 1$ let $x_{n}=\left(x_{m}^{(n)}\right)_{m \in \mathbb{Z}} \in c_{0}(\mathbb{Z})$ be defined by

$$
x_{m}^{(n)}= \begin{cases}1 & :|m| \leq n \\ 0 & :|m|>n\end{cases}
$$

Then $x_{n} \in \ell^{1}(\mathbb{Z})$ so that $\mathcal{F}^{-1}\left(x_{n}\right)$ makes sense. Show that $\left\|\mathcal{F}^{-1}\left(x_{n}\right)\right\|_{1}$ is large.
Hence, by using a result from lectures that \mathcal{F} is injective, and assuming the Open Mapping Theorem, show that \mathcal{F} does not map $\mathcal{L}^{1}([0,1])$ onto $c_{0}(\mathbb{Z})$.
Answer: We calculate that for $0 \leq t \leq 1$,

$$
\begin{aligned}
\mathcal{F}^{-1}\left(x_{n}\right)(t) & =\sum_{k=-n}^{n} e^{-2 \pi i k t}=e^{2 \pi i n t}\left(1+z+\cdots+z^{2 n}\right)=e^{2 \pi i n t} \frac{1-z^{2 n+1}}{1-z} \\
& =\frac{z^{-n}-z^{n+1}}{1-z}=\frac{z^{-n-1 / 2}-z^{n+1 / 2}}{z^{-1 / 2}-z^{1 / 2}}=\frac{2 i \sin (2 \pi(n+1 / 2) t)}{2 i \sin (2 \pi(1 / 2) t)}=\frac{\sin ((2 n+1) \pi t)}{\sin (\pi t)},
\end{aligned}
$$

where $z=e^{-2 \pi i t}$. Of course, $\mathcal{F}^{-1}\left(x_{n}\right)(0)=2 n+1$.
I now copy Korner. ${ }^{1}$ We know that (or we can prove that)

$$
0 \leq s \leq \pi / 2 \Longrightarrow \frac{2 s}{\pi} \leq \sin (s) \leq s
$$

So letting $s=\pi t$, we see that

$$
0 \leq t \leq 1 / 2 \Longrightarrow 2 t \leq \sin (\pi t) \leq \pi t \Longrightarrow 2 \leq \frac{\sin (\pi t)}{t} \leq \pi
$$

[^4]Thus

$$
\begin{aligned}
\int_{[0,1]}\left|\mathcal{F}^{-1}\left(x_{n}\right)\right| d \mu & =\int_{0}^{1}\left|\frac{\sin ((2 n+1) \pi t)}{\sin (\pi t)}\right| d t=2 \int_{0}^{1 / 2}\left|\frac{\sin ((2 n+1) \pi t)}{\sin (\pi t)}\right| d t \\
& \geq 2 \int_{0}^{1 / 2}\left|\frac{\sin ((2 n+1) \pi t)}{\pi t}\right| d t \\
& =2 \sum_{r=0}^{2 n} \int_{r /(4 n+2)}^{(r+1) /(4 n+2)} \frac{|\sin ((2 n+1) \pi t)|}{\pi t} d t \\
& =2 \sum_{r=0}^{2 n} \int_{0}^{1 /(4 n+2)} \frac{|\sin ((2 n+1) \pi t+\pi r / 2)|}{\pi t+r \pi /(4 n+2)} d t .
\end{aligned}
$$

For $0 \leq t \leq 1 /(4 n+2)$, by our previous inequality, with $s=(2 n+1) \pi t$, we get

$$
(4 n+2) t \leq \sin ((2 n+1) \pi t) \leq(2 n+1) \pi t .
$$

So, when $r=0$, we see

$$
\int_{0}^{1 /(4 n+2)} \frac{|\sin ((2 n+1) \pi t)|}{\pi t} d t \geq \int_{0}^{1 /(4 n+2)} \frac{4 n+2}{\pi} d t=\frac{1}{\pi} .
$$

When $r>0$, as also $0 \leq t \leq 1 /(4 n+2)$, we use the simple inequality

$$
\frac{1}{\pi t+r \pi /(4 n+2)} \geq \frac{1}{(r+1) \pi /(4 n+2)}=\frac{4 n+2}{(r+1) \pi} .
$$

So we get an new estimate for our integral,

$$
\begin{aligned}
& \geq \frac{2}{\pi}+2 \sum_{r=1}^{2 n} \frac{4 n+2}{(r+1) \pi} \int_{0}^{1 /(4 n+2)}|\sin ((2 n+1) \pi t+\pi r / 2)| d t \\
& =\frac{2}{\pi}+2 \sum_{r=1}^{2 n} \frac{1}{(r+1) \pi} \int_{0}^{1}|\sin (\pi t / 2+\pi r / 2)| d t \\
& =\frac{2}{\pi}+2 \sum_{r=1}^{2 n} \frac{1}{(r+1) \pi} \int_{0}^{1} \sin (\pi t / 2) d t \quad \text { (draw a picture!) } \\
& =\frac{2}{\pi}+2 \sum_{r=1}^{2 n} \frac{1}{(r+1) \pi} \frac{2}{\pi} \geq \frac{4}{\pi^{2}} \sum_{r=0}^{2 n} \frac{1}{r+1} .
\end{aligned}
$$

This of course is the harmonic series, which diverges! So we conclude that

$$
\lim _{n \rightarrow \infty}\left\|\mathcal{F}^{-1}\left(x_{n}\right)\right\|_{1}=\infty
$$

Of course, $\left\|x_{n}\right\|_{\infty}=1$ for all n. So let $f_{n}=\mathcal{F}^{-1}\left(x_{n}\right)$ for each n. As $x_{n} \in c_{0}(\mathbb{Z}) \cap \ell^{1}(\mathbb{Z})$, we see that $\mathcal{F}\left(f_{n}\right)=x_{n}$.

Suppose that $\mathcal{F}: \mathcal{L}^{1}([0,1]) \rightarrow c_{0}(\mathbb{Z})$ is surjective. By a result from the lectures, \mathcal{F} is injective. By the Open Mapping Theorem, there exists a bounded map $T: c_{0}(\mathbb{Z}) \rightarrow$ $\mathcal{L}^{1}([0,1])$ such that $T \mathcal{F}$ is the identity on $\mathcal{L}^{1}([0,1])$. Then

$$
n<\left\|f_{n}\right\|_{1}=\left\|T \mathcal{F}\left(f_{n}\right)\right\|_{1} \leq\|T\|\left\|\mathcal{F}\left(f_{n}\right)\right\|_{\infty}=\|T\|\left\|x_{n}\right\|_{\infty}=\|T\| .
$$

This contradicts $\|T\|$ being finite. So \mathcal{F} is not surjective. ${ }^{2}$

[^5]
Thinking more about Riesz Representation

Question i: For a compact (Hausdorff) space K let $M_{\mathbb{C}}(K)$ be the space of finite, complex, regular Borel measures on K. For $\mu \in M_{\mathbb{C}}(K)$ define $\phi_{\mu} \in C_{\mathbb{C}}(K)^{*}$ by

$$
\phi_{\mu}(f)=\int_{K} f d \mu \quad\left(f \in C_{\mathbb{C}}(K)\right)
$$

Let $g: K \rightarrow \mathbb{C}$ be a simple function (of course, not assumed continuous!) with $\|g\|_{\infty} \leq 1$. Show that

$$
\left|\int_{K} g d \mu\right| \leq\|\mu\| .
$$

Now let $f \in C_{\mathbb{C}}(K)$ with $\|f\|_{\infty} \leq 1$. Show that we can find a sequence $\left(g_{n}\right)$ of simple functions with $g_{n} \rightarrow f$ pointwise, and with $\left|g_{n}\right| \leq|f|$ everywhere for each n. (Hint: Apply our "canonical" method for getting simple functions, but taking account of real and imaginary parts, etc.) Conclude, by using the Dominated Convergence Theorem, that $\left|\phi_{\mu}(f)\right| \leq\|\mu\|$. Conclude that $\left\|\phi_{\mu}\right\| \leq\|\mu\|$.
Answer: Let $g=\sum_{n} a_{n} \chi_{A_{n}}$. As $\|g\|_{\infty} \leq 1$, we have that $\left|a_{n}\right| \leq 1$, or $\mu\left(A_{n}\right)=0$, for each n. Of course, we may suppose that the $\left(A_{n}\right)$ are pairwise disjoint. Thus

$$
\left|\int_{K} g d \mu\right|=\left|\sum_{n} a_{n} \mu\left(A_{n}\right)\right| \leq \sum_{n}\left|a_{n}\left\|\mu\left(A_{n}\right)\left|\leq \sum_{n}\right| \mu\left(A_{n}\right) \mid \leq\right\| \mu \|,\right.
$$

by the definition of $\|\mu\|$.
If $f \geq 0$ then we can let

$$
g_{n}=\min \left(n, 2^{-n}\left\lfloor 2^{n} f\right\rfloor\right),
$$

as usual. If f is real-valued, let

$$
g_{n}=\min \left(n, 2^{-n}\left\lfloor 2^{n} f_{+}\right\rfloor\right)-\min \left(n, 2^{-n}\left\lfloor 2^{n} f_{-}\right\rfloor\right)
$$

If f is complex-valued, take real and imaginary parts (which is tedious to type). Clearly we have that $\left|g_{n}\right| \leq|f|$ everywhere, and that $g_{n} \rightarrow f$ pointwise. As $|f|$ is integrable for μ, Dominated Convergence shows that

$$
\left|\int_{K} f d \mu\right|=\lim _{n}\left|\int_{K} g_{n} d \mu\right| \leq\|\mu\|,
$$

as $\left|g_{n}\right| \leq 1$ everywhere. So $\left|\phi_{\mu}(f)\right| \leq\|\mu\|$. Taking the supremum over such f, we conclude that $\left\|\phi_{\mu}\right\| \leq\|\mu\|$.
Question ii: Firstly, prove the following useful lemma. Let τ be a positive Borel measure. Show that τ is regular if and only if, for each $E \in \mathcal{B}(K)$ and $\epsilon>0$, we can find an open set U and a closed set C with $C \subseteq E \subseteq U$ and with $\tau(U \backslash C)<\epsilon$.
Proof: If τ is regular, then we can find such U and C with $\tau(C)>\tau(E)-\epsilon / 2$ and $\tau(U)<\tau(E)+\epsilon / 2$. Then $\tau(U \backslash C)=\tau(U)-\tau(C)=\tau(U)-\tau(E)+\tau(E)-\tau(C)<\epsilon$. Conversely, if we can find U and C, then $\tau(U)-\tau(E) \leq \tau(U)-\tau(C)=\tau(U \backslash C)<\epsilon$ so $\tau(U)<\tau(E)+\epsilon$. Similarly, $\tau(C)>\tau(E)-\epsilon$, and so τ is regular.
Question continued: For a signed measure τ, we defined $|\tau|=\tau_{+}+\tau_{-}$, where τ_{+}and τ_{-}are defined by way of a Hahn-Decomposition for τ. Show that

$$
|\tau|(E)=\sup \{\tau(U)-\tau(V): U, V \in \mathcal{B}(K), U \cap V=\emptyset, U \cup V=E\} \quad(E \in \mathcal{B}(K))
$$

So we don't actually need a Hahn-Decomposition to define $|\tau|$ (and this works for any measure on any σ-algebra).
Answer: Let (A, B) be a Hahn-Decomposition for τ, so that

$$
|\tau|(E)=\tau_{+}(E)+\tau_{-}(E)=\tau(E \cap A)-\tau(E \cap B)
$$

If $U=E \cap A$ and $V=E \cap B$, then $E=U \cup V$ is a disjoint union, and $|\tau|(E)=\tau(U)-\tau(V)$.
Conversely, let $U \cup V=E$ be a pairwise disjoint union. Then

$$
\tau(U)-\tau(V)=\tau(U \cap A)+\tau(U \cap B)-\tau(V \cap A)-\tau(V \cap B)
$$

Now, as B is a negative set, $\tau(U \cap B) \leq 0$. Similarly, $-\tau(V \cap A) \leq 0$. So

$$
\begin{aligned}
\tau(U)-\tau(V) & \leq \tau(U \cap A)-\tau(V \cap B)=\tau_{+}(U)+\tau_{-}(V) \\
& \leq \tau_{+}(E)+\tau_{-}(E)=|\tau|(E)
\end{aligned}
$$

So $|\tau|(E)$ does equal the supremum (and the supreumu is obtained!)
Question continued: Now prove a third useful lemma. Let $\tau \in M_{\mathbb{R}}(K)$. Show that τ is regular (defined to mean that τ_{+}and τ_{-}are regular) if and only if $|\tau|$ is regular.
Answer: We use the condition given by the first lemma. If τ is regular, then as τ_{+} and τ_{-}are regular, by our first lemma, given E and $\epsilon>0$, we can find closed sets C_{+} and C_{-}and open sets U_{+}and U_{-}with $C_{ \pm} \subseteq E \subseteq U_{ \pm}$, and with $\tau_{ \pm}\left(U_{ \pm} \backslash C_{ \pm}\right)<\epsilon$. Let $U=U_{+} \cap U_{-}$and $C=C_{+} \cup C_{-}$, so that $U \backslash C \subseteq U_{ \pm} \backslash C_{ \pm}$, and hence both $\tau_{+}(U \backslash C)<\epsilon$ and $\tau_{-}(U \backslash C)<\epsilon$. Thus $|\tau|(U \backslash C)<2 \epsilon$.

Conversely, if we have $C \subseteq E \subseteq U$ with $|\tau|(U \backslash C)<\epsilon$, then certainly both $\tau_{+}(U \backslash C)<$ ϵ and $\tau_{-}(U \backslash C)<\epsilon$. Thus τ_{+}and τ_{-}are regular.
Question continued: Let $\mu, \lambda \in M_{\mathbb{R}}(K)$, and let $\tau=\mu+\lambda$. Using the 2nd lemma, show that $|\tau| \leq|\mu|+|\lambda|$. Deduce, using the 3rd lemma, that τ is regular.
Answer: For $E \in \mathcal{B}(K)$, we have that

$$
\begin{aligned}
|\tau|(E)= & \sup \{\tau(U)-\tau(V): E=U \cup V, U \cap V=\emptyset\} \\
= & \sup \{\mu(U)-\mu(V)+\lambda(U)-\lambda(V): E=U \cup V, U \cap V=\emptyset\} \\
\leq & \sup \{\mu(U)-\mu(V): E=U \cup V, U \cap V=\emptyset\} \\
& \quad+\sup \{\lambda(U)-\lambda(V): E=U \cup V, U \cap V=\emptyset\} \\
= & |\mu|(E)+|\lambda|(E) .
\end{aligned}
$$

So $|\tau| \leq|\mu|+|\lambda|$.
So, for $E \in \mathcal{B}(K)$ and $\epsilon>0$, we can find open sets U, V which contain E, and we can find closed sets C, D contained in E, with

$$
|\mu|(U \backslash C)<\epsilon, \quad|\lambda|(V \backslash D)<\epsilon
$$

Let $U^{\prime}=U \cap V$ and $C^{\prime}=C \cup D$, so $U \backslash C \supseteq U^{\prime} \backslash C^{\prime}$, and $V \backslash D \supseteq U^{\prime} \backslash C^{\prime}$, and still $C^{\prime} \subseteq E \subseteq U^{\prime}$. Then

$$
|\tau|\left(U^{\prime} \backslash C^{\prime}\right) \leq|\mu|\left(U^{\prime} \backslash C^{\prime}\right)+|\lambda|\left(U^{\prime} \backslash C^{\prime}\right)<2 \epsilon
$$

This show that $\tau=\mu+\lambda$ is regular, as required.
Question continued: Show the same for complex measures: this is easier, as we can directly take real and imaginary parts.
Answer: This is easy: if $\mu, \lambda \in M_{\mathbb{C}}(K)$, then by definition, $\mu_{r}, \mu_{i}, \lambda_{r}$ and λ_{i} are regular. So $(\mu+\lambda)_{r}=\mu_{r}+\lambda_{r}$ is regular, as is $(\mu+\lambda)_{i}$. So $\mu+\lambda$ is regular.

Question iii: Let K be compact and Hausdorff, and let $\lambda \in C_{\mathbb{C}}(K)$ with $\|\lambda\|=1$. It is possible ${ }^{3}$ to construct a positive $\Phi \in C_{\mathbb{R}}(K)^{*}$ with the property that for any $f \in C_{\mathbb{C}}(K)$,

$$
|\lambda(f)| \leq \Phi(|f|) \leq\|f\|_{\infty}
$$

where $|f|(x)=|f(x)|$ for each $x \in K$. Show that $\|\Phi\|=1$.
Answer: As $\|\lambda\|=1$, for each $\epsilon>0$ we can find $f \in C_{\mathbb{C}}(K)$ with $\|f\|_{\infty}=1$ and $|\lambda(f)|>1-\epsilon$. Then clearly $\||f|\|_{\infty}=1$ as well, so that as

$$
1-\epsilon<|\lambda(f)| \leq \Phi(|f|) \leq\|f\|_{\infty}=1
$$

we see that $\|\Phi\|>1-\epsilon$. So $\|\Phi\| \geq 1$, but by assumption, also $\|\Phi\| \leq 1$.
Question continued: We can then apply Riesz representation to find some a regular, positive Borel measure μ_{0} with

$$
\Phi(g)=\int_{K} g d \mu_{0} \quad\left(g \in C_{\mathbb{R}}(K)\right)
$$

As $\|\Phi\|=1$, we have that $\mu_{0}(K)=1$.
We can hence form that space $\mathcal{L}^{1}\left(\mu_{0}\right)$. There is a natural map $C_{\mathbb{C}}(K) \rightarrow \mathcal{L}^{1}\left(\mu_{0}\right)$; let X be the image, so that X is a subspace of $\mathcal{L}^{1}\left(\mu_{0}\right)$. Show that the map

$$
\phi: X \rightarrow \mathbb{C} ; \quad f \mapsto \lambda(f)
$$

is linear and bounded. What is $\|\phi\|$? Using that $\mathcal{L}^{1}\left(\mu_{0}\right)^{*} \cong \mathcal{L}^{\infty}\left(\mu_{0}\right)$ (and Hahn-Banach), show that there exists $h \in \mathcal{L}^{\infty}\left(\mu_{0}\right)$ with

$$
\lambda(f)=\int_{K} f h d \mu_{0} \quad\left(f \in C_{\mathbb{C}}(K)\right)
$$

Answer: Let us write $\iota: C_{\mathbb{C}}(K) \rightarrow \mathcal{L}^{1}\left(\mu_{0}\right)$ be the map; notice that ι need not be injective. So ϕ is really defined by $\iota(f) \mapsto \lambda(f)$. This is well-defined, for if $\iota(f)=\iota(g)$, then $f-g=0$ in $\mathcal{L}^{1}\left(\mu_{0}\right)$, so $f-g=0$ almost everywhere (with respect to μ_{0}). Hence also $|f-g|=0$ almost everywhere. So

$$
\Phi(|f-g|)=\int_{K}|f-g| d \mu_{0}=0
$$

Thus $|\lambda(f-g)| \leq \Phi(|f-g|)=0$, so $\lambda(f)=\lambda(g)$.
It is easy to see that ϕ is linear. Then, for $f \in C_{\mathbb{C}}(K)$,

$$
|\phi(\iota(f))|=|\lambda(f)| \leq \Phi(|f|)=\int_{K}|f| d \mu_{0}=\|\iota(f)\|_{1}
$$

from which it follows that $\|\phi\| \leq 1$. Conversely,

$$
|\lambda(f)|=\mid \phi\left(\iota(f)\left|\leq\|\phi\|\|\iota(f)\|_{1}=\|\phi\| \int_{K}\right| f \mid d \mu_{0}=\|\phi\| \Phi(|f|) \leq\|\phi\|\|f\|_{\infty}\right.
$$

As we can find f with $\|f\|_{\infty}=1$ and $|\lambda(f)|$ as close as we like to 1 , we must have that $\|\phi\|=1$.

So ϕ is a norm one functional defined on a subspace of $\mathcal{L}^{1}(\mu)$. By Hahn-Banach, we extend ϕ to a norm one functional defined on all of $\mathcal{L}^{1}(\mu)$. So there exists some $h \in \mathcal{L}^{\infty}(\mu)$ with $\|h\|_{\infty}=1$ and with

$$
\int_{K} f h d \mu_{0}=\phi(\iota(f))=\lambda(f) \quad\left(f \in C_{\mathbb{C}}(K)\right)
$$

[^6]Question continued: Let $\mu=h \mu_{0}$, so μ is the complex measure with

$$
\mu(E)=\int_{K} \chi_{E} h d \mu_{0}
$$

This is regular: this isn't too hard to show, if you adopt the philosophy of question ii. We immediately see that

$$
\lambda(f)=\int_{K} f d \mu \quad\left(f \in C_{\mathbb{C}}(K)\right)
$$

Finally, show that $\|h\|_{\infty}=1$ (hint: what is $\|\phi\|$?) Deduce that $\|\mu\|=1=\|\lambda\|$ (hint: Use Question i).
Answer: Formally, to show that μ is a measure, we need to show countable additivity, which would require the Dominated Convergence Theorem (or take real+imaginary, and positive+negative parts, and use Monotone Convergence). Now we should regularity.

As μ_{0} is regular, for $E \in \mathcal{B}(K)$ and $\epsilon>0$, we can find an open set U and a closed set C with $C \subseteq E \subseteq U$, and with $\mu_{0}(U \backslash C)<\epsilon$. By Question ii, to show that μ is regular, it is enough to show that $\left|\mu_{r}\right|$ and $\left|\mu_{i}\right|$ are regular. But clearly $\left|\mu_{r}\right|=|\Re h| \mu_{0}$, so

$$
\left|\mu_{r}\right|(U \backslash C)=\int_{U \backslash C}|\Re h| d \mu_{0} \leq \int_{U \backslash C} 1 d \mu_{0}=\mu_{0}(U \backslash C)<\epsilon,
$$

and similarly $\left|\mu_{i}\right|(U \backslash C)<\epsilon$. This establishes that μ is indeed regular.
As $\|h\|_{\infty}=1$, we see that if $\left(A_{n}\right)$ is a partition of K, then

$$
\sum_{n}\left|\mu\left(A_{n}\right)\right|=\sum_{n}\left|\int_{K} \chi_{A_{n}} h d \mu_{0}\right| \leq \sum_{n} \int_{K} \chi_{A_{n}}|h| d \mu_{0}=\int_{K}|h| d \mu_{0} \leq \mu_{0}(K)=1
$$

So $\|\mu\| \leq 1$. By Question $1,1=\|\lambda\| \leq\|\mu\|$, so we must have equality.

Question A: Let $\left(a_{n}\right) \in \ell^{1}(\mathbb{Z})$ be a sequence such that $\left(n a_{n}\right) \in \ell^{1}(\mathbb{Z})$ as well. Let $f=\mathcal{F}^{-1}\left(\left(a_{n}\right)\right)$. Show that f is differentiable.
Answer: We let

$$
f_{n}(t)=\sum_{k=-n}^{n} a_{k} e^{-2 \pi i k t},
$$

so as $\left(a_{n}\right) \in \ell^{1}(\mathbb{Z})$, by Fejer's Theorem, we have that $f_{n} \rightarrow f$ in $C_{\mathbb{C}}([0,1])$. Then

$$
f_{n}^{\prime}(t)=\sum_{k=-n}^{n}(-2 \pi i k) a_{k} e^{-2 \pi i k t}=-2 \pi i \sum_{k=-n}^{n} k a_{k} e^{-2 \pi i k t} .
$$

As $\left(k a_{k}\right) \in \ell^{1}(\mathbb{Z})$, we see that f_{n}^{\prime} converges to $g \in C_{\mathbb{C}}([0,1])$ defined by

$$
g(t)=-2 \pi i \sum_{k \in \mathbb{Z}} k a_{k} e^{-2 \pi i k t} .
$$

Thus by Question 5, f is differentiable with derivative g.
Question C: Let X be the subspace of $C_{\mathbb{C}}(\mathbb{T})$ spanned by functions of the form $t \mapsto e^{2 \pi i n t}$, for $n \in \mathbb{Z}$. We saw in lectures that, because of Fejer's Theorem, X is dense in $C_{\mathbb{C}}(\mathbb{T})$.

Now let $f:[0,1] \rightarrow \mathbb{R}$ be continuous (but not necessarily periodic) and define $g \in$ $C_{\mathbb{C}}(\mathbb{T})$ by

$$
g(t)= \begin{cases}f(2 t) & : 0 \leq t \leq 1 / 2 \\ f(2-2 t) & : 1 / 2 \leq t \leq 0\end{cases}
$$

Fix $\epsilon>0$. Then we can find $h \in X$ with $\|g-h\|_{\infty}<\epsilon$. We know that on the interval $[0,1]$ and for $n \in \mathbb{Z}$, we have that

$$
\sum_{k=0}^{K} \frac{(2 \pi i n t)^{k}}{k!}
$$

converges uniformly to $e^{2 \pi i n t}$, as $K \rightarrow \infty$. Use this to approximate h by a complex polynomial in t.

By taking real parts, and thinking about the definition of g, show that we have approximated f be a real polynomial.

This is the Weierstrauss Approximation Theorem, see "Fourier Analysis", Chapter 4. Answer: Notice that g is periodic, so we can certainly find $h \in X$ with $\|g-h\|_{\infty}<\epsilon$. Say that

$$
h(t)=\sum_{k=-n}^{n} a_{k} e^{2 \pi i k t} \quad(t \in \mathbb{T})
$$

Then for each k with $|k| \leq n$, we can find $L(k)$ such that

$$
\left|e^{2 \pi i k t}-\sum_{l=0}^{L(k)} \frac{(2 \pi i k t)^{l}}{l!}\right|<\epsilon\left(\sum_{|k| \leq n}\left|a_{k}\right|\right)^{-1} \quad(0 \leq t \leq 1)
$$

Let

$$
G(t)=\sum_{k=-n}^{n} a_{k} \sum_{l=0}^{L(k)} \frac{(2 \pi i k t)^{l}}{l!} \quad(t \in \mathbb{T}),
$$

so that G is a complex polynomial in t. Then

$$
|G(t)-h(t)| \leq \sum_{k=-n}^{n}\left|a_{k}\right| \epsilon\left(\sum_{|k| \leq n}\left|a_{k}\right|\right)^{-1}=\epsilon \quad(t \in \mathbb{T})
$$

so that $\|g-G\|_{\infty} \leq\|G-h\|_{\infty}+\|h-g\|_{\infty}<2 \epsilon$.
For a complex number z let $\Re(z)$ and $\Im(z)$ be the real and imaginary parts of z, respectively. Then

$$
\begin{aligned}
\Re G(t) & =\sum_{k=-n}^{n} \sum_{l=0}^{L(k)} \frac{\Re\left(a_{k} i^{l}(2 \pi k t)^{l}\right)}{l!} \\
& =\sum_{k=-n}^{n} \sum_{l=0}^{L(k)} \frac{\left.(2 \pi k t)^{l}\right)}{l!} \Re\left(a_{k} i^{l}\right) \\
& =\sum_{k=-n}^{n}\left(\sum_{0 \leq l \leq L(k), l \text { even }} \frac{\left.(2 \pi k t)^{l}\right)}{l!} \Re\left(a_{k}\right) i^{l}-\sum_{0 \leq l \leq L(k), l \text { odd }} \frac{\left.(2 \pi k t)^{l}\right)}{l!} \Im\left(a_{k}\right) i^{l-1}\right),
\end{aligned}
$$

which is a real polynomial in t. As g is real valued, clearly $\|g-\Re G\|_{\infty}<2 \epsilon$.
By definition, $f(t)=g(t / 2)$ for $0 \leq t \leq 1$. Hence if

$$
F(t)=\Re G(t / 2) \quad(0 \leq t \leq 1),
$$

then F is a real-valued polynomial, and $\|f-F\|_{\infty} \leq\|g-\Re G\|_{\infty}<2 \epsilon$.

[^0]: ${ }^{1}$ See Wikipedia
 ${ }^{2}$ In Chapter 1, we used the Hahn-Banach theorem to show that if X is a Banach space, and Y a subspace, then for $x \in X$, we have that x is in the closure of Y if and only if $\mu(x)=0$ whenever $\mu \in X^{*}$ has $Y \subseteq$ ker μ. So it follows that Y is dense in X (that is, the closure of Y is all of X) if and only if, whenever $\mu \in X^{*}$ with $Y \subseteq$ ker μ, we actually have that $\mu=0$.

[^1]: ${ }^{3}$ If you don't see this, think about the proof from lectures of the fact that for $f \in L^{\infty}(\mu)$, we have that $|f| \leq\|f\|_{\infty}$ almost everywhere.

[^2]: ${ }^{1}$ This is a lemma from Topology: the image of a compact set under a continuous map is always compact.

[^3]: ${ }^{2}$ This assumes a metric space: a more tedious argument works for a general topological space.
 ${ }^{3}$ Which means: I haven't checked the details

[^4]: ${ }^{1}$ See chapter 18 ; I don't understand Korner's proof, so this is a little different!

[^5]: ${ }^{2}$ To be honest, this is the only way which I can think of to show this result. But maybe it is possible to simply write down something in $c_{0}(\mathbb{Z})$ and show, directly, that it cannot be the image of something $\mathcal{L}^{1}([0,1])$, but I don't see it. Let me know if you find an example!

[^6]: ${ }^{3}$ See Rudin's book; the construction is very similar to how we defined λ_{+}given $\lambda \in C_{\mathbb{R}}(K)$.

