Linear Analysis I: Worked Solutions 1

I do not intend to give worked solutions to every question. However, I *will* give full solutions to any [**Revision**] questions.

Question 1: For a normed vector space $(V, \|\cdot\|)$, show that if (x_n) is a sequence in V tending to x, and μ is a scalar, then $\mu x_n \to \mu x$.

Answer: If $\mu = 0$, then the result is obvious, so we may suppose that $|\mu| > 0$. Let $\epsilon > 0$, so as $x_n \to x$, there exists an N > 0 such that $||x_n - x|| < \epsilon |\mu|^{-1}$ whenever $n \ge N$. Then $||\mu x_n - \mu x|| = |\mu| ||x_n - x|| < \epsilon$. As $\epsilon > 0$ was arbitrary, we conclude that $\mu x_n \to \mu x$, as required.

The other answers are similar.

Question 3: Do you think that the definition

$$||f||_{\infty} = \sup_{t \in [0,1]} |f(t)| \qquad (f \in \mathbb{K}^{[0,1]}),$$

makes sense???

Answer: No, because we have said nothing about f. For example, we could have that

$$f(t) = \begin{cases} 0 & : t = 0, \\ 1/t & : 0 < t \le 1. \end{cases}$$

This is a function $[0,1] \to \mathbb{R}$, and the set $\{|f(t)| : t \in [0,1]\}$ is simply $\{0\} \cup [1,\infty)$, so the supremum is ∞ , that is, it doesn't really exist.

We define $\ell^{\infty}([0,1])$ to be the *bounded* functions $[0,1] \to \mathbb{K}$. Then the supremum does exist, and it is not too hard to check that it is a norm.

Question 4: [Revision] Recall that we define the norm $\|\cdot\|_2$ on \mathbb{K}^n by

$$||x||_2 = \left(\sum_{i=1}^n |x_i|^2\right)^{1/2} \qquad (x = (x_i) \in \mathbb{K}^n).$$

Prove that $(\mathbb{K}^n, \|\cdot\|_2)$ is complete.

Answer: Let (x_k) be a Cauchy-sequence in $(\mathbb{K}^n, \|\cdot\|_2)$. For each k, x_k is a vector in \mathbb{K}^n , say that

$$x_k = \begin{pmatrix} x_{k,1} \\ x_{k,2} \\ \vdots \\ x_{k,n} \end{pmatrix}.$$

For $\epsilon > 0$, there exists N > 0 such that $||x_j - x_k||_2 \le \epsilon$ for $j, k \ge N$. That is,

$$\left(\sum_{i=1}^{n} |x_{j,i} - x_{k,i}|^2\right)^{1/2} \le \epsilon \qquad (j,k \ge N).$$

Fix t between 1 and n, so that

$$|x_{j,t} - x_{k,t}| \le \left(\sum_{i=1}^{n} |x_{j,i} - x_{k,i}|^2\right)^{1/2} \le \epsilon \qquad (j,k \ge N).$$

Hence $(x_{k,t})_{k=1}^{\infty}$ is a Cauchy-sequence in K, and hence converges to, say, a_t . Let

$$x = \begin{pmatrix} a_1 \\ a_2 \\ \vdots \\ a_n \end{pmatrix} \in \mathbb{K}^n.$$

Then

$$\lim_{k} ||x - x_{k}||_{2} = \lim_{k} \left(\sum_{i=1}^{n} |a_{i} - x_{k,i}|^{2} \right)^{1/2} = \left(\lim_{k} \sum_{i=1}^{n} |a_{i} - x_{k,i}|^{2} \right)^{1/2}$$
$$= \left(\sum_{i=1}^{n} \lim_{k} |a_{i} - x_{k,i}|^{2} \right)^{1/2} = 0,$$

as required.

Question 5: Let $\mathbb{K}[X]$ be the space of polynomials over \mathbb{K} . For $p(X) = a_n X^n + a_{n-1}X^{n-1} + \cdots + a_1X + a_0 \in \mathbb{K}[X]$, we define

$$||p||_1 = \sum_{i=0}^n |a_i|$$

For $n \geq 1$, let p_n be the polynomial

$$p_n(X) = \frac{1}{2^n} X^n + \frac{1}{2^{n-1}} X^{n-1} + \dots + \frac{1}{4} X^2 + \frac{1}{2} X.$$

Show that (p_n) is a Cauchy sequence. Does (p_n) converge to a limit in $\mathbb{K}[X]$? Answer: For n > m, we calculate that

$$||p_n - p_m||_1 = \sum_{i=m+1}^n \frac{1}{2^i} = 2^{-m} \sum_{i=1}^{n-m} 2^{-i} \le 2^{-m}.$$

Hence (p_n) is a Cauchy sequence in $(\mathbb{K}[X], \|\cdot\|_1)$.

Let $p(X) = a_k X^k + a_{k-1} X^{k-1} + \dots + a_0 \in \mathbb{K}[X]$ be some polynomial. Then, for large n,

$$||p - p_n||_1 = |a_0| + \sum_{i=1}^k |a_i - 2^{-i}| + \sum_{i=k+1}^n 2^{-i} \ge \sum_{i=k+1}^n 2^{-i} \ge 2^{-k-1}.$$

Thus we see that $p_n \not\rightarrow p$. As p was arbitrary, we conclude that (p_n) does not converge to any member of $\mathbb{K}[X]$. So $(\mathbb{K}[X], \|\cdot\|_1)$ is not complete.

Actually, we have used nothing about the structure of the polynomials here. The *completion* would be simply the Banach space ℓ^1 .

Question 6: We define c_0 to be the collection of sequences in \mathbb{K} which converge to 0, with the norm

$$||(x_n)||_{\infty} = \sup_n |x_n|$$
 $((x_n) \in c_0).$

Show that c_0 is complete.

Answer: Let (x_n) be a Cauchy-sequence in c_0 . Hence, for each $n, x_n \in c_0$, say that $x_n = (x_k^{(n)})_{k=1}^{\infty}$, so that $\lim_k x_k^{(n)} = 0$. For $\epsilon > 0$, there exists N > 0 such that $||x_n - x_m||_{\infty} \le \epsilon$ for $n, m \ge N$. For k fixed, we see that

$$|x_k^{(n)} - x_k^{(m)}| \le \sup_j |x_j^{(n)} - x_j^{(m)}| = ||x_n - x_m||_{\infty} \le \epsilon,$$

so we see that $(x_k^{(n)})_{n=1}^{\infty}$ is a Cauchy-sequence in \mathbb{K} , and so converges to a_k say.

We first check that $\lim_k a_k = 0$, so that $(a_k) \in c_0$. Let $\epsilon > 0$, so for some N > 0, we have that $||x_n - x_m||_{\infty} \leq \epsilon$ for $n, m \geq N$. Then $\lim_k x_k^{(N)} = 0$, so there exists M > 0 such that $|x_k^{(N)}| \leq \epsilon$ for $k \geq M$. For $k \geq M$, we see that

$$|a_k - x_k^{(N)}| = \lim_n |x_k^{(n)} - x_k^{(N)}| \le \lim_n ||x_n - x_N||_{\infty} \le \epsilon.$$

We conclude that

$$a_k \leq |a_k - x_k^{(N)}| + |x_k^{(N)}| \leq 2\epsilon \qquad (k \geq M).$$

As $\epsilon > 0$ was arbitrary, we conclude that $\lim_{k} a_k = 0$, as required.

Finally, we check that $\lim_n ||x_n - (a_k)|| = 0$. Let $\epsilon > 0$, so, again, there exists N > 0 such that $||x_n - x_m||_{\infty} \le \epsilon$ for $n, m \ge N$. Let $k \ge 1$, and let $n \ge N$, so that

$$|x_k^{(n)} - a_k| = \lim_m |x_k^{(n)} - x_k^{(m)}| \le \lim_m ||x_n - x_m||_{\infty} \le \epsilon.$$

As k was arbitrary, we see that

$$||x_n - (a_k)||_{\infty} = \sup_k |x_k^{(n)} - a_k| \le \epsilon$$

As $n \ge N$ was arbitrary, we conclude that $\lim_n ||x_n - (a_k)|| = 0$, as required.

Question 7: Let (X, d) be a metric space, and let $Y \subseteq X$ be a subset. The restriction of d to Y turns Y into a metric space in its own right. What does it mean for Y to be *closed* in X? What does it mean for Y to be *open* in X? If X is complete, show that Y is closed in X if and only if Y is complete.

Answer: Y is closed in X if whenever (y_n) is a sequence in Y converging to $x \in X$, then actually $x \in Y$.

Y is open in X if for each $y \in Y$, there exists $\epsilon > 0$ such that

$$B(y,\epsilon) = \{x \in X : d(x,y) < \epsilon\} \subseteq Y.$$

Let X be complete. Suppose that Y is closed in X. If (y_n) is Cauchy in Y, then (y_n) is Cauchy in X, and so converges to $x \in X$. As Y is closed, $x \in Y$, so we see that every Cauchy sequence in Y converges in Y. Hence Y is complete.

Conversely, suppose that Y is complete, and let (y_n) be a sequence in Y converging to $x \in X$. Then (y_n) is Cauchy, so as Y is complete, (y_n) converges to $y \in Y$. Then $d(x, y) = \lim_n d(x, y_n) = 0$, so that x = y, and hence Y is closed.

Question 8: A metric space (X, d) is *compact* if whenever $(x_n)_{n=1}^{\infty}$ is a sequence in X, we can find a subsequence $n(1) < n(2) < \cdots$ such that $(x_{n(k)})_{k=1}^{\infty}$ is convergent.

If (X, d) is a metric space, we say that a subset $Y \subseteq X$ is compact if Y is compact for the metric inherited from X. Show that if Y is compact, then Y is closed in X.

Answer: Let (y_n) be a sequence in Y converging to $x \in X$. As Y is compact, there exists $n(1) < n(2) < \cdots$ such that $(y_{n(k)})$ is convergent in Y, say to $y \in Y$. Clearly $(y_{n(k)})$ also converges to x, so as above, x = y. Hence Y is closed.

Question 8 cont.: The Bolzano–Weierstraß theorem states that if (x_n) is a bounded sequence of real numbers, then (x_n) has a convergent subsequence. Use this result to prove that a subset $Y \subseteq \mathbb{R}$ is compact (for the usual metric on \mathbb{R}) if and only if Y is closed and bounded.

Answer: If Y is compact, then by the above, it is closed. If Y is not bounded, then for every n, we can find $y_n \in Y$ with $|y_n| > n$. Then (y_n) can not have any convergent subsequences, so Y cannot be compact, a contradiction. Hence Y is bounded.

Conversely, let Y be closed and bounded. Let (y_n) be a sequence in Y. As Y is bounded, so is (y_n) , and hence the Bolzano–Weierstraß theorem tells us that a subsequence $(y_{n(k)})$ converges, say to $y \in \mathbb{R}$. As Y is closed, $y \in Y$, and so we may conclude that Y is compact.

Question 8 cont.: The Heine–Borel theorem tells us that a subset $Y \subseteq (\mathbb{R}^n, \|\cdot\|_2)$ is compact if and only if Y is closed and bounded. Prove this.

Answer: If Y is compact, then much the same argument as above shows that Y is closed and bounded. Conversely, let Y be closed and bounded, say that for M > 0, each $y \in Y$ satisfies $||y||_2 \leq M$. Let (y_k) be a sequence in Y. For each k, let $y_k = (y_{k,1}, \dots, y_{k,n})$ (here I am using row vectors, instead of column vectors, for space reasons). For each k,

$$|y_{k,1}| \le ||y_{k,1}||_2 \le M,$$

so we see that $(y_{k,1})$ is a bounded sequence in \mathbb{R} . By Bolzano–Weierstraß, we can find a subsequence $k_1(1) < k_1(2) < \cdots$ such that $(y_{k_1(j),1})_{j=1}^{\infty}$ converges.

Similarly, $(y_{k_1(j)}, 2)$ is a bounded sequence in \mathbb{R} , and so we can find a subsequence $k_2(1) < k_2(2) < \cdots$ of $(k_1(j))$, such that $(y_{k_2(j),2})_{j=1}^{\infty}$ converges. As $(k_2(j))$ is a subsequence of $(k_1(j))$, we also have that $(y_{k_2(j),1})_{j=1}^{\infty}$ converges.

Continuing, we can ultimately find a subsequence $k_n(1) < k_n(2) < \cdots$ such that $(y_{k_n(j),i})_{j=1}^{\infty}$ converges for each *i*, say $\lim_{j \to \infty} y_{k_n(j),i} = z_i$. Let $z = (z_1, \cdots, z_n) \in \mathbb{R}^n$, so as in Question 4 above, we thus have that $\lim_{j \to \infty} (y_{k_n(j)}) = z$. Thus *Y* is compact, as required.

Question 8 cont.: Prove the same result for $(\mathbb{C}^n, \|\cdot\|_2)$. Answer: Define a map $\theta : \mathbb{C}^n \to \mathbb{R}^{2n}$ as follows. Let $x = (x_1, \dots, x_n) \in \mathbb{C}^n$, so for each *i*, we have that $x_i = y_i + iz_i$ say, where $i^2 = -1$. Let

$$\theta(x) = (y_1, z_1, y_2, z_2, \cdots, y_n, z_n) \in \mathbb{R}^{2n}.$$

The θ is a bijection. Furthermore, θ is a distance preserving map for the metrics induced by $\|\cdot\|_2$. Hence $Y \subseteq \mathbb{C}^n$ is compact, or closed and bounded, if and only if $\theta(Y) \subseteq \mathbb{R}^{2n}$ is compact, or closed and bounded, respectively. The claim in the question follows at once.

Question 9: We shall now apply these ideas. Let (X, d) be a metric space, and let $C_{\mathbb{K}}(X)$ be the vector space of all continuous functions from X to \mathbb{K} .

We say that $f \in C_{\mathbb{K}}(X)$ is uniformly continuous if for each $\epsilon > 0$ there exists $\delta > 0$ such that whenever $x, y \in X$ satisfy $d(x, y) \leq \delta$, we have that $|f(x) - f(y)| \leq \epsilon$. Show that as X is compact, every $f \in C_{\mathbb{K}}(X)$ is uniformly continuous.

Answer: Suppose not, so that some $f \in C_{\mathbb{K}}(X)$ is not uniformly continuous. That is, there exists some $\epsilon > 0$ such that for each $\delta > 0$, we can find $x, y \in X$ with $d(x, y) \leq \delta$, but $|f(x) - f(y)| > \epsilon$. Hence for each n, we can find $x_n, y_n \in X$ with $d(x_n, y_n) \leq 1/n$ and $|f(x_n) - f(y_n)| > \epsilon$. As X is compact, we can find a subsequence $n(1) < n(2) < \cdots$ such that $(x_{n(k)})_{k=1}^{\infty}$ converges in X. Similarly, we can find a subsequence (m(k)) or (n(k)) such that $(y_{m(k)})_{k=1}^{\infty}$ converges. Let

$$x = \lim_{k} x_{m(k)} = \lim_{k} x_{n(k)}, \quad y = \lim_{k} x_{m(k)}.$$

Notice that

$$d(x, y) = \lim_{k} d(x_{m(k)}, y_{m(k)}) \le \lim_{k} 1/m(k) = 0,$$

so that x = y. As f is continuous, we have that

$$f(x) = \lim_{k} f(x_{m(k)}), \quad f(y) = \lim_{k} f(y_{m(k)}),$$

and so we have that

$$0 = |f(x) - f(y)| = \lim_{k} |f(x_{m(k)}) - f(y_{m(k)})| \ge \epsilon,$$

giving us our required contradiction.

Question 9 cont.: Show that any $f \in C_{\mathbb{K}}(X)$ attains its supremum. Answer: By the definition of the supremum, for each n, we can find $x_n \in X$ with

$$|f(x_n)| > \sup_{x \in X} |f(x)| - \frac{1}{n}.$$

We can find a subsequence $(x_{n(k)})$ which converges to, say, $y \in X$. As f is continuous,

$$|f(y)| = \lim_{k} |f(x_{n(k)})| \ge \lim_{k} \sup_{x \in X} |f(x)| - \frac{1}{n(k)} = \sup_{x \in X} |f(x)|,$$

as required.

Linear Analysis I: Worked Solutions 2

Question 1: Let *E* and *F* be normed vector spaces, and let $T : E \to F$ be a bounded linear map. The first line of the following is the original definition of the norm of *T*. Prove carefully that the other expressions really are equal:

$$||T|| = \sup\left\{\frac{||T(x)||}{||x||} : x \in E, x \neq 0\right\}$$

= sup { ||T(x)|| : x \in E, ||x|| \le 1 }
= sup { ||T(x)|| : x \in E, ||x|| = 1 }

Answer: We show that the 2nd and 3rd expressions are equal. Set

$$K_2 = \sup \{ \|T(x)\| : x \in E, \|x\| \le 1 \}, \quad K_3 = \sup \{ \|T(x)\| : x \in E, \|x\| = 1 \}.$$

As we are taking the supremum over a smaller set, clearly $K_3 \leq K_2$. For $x \in E$ with $||x|| \leq 1$, let y = x/||x||, so that ||y|| = 1. Then $||T(y)|| = ||T(x)||/||x|| \geq ||T(x)||$ as $1/||x|| \geq 1$. This shows that $K_3 \geq K_2$, so that actually $K_2 = K_3$.

Question 2: Let *E* be a normed vector space, and let $\phi : E \to \mathbb{K}$ be a linear map. When ϕ is bounded, show that

$$\ker \phi = \{ x \in E : \phi(x) = 0 \} = \phi^{-1}(\{0\})$$

is closed.

Answer: Quick proof: as ϕ is continuous, and $\{0\}$ is closed, we have that $\phi^{-1}(\{0\})$ is closed. Longer proof: Let $(x_n) \subseteq \ker \phi$ with $x_n \to x$. Then $||x_n - x|| \to 0$, so $|\phi(x_n - x)| \leq ||\phi|| ||x_n - x|| \to 0$. However, $\phi(x_n) = 0$ for each n, so $|\phi(x)| = 0$, so $x \in \ker \phi$.

Question continued: Now suppose that ϕ is linear, and we know that ker ϕ is closed in E. We shall show that ϕ is bounded. Firstly, if ker $\phi = E$, show that ϕ is bounded.

Answer: If ker $\phi = E$ then $\phi = 0$, and so ϕ is obviously bounded!

Question continued: Now suppose that $\ker \phi \neq E$. Let $x_0 \in E \setminus \ker \phi$. Show that every vector $x \in E$ can be written as

$$x = \lambda x_0 + y$$

for some $\lambda \in K$ and $y \in \ker \phi$. Suppose, towards a contradiction, that ϕ is not bounded, so we can find a sequence (x_n) in E with $||x_n|| \leq 1$ and $|\phi(x_n)| \geq n$ for each n. By writing each $x_n = \lambda_n x_0 + y_n$ for some $\lambda_n \in \mathbb{K}$ and $y_n \in \ker \phi$, derive a contradiction. **Answer:** Following the hint, we calculate that

$$\phi(x - \phi(x_0)^{-1}\phi(x)x_0) = \phi(x) - \phi(x_0)^{-1}\phi(x)\phi(x_0) = 0$$

So $y = x - \phi(x_0)^{-1} \phi(x) x_0 \in \ker \phi$, and then

$$x = \frac{\phi(x)}{\phi(x_0)}x_0 + y,$$

as claimed.

We write $x_n = \lambda_n x_0 + y_n$ as suggested. Then $\|\lambda_n x_0 + y_n\| \leq 1$ for each n, and $|\phi(x_n)| = |\lambda_n| |\phi(x_0)| \geq n$ for each n. All we know is that ker ϕ is closed. So lets look at

$$z_n = \lambda_n^{-1} x_n = x_0 + \lambda_n^{-1} y_n.$$

Then

$$||z_n|| = |\lambda_n|^{-1} ||x_n|| \le |\lambda_n|^{-1} \le \frac{|\phi(x_0)|}{n} \to 0.$$

However, then $||x_0 + \lambda_n^{-1}y_n|| \to 0$, so as each vector $(-\lambda_n^{-1}y_n) \in \ker \phi$, and this is a closed subspace, we conclude that $x_0 \in \ker \phi$. This is a contradiction.

Question 3: Let *E* be a normed vector space, let $\phi \in E^*$, and let $\psi : E \to \mathbb{K}$ be a linear map. Show that if ker $\phi \subseteq \ker \psi$, then $\psi = \lambda \phi$ for some $\lambda \in \mathbb{K}$, and hence in particular, $\psi \in E^*$. **Answer:** If ker $\phi = E$ then $\phi = 0$, and $E \subseteq \ker \psi$, so ker $\psi = E$ and hence $\psi = 0 = 0\phi$, as required.

If $\phi \neq 0$ then pick $x_0 \in E$ with $\phi(x_0) \neq 0$. For $x \in E$, notice that $x - \phi(x_0)^{-1} \phi(x) x_0 \in \ker \phi \subseteq \ker \psi$, and so

$$0 = \psi \left(x - \phi(x_0)^{-1} \phi(x) x_0 \right) = \psi(x) - \frac{\psi(x_0)}{\phi(x_0)} \phi(x).$$

As x was arbitrary, we conclude that $\psi = \psi(x_0)\phi(x_0)^{-1}\phi$ as required.

Question 4: Let $E = c_0$ and let F be the subspace of all sequences $(x_n) \in c_0$ such that $\sum_{n=1}^{\infty} 2^{-n} x_n = 0$. Consider the linear map

$$f: c_0 \to \mathbb{K}, \qquad f((x_n)) = \sum_{n=1}^{\infty} 2^{-n} x_n \qquad ((x_n) \in c_0).$$

Show that f is bounded with $||f|| \le 1$, and hence that F is closed. Answer: We have that

$$|f((x_n))| \le \sum_n 2^{-n} |x_n| \le ||(x_n)||_{\infty} \sum_n 2^{-n} = ||(x_n)||_{\infty},$$

so $||f|| \leq 1$, and hence $F = \ker f$ is closed.

Question continued: Suppose that there exists $x_0 \in E$ with $||x_0|| \leq 1$ and $||x_0 - y|| \geq 1$ for each $y \in F$. Show that $f(x_0) = 1$, and hence derive a contradiction.

Answer: Let $\epsilon > 0$, and pick N such that $\sum_{n=1}^{N} 2^{-n} > 1-\epsilon$. Define $y = (y_n)$ by setting $y_n = 1$ if $n \le N$, and $y_n = 0$ otherwise. Then $\lim_n y_n = 0$, so that $y \in c_0$. Then $f(y) = \sum_{n=1}^{N} 2^{-n} > 1-\epsilon$, and $\|y\|_{\infty} = 1$. As in question 2 above, observe that $z = x_0 - f(y)^{-1} f(x_0) y \in F$, so by the hypthosis,

$$1 \le ||x_0 - z|| = ||x_0 - x_0 + f(y)^{-1} f(x_0)y|| = |f(y)|^{-1} |f(x_0)|||y|| < \frac{|f(x_0)|}{1 - \epsilon}.$$

Hence $|f(x_0)| > 1 - \epsilon$, so as $\epsilon > 0$ was arbitrary, we conclude that $|f(x_0)| \ge 1$.

But, now let $x_0 = (x_n) \in c_0$, so $\lim_n x_n = 0$. Hence, for some M, we have that $|x_n| < \frac{1}{2}$ for n > M. As $||x_0|| \le 1$, we have that $|x_n| \le 1$ for every n. Hence

$$1 \le |f(x_0)| = \Big| \sum_{n=1}^{M} 2^{-n} x_n + \sum_{n > M} 2^{-n} x_n \Big| \le \sum_{n=1}^{M} 2^{-n} + \frac{1}{2} \sum_{n > M} 2^{-n} < 1,$$

a contradiction.

Question 5: We work in the Banach space c_0 . Define subspaces

$$Y = \left\{ (x_n)_{n=1}^{\infty} \in c_0 : x_{2k-1} = 0 \text{ for } k = 1, 2, 3, \cdots \right\}$$
$$Z = \left\{ (x_n)_{n=1}^{\infty} \in c_0 : x_{2k} = k^2 x_{2k-1} \text{ for } k = 1, 2, 3, \cdots \right\}.$$

Show that Y and Z are closed subspaces. Answer: For each k, the map

$$\phi_k : c_0 \to \mathbb{K}, \quad (x_n) \mapsto x_{2k-1}$$

is linear and bounded (as $\|\phi_k\| = 1$). Then Y is the intersection $\bigcap_{k\geq 1} \ker \phi_k$, which is closed, as each ker ϕ_k is closed.

Similarly, define

$$\psi_k : c_0 \to \mathbb{K}, \quad (x_n) \mapsto x_{2k} - k^2 x_{2k-1}.$$

Clearly ψ_k is linear, and $|\psi_k((x_n))| \leq |x_{2k}| + k^2 |x_{2k-1}| \leq (k^2 + 1) ||(x_n)||_{\infty}$, so ψ_k is bounded (and actually, $||\psi_k|| = k^2 + 1$). Then $Z = \bigcap_{k \geq 1} \ker \psi_k$ is also closed.

Question continued: Show that the vector $x = (1, 0, 1/4, 0, 1/9, 0, 1/16, 0, \cdots)$ is in the closure of the subspace Y + Z. That is, for each $\epsilon > 0$, you need to find $y \in Y$ and $z \in Z$ with $||x - (y + z)||_{\infty} < \epsilon$.

Answer: Let $x = (x_n)$, so that $x_{2k} = 0$ for each k, and $x_{2k-1} = 1/k^2$, for each k. Pick $\epsilon > 0$, and pick K with $1/K^2 < \epsilon$.

We have little choice but to set $z = (1, 1, 1/4, 1, 1/9, 1, \dots, 1/K^2, 1, 0, 0, \dots)$, that is,

$$z_{2k-1} = 1/k^2$$
, $z_{2k} = 1$ $(1 \le k \le K)$,

and $z_{2k-1} = z_{2k} = 0$ for k > K. Thus $z \in Z$. Then we set $y = (0, 1, 0, 1, \dots, 1, 0, 0, \dots)$, that is, $y_{2k-1} = 0$ for all k, and $y_{2k} = 1$ for $1 \le k \le K$, while $y_{2k} = 0$ for k > K. Thus $y \in Y$. Then $y + z = (1, 0, 1/4, 0, 1/9, 0, \dots, 1/K^2, 0, 0, \dots)$, so $||x - (y + z)||_{\infty} = 1/(K + 1)^2 < \epsilon$, as required.

Question continued: Show, however, that x is not in Y + Z.

Answer: Suppose that we can find $y \in Y$ and $z \in Z$ with x = y + z. As $y_{2k-1} = 0$ for all k, we must have that $z_{2k-1} = x_{2k-1} = 1/k^2$ for all k. As $z \in Z$, we have that $z_{2k} = k^2 z_{2k-1} = 1$ for all k. However, $z \in c_0$, so $z_k \to 0$ as $k \to \infty$, a contradiction.

Question 6: Show that $c_0^* = \ell^1$. That is, for $a = (a_n) \in \ell^1$, define $\phi_a : c_0 \to \mathbb{K}$ by

$$\phi_a(x) = \sum_{n=1}^{\infty} a_n x_n \qquad (x = (x_n) \in c_0).$$

Show that ϕ_a is linear, bounded, and that $\|\phi_a\| \leq \|a\|_1$. Answer: Notice that ϕ_a is defined, as

$$\left|\sum_{n=1}^{\infty} a_n x_n\right| \le \sum_{n=1}^{\infty} |a_n| |x_n| \le \sum_{n=1}^{\infty} ||x||_{\infty} |a_n| = ||a||_1 ||x||_{\infty}.$$

Thus also ϕ_a is bounded, with $\|\phi_a\| \leq \|a\|_1$. Also, ϕ_a is linear, for given $x = (x_n), y = (y_n) \in c_0$ and $t \in \mathbb{K}$,

$$\phi_a(x+ty) = \sum_{n=1}^{\infty} a_n(x_n+ty_n) = \sum_{n=1}^{\infty} a_n x_n + t \sum_{n=1}^{\infty} a_n y_n = \phi_a(x) + t\phi_a(y).$$

Question continued: Hence the map $\ell^1 \to c_0^*$; $a \mapsto \phi_a$ is linear and bounded. We wish to show that this is a bijection and an isometry.

Answer: Let $\phi \in c_0^*$. For each n, let $e_n \in c_0$ be the sequence which is zero, except that in the nth place, we have 1. Let $a_n = \phi(e_n)$ for all n.

Fix some large $N \in \mathbb{N}$. For each n, define

$$x_n = \begin{cases} 0 & : a_n = 0 \text{ or } n > N, \\ \overline{a_n}/a_n & : a_n \neq 0. \end{cases}$$

Thus $\lim_n x_n = 0$, so $x = (x_n) \in c_0$. Notice also that $|x_n| = 1$ or 0 for all n, so $||x||_{\infty} \leq 1$. Finally, notice that

$$x = \sum_{n=1}^{N} x_n e_n.$$

Thus

$$\phi(x) = \sum_{n=1}^{N} \phi(x_n e_n) = \sum_{n=1}^{N} x_n \phi(e_n) = \sum_{n=1}^{N} x_n a_n = \sum_{n=1}^{N} a_n \overline{a_n} / a_n = \sum_{n=1}^{N} |a_n|.$$

But $|\phi(x)| \leq ||\phi|| ||x||_{\infty} \leq ||\phi||$. By letting N tend to infinity, we conclude that

$$\sum_{n=1}^{\infty} |a_n| \le \|\phi\|$$

So $a = (a_n) \in \ell^1$ with $||a||_1 \le ||\phi||$.

For any $y = (y_n) \in c_0$, we observe that

$$\left\|y - \sum_{n=1}^{N} y_n e_n\right\|_{\infty} = \sup_{n>N} |y_n|,$$

which converges to 0 as $N \to \infty$, because $\lim_n y_n = 0$. So

$$y = \sum_{n=1}^{\infty} y_n e_n$$

which convergence in norm. As ϕ is bounded and hence continuous,

$$\phi(y) = \sum_{n=1}^{\infty} \phi(y_n e_n) = \sum_{n=1}^{\infty} y_n a_n = \phi_a(y).$$

So $\phi_a = \phi$, and so the map $\ell^1 \to c_0^*$ is surjective. Notice also that $\|\phi\| = \|\phi_a\| \le \|a\|_1 \le \|\phi\|$, so we have equality throughout. Hence our map $\ell^1 \to c_0^*$ is an isometry, and hence injective, and so bijective.

Question 7: Recall that ℓ^{∞} is the space of all bounded scalar sequences (x_n) with the norm $\|\cdot\|_{\infty}$. Show that $(\ell^1)^* = \ell^{\infty}$.

Answer: For $u = (u_n) \in \ell^{\infty}$ define $\phi_u : \ell^1 \to \mathbb{K}$ by

$$\phi_u(x) = \sum_{n=1}^{\infty} x_n u_n \qquad (x = (x_n) \in \ell^1).$$

This is well-defined, as

$$\left|\sum_{n=1}^{\infty} x_n u_n\right| \le \|u\|_{\infty} \|x\|_1,$$

and so we see that $\phi_u \in (\ell^1)^*$ with $\|\phi_u\| \leq \|u\|_{\infty}$.

Let $\phi \in (\ell^1)^*$, let $e_n \in \ell^1$ be the usual sequence which is zero, apart from a one in the *n*th place. Let $u_n = \phi(e_n)$, so that $|u_n| \leq ||\phi|| ||e_n|| = ||\phi||$. Hence $u = (u_n) \in \ell^\infty$ with $||u||_\infty \leq ||\phi||$. Let $x = (x_n) \in \ell^1$ and observe that

$$\lim_{N} \left\| x - \sum_{n=1}^{N} x_n e_n \right\|_1 = \lim_{N} \sum_{n=N+1}^{\infty} |x_n| = 0,$$

as $\sum_{n} |x_n|$ converges. Thus

$$\phi(x) = \lim_{N} \sum_{n=1}^{N} \phi(x_n e_n) = \lim_{N} \sum_{n=1}^{N} x_n u_n = \phi_u(x).$$

As $x \in \ell^1$ was arbitrary, we conclude that $\phi = \phi_u$ and that

$$\|\phi_u\| \le \|u\|_{\infty} \le \|\phi\| = \|\phi_u\|.$$

Hence the map $\ell^{\infty} \to (\ell^1)^*; u \mapsto \phi_u$ is an isometric isomorphism of Banach spaces, as required.

Linear Analysis I: Worked Solutions 3

Answer 1: Let $\phi \in E^*$ with $\|\phi\| \le 1$ and $\phi(y) = 0$ for all $y \in F$. Then, for $y \in F$,

$$|\phi(x_0)| = |\phi(x_0 - y)| \le ||\phi|| ||x_0 - y|| \le ||x_0 - y||$$

Hence taking the infimum, we conclude that

$$|\phi(x_0)| \le d(x_0, F),$$

as required. We define $\psi : \lim\{F, x_0\} \to \mathbb{K}$ by

$$\psi(\lambda x_0 + y) = \lambda d(x_0, F) \qquad (\lambda \in \mathbb{K}, y \in F).$$

If $x_0 \in F$, then $d(x_0, F) = 0$, so $\psi = 0$. Otherwise, if $\lambda x_0 + y = \mu x_0 + z$ then $(\lambda - \mu)x_0 = z - y \in F$, and so $\lambda = \mu$, so we can conclude that ψ is well-defined. Obviously ψ is linear. Let $\lambda \in \mathbb{K}$ and $y \in F$. If $\lambda = 0$ then $\psi(\lambda x_0 + y) = 0 \leq ||\lambda x_0 + y||$. Otherwise, we have that

$$d(x_0, F) \le ||x_0 + \lambda^{-1}y|| = |\lambda|^{-1} ||\lambda x_0 + y||,$$

and so $|\lambda|d(x_0, F) = |\psi(\lambda x_0 + y)| \le ||\lambda x_0 + y||$. Hence $||\psi|| \le 1$. By the Hahn-Banach theorem, there exists $\phi \in E^*$ extending ψ with $||\phi|| \le ||\psi|| \le 1$. As $\phi(x_0) = \psi(x_0) = d(x_0, F)$, we are done.

Question 2: Let $1 \le p < \infty$, and define a map $S : \ell^p \to \ell^p$ by setting S(x) = y where, if $x = (x_1, x_2, x_3, \cdots)$, then $y = (0, x_1, x_2, x_3, \cdots)$. Show that S is linear, bounded, and satisfies ||S|| = 1.

Show that there is a bounded linear map $T \in \mathcal{B}(\ell^p)$ such that $T \circ S$ is the identity on ℓ^p . Is $S \circ T$ the identity? Is S invertible in $\mathcal{B}(\ell^p)$?

Answer: Clearly S is linear, and observe that

$$||S(x)||_p = \left(0^p + \sum_{n=1}^{\infty} |x_n|^p\right)^{1/p} = ||x||_p \qquad (x \in \ell^p),$$

so that S is even an isometry.

Let T be the "left-shift", that is, T(x) = y where is $x = (x_1, x_2, x_3, \cdots)$ then $y = (x_2, x_3, x_4, \cdots)$. Similarly T is linear, bounded and satisfies $||T|| \leq 1$. Clearly $TS = I_{\ell^p}$ the identity on ℓ^p . However, $ST(x_1, x_2, \cdots) = (0, x_2, x_3, \cdots)$, so that ST is not the identity.

Suppose that S is invertible with inverse S^{-1} . Then $S^{-1} = I_{\ell p}S^{-1} = TSS^{-1} = TI_{\ell p} = T$, but then $ST = SS^{-1} = I_{\ell p}$, a contradiction.

Question 3: Let X be a compact topological space (remember that we always assume the Hausdorff condition). Fix $f \in C_{\mathbb{K}}(X)$, and define $M_f : C_{\mathbb{K}}(X) \to C_{\mathbb{K}}(X)$ by setting $M_f(g) = gf$ for $g \in C_{\mathbb{K}}(X)$. Show that $M_f \in \mathcal{B}(C_{\mathbb{K}}(X))$, and calculate $||M_f||$. Answer: Clearly M_f is linear, and for $g \in C_{\mathbb{K}}(X)$,

$$||M_f(g)||_{\infty} = ||fg||_{\infty} = \sup_{x \in X} |f(x)||g(x)| \le ||f||_{\infty} \sup_{x \in X} |g(x)| = ||f||_{\infty} ||g||_{\infty}.$$

Hence $||M_f|| \leq ||f||_{\infty}$. The constant function 1 is in $C_{\mathbb{K}}(X)$, with $||1||_{\infty} = 1$, and we see that $M_f(1) = f$, so that $||M_f|| \geq ||M_f(1)||_{\infty} = ||f||_{\infty}$. Hence $||M_f|| = ||f||_{\infty}$.

Question 4: Show that if

$$\inf \{ |f(x)| : x \in X \} > 0,$$

then there exists $h \in C_{\mathbb{K}}(X)$ with $M_h M_f = M_f M_h$ being the identity on $C_{\mathbb{K}}(X)$. If inf $\{|f(x)| : x \in X\} = 0$, then is M_f invertible? **Answer:** Let $h = f^{-1}$, so for $g \in C_{\mathbb{K}}(X)$,

$$M_h M_f(g) = M_h(fg) = fhg = M_f(hg) = M_f M_h(g).$$

Hence $M_h M_f = M_f M_h$ and as $fhg = ff^{-1}g = g$, $M_h M_f$ is the identity on $C_{\mathbb{K}}(X)$.

Suppose now that $\inf \{ |f(x)| : x \in X \} = 0$, and yet $T = M_f^{-1}$ exists. Let h = T(1), so that

$$fh = M_f(h) = M_f T(1) = M_f M_f^{-1}(1) = 1,$$

and so f(x)h(x) = 1 for all $x \in X$, that is, $h(x) = f(x)^{-1}$. Hence

$$\inf\left\{|f(x)|: x \in X\right\} = \sup\left\{|f(x)|^{-1}: x \in X\right\}^{-1} = \|h\|_{\infty}^{-1} > 0,$$

a contradiction.

Aside: Upon re-reading this, I realise that I have not used that X is compact. As X is compact, |f| attains its minimum, so either f is bounded below, or there exists $x \in X$ with f(x) = 0. This would make the proof a little easier.

Question 5: Let *E* and *F* be normed spaces, and let $T \in \mathcal{B}(E, F)$. Show that the following are equivalent:

- 1. T is invertible;
- 2. T is surjective, and there exists M > 0 such that, for all $x \in E$,

$$M^{-1}||x|| \le ||T(x)|| \le M||x||.$$

Answer: If (1) holds, then first note that for $y \in F$, then $T(T^{-1}(y)) = y$, so that T is surjective. For $x \in E$,

$$||x|| = ||T^{-1}T(x)|| \le ||T^{-1}|| ||T(x)|| \le ||T^{-1}|| ||T|| ||x||,$$

so that (2) holds with $M = \max\{\|T\|, \|T^{-1}\|\}.$

If (2) holds, then suppose that T(x) = T(y) for $x, y \in E$. Then T(x - y) = 0, so that $M^{-1}||x - y|| \le ||T(x - y)|| = 0$, so that ||x - y|| = 0, that is, x = y. Hence T is injective, and surjective, and so T^{-1} exists. By basic linear algebra, T^{-1} is linear. Then, for $y \in F$, let $x \in E$ be such that T(x) = y, so that

$$||T^{-1}(y)|| = ||T^{-1}(T(x))|| = ||x|| \le M ||T(x)|| = M ||y||.$$

Hence T^{-1} is bounded, with $||T^{-1}|| \leq M$.

Question 6: We define a *measure space* to be a triple (X, \mathcal{R}, μ) where X is a set, \mathcal{R} is a σ -algebra on X and μ is a measure defined on \mathcal{R} . Let $Y \in \mathcal{R}$, and define \mathcal{R}_Y by

$$\mathcal{R}_Y = \{ S \cap Y : S \in \mathcal{R} \}.$$

Show that \mathcal{R}_Y is a σ -algebra on Y. Define $\mu_Y : \mathcal{R}_Y \to [0, \infty]$ by $\mu_Y(S) = \mu(S \cap Y)$ for $S \in \mathcal{R}_Y$. Show that μ_Y is a measure on \mathcal{R}_Y .

Answer: Clearly $\emptyset \in \mathcal{R}_Y$, and as $Y = X \cap Y$, we see that $Y \in \mathcal{R}_Y$. Let $S \cap Y, T \cap Y \in \mathcal{R}_Y$ so that $(S \cap Y) \setminus (T \cap Y) = (S \setminus T) \cap Y \in \mathcal{R}_Y$ as $S \setminus T \in \mathcal{R}$. If (T_n) is a sequence in \mathcal{R}_Y , say $T_n = S_n \cap Y$ for some sequence (S_n) in \mathcal{R} . Then $S = \bigcup_n S_n \in \mathcal{R}$, so that $\bigcup_n T_n = S \cap Y \in \mathcal{R}_Y$. Hence \mathcal{R}_Y is a σ -algebra on Y (notice that we didn't use that $Y \in \mathcal{R}$).

As $Y \in \mathcal{R}$, for $S \in \mathcal{R}$, we have that $S \cap Y \in \mathcal{R}$, so that $\mu(S \cap Y)$ is defined. Clearly $\mu_Y(\emptyset) = 0$, and if $(S_n \cap Y)$ is a sequence of pairwise-disjoint sets in Y, then

$$\mu_Y\Big(\bigcup_n (S_n \cap Y)\Big) = \mu\Big(\bigcup_n (S_n \cap Y)\Big) = \sum_n \mu(S_n \cap Y) = \sum_n \mu_Y(S_n \cap Y),$$

so that μ_Y is a measure.

Question 7: Let (X, \mathcal{R}, μ) be a measure space. Define $\overline{\mathcal{R}}$ to be the collection of sets $E \cup N$ where $E \in \mathcal{R}$, and $N \subseteq X$ is a null set. Show that:

- 1. If (N_n) is a sequence of null sets, then $\bigcup_n N_n$ is null.
- 2. If $E \cup N \in \overline{\mathcal{R}}$, and M is null, then $(E \cup N) \setminus M \in \overline{\mathcal{R}}$.

Show that $\overline{\mathcal{R}}$ is a σ -algebra.

Answer: For (1), as each N_n is null, there exists $F_n \in \mathcal{R}$ with $N_n \subseteq F_n$ and $\mu(F_n) = 0$. Let $F = \bigcup_n F_n$ so that $\bigcup_n N_n \subseteq F$, and $\mu(F) \leq \sum_n \mu(F_n) = 0$, as μ is a measure.

For (2), notice that

$$(E \cup N) \setminus M = (E \setminus M) \cup (N \setminus M)$$

Clearly $N \setminus M$ is null. As M is null, $M \subseteq F$ for some $F \in \mathcal{R}$ with $\mu(F) = 0$. Then

$$E \setminus M = (E \setminus F) \cup (F \setminus M),$$

so as $F \setminus M \subseteq F$, we have that $F \setminus M$ is null. By (1), we see that $(F \setminus M) \cup (N \setminus M)$ is null. As $E \setminus F \in \mathcal{R}$, we conclude that $E \setminus M \in \mathcal{R}$, as required.

Clearly $\emptyset, X \in \overline{\mathcal{R}}$. By (1), if $(E_n \cup N_n)$ is a sequence in $\overline{\mathcal{R}}$, then $\bigcup_n (E_n \cup N_n) =$ $\bigcup_n E_n \cup \bigcup_n N_n \in \overline{\mathcal{R}}$. Let $E_1 \cup N_1, E_2 \cup N_2 \in \overline{\mathcal{R}}$, so that

$$(E_1 \cup N_1) \setminus (E_2 \cup N_2) = ((E_1 \cup N_1) \setminus E_2) \setminus N_2.$$

By (2), if $(E_1 \cup N_1) \setminus E_2 \in \overline{\mathcal{R}}$, then $(E_1 \cup N_1) \setminus (E_2 \cup N_2) \in \overline{\mathcal{R}}$. Notice that

$$(E_1 \cup N_1) \setminus E_2 = (E_1 \setminus E_2) \cup (N_1 \setminus E_2).$$

Here $E_1 \setminus E_2 \in \mathcal{R}$ and $N_1 \setminus E_2 \subseteq N_1$ is null, so we are done.

Question continued: Define $\overline{\mu}: \overline{\mathcal{R}} \to [0,\infty]$ by $\overline{\mu}(E \cap N) = \mu(E)$ for $E \in \mathcal{R}$ and any null set N. Show that $\overline{\mu}$ is a measure on $\overline{\mathcal{R}}$.

Answer: First we should check that $\overline{\mu}$ is well-defined. That is, suppose that $E \cup N = E' \cup$ N' for some $E, E' \in \mathcal{R}$ and null sets N and N'. Then we can find $F, F' \in \mathcal{R}$ with $N \subseteq F$, $N' \subseteq F'$ and $\mu(F) = \mu(F') = 0$. Then $\mu(E) \leq \mu(E \cup F) \leq \mu(E) + \mu(F) = \mu(E)$, so that $\mu(E \cup F) = \mu(E)$. Similarly $\mu(E' \cup F') = \mu(E')$. Finally, as $E \subseteq E \cup N = E' \cup N' \subseteq E' \cup F'$, we see that $\mu(E) \leq \mu(E' \cup F') = \mu(E')$. By symmetry, also $\mu(E') \leq \mu(E)$, so we conclude that $\mu(E) = \mu(E')$. Hence $\overline{\mu}$ is well-defined.

Clearly $\overline{\mu}(\emptyset) = 0$. Let (A_n) be a sequence of pairwise disjoint sets in $\overline{\mathcal{R}}$, say $A_n =$ $E_n \cup N_n$, for each n, where $E_n \in \mathcal{R}$ and N_n is null. Then (E_n) is pairwise disjoint. Observe that

$$\bigcup_{n} A_n = \bigcup_{n} E_n \cup \bigcup_{n} N_n,$$

where as above, $N = \bigcup_n N_n$ is null. Thus

$$\overline{\mu}\Big(\bigcup A_n\Big) = \mu\Big(\bigcup E_n\Big) = \sum_n \mu(E_n) = \sum_n \overline{\mu}(E_n \cup N_n) = \sum_n \overline{\mu}(A_n).$$

So $\overline{\mu}$ is a measure.

Bonus Question 8: For $x, y \in E$ and $t \in \mathbb{K}$, we have, for $f \in E^*$,

$$J(x+ty)(f) = f(x+ty) = f(x) + tf(y) = J(x)(f) + tJ(y)(f).$$

Thus J(x + ty) = J(x) + tJ(y), so that J is linear. For $x \in E$,

$$|J(x)|| = \sup\{|J(x)(f)| : f \in E^*, ||f|| \le 1\} = \sup\{|f(x)| : f \in E^*, ||f|| \le 1\} = ||x||,$$

by using Corollary ??? from lectures.

Bonus Question 9: The isometric isomorphism from ℓ^q to $(\ell^p)^*$ is $u \mapsto \phi_u$ where, for $u = (u_n) \in \ell^q$, we have that

$$\phi_u: \ell^p \to \mathbb{K}, \quad \phi_u((x_n)) = \sum_{n=1}^{\infty} x_n u_n.$$

Let this be $\phi: \ell^q \to (\ell^p)^*$. Similarly, let $\psi: \ell^p \to (\ell^q)^*$.

We need to show that J is surjective. Let $F \in (\ell^p)^{**}$. Define $g \in (\ell^q)^*$ by

$$g(\phi^{-1}(f)) = F(f) \qquad (f \in (\ell^p)^*).$$

An equivalent (and less scary) way to define this is as

$$g(u) = F(\phi_u) \qquad (u \in \ell^q).$$

Clearly g is linear, as both F and ϕ are. Also, g is bounded, as $||g|| \leq ||F|| ||\phi|| = ||F||$. So $g \in (\ell^q)^*$ as required.

Let $x = (x_n) \in \ell^p$ with $\psi_x = g$. Let $f \in (\ell^p)^*$, and let $u = (u_n) \in \ell^q$ with $\phi_u = f$. Then

$$J(x)(f) = f(x) = \phi_u(x) = \sum_{n=1}^{\infty} x_n u_n = \psi_x(u) = g(u) = F(\phi_u) = F(f).$$

As f was arbitrary, we conclude that J(x) = F. Thus J is surjective.

Linear Analysis I: Worked Solutions 4

Question 1: Let *E* be a Banach space, and let $(x_n)_{n=1}^{\infty}$ be a sequence of vectors in *E* such that $\sum_{n=1}^{\infty} ||x_n|| < \infty$. Show that $\sum_{n=1}^{\infty} x_n$ converges. **Answer:** For N < M, we see that by the triangle inequality

$$\left\|\sum_{n=N}^{M} x_n\right\| \le \sum_{n=N}^{M} \|x_n\| \le \sum_{n=N}^{\infty} \|x_n\|,$$

which is small if N is large, as $\sum_{n} ||x_n|| < \infty$. So the sequence of partial sums

$$\left(\sum_{n=1}^{N} x_n\right)_{N \ge 1}$$

is a Cauchy sequence and hence converges, as E is a Banach space.

Question continued: Let (z_n) be a Cauchy sequence in E. Show that we can find $1 = n(1) < n(2) < \cdots$ such that, if

$$x_1 = z_1, \quad x_k = z_{n(k)} - z_{n(k-1)} \qquad (k \ge 2)$$

then $\sum_{n} ||x_n|| < \infty$. What is $\sum_{n=1}^{N} x_n$? Conclude that if $z = \sum_{n} x_n$ that z is the limit of the Cauchy sequence (z_n) .

Answer: As (z_n) is a Cauchy sequence, for each m we can find N_m such that

$$||z_k - z_l|| < 2^{-m}$$
 $(k, l \ge N_m).$

Set n(1) = 1 as required, and then choose n(k) arbitrarily, with the condition that $n(k) \ge N_k$ for all k, and $n(1) < n(2) < \cdots$. Then, as $x_k = z_{n(k)} - z_{n(k-1)}$ and $n(k) > n(k-1) \ge N_{k-1}$, we see that $||x_k|| < 2^{-(k-1)}$. Thus

$$\sum_{k} \|x_{k}\| = \|x_{1}\| + \sum_{k \ge 2} \|x_{k}\| \le \|z_{1}\| + \sum_{k \ge 2} 2^{1-k} = 1 + \|z_{1}\| < \infty.$$

Notice also that

$$\sum_{n=1}^{N} x_n = z_1 + (z_{n(2)} - z_1) + (z_{n(3)} - z_{n(2)}) + \dots + (z_{n(N)} - z_{n(N-1)}) = z_{n(N)}.$$

So if $z = \sum_{n} x_n$ then $\lim_k z_{n(k)} = z$, so $(z_{n(k)})_k$ converges. This implies that (z_n) converges, as required.

Question 2: Let X be a compact (Hausdorff) space. Let $\phi : X \to X$ be a continuous map. Show that we can define a linear map $T : C_{\mathbb{R}}(X) \to C_{\mathbb{R}}(X)$ by

$$T(f) = g$$
 where $g(x) = f(\phi(x))$.

Show that T is bounded, and find ||T||.

Proof: As ϕ is continuous, for $f : X \to \mathbb{R}$ continuous, $x \mapsto f(\phi(x))$ is continuous. So $T(f) \in C_{\mathbb{R}}(X)$.

We write $T(f)(x) = f(\phi(x))$ for $x \in X$, so that for $f_1, f_2 \in C_{\mathbb{R}}(X)$ and $\lambda \in \mathbb{R}$, $T(f_1 + \lambda f_2)(x) = f_1(\phi(x)) + \lambda f_2(\phi(x)) = T(f_1)(x) + \lambda T(f_2)(x)$. So T is linear. Then potice that

Then notice that

$$||T(f)||_{\infty} = \sup_{x \in X} |T(f)(x)| = \sup_{x} |f(\phi(x))| \le \sup_{x} |f(x)| = ||f||_{\infty},$$

so T is bounded with $||T|| \leq 1$. As T(1) = 1, where 1 is the constant function, we see that ||T|| = 1.

Bonus Question 3: With notation as in Question 2, now let X = [0, 1] and let ϕ be defined by

$$\phi(t) = \frac{1}{2} + \frac{t - \frac{1}{2}}{2} \qquad (0 \le t \le 1).$$

So $\phi(1/2) = 1/2$, $\phi(0) = 1/4$ and $\phi(1) = 3/4$. Define T as in Question 2. Let $T^2 = TT, T^3 = TTT$ and so forth.

Show that for each $f \in C_{\mathbb{R}}([0,1])$,

$$\lim_{n \to \infty} T^n(f) = g$$

where g(t) = f(1/2) for all $t \in [0, 1]$. That is, g is a constant function.

Proof: Motivated by the contractive mapping theorem, we look at the iterates of ϕ . Clearly ϕ maps [0,1] onto [1/4,3/4]. Then ϕ maps [1/4,3/4] onto [1/2-1/8,1/2+1/8] = [3/8,5/8], so that ϕ^2 maps [0,1] onto [3/8,5/8]. We can show (by induction) that ϕ^n maps [0,1] onto $[1/2 - 2^{-1-n}, 1/2 + 2^{-1-n}]$. For $f \in C_{\mathbb{R}}([0,1])$, as f is continuous at 1/2, for each $\epsilon > 0$ there exists N so that, for $n \ge N$, if $|t-1/2| < 2^{-1-n}$ then $|f(t) - f(1/2)| < \epsilon$. Thus $|f(\phi^n(t)) - f(1/2)| < \epsilon$ for any $t \in [0,1]$, that is, $||T^n(f) - g||_{\infty} < \epsilon$. As this was true for all $n \ge N$, we see that $T^n(f) \to g$, as required.

Question continued: Is it true that (T^n) converges in the Banach space $\mathcal{B}(C_{\mathbb{R}}([0,1]))$? **Proof:** Suppose that $T^n \to S$ in norm. Then, for each $f \in C_{\mathbb{R}}([0,1])$, we have that $T^n(f) \to S(f)$, so S(f)(t) = f(1/2) for all $t \in [0,1]$. That is, S maps f to the constant function $t \mapsto f(1/2)$.

Hopefully, our intuition from the previous section is that the more f oscillates, the slower the convergence of $T^n(f)$ is. Let N > 0 and let $f(t) = \sin(4\pi Nt)$ for $t \in [0, 1]$. Then

$$f(1/2) = \sin(2\pi N) = 0, \quad f(1/2 + 1/8N) = \sin(2\pi N + \pi/2) = \sin(\pi/2) = 1.$$

Hence $T^n(f) \to 0$, so S(f) = 0. Thus, as ϕ^n maps [0, 1] onto $[1/2 - 2^{-1-n}, 1/2 + 2^{-1-n}]$, if $1/8N \le 2^{-1-n}$, then $||T^n(f) - 0||_{\infty} = 1$. But $||f||_{\infty} = 1$, so choose N with $1/8N \le 2^{-1-n}$ to see that

$$||T^n - S|| \ge ||T^n(f) - S(f)||_{\infty} = 1.$$

So (T^n) does not converge to S.

Comment: Saying that $T^n(f)$ converges for each f is saying that (T^n) converges in the strong operator topology. Clearly norm convergence implies strong operator convergence, and we have just seen that the converse doesn't hold.

Question 4: Let (X, \mathcal{R}, μ) be a measure space. Let $f : X \to \mathbb{R}$ be a simple function (see the definition from the lectures). Show carefully that f is measurable, and that f takes finitely many values.

Proof: Let $f = \sum_{k=1}^{n} t_k \chi_{A_k}$ where (A_k) is a pairwise disjoint family in \mathcal{R} and $(t_k) \subseteq \mathbb{R}$. Let $A_0 = X \setminus (A_1 \cup \cdots \cup A_n) \in \mathcal{R}$. Let $U \subseteq \mathbb{R}$ be open, and define $E \subseteq \{0, 1, \cdots, n\}$ by $0 \in E$ if and only if $0 \in U$, and for $1 \leq k \leq n, k \in E$ if and only if $t_k \in U$. You should hopefully see that

$$f^{-1}(U) = \bigcup_{k \in E} A_k \in \mathcal{R}.$$

So f is measurable.

Clearly f only takes the values $\{t_1, t_2, \cdots, t_k\}$, and possibly also 0 if $A_0 \neq \emptyset$.

Question continued: Conversely, show that if $f : X \to \mathbb{R}$ is measurable and takes finitely many values, then f is a simple function.

Proof: Suppose that f takes only the values $\{t_1, \dots, t_n\}$. Let $A_k = f^{-1}(\{t_k\})$, for $1 \le k \le n$. As $\{t_k\}$ is closed in \mathbb{R} , the set $\mathbb{R} \setminus \{t_k\}$ is open, and so

$$X \setminus A_k = f^{-1}(\mathbb{R} \setminus \{t_k\}) \in \mathcal{R},$$

so also $A_k \in \mathcal{R}$. (Remember that taking inverse images commutes with unions, intersections and set differences). By definition, (A_k) is a pairwise disjoint family, and so clearly $f = \sum_{k=1}^{n} t_k \chi_{A_k}$ is a simple function.

Question continued: In particular, show that if $(A_k)_{k=1}^n$ is any collection of subsets of \mathcal{R} , and $(t_k)_{k=1}^n \subseteq \mathbb{R}$, then

$$f = \sum_{k=1}^{n} t_k \chi_{A_k}$$

is simple.

Proof: Just observe that f can only possibly take the values

$$\{0, t_1, \cdots, t_n, t_1 + t_2, \cdots, t_1 + t_n, t_2 + t_3, \cdots, t_2 + t_n, \cdots, t_1 + \cdots + t_n\},\$$

which is a finite set.

Question 5: Let X be a set, let $\mathcal{R} = 2^X$, and let μ be the *counting measure* on \mathcal{R} , so $\mu(A)$ is the size of A, if A is finite, and is ∞ otherwise. Which functions $f: X \to \mathbb{R}$ are measurable?

Answer: As every subset of X is in \mathcal{R} , we see that any function $f: X \to \mathbb{R}$ is measurable. **Question Continued:** Let $f: X \to [0, \infty)$ be a simple function. Show that f is integrable if and only if f is zero except at finitely many points of X. Conversely, show that if $f: X \to [0, \infty)$ is any function which is zero except at finitely many points, then f is an integrable, simple function.

Answer: Write a simple function $f: X \to [0, \infty)$ as

$$f = \sum_{k=1}^{n} t_k \chi_{A_k},$$

where we may assume the (A_k) are pairwise disjoint. Then f is integrable if and only if $\mu(A_k) = \infty$ only when $t_k = 0$. As μ is counting measure, we have that $\mu(A_k) = \infty$ if and only if A_k is infinite. Hence f is non-zero only on a finite set.

Conversely, if $f: X \to [0, \infty)$ is non-zero only on a finite set, say A, then we can write

$$f = \sum_{x \in A} f(x)\chi_{\{x\}},$$

a simple function.

Question 6: Let (X, \mathcal{R}, μ) be a measure space. A function $f : X \to \mathbb{R}$ is *measurable* if $f^{-1}(U) \in \mathcal{R}$ for any open set $U \subseteq \mathbb{R}$. Let $f : X \to \mathbb{R}$ be a function such that $f^{-1}((x, y)) \in \mathcal{R}$ for any $x, y \in \mathbb{R}$ with x < y. By thinking about the proof of Corollary 2.7, show that f is measurable.

Answer: Let $D = \{(a, b) : a, b \in \mathbb{Q}, a < b\}$, a countable set of open sets in \mathbb{R} . Let $U \subseteq \mathbb{R}$ be open, so for $x \in U$, there exists $(a, b) \in D$ with $x \in (a, b)$ and $(a, b) \subseteq U$. Let $D_U = \{(a, b) \in D : (a, b) \subseteq U\}$, so that $U = \bigcup D_U$. Hence

$$f^{-1}(U) = \bigcup f^{-1}(D_U) \in \mathcal{R},$$

as D_U is countable and $f^{-1}(a,b) \in \mathcal{R}$ for each $(a,b) \in D$. Hence f is measurable.

Question 7: We work with notation as in Question 5. Which measurable functions $f: X \to [0, \infty)$ are integrable? What about functions $f: X \to \mathbb{R}$? You might find it easier to assume that $X = \mathbb{N}$ here.

Answer: Suppose that $f: X \to [0, \infty)$ is integrable. Let $A \subseteq X$ be a finite set, and let $f_A = f\chi_A$. Then f_A is non-zero only on A, so f_A is a simple function, and is integrable. By definition,

$$\sum_{x \in A} f(x) = \sum_{x \in A} f(x)\mu(\{x\}) = \int_X f_A \ d\mu \le \int_X f \ d\mu < \infty.$$

Hence we see that

$$\sup_{A \subseteq X \text{ finite}} \sum_{x \in A} f(x) < \infty.$$

(This was perhaps a little unfair of me. For positive functions on an infinite, possibly uncountable, set, we define $\sum_{x \in X} f(x)$ to be the supremum. I doubt you have seen this before). Conversely, if this supremum is finite, then it is easy to check, by using the previous bit of the question, that if $g: X \to [0, \infty)$ is simple and integrable, with $g \leq f$, then $\int_X g \ d\mu$ is less than the supremum, and hence f is integrable.

By definition, $f : X \to \mathbb{R}$ is integrable if and only if f_+ and f_- are, which is if and only if |f| is integrable. That is, if

$$\sup_{A \subseteq X \text{ finite}} \sum_{x \in A} |f(x)| < \infty.$$

Question Continued: Show that if $X = \mathbb{N}$, then we can identify ℓ^1 with the space of integrable functions $f : X \to \mathbb{R}$.

Answer: $f : \mathbb{N} \to \mathbb{R}$ is integrable if and only if

$$\sup_{A \subseteq \mathbb{N} \text{ finite}} \sum_{n \in A} |f(n)| < \infty.$$

We *claim* that this is equivalent to $\sum_{n=1}^{\infty} |f(n)| < \infty$, that is, $f \in \ell^1$. Let us check this. Clearly, we have that

$$\sum_{n=1}^{\infty} |f(n)| = \sup_{N} \sum_{n=1}^{N} |f(n)| \le \sup_{A \subseteq \mathbb{N} \text{ finite}} \sum_{n \in A} |f(n)|.$$

Conversely, let $A \subseteq \mathbb{N}$ be finite, and let $N \leq \max(A)$, so that

$$\sum_{n \in A} |f(n)| \le \sum_{n=1}^{N} |f(n)| \le \sum_{n=1}^{\infty} |f(n)|,$$

and so

$$\sup_{A \subseteq \mathbb{N} \text{ finite}} \sum_{n \in A} |f(n)| \le \sum_{n=1}^{\infty} |f(n)|.$$

Bonus Question: Let (X, \mathcal{R}, μ) be a measure space. Let $f, g : X \to \mathbb{R}$ be measurable. Show that f + g is measurable.

Proof: We follow the hint; let $a \in \mathbb{R}$, and we try to prove that

$$(f+g)^{-1}((a,\infty)) = \{x \in X : a < f(x) + g(x)\} = \bigcup_{q \in \mathbb{Q}} \{x \in X : q < f(x) \text{ and } a - q < g(x)\}.$$

Firstly, let $x \in X$ with a < f(x) + g(x). We can find $\epsilon > 0$ with $a + \epsilon < f(x) + g(x)$. Then pick $q \in \mathbb{Q}$ with $q < f(x) < q + \epsilon$ (which we can do as \mathbb{Q} is dense in \mathbb{R}). Then $g(x) > a + \epsilon - f(x) > a + \epsilon - q - \epsilon = a - q$, as required to show that x is in the left-hand side. Conversely, if $x \in X$ and $q \in \mathbb{Q}$ with q < f(x) and a - q < g(x), then f(x) + g(x) > q + a - q = a, as required to show that x is in the right-hand side. So we have proved the equality.

Thus

$$(f+g)^{-1}((a,\infty)) = \bigcup_{q \in \mathbb{Q}} f^{-1}((q,\infty)) \cap g^{-1}((a-q,\infty)).$$

For each $q \in \mathbb{Q}$, as f and g are measurable, $f^{-1}((q,\infty)) \in \mathcal{R}$ and $g^{-1}((a-q,\infty)) \in \mathcal{R}$. So $f^{-1}((q,\infty)) \cap g^{-1}((a-q,\infty)) \in \mathcal{R}$. As \mathbb{Q} is countable, we conclude $(f+g)^{-1}((a,\infty)) \in \mathcal{R}$.

Exactly the same sort of argument will show that $(f + g)^{-1}((-\infty, a) \in \mathcal{R}$ for each $a \in \mathbb{R}$. So also

$$(f+g)^{-1}((a,b)) = (f+g)^{-1}((a,\infty)) \cap (f+g)^{-1}((-\infty,b) \in \mathcal{R},$$

for a < b. Finally, let $U \subseteq \mathbb{R}$ be open, so as in the proof of Corollary 2.7 we can write U as the *countable* union of open intervals. It follows that $f^{-1}(U) \in \mathcal{R}$, as required.

Question continued: Show that $\{x \in X : f(x) \ge g(x)\} \in \mathcal{R}$. **Proof:** If f measurable and $C \subseteq \mathbb{R}$ is closed, then

$$f^{-1}(C) = f^{-1}(\mathbb{R} \setminus (\mathbb{R} \setminus C)) = X \setminus f^{-1}(\mathbb{R} \setminus C) \in \mathcal{R},$$

as $\mathbb{R} \setminus C$ is open, and so $f^{-1}(\mathbb{R} \setminus C) \in \mathcal{R}$.

We follow the hint:

$$\{x \in X : f(x) \ge g(x)\} = \bigcap_{q \in \mathbb{Q}, q > 0} \bigcup_{r \in \mathbb{Q}} \{x \in X : f(x) > r > g(x) - q\}.$$

To prove this, first let $x \in X$ with $f(x) \ge g(x)$. Then, for every $q \in \mathbb{Q}$ with q > 0, we have that f(x) > g(x) - q, and so there exists $r \in \mathbb{Q}$ with f(x) > r > g(x) - q. So we have " \subseteq ". Conversely, suppose that for all $q \in \mathbb{Q}$ with q > 0, for some $r \in \mathbb{Q}$, we have that f(x) > r > g(x) - q. In particular, f(x) > g(x) - q for all q > 0 with $q \in \mathbb{Q}$, so that $f(x) \ge g(x)$. Hence we have equality, as claimed.

Now, for $q, r \in \mathbb{Q}$ with q > 0, we have that

$$\{x \in X : f(x) > r > g(x) - q\} = \{x \in X : f(x) > r\} \cap \{x \in X : r + q > g(x)\}\$$
$$= f^{-1}((r, \infty)) \cap g^{-1}((-\infty, r + q)) \in \mathcal{R}.$$

Hence, for $q \in \mathbb{Q}$ with q > 0, we have that

$$\bigcup_{r \in Q} \{x \in X : f(x) > r > g(x) - q\} \in \mathcal{R},$$

as this is a countable union. Similarly, by taking a countable intersection, we see that

$$\bigcap_{q \in \mathbb{Q}, q > 0} \bigcup_{r \in \mathbb{Q}} \{ x \in X : f(x) > r > g(x) - q \} \in \mathcal{R}.$$

So $\{x \in X : f(x) \ge g(x)\} \in \mathcal{R}$, as required.

Question continued: Show that fg is measurable.

Cheeky proof: Let Y be a topological space. We say that a map $f : X \to Y$ is *measurable* if $f^{-1}(U) \in \mathcal{R}$ for every open set $U \subseteq Y$. This generalises our definition for maps to \mathbb{R} .

Let $\alpha : X \to \mathbb{R}^2$ be the map $\alpha(x) = (f(x), g(x))$, and let $c : \mathbb{R}^2 \to \mathbb{R}$ be some continuous map. In particular, we can take c(t,s) = t + s or c(t,s) = ts, so that $c \circ \alpha = f + g$ or fg, respectively.

We first check that α is measurable. Firstly, let a < b and c < d, so that

$$\alpha^{-1}((a,b) \times (c,d)) = \{x : a < f(x) < b, c < g(x) < d\} = f^{-1}((a,b)) \cap g^{-1}((c,d)),$$

which is in \mathcal{R} , as f and g are measurable. Now we use our usual trick. Let $U \subseteq \mathbb{R}^2$ be open, and let $x \in U$. Then we can find rationals a, b, c, d with $x \in (a, b) \times (c, d) \subseteq U$. Hence

$$U = \bigcup_{a,b,c,d \in \mathbb{Q}, (a,b) \times (c,d) \subseteq U} (a,b) \times (c,d),$$

which is a countable union. Hence

$$\alpha^{-1}(U) = \bigcup_{a,b,c,d \in \mathbb{Q}, (a,b) \times (c,d) \subseteq U} \alpha^{-1}((a,b) \times (c,d)),$$

which is in \mathcal{R} .

Finally, consider $U \subseteq \mathbb{R}$ open. As c is continuous, $c^{-1}(U) \subseteq \mathbb{R}^2$ is open, and so $(c\alpha)^{-1} = \alpha^{-1}c^{-1}(U) \in \mathcal{R}$. Hence $c\alpha$ is measurable, as required.

Linear Analysis I: Worked Solutions 5

Question 1: Let (a_n) be a convergent sequence of positive reals. Prove that

$$\lim_{n} a_n = \limsup_{n} a_n = \liminf_{n} a_n$$

Let (a_n) be any sequence of positive reals. Show that

$$\liminf_{n} a_n \le \limsup_{n} a_n$$

where these may be $\pm \infty$. Show that if

$$\liminf_{n} a_n = \limsup_{n} a_n,$$

then (a_n) converges.

Answer: Let (a_n) be convergent, with limit a. For $\epsilon > 0$, there exists N_{ϵ} such that $|a_n - a| < \epsilon$ for $n \ge N_{\epsilon}$. Hence, for $m \ge N_{\epsilon}$,

$$a + \epsilon \ge \sup_{n \ge m} a_n \ge a - \epsilon, \quad a - \epsilon \le \inf_{n \ge m} a_n \le a + \epsilon,$$

which is enough to ensure that

$$\lim_{n} a_n = \limsup_{n} a_n = \liminf_{n} a_n.$$

Now let (a_n) be an arbitrary sequence in \mathbb{R} . Then, for all n,

$$\inf_{k \ge n} a_k \le \sup_{k \ge n} a_k,$$

and so, by taking the limit, $\liminf_n a_n \leq \limsup_n a_n$. Now suppose that $\liminf_n a_n = \limsup_n a_n$, which means that for all $\epsilon > 0$, there exists N_{ϵ} such that

$$\left|\inf_{n\geq N_{\epsilon}}a_{n} - \sup_{n\geq N_{\epsilon}}a_{n}\right| = \sup_{n\geq N_{\epsilon}}a_{n} - \inf_{n\geq N_{\epsilon}}a_{n} < \epsilon$$

This implies that $|a_n - a_m| < \epsilon$ for any $n, m \ge N_{\epsilon}$. Hence (a_n) is a Cauchy sequence, and hence converges.

Question 2: Use the monotone convergence theorem to evaluate $\int_{\mathbb{R}} f(x) d\mu(x)$ for the following.

1. $f(x) = e^{-|x|}$.

Answer: f is continuous and hence measurable. Let $f_n(x) = e^{-|x|}\chi_{[-n,n]}$, so that $f_n \uparrow f$, and hence by MCT

$$\int_{\mathbb{R}} f \, d\mu = \lim_{n \to \infty} \int_{\mathbb{R}} f_n \, d\mu = \lim_{n \to \infty} \int_{-n}^n e^{-|x|} \, dx$$
$$= \lim_{n \to \infty} \int_{-n}^0 e^x \, dx + \int_0^n e^{-x} \, dx = \lim_{n \to \infty} 2(1 - e^{-n}) = 2.$$

2. $f(x) = x^{-1/2} \chi_{(0,1]}$.

Answer: f is continuous on (0, 1] and zero elsewhere, so as (0, 1] is measurable, f is measurable (check this if you don't believe it!) Let $f_n(x) = x^{-1/2}\chi_{[1/n,1]}$, so that $f_n \uparrow f$, and hence by MCT

$$\int_{\mathbb{R}} f \, d\mu = \lim_{n \to \infty} \int_{\mathbb{R}} f_n \, d\mu = \lim_{n \to \infty} \int_{1/n}^1 x^{-1/2} \, dx$$
$$= \lim_{n \to \infty} \left[2x^{1/2} \right]_{x=1/n}^1 = \lim_{n \to \infty} 2 - 2/\sqrt{n} = 2$$

Similarly, establish that the following have finite integral.

1. $f(x) = e^{-x^2}$.

Answer: f is continuous, so measurable. Let $f_n(x) = e^{-x^2} \chi_{[-n,n]}$. Then $f_n \uparrow f$, and so by MCT

$$\int_{\mathbb{R}} f \, d\mu = \lim_{n \to \infty} \int_{\mathbb{R}} f_n \, d\mu = \lim_{n \to \infty} \int_{-n}^{n} e^{-x^2} \, dx = \lim_{n \to \infty} 2 \int_{0}^{n} e^{-x^2} \, dx$$
$$\leq \lim_{n \to \infty} 2 \int_{0}^{1} 1 \, dx + 2 \int_{1}^{n} e^{-x} \, dx = 2 + \lim_{n \to \infty} 2(e^{-1} - e^{-n}) = 2 + 2e^{-1}.$$

This uses that $-x^2 \leq -x$ for $x \geq 1$, and that $e^{-x^2} \leq 1$ for $x \in [0, 1]$.

2. $f(x) = x^{-2} \sin(x) \chi_{[\pi,\infty)}$.

Answer: f is the restriction of a continuous function to the measurable set $[\pi, \infty)$, and so f is measurable. Notice that $f(x) \ge 0$ if and only if $x < \pi$ or $\sin(x) \ge 0$, that is, if and only if $x < \pi$ or $2k\pi \le x \le (2k+1)\pi$ for some $k \in \mathbb{N}$. Hence let

$$A = (-\infty, \pi) \cup \bigcup_{k \in \mathbb{N}} [2k\pi, (2k+1)\pi],$$

so that

$$f_+ = f\chi_A, \qquad f_- = -f\chi_{\mathbb{R}\setminus A}$$

Then, by monotone convergence,

$$\int_{\mathbb{R}} f_{+} d\mu = \int_{A} f d\mu = \lim_{n \to \infty} \sum_{k=1}^{n} \int_{2k\pi}^{(2k+1)\pi} x^{-2} \sin(x) dx$$
$$\leq \lim_{n \to \infty} \sum_{k=1}^{n} \int_{2k\pi}^{(2k+1)\pi} x^{-2} dx = \lim_{n \to \infty} \sum_{k=1}^{n} \frac{1}{2k\pi} - \frac{1}{(2k+1)\pi}$$
$$= \lim_{n \to \infty} \sum_{k=1}^{n} \frac{\pi}{2k(2k+1)\pi^{2}} \leq \sum_{k=1}^{\infty} k^{-2} < \infty.$$

A similar argument applies to f_{-} .

Finally, show that the following are not Lebesgue integrable (that is, they have infinite integrals).

1. $f(x) = x^{-1}\chi_{[1,\infty)}$.

Answer: Let $f_n = x^{-1}\chi_{[1,n]}$, so $f_n \uparrow f$, and hence

$$\int_{\mathbb{R}} f \, d\mu = \lim_{n \to \infty} \int_{1}^{n} \frac{1}{x} \, dx = \lim_{n \to \infty} \log(n) = \infty.$$

2. $f(x) = \log(x)\chi_{[1,\infty)}$.

Answer: Let $f_n = \log(x)\chi_{[1,n]}$, so $f_n \uparrow f$, and hence

$$\int_{\mathbb{R}} f \ d\mu = \lim_{n \to \infty} \int_{1}^{n} \log(x) \ dx = \lim_{n \to \infty} n \log(n) - n + 1 = \infty.$$

Question 3: Recall that $f(x) = \sin(x)/x$ is a continuous function $\mathbb{R} \to \mathbb{R}$. This is not Lebesgue integrable, as f_+ and/or f_- do not have finite integral. Carefully prove this. Answer: Notice that

$$f(x) \ge 0 \Leftrightarrow \begin{cases} x \ge 0, 2k\pi \le x \le (2k+1)\pi \text{ for some } k \in \mathbb{N}, \\ x < 0, (2k+1)\pi \le x \le (2k+2)\pi \text{ for some } k \in \mathbb{Z}. \end{cases}$$

So by Monotone convergence,

$$\int_{\mathbb{R}} f_+ \ d\mu = \lim_{n \to \infty} \sum_{k=0}^n \int_{2k\pi}^{(2k+1)\pi} \frac{\sin(x)}{x} \ dx + \int_{(-2k-1)\pi}^{-2k\pi} \frac{\sin(x)}{x} \ dx.$$

Notice that

$$\left(2k+\frac{1}{4}\right)\pi \le x \le \left(2k+\frac{3}{4}\right)\pi \implies \sin(x) \ge \frac{1}{\sqrt{2}},$$

and so

$$\int_{\mathbb{R}} f_{+} d\mu \geq \sum_{k=0}^{\infty} \int_{(2k+1/4)\pi}^{(2k+3/4)\pi} \frac{1}{x\sqrt{2}} dx + \int_{(-2k-3/4)\pi}^{(-2k-1/4)\pi} \frac{1}{|x|\sqrt{2}} dx$$
$$\geq \frac{1}{\sqrt{2}} \sum_{k=0}^{\infty} \frac{\pi/2}{(2k+3/4)\pi} + \frac{\pi/2}{(2k+1/4)\pi} \geq \sqrt{2} \sum_{k=1}^{\infty} \frac{1}{k} = \infty.$$

It might be easier to see this if you draw a sketch!!

Question 4: For each n, let $f_n(x) = n^{3/2}x(1+n^2x^2)^{-1}$ for $x \in [0,1]$. By using the Dominated Convergence Theorem, find

$$\lim_n \int_0^1 f_n(x) \, dx.$$

Answer: For $0 < x \le 1$, consider the function

$$\theta_x : [1, \infty) \to [0, \infty), \quad t \mapsto \frac{1}{t^{-3/2} + t^{1/2} x^2},$$

which has a turning point at $\sqrt{3}/x$. We check that

$$\theta_x(1) = \frac{1}{1+x^2}, \quad \theta_x(\sqrt{3}/x) = \frac{1}{3^{-3/4}x^{3/2} + 3^{1/4}x^{3/2}} = \frac{1}{x^{3/2}(3^{-3/4} + 3^{1/4})},$$

and clearly $\theta_x(t) \to 0$ as $t \to \infty$. So the maximum of θ_x is $(x^{3/2}(3^{-3/4} + 3^{1/4}))^{-1}$. So if we define $q: [0, 1] \to [0, \infty)$ by q(0) = 0, and

$$g(x) = \sup_{n} f_n(x) = \sup_{n} \frac{n^{3/2}x}{1 + n^2 x^2} = \sup_{n} x\theta_x(n),$$

then we get the crude estimate that $g(x) \leq x^{-1/2}$ for x > 0. Hence

$$\int_{[0,1]} g \ d\mu = \left[2x^{1/2}\right]_0^1 = 2$$

So g is integrable, and $|f_n| = f_n \leq g$ for all n. So by Dominated Convergence,

$$\lim_{n} \int_{[0,1]} f_n \ d\mu = \int_{[0,1]} \lim_{n} f_n \ d\mu = 0.$$

Question 5: Use the Dominated Convergence Theorem to show that $f : [0,4] \to \mathbb{R}$, defined by

$$f(x) = \begin{cases} 0 & : x = 0, \\ x^{-1/2} \sin(1/x) & : 0 < x \le 4, \end{cases}$$

is integrable.

Answer: Set $f_n(x) = x^{-1/2} \sin(1/x) \chi_{(1/n,4]}$, so $f_n \to f$ pointwise, but f_n does not *increase* to f, so we cannot apply the Monotone Convergence Theorem. Instead, we notice that $|f_n(x)| \leq x^{-1/2}$ for $0 < x \leq 4$. So define

$$g(x) = \begin{cases} x^{-1/2} & : 0 < x \le 4, \\ 0 & : x \le 0, x > 4. \end{cases}$$

We can use Monotone Convergence to show that

$$\int_{\mathbb{R}} g \, d\mu = \lim_{n \to \infty} \int_{1/n}^{4} x^{-1/2} \, dx = \lim_{n \to \infty} 2(2 - 1/\sqrt{n}) = 4.$$

Hence g is integrable, and as $|f_n| \leq g$, each f_n is integrable. Apply the Dominated Convergence Theorem, we see that f is also integrable, as required.

Question 6: Define $f_n: [0,1] \to [0,\infty)$ by

$$f_n(x) = \begin{cases} n & : 0 \le x \le 1/n, \\ 0 & : x > 1/n. \end{cases}$$

Show that $f_n(x) \to 0$ almost everywhere, but that

$$\int_0^1 f_n \ d\mu = 1,$$

for all n. Why can we not apply either the Monotone or the Dominated Convergence Theorems in this case?

Answer: For x > 0, if n is large enough, then x > 1/n, implying that $f_n(x) = 0$. Hence $f_n \to 0$ except on $\{0\}$. But a singleton is a null set, so $f_n \to 0$ almost everywhere. However, as f_n is a simple function,

$$\int_0^1 f_n \, d\mu = n\mu([0, 1/n]) = 1,$$

for all n.

Clearly f_n is *not* an increasing sequence, so Monotone Convergence does not apply. Let

$$g(x) = \sup_{n} f_n(x) = \sup\{n \in \mathbb{N} : x \le 1/n\}.$$

Hence g(x) = n for $(n+1)^{-1} < x \le 1/n$, and so, for each N,

$$\int_0^1 g \ d\mu \ge \sum_{n=1}^N n\left(\frac{1}{n} - \frac{1}{n+1}\right) = \sum_{n=1}^N \frac{n}{n(n+1)} = \sum_{n=2}^{N+1} n^{-1}$$

This sum diverges (as $N \to \infty$), and so g has infinite integral. Hence we cannot bound the sequence (f_n) by an integrable function, and so we cannot apply the Dominated Convergence Theorem. **Question 7:** Let (X, \mathcal{R}, μ) be a measure space, and let $Y \in \mathcal{R}$. On a previous example sheet, we saw how to define the sub-measure space $(Y, \mathcal{R}_Y, \mu_Y)$. Let $f : X \to \mathbb{R}$ be measurable, and let f_Y be the restriction of f to Y. Show that f_Y is measurable with respect to \mathcal{R}_Y . Show that f_{χ_Y} is measurable. Show that

$$\int_Y f_Y \ d\mu_Y = \int_X f\chi_Y \ d\mu_Y$$

Hence integrating with respect to a sub-measure space, or just multiplying by the characteristic function of a measurable subset, gives the same answer.

Answer: Recall that $\mathcal{R}_Y = \{A \cap Y : A \in \mathcal{R}\}$, and μ_Y is simply the restriction of μ to Y. Firstly we check that f_Y is \mathcal{R}_Y -measurable. Let $U \subseteq \mathbb{R}$ be open, so that $f^{-1}(U) \in \mathcal{R}$, as f is \mathcal{R} -measurable. Hence

$$f_Y^{-1}(U) = \{ y \in Y : f(y) \in Y \} = f^{-1}(U) \cap Y \in \mathcal{R}_Y,$$

and so we conclude that f_Y is \mathcal{R}_Y -measurable.

Next we show that $f\chi_Y$ is \mathcal{R} -measurable. Again, let $U \subseteq \mathbb{R}$ be open with $0 \in U$, so that

$$(f\chi_Y)^{-1}(U) = \{x \in X : f(x)\chi_Y(x) \in U\} = \{x \in Y : f(x) \in U\} \cup \{x \in X \setminus Y\}$$
$$= (f^{-1}(U) \cap Y) \cup (X \setminus Y) \in \mathcal{R}.$$

If $0 \notin U$, then

$$(f\chi_Y)^{-1}(U) = \{x \in Y : f(x) \in U\} = f^{-1}(U) \cap Y \in \mathcal{R}.$$

So $f\chi_Y$ is measurable (this uses that $Y \in \mathcal{R}$).

Let $f = \sum_{k=1}^{n} t_k \chi_{A_k}$ be a simple function, with the (A_k) disjoint, so we have that

$$\int_{Y} f_{Y} d\mu_{Y} = \sum_{k=1}^{n} t_{k} \mu_{Y}(A_{k} \cap Y) = \sum_{k=1}^{n} t_{k} \mu(A_{k} \cap Y) = \int_{X} f\chi_{Y} d\mu.$$

If $f: X \to [0, \infty)$ is measurable, then let

$$f_n = 2^{-1} \lfloor 2^n f \rfloor \qquad (n \in \mathbb{N}),$$

so that each f_n is simple, and $f_n \uparrow f$. Obviously also $f_n \chi_Y \uparrow f \chi_Y$, so by the MCT,

$$\int_Y f_Y \ d\mu_Y = \lim_n \int_Y (f_n)_Y \ d\mu_Y = \lim_n \int_X f_n \chi_Y \ d\mu = \int_X f \chi_Y \ d\mu.$$

Finally, to handle a general measurable $f: X \to \mathbb{R}$, we simply consider positive and negative parts.

Linear Analysis I: Worked Solutions 6

Question 1: Let (X, \mathcal{R}, μ) be a measure space. Let $f : X \to [0, \infty)$ be measurable. For each $A \in \mathcal{R}$, define

$$\mu_f(A) = \int_X f\chi_A \ d\mu \qquad (A \in \mathcal{R}).$$

Show that μ_f is a measure.

Answer: Clearly $\mu_f(\emptyset) = 0$. Let (A_n) be a sequence of pairwise disjoint sets in \mathcal{R} , and let $A = \bigcup_n A_n$. Let $g = \chi_A$ and $f_n = \chi_{A_1 \cup \cdots \cup A_n}$ for each n. Then

$$A_1 \cup \dots \cup A_n \subseteq A_1 \cup \dots \cup A_{n+1} \implies f_n \leq f_{n+1}, \qquad (n \in \mathbb{N}),$$

so (f_n) is an increasing sequence. If $x \in A$, then for some n, we have $x \in A_n$, and so $f_n(x) \to 1$. Thus $f_n(x) \to g(x)$. If $x \notin A$ then $x \notin A_n$ for each n, so that $0 = g(x) = f_n(x)$ for all n. Thus $g = \chi_A = \lim_n f_n$.

As f is positive, we see that ff_n increases to $f\chi_A$. By the Monotone Convergence Theorem,

$$\mu_f(A) = \int_X f\chi_A \ d\mu = \lim_{n \to \infty} \int_X ff_n \ d\mu = \lim_{n \to \infty} \int_X f\chi_{A_1 \cup \dots \cup A_n} \ d\mu$$

As integration is linear,

$$\mu_f(A) = \lim_{n \to \infty} \sum_{k=1}^n \int_X f \chi_{A_k} \, d\mu = \lim_{n \to \infty} \sum_{k=1}^n \mu_f(A_k) = \sum_{n=1}^\infty \mu_f(A_n).$$

So μ_f is countably additive, and hence a measure.

Question continued: Furthermore, show that if g is a simple function, then

$$\int_X g \ d\mu_f = \int_X gf \ d\mu.$$

Conclude (using Monotone convergence) that this holds for any integrable function $g: X \to \mathbb{R}$.

Answer: We can write a simple function as

$$g = \sum_{k=1}^{n} a_k \chi_{A_k},$$

for some pairwise disjoint (A_k) , and scalars (a_k) . Then, by definition, and using linearity,

$$\int_X g \ d\mu_f = \sum_{k=1}^n a_k \mu_f(A_k) = \sum_{k=1}^n a_k \int_X f\chi_{A_k} \ d\mu = \int_X \sum_{k=1}^n a_k f\chi_{A_k} \ d\mu = \int_X fg \ d\mu.$$

Now let $g: X \to [0, \infty)$ be measurable, and as usual, set

$$g_n = \min(n, 2^{-n} \lfloor 2^n g \rfloor),$$

so each g_n is simple, and $g_n \uparrow g$. Similarly, $g_n f \uparrow fg$. Thus, by Monotone Convergence,

$$\int_X g \ d\mu_f = \lim_{n \to \infty} \int_X g_n \ d\mu_f = \lim_{n \to \infty} \int_X g_n f \ d\mu = \int_X g f \ d\mu,$$

as required. The claim then follows by taking positive and negative parts.

Question 2: Let (X, \mathcal{R}, μ) be a measure space. A function $f : X \to \mathbb{R}$ is essentially bounded if there exists K > 0 such that $|f| \leq K$ almost everywhere. The inf of such K is called the *essential supremum* of f, and is denoted by

$$\operatorname{ess-sup}_{x \in X} |f(x)|$$
 or simply $\operatorname{ess-sup}_X |f|$.

Let f be essentially bounded, and suppose that $g: X \to \mathbb{R}$ is measurable and integrable. Show that fg is integrable, and that

$$\int_X |fg| \ d\mu \le \left(\operatorname{ess-sup}_X |f| \right) \int_X |g| \ d\mu.$$

Answer: Let $\epsilon > 0$, and set $K = \text{ess-sup}_X |f|$. Then $|f| \le K + \epsilon$ almost everywhere, so $A = \{x \in X : |f(x)| \ge K + \epsilon\}$ is a null set. Thus $f = f\chi_{X\setminus A}$ almost everywhere, and $|f\chi_{X\setminus A}| \le K + \epsilon$.

Then $|f\chi_{X\setminus A}g| \leq (K+\epsilon)|g|$, and so

$$\int_X |f\chi_{X\setminus A}g| \ d\mu \le (K+\epsilon) \int_X |g| \ d\mu < \infty.$$

As $|f\chi_{X\setminus A}g| = |fg|$ almost everywhere, we also have that

$$\int_X |fg| \ d\mu = \int_X |f\chi_{X\setminus A}g| \ d\mu \le (K+\epsilon) \int_X |g| \ d\mu.$$

As $\epsilon > 0$ was arbitrary, we are done.

Question 3: We define Lebesgue measure on \mathbb{R}^3 by identifying \mathbb{R}^3 with $\mathbb{R} \times \mathbb{R} \times \mathbb{R}$. The *volume* of a measurable set $A \subseteq \mathbb{R}^3$ is then simply the integral of the characteristic function of A. Carefully apply Fubini's Theorem to find the volumes of the sets:

- 1. $\{(x, y, z) : 0 \le z \le 2 x^2 y^2\}.$
- 2. $\{(x, y, z) : x + y + z \le 1, x \ge 0, y \ge 0, z \ge 0\}.$

Notice that these sets are bounded, so we can work in a finite measure space if we wish. **Answer:** It is quite possible that I have made mistakes here, so check these integrals! For (1), we have, being careful,

Volume =
$$\int_{\mathbb{R}^3} \chi_{\{(x,y,z):0 \le z \le 2-x^2 - y^2\}} d\mu_3$$
,

where here I write μ_3 for Lebesgue measure on \mathbb{R}^3 . The set we are integrating over is bounded, and hence has finite measure. So we can apply Fubini. Hence

Volume =
$$\int_{\mathbb{R}^2} \chi_{\{(x,y):x^2+y^2 \le 2\}} \left(\int_0^{2-x^2-y^2} 1 \, dz \right) \, d\mu_2.$$

Then, for x fixed with $x^2 \leq 2$, we have that $x^2 + y^2 \leq 2$ if and only if $(x^2 - 2)^{1/2} \leq y \leq 2$

 $(2-x^2)^{1/2}$. Hence

$$\begin{aligned} \text{Volume} &= \int_{-\sqrt{2}}^{\sqrt{2}} \int_{(x^2-2)^{1/2}}^{(2-x^2)^{1/2}} \int_{0}^{2-x^2-y^2} 1 \ dz \ dy \ dx \\ &= \int_{-\sqrt{2}}^{\sqrt{2}} \int_{(x^2-2)^{1/2}}^{(2-x^2)^{1/2}} 2 - x^2 - y^2 \ dy \ dx \\ &= \int_{-\sqrt{2}}^{\sqrt{2}} 2(2-x^2)^{1/2} (2-x^2) - \left[\frac{y^3}{3}\right]_{y=(x^2-2)^{1/2}}^{(2-x^2)^{1/2}} \ dx \\ &= \int_{-\sqrt{2}}^{\sqrt{2}} 2(2-x^2)^{3/2} - \frac{2}{3}(2-x^2)^{3/2} \ dx \\ &= \frac{4}{3} \int_{-\sqrt{2}}^{\sqrt{2}} (2-x^2)^{3/2} \ dx. \end{aligned}$$

Let $x = \sqrt{2}\sin(t)$, so that $dx/dt = \sqrt{2}\cos(t)$, and hence

Area =
$$\frac{4}{3} \int_{-\pi/2}^{\pi/2} 2^{3/2} \sqrt{2} \cos^4(t) dt = \frac{16}{3} \int_{-\pi/2}^{\pi/2} \cos^4(t) dt$$

= $\frac{2}{3} \int_{-\pi/2}^{\pi/2} \cos(4t) + 4\cos(2t) + 3 dt = \frac{2}{3} \left[\frac{\sin(4t)}{4} + 2\sin(2t) + 3t \right]_{t=-\pi/2}^{\pi/2} = 2\pi$

If you'd seen this question in a Calculus Course, you would probably change into plane polar coordinates. There is a way to handle change of variables for Lebesgue (or more general) integrable functions. I haven't covered this in the course, in the interests of time, but in an easy form, it is rather similar to change of variables for Riemann integration. In a more complicated form, it is not very useful for practical calculations.

For (2), with much less justification this time, we have

Volume =
$$\int_0^1 \int_0^{1-x} \int_0^{1-x-y} 1 \, dz \, dy \, dx = \int_0^1 \int_0^{1-x} 1 - x - y \, dy \, dx$$

= $\int_0^1 (1-x)^2 - \left[\frac{y^2}{2}\right]_{y=0}^{1-x} dx = \frac{1}{2} \int_0^1 (1-x)^2 \, dx = \frac{1}{2} \left[x - x^2 + \frac{x^3}{3}\right]_{x=0}^1 = \frac{1}{6}$

Question 4: Let (X, \mathcal{R}, μ) and $(Y, \mathcal{S}, \lambda)$ be finite measure spaces. Let $f : X \to \mathbb{R}$ be \mathcal{R} -measurable, and let $g : Y \to \mathbb{R}$ be \mathcal{S} -measurable. Let $h : X \times Y \to \mathbb{R}$ be defined by h(x, y) = f(x)g(y). Show that h is $(\mathcal{R} \otimes \mathcal{S})$ -measurable. Suppose that f and g are integrable with respect to μ and λ , respectively. Use Fubini to show that

$$\int_{X \times Y} h \ d(\mu \otimes \lambda) = \int_X f \ d\mu \int_Y g \ d\lambda.$$

Answer: Let $U \subseteq \mathbb{R}$ be open. Consider the continuous map $\alpha : \mathbb{R}^2 \to \mathbb{R}$ defined by $\alpha(x, y) = xy$. Consider also the map $\beta : \mathbb{R}^2 \to \mathbb{R}^2$ defined by $\beta(x, y) = (f(x), g(y))$. Then $h = \alpha\beta$, and so $h^{-1}(U) = \beta^{-1}\alpha^{-1}(U)$. As α is continuous, $\alpha^{-1}(U)$ is open. Suppose that β is $\mathcal{R} \otimes \mathcal{S}$ -measurable, in the sense that if $V \subseteq \mathbb{R} \times \mathbb{R}$ is open, then $\beta^{-1}(V) \in \mathcal{R} \otimes \mathcal{S}$. Then we have that $h^{-1}(U) \in \mathcal{R} \otimes \mathcal{S}$, showing that h is $\mathcal{R} \otimes \mathcal{S}$ -measurable.

So we want β to be measurable. Let $U, V \subseteq \mathbb{R}$ be open, so that $f^{-1}(U) \in \mathcal{R}$ and $g^{-1}(V) \in \mathcal{S}$, as f and g are measurable. So, by the definition of $\mathcal{R} \otimes \mathcal{S}$, we have that

 $\beta^{-1}(U \times V) = f^{-1}(U) \times g^{-1}(V) \in \mathcal{R} \otimes \mathcal{S}$. We now "exploit the rationals". Let $U \subseteq \mathbb{R}^2$ be open, let \mathcal{D} be the collection of all open intervals (a, b) with $a, b \in \mathbb{Q}$. Then

$$U = \bigcup_{\{A, B \in \mathcal{D}: A \times B \subseteq U\}} A \times B,$$

a countable union, so

$$\beta^{-1}(U) = \bigcup_{\{A, B \in \mathcal{D}: A \times B \subseteq U\}} f^{-1}(A) \times g^{-1}(B)$$

is in $\mathcal{R} \otimes \mathcal{S}$. Hence β is measurable.

As f and g are measurable, by Fubini (for positive functions) we see that

$$\int_{X \times Y} |h| \ d(\mu \otimes \lambda) = \int_X |h|_1 \ d\mu,$$

where

$$|h|_1(x) = \begin{cases} \int_Y |h|(x,y) \ d\lambda(y) & : \text{ this is finite,} \\ 0 & : \text{ otherwise.} \end{cases}$$

However, in this case

$$\int_{Y} |h|(x,y) \ d\lambda(y) = \int_{Y} |f|(x)|g|(y) \ d\lambda(y) = |f(x)| \int_{Y} |g| \ d\lambda(y) = |f(x)| \$$

Thus

$$\int_{X \times Y} |h| \ d(\mu \otimes \lambda) = \int_X |f(x)| \int_Y |g| \ d\lambda \ d\mu(x)$$
$$= \int_X |f(x)| \ d\mu(x) \int_Y |g(y)| \ d\lambda(y) < \infty.$$

Hence h is integrable, and so by Fubini,

$$\int_{X \times Y} h \ d(\mu \otimes \lambda) = \int_X f \ d\mu \int_Y g \ d\lambda,$$

by just repeating the argument.

Question 5: Define $f:[0,1]^2 \to \mathbb{R}$ by

$$f(x,y) = \begin{cases} \frac{x^2 - y^2}{(x^2 + y^2)^2} & : (x,y) \neq (0,0), \\ 0 & : \text{ otherwise.} \end{cases}$$

Show by calculation that

$$\int_0^1 \int_0^1 f(x,y) \, dx \, dy \neq \int_0^1 \int_0^1 f(x,y) \, dy \, dx.$$

Why can we not apply Fubini's Theorem in this case? Answer: We see that for y > 0,

$$\int_0^1 \frac{x^2 - y^2}{(x^2 + y^2)^2} \, dx = \left[\frac{-x}{x^2 + y^2}\right]_{x=0}^1 = \frac{-1}{1 + y^2}.$$

Hence we have that

$$\int_0^1 \int_0^1 \frac{x^2 - y^2}{(x^2 + y^2)^2} \, dx \, dy = \int_0^1 \frac{-1}{1 + y^2} \, dy = \left[-\tan^{-1}(y) \right]_{y=0}^1 = -\pi/4.$$

By symmetry, we have that for x > 0,

$$\int_0^1 \frac{x^2 - y^2}{(x^2 + y^2)^2} \, dy = \left[\frac{y}{x^2 + y^2}\right]_{y=0}^1 = \frac{1}{1 + x^2}$$

and consequently,

$$\int_0^1 \int_0^1 \frac{x^2 - y^2}{(x^2 + y^2)^2} \, dy \, dx = \pi/4.$$

We cannot apply Fubini's Theorem as |f| has infinite integral over $[0, 1]^2$, that is, f is NOT integrable. This follows as

$$\int_0^1 \frac{|x^2 - y^2|}{(x^2 + y^2)^2} \, dx = \int_0^y \frac{y^2 - x^2}{(x^2 + y^2)^2} \, dx + \int_y^1 \frac{x^2 - y^2}{(x^2 + y^2)^2} \, dx$$
$$= \left[\frac{x}{x^2 + y^2}\right]_{x=0}^y + \left[\frac{-x}{x^2 + y^2}\right]_{x=y}^1$$
$$= \frac{y}{y^2 + y^2} + \frac{-1}{1 + y^2} - \frac{-y}{y^2 + y^2} = \frac{1}{y} - \frac{1}{1 + y^2}$$

Hence

$$\int_0^1 \int_0^1 \frac{|x^2 - y^2|}{(x^2 + y^2)^2} \, dx \, dy = \int_0^1 \frac{1}{y} - \frac{1}{1 + y^2} \, dy = \infty - \int_0^1 \frac{1}{1 + y^2} \, dy = \infty.$$

Formally, we should use Monotone Convergence in this last calculation.

Question 6: Let (X, \mathcal{R}, μ) and $(Y, \mathcal{S}, \lambda)$ be finite measure spaces, and let $E \in \mathcal{R} \otimes \mathcal{S}$. For each $x \in X$, let $E_x = \{y \in Y : (x, y) \in E\}$, a *cross-section* of E. Show that the following are equivalent:

- 1. $(\mu \otimes \lambda)(E) = 0;$
- 2. $\lambda(E_x) = 0$ for almost all x with respect to μ (that is, $\mu(\{x \in X : \lambda(E_x) \neq 0\}) = 0$).

Answer: Let $f = \chi_E$ a measurable function on $X \times Y$. By the results in lectures, we know that each E_x is in \mathcal{S} , so we can let $f_x = \chi_{E_x}$ a measurable function on Y. Notice that $f_x(y) = \chi_E(x, y)$ for $x \in X$ and $y \in F$. As f is positive and bounded, we can apply (the easiest form of) Fubini to see that

$$(\mu \otimes \lambda)(E) = \int_{X \times Y} f \ d(\mu \otimes \lambda) = \int_X \int_Y f(x, y) \ d\lambda(y) \ d\mu(x)$$
$$= \int_X \int_Y f_x \ d\lambda \ d\mu(x) = \int_X \lambda(E_x) \ d\mu(x).$$

So $(\mu \otimes \lambda)(E) = 0$ if and only if $x \mapsto \lambda(E_x)$ has zero integral over X, which is if and only if $\lambda(E_x) = 0$ for almost every x with respect to μ .

Question 7: Let X be a set, and let \mathcal{R} be a σ -algebra on X. For $x \in X$, define a map $\delta_x : \mathcal{R} \to [0, \infty)$ by

$$\delta_x(A) = \begin{cases} 1 & : x \in A, \\ 0 & : x \notin A. \end{cases}$$

Show that δ_x is a measure.

Answer: Clearly $\delta_x(\emptyset) = 0$. For (A_n) a sequence of pairwise disjoint sets in \mathcal{R} , let $A = \bigcup_n A_n$. If $x \notin A$, then $x \notin A_n$ for all n, and so

$$0 = \delta_x(A) = \sum_n \delta_x(A_n).$$

If $x \in A$, then by pairwise disjointness, there exists a unique n_0 with $x \in A_{n_0}$. Then

$$1 = \delta_x(A) = \sum_n \delta_x(A_n) = \delta_x(A_{n_0}) = 1,$$

as required to show that δ_x is countably additive. So δ_x is a measure.

Question continued: Determine the completion of δ_x (that is, what are the null sets for δ_x ?)

Answer: This is slightly a trick question! If $\{x\} \in \mathcal{R}$, then also $X \setminus \{x\} \in \mathcal{R}$, and $\delta_x(X \setminus \{x\}) = 0$. It follows easily now that *every* set not containing x is null, as such sets are contained in $X \setminus \{x\}$. In the completed σ -algebra, *every* set is measurable, and δ_x is defined in the same way as before.

However, maybe \mathcal{R} is the trivial σ -algebra, $\mathcal{R} = \{X, \emptyset\}$. Then $\delta_x(X) = 1$, so the only set in \mathcal{R} which has zero measure is \emptyset . So completing does nothing in this case.

Question continued: For a measurable function $f : X \to [0, \infty)$, what is $\int_X f \ d\delta_x$? Which functions $f : X \to \mathbb{R}$ are integrable for δ_x ?

Answer: Intuition suggests that $\int f \ d\delta_x = f(x)$. Let us prove this! For $A \in \mathcal{R}$, we have $\int \chi_A \ d\delta_x = \delta_x(\chi_A) = \chi_A(x)$. By taking linear combinations, it is easy to see that $\int g \ d\delta_x = g(x)$ for any simple function $g : X \to [0, \infty)$. We could now use Monotone Convergence, in the usual way.

However, let's be different, and use the *definition* of the integral. So, if $g \leq f$ and g is simple, then $\int g \ d\delta_x = g(x) \leq f(x)$, so by definition,

$$\int f \ d\delta_x \le f(x).$$

Conversely, for $\epsilon > 0$, notice that

$$A = \{y \in X : f(x) - \epsilon \le f(y) \le f(x)\} = f^{-1}([f(x) - \epsilon, f(x)])$$

is in \mathcal{R} , as f is measurable. Then $x \in A$, and for any $y \in A$, $f(y) \ge f(x) - \epsilon$. So

$$f\chi_A \ge (f(x) - \epsilon)\chi_A \implies \int f \ d\delta_x \ge (f(x) - \epsilon)\delta_x(\chi_A) = f(x) - \epsilon.$$

As $\epsilon > 0$ was arbitrary, we conclude that $\int f \ d\delta_x = f(x)$, as required.

Maybe (or maybe not!) you worry that we haven't used any facts about \mathcal{R} here! Well, if $\mathcal{R} = \{X, \emptyset\}$, then there are very few measurable functions $f : X \to [0, \infty)$. Indeed, a moment's thought shows that f must actually be constant (prove this!)

So any positive measurable function has a finite integral. By taking positive and negative parts, we see that any measure function $f: X \to \mathbb{R}$ is integrable, with $\int f \, d\delta_x = f(x)$.

Question 8: Let $A \subseteq \mathbb{R}$ be a Lebesgue measurable set with finite Lebesgue measure. Show that for $\epsilon > 0$, we can find an open set U with $A \subseteq U$ and $\mu(U) < \mu(A) + \epsilon$.

Answer: By the definition of Lebesgue outer measure, for $\epsilon > 0$, we can find U, a countable union of open intervals, with $A \subseteq U$ and $\mu(U) < \mu(A) + \epsilon$. (This follows, as by definition, $\mu(A)$ is the infimum of $\mu(U)$ for such U).

Question continued: Show that for $\epsilon > 0$, we can find a compact (that is, closed and bounded) set K with $K \subseteq A$ and $\mu(K) > \mu(A) - \epsilon$.

Answer: Suppose first that A is bounded, that is, $A \subseteq [-n, n]$ for some n > 0. Then let $B = [-n, n] \setminus A$ which is also Lebesgue measurable, so by the first bit of the question, we can find some open set U with $B \subseteq U$ and $\mu(U) < \mu(B) + \epsilon$. At this point, drawing a diagram may help! Then let $K = [-n, n] \setminus U = [-n, n] \cap (\mathbb{R} \setminus U)$ a closed and bounded set. For $k \in K$, we have that $k \in [-n, n]$ but $k \notin U$, so certainly $k \notin B$. Thus $k \in A$ (use the definition of B). So $K \subseteq A$. A bit of thought shows that $A \setminus K = U \cap A \subseteq U \setminus B$. Thus

$$\mu(A \setminus K) = \mu(A) - \mu(K) \le \mu(U \setminus B) = \mu(U) - \mu(B) < \epsilon,$$

so that $\mu(A) - \epsilon < \mu(K)$.

Let $A_n = A \cap [-n, n]$, so that $A_1 \subseteq A_2 \subseteq \cdots$ and $A = \bigcup_n A_n$. Then $\mu(A) = \lim_n \mu(A_n)$, and so as $\mu(A) < \infty$, there exists n with $\mu(A_n) > \mu(A) - \epsilon/2$. As $A_n \subseteq [-n, n]$, then above shows that there exists a closed and bounded K with $K \subseteq A_n \subseteq A$ with $\mu(K) > \mu(A_n) - \epsilon/2$. Thus $\mu(K) > \mu(A) - \epsilon$, as we want.

Question continued: Conclude that

$$\sup\{\mu(K): K \subseteq A \text{ is compact }\} = \mu(A) = \inf\{\mu(U): A \subseteq U \text{ is open }\}$$

This shows that μ is a *regular* measure. We will learn more about regular measures later in the course.

Answer: This is immediate, as $\epsilon > 0$ was arbitrary.

Linear Analysis I: Worked Solutions 7

Question 1: Consider the set \mathbb{N} together with the trivial σ -algebra consisting of all subsets of \mathbb{N} . Let (ω_n) be a sequence of positive reals, with $(\omega_n) \in \ell^1$. Show that we may define a measure μ by

$$\mu(A) = \sum_{n \in A} \omega_n \qquad (A \subseteq \mathbb{N})$$

What are the null sets for this measure?

Proof: Firstly we remark that as $\omega_n \ge 0$ for all n, the order which we take the sum does not matter. Clearly $\mu(\emptyset) = 0$; if (A_n) is a pairwise disjoint collection of subsets of \mathbb{N} , and $A = \bigcup_n A_n$, then it is pretty clear that

$$\sum_{n} \mu(A_n) = \sum_{n} \sum_{k \in A_n} \omega_k = \sum_{k \in A} \omega_k.$$

Exercise: Give an ϵ - δ proof of this!

We claim that $A \subseteq \mathbb{N}$ is null if and only if $\omega_n = 0$ for each $n \in A$. The "if" case is easy; conversely, if $\mu(A) = 0$ then $\sum_{n \in A} \omega_n = 0$, so as each ω_n is positive, we must have that $\omega_n = 0$ for each $n \in A$, as claimed.

Question 2: This follows on from Question 1. Determine when a function $f : \mathbb{N} \to \mathbb{C}$ is in $L^p(\mu)$. Describe, briefly, the space $\mathcal{L}^p(\mu)$.

Proof: Let's do this carefully (having told you not to bother being too careful, maybe it's good to see the details). Let $f : \mathbb{N} \to \mathbb{R}$ be simple, say

$$f = \sum_{k=1}^{n} a_k \chi_{A_k}$$

for some pairwise disjoint (A_k) . Then

$$|f|^{p} = \sum_{k=1}^{n} |a_{k}|^{p} \chi_{A_{k}} \implies \int |f|^{p} d\mu = \sum_{k=1}^{n} |a_{k}|^{p} \sum_{j \in A_{k}} \omega_{j} = \sum_{j \in \mathbb{N}} |f(j)|^{p} \omega_{j}$$

Now let $f : \mathbb{N} \to \mathbb{R}$ be arbitrary, and let $g \leq f$ be simple. Then

$$\int |g|^p \, d\mu = \sum_{j \in \mathbb{N}} |g(j)|^p \omega_j \le \sum_{j \in \mathbb{N}} |f(j)|^p \omega_j.$$

By the definition of the integral, taking the supremum over such g, we conclude that

$$\int |f|^p \ d\mu \le \sum_{j \in \mathbb{N}} |f(j)|^p \omega_j.$$

Conversely, let $n \in \mathbb{N}$, and define $g : \mathbb{N} \to \mathbb{R}$ by g(j) = f(j) if $j \leq n$, and g(j) = 0 otherwise. Then g is simple, so we see that

$$\int |f|^p \ d\mu \ge \int |g|^p \ d\mu = \sum_{j=1}^n |f(j)|^p \omega_j.$$

Letting $n \to \infty$, we have that

$$\int |f|^p \ d\mu \ge \sum_{j \in \mathbb{N}} |f(j)|^p \omega_j$$

So we have equality. As usual, we could have used a Monotone Convergence argument instead.

So $f : \mathbb{N} \to \mathbb{C}$ is in $L^p(\mu)$ if and only if

$$\sum_{j=1}^{\infty} |f(j)|^p \omega_j < \infty.$$

Then $\mathcal{L}^p(\mu)$ is $L^p(\mu)$, modulo functions which are equal almost everywhere. Using Question 1, we see that $f \sim g$ if and only if $f(j) \neq g(j)$ implies that $\omega_j = 0$.

So, if we let $A = \{j \in \mathbb{N} : \omega_j \neq 0\}$, we could consider $\mathcal{L}^p(\mu)$ to be the space of functions $f : A \to \mathbb{C}$ with

$$\sum_{j \in A} |f(j)|^p \omega_j < \infty$$

Question 3: Let (X, \mathcal{R}, μ) be a *finite* measure space. Show that if $1 \le p < r < \infty$, then $L^r(\mu) \subseteq L^p(\mu)$. *Hint:* Given a function $f \in L^r(\mu)$, write

$$f = f\chi_{\{x:|f(x)| \le 1\}} + f\chi_{\{x:|f(x)| > 1\}},$$

then think about whether these two functions are in $L^p(\mu)$.

Proof: We follow the hint. Let $f \in \mathcal{L}^r(\mu)$, and fix a representative of f. If |f(x)| > 1, then $|f(x)|^p \leq |f(x)|^r$ as p < r. Thus

$$\int |f|^p d\mu = \int_{\{x \in X: |f(x)| \le 1\}} |f|^p d\mu + \int_{\{x \in X: |f(x)| > 1\}} |f|^p d\mu$$

$$\leq \int_{\{x \in X: |f(x)| \le 1\}} 1 d\mu + \int_{\{x \in X: |f(x)| > 1\}} |f|^r d\mu$$

$$\leq \mu(\{x \in X: |f(x)| \le 1\}) + \|f\|_r^r \le \mu(X) + \|f\|_r^r < \infty,$$

as μ is finite. Hence $f \in L^p(\mu)$ and so defines a member of $\mathcal{L}^p(\mu)$ (and notice that if $f \sim g$ in $\mathcal{L}^r(\mu)$, the same is true in $\mathcal{L}^p(\mu)$).

Question continued: Try to use the Holder inequality!

Proof: How might we use Holder? Well, let $s \in (1, \infty)$, so by Holder

$$\int |f|^p \ d\mu = \int |f|^p 1 \ d\mu \le \left(\int |f|^{ps} \ d\mu\right)^{1/s} \left(\int 1^t \ d\mu\right)^{1/t}$$

where 1/s + 1/t = 1, as usual. We only know that $\int |f|^r d\mu < \infty$, so it seems natural to let ps = r, that is, s = r/p. As p < r, we see that r/p > 1, so s is in the interval $(1, \infty)$. Then 1/t = 1 - 1/s = 1 - p/r. Thus

$$\int |f|^p \ d\mu \le \left(\int |f|^r \ d\mu\right)^{p/r} \mu(X)^{1-p/r} < \infty,$$

as $\int |f|^r < \infty$ and $\mu(X) < \infty$.

Question 4: By considering \mathbb{R} with Lebesgue measure, or otherwise, show that the conclusions of Question 5 no longer hold if we are not working with a finite measure space.

Proof: We first do the p = 1 case. So we try to find $f \in L^r(\mu)$ with $\int |f| d\mu = \infty$, so that $f \notin L^1(\mu)$. Try

$$f(x) = x^{-1}\chi_{(1,\infty)}.$$

Then (formally, we use Monotone convergence here)

$$\int |f|^r d\mu = \lim_n \int_1^n x^{-r} d\mu = \lim_n \left[\frac{x^{1-r}}{1-r}\right]_1^n = \lim_n \frac{1-n^{1-r}}{r-1} = \frac{1}{r-1}.$$

So $f \in L^r(\mu)$. However,

$$\int |f| \ d\mu = \lim_{n} \int_{1}^{n} x^{-1} \ d\mu = \lim_{n} \left[\log(x) \right]_{1}^{n} = \lim_{n} \log(n) = \infty,$$

so $f \notin L^1(\mu)$.

To do the general case, just use

$$f(x) = x^{-1/p} \chi_{(1,\infty)},$$

so that $|f|^p = x^{-1}\chi_{(1,\infty)}$ while $|f|^r = x^{-r/p}\chi_{(1,\infty)}$, which has finite integral, as r/p > 1. Question 5: Let $(\mathbb{R}, \mathcal{R}, \mu)$ be Lebesgue measure on the real line. Let $f : \mathbb{R} \to \mathbb{R}$ be a Lebesgue integrable function. Define a map $\lambda : \mathcal{R} \to \mathbb{R}$ by

$$\lambda(E) = \int_E f \ d\mu \qquad (E \in \mathcal{R}).$$

Show quickly that λ is a signed measure. Let $A \cup B$ be a Hahn-Decomposition for λ . How can we relate the sets A and B to the function f?

Proof: Clearly $\lambda(\emptyset) = 0$. Let (E_n) be a pairwise disjoint sequence in \mathcal{R} , and let $E = \bigcup_n E_n$. As the (E_n) are pairwise disjoint, we have that

$$\left(f\chi_{E_1\cup\cdots\cup E_n}\right)_{\pm} = \sum_{k=1}^n f_{\pm}\chi_{E_k}, \qquad \left(f\chi_E\right)_{\pm} = f_{\pm}\chi_E.$$

Then $(f\chi_{E_1\cup\cdots\cup E_n})_+\uparrow f_\pm\chi_E$, so by Monotone convergence,

$$\sum_{k} \int_{E_{k}} f \, d\mu = \sum_{k} \left(\int_{E_{k}} f_{+} \, d\mu - \int_{E_{k}} f_{-} \, d\mu \right) = \lim_{n} \sum_{k=1}^{n} \int f_{+} \chi_{E_{k}} - f_{-} \chi_{E_{k}} \, d\mu$$
$$= \lim_{n} \int f_{+} \chi_{E_{1} \cup \dots \cup E_{n}} \, d\mu - \lim_{n} \int f_{-} \chi_{E_{1} \cup \dots \cup E_{n}} \, d\mu$$
$$= \int f_{+} \chi_{E} \, d\mu - \int f_{-} \chi_{E} \, d\mu = \int f \chi_{E} \, d\mu,$$

showing that λ is countably additive.

Let $A = \{x \in X : f(x) \ge 0\}$ and $B = \{x \in X : g(x) < 0\}$. As f is measurable, $A \in \mathcal{R}$ and $B \in \mathcal{R}$. Then, for any $E \in \mathcal{R}$, we see that f is positive on $E \cap A$, and negative on $E \cap B$, so that

$$\lambda(E \cap A) = \int_{E \cap A} f \ d\mu \ge 0, \quad \lambda(E \cap B) \le 0.$$

So (A, B) is a Hahn-Decomposition.

Question 6: Let $(\mathbb{R}, \mathcal{R}, \mu)$ be Lebesgue measure on the real line. Show, quickly, that we can define a measure ν on \mathbb{R} by

$$\nu(A) = \int_A |x| \ d\mu(x) \qquad (A \in \mathcal{R}).$$

Show that $\nu \ll \mu$. However, show that for any $\epsilon > 0$, there does not exist $\delta > 0$ such that $\mu(A) \leq \delta$ implies that $\nu(A) \leq \epsilon$.

Proof: Clearly $\nu(\emptyset) = 0$; if (A_n) are pairwise disjoint, then for $A = \bigcup_n A_n$,

$$\sum_{n} \nu(A_n) = \sum_{n} \int_{A_n} |x| \ d\mu(x) = \int_A |x| \ d\mu(x) = \nu(A),$$

by Monotone Convergence, as

 $\chi_{A_1\cup\cdots\cup A_n}|x|\uparrow \chi_A|x|.$

If $\mu(A) = 0$, then $\nu(A) = \int |x|\chi_A \ d\mu(x) = 0$, as $|x|\chi_A = 0$ almost everywhere for μ . Hence $\nu \ll \mu$.

However, let $\delta > 0$, and let t > 0 be very large, so that

$$\nu((t,t+\delta)) = \int_t^{t+\delta} x \, dx \ge t\delta.$$

Thus, for all $\delta > 0$, there exists $A \in \mathcal{R}$ with $\mu(A) = \delta$, but $\nu(A)$ arbitrarily large.

Question 7: Let (X, \mathcal{R}) be a set with a σ -algebra, and let μ, λ be *finite* measures on \mathcal{R} . Show that the following are equivalent:

- 1. $\mu \ll \lambda$ and $\lambda \ll \mu$;
- 2. $A \in \mathcal{R}$ is μ -null if and only if it is λ -null;
- 3. there exists a measurable function $f: X \to (0, \infty)$ (note that I am not using $[0, \infty)$ or $[0, \infty]$) such that $\lambda(A) = \int_A f \ d\mu$ for all $A \in \mathcal{R}$.

Proof: Clearly (1) if and only if (2). If (1) holds, then by applying Radon-Nikodym, we can find a measurable $f: X \to [0, \infty)$ such that

$$\lambda(A) = \int_A f \ d\mu \qquad (A \in \mathcal{R}).$$

Let $B = \{x \in X : f(x) = 0\}$, so that

$$\lambda(B) = \int_B f \ d\mu = \int_B 0 \ d\mu = 0.$$

As $\mu \ll \lambda$, we also have that $\mu(B) = 0$. Define $\tilde{f}: X \to (0, \infty)$ by

$$\tilde{f}(x) = \begin{cases} f(x) & : x \notin B, \\ 1 & : x \in B. \end{cases}$$

Then for $A \in \mathcal{R}$, we have

$$\int_{A} \tilde{f} \ d\mu = \int_{A \cap B} 1 \ d\mu + \int_{A \setminus B} f \ d\mu = \mu(A \cap B) + \lambda(A \setminus B)$$
$$= \lambda(A \setminus B) = \lambda(A) - \lambda(A \cap B) = \lambda(A),$$

as $\mu(A \cap B) \leq \mu(B) = 0$, and $\lambda(A \cap B) \leq \lambda(B) = 0$. So we have shown (3).

Finally, suppose (3) holds. Let $A \in \mathcal{R}$ be such that $\mu(A) = 0$, so clearly $\lambda(A) = 0$. Conversely, if $\lambda(A) = 0$, then for each $\epsilon > 0$,

$$0 = \lambda(A) = \int_A f \ d\mu = \int_{A \cap \{x \in X : f(x) \ge \epsilon\}} f \ d\mu + \int_{A \cap \{x \in X : f(x) < \epsilon\}} f \ d\mu$$
$$\ge \epsilon \mu \Big(A \cap \{x \in X : f(x) \ge \epsilon\} \Big).$$

Hence $A \cap \{x \in X : f(x) \ge \epsilon\}$ is a μ -null set for each $\epsilon > 0$. Thus

$$A = \bigcup_{n=1}^{\infty} A \cap \{x \in X : f(x) \ge 1/n\}$$

is also a μ -null set, which follows as f > 0 everywhere. Hence we have shown (2).

Question 8: Let $(\mathbb{R}, \mathcal{R}, \mu)$ be Lebesgue measure on the real line. Let (r_n) be an enumeration of the rationals. For each n, let

$$A_n = (r_n - 2^{-n}, r_n + 2^{-n}), \quad f_n = 2^n \chi_{A_n}.$$

Hence $f_n \ge 0$ and $\int_X f_n d\mu = 2$.

Let B be the set of $x \in \mathbb{R}$ such that x is in infinitely many of the sets A_n . Show that

$$B = \bigcap_{n=1}^{\infty} \bigcup_{k=n}^{\infty} A_k.$$

Using Proposition 2.3, show that $\mu(B) = 0$. Hence show that $\sum_n f_n < \infty$ almost everywhere.

Proof: If x is in infinitely many of the sets A_n , then for each n, we have $x \in \bigcup_{k=n}^{\infty}$, and so $x \in B$. Conversely, if $x \in B$, then for all $n, x \in \bigcup_{k=n}^{\infty}$, so we must have that x is in infinitely many A_k , as required.

We see that

$$\mu(B) = \lim_{n \to \infty} \mu\left(\bigcup_{k=n}^{\infty} A_k\right) \le \lim_{n \to \infty} \sum_{k=n}^{\infty} 2^{1-k} = \lim_{n \to \infty} 2^{-n} = 0.$$

Finally, let $f(x) = \sum_n f_n(x) = \sum_n 2^n \chi_{A_n}(x)$, which we allow to be infinity. Then $f(x) = \infty$ if and only if x is in infinitely many of the A_n , which is if and only if $x \in B$. As $\mu(B) = 0$, we see that $f < \infty$ almost everywhere.

Question continued: Define a measure $\lambda : \mathcal{R} \to [0, \infty]$ by

$$\lambda(A) = \sum_{n=1}^{\infty} \int_{A} f_n \, d\mu.$$

For a < b, show that $\lambda((a, b)) = \infty$. *Hint:* There must be infinitely many rational numbers in the open set (a, b). Conclude that $\lambda(U) = \infty$ for any open set $U \subseteq \mathbb{R}$.

Show, however, that $\lambda \ll \mu$. Hence absolutely continuous measures can be pretty nasty!

Proof: First notice that for $A \in \mathcal{R}$,

$$\lambda(A) = \sum_{n=1}^{\infty} \int_{A} f_n \ d\mu = \sum_{n=1}^{\infty} \int_{A} 2^n \chi_{A_n} \ d\mu = \sum_{n=1}^{\infty} 2^n \mu(A \cap A_n).$$

For a < b, let $X = \{n \in \mathbb{N} : a < r_n < b\}$, so that X is infinite. For $n \in X$, we see that

$$A \cap A_n = A \cap (r_n - 2^{-n}, r_n + 2^{-n}) = (\max(a, r_n - 2^{-n}), \min(b, r_n + 2^{-n})).$$

If $2^{-n} < (b-a)/2$, then we crudely estimate that

$$\mu(A \cap A_n) \ge 2^{-n}.$$

Hence we conclude that

$$\lambda(A) \ge \sum_{n \in X} 2^n \mu(A \cap A_n) \ge \sum_{n \in X} 1 = \infty.$$

If U is open, then we can find a < b with $(a, b) \subseteq U$, so that

$$\lambda(U) \ge \lambda((a, b)) = \infty.$$

However, if $\mu(A) = 0$, then clearly $\lambda(A) = 0$, so $\lambda << \mu$.

Linear Analysis I: Worked Solutions 8

Question 1: Let $(\mathbb{R}, \mathcal{R}, \mu)$ be Lebesgue measure on the real line. Let X be the subset of $L^1(\mu)$ consisting of those $f \in L^1(\mu)$ such that, for some K > 0, we have that $|f| \leq K$ almost everywhere (loosely, we could write $f \in L^1(\mu) \cap L^{\infty}(\mu)$). Hence X is also a subspace of $\mathcal{L}^1(\mu)$.

Show that $f : \mathbb{R} \to [0, \infty)$ defined by

$$f(x) = \begin{cases} n^{1/2} & : (n+1)^{-1} < x \le n^{-1} \text{ for some } n \in \mathbb{N}, \\ 0 & : \text{ otherwise,} \end{cases}$$

is in $L^1(\mu)$. Hence, or otherwise, show carefully show that $X \neq \mathcal{L}^1(\mu)$.

Show, however, that X is dense in $\mathcal{L}^1(\mu)$.

Answer: We see, again technically by Monotone Convergence, that

$$\int_{\mathbb{R}} |f| \ d\mu = \sum_{n=1}^{\infty} n^{1/2} \left(\frac{1}{n} - \frac{1}{n+1} \right) = \sum_{n=1}^{\infty} \frac{n^{1/2}}{n(n+1)} \le \sum_{n=1}^{\infty} n^{-3/2} < \infty.$$

Hence $f \in L^1(\mu)$. However, for any n, we see that $|f| > n^{1/2}$ on, say, the interval $((n+2)^{-1}, (n+1)^{-1})$, which does not have measure zero. Hence there can exist no K > 0 with $|f| \leq K$ almost everywhere.

Suppose there exists $g \in L^1(\mu)$ and K > 0 with $|g| \leq K$ almost everywhere, and yet f = g almost everywhere (so that f and g define the same vector in $\mathcal{L}^1(\mu)$). Then $|f| \leq K$ almost everywhere, which is a contradiction. So $f \notin X$.

Suppose there exists $h \in \mathcal{L}^1(\mu)$ and $\epsilon > 0$, such that for every $g \in X$, we have $\|h - g\|_1 \ge \epsilon$. In particular, for each $n \in \mathbb{N}$,

$$h_n = h\chi_{\{x \in X : |h| \le n\}} \in X,$$

because $|h_n| \leq n$, and as $|h_n| \leq |h|$, also $h_n \in \mathcal{L}^1(\mu)$. Thus, for each n,

$$\epsilon \le \|h - h_n\|_1 = \int_{\{x \in X : |h| > n\}} |h| \ d\mu.$$

However, we clearly have that $|h_n| \uparrow |h|$, and so by Monotone Convergence,

$$\int_X |h| \ d\mu = \lim_{n \to \infty} \int_X |h_n| \ d\mu$$

Hence

$$\epsilon \leq \lim_{n \to \infty} \int_X |h| \chi_{\{x \in X: |h| > n\}} \ d\mu = \lim_{n \to \infty} \int_X |h| - |h_n| \ d\mu = 0,$$

a contradiction.

Question 2: This continues from Question 1. Show that the mapping

$$T(f) = g$$
 where $g(t) = \int_{[0,t]} f d\mu$ $(t \ge 0)$,

is a well-defined map $X \to C_{\mathbb{K}}([0,\infty))$.

As usual, we give $C_{\mathbb{K}}([0,\infty))$ the $\|\cdot\|_{\infty}$ norm. Show that T is linear and bounded. What is $\|T\|$?

Does the definition of T make sense on $\mathcal{L}^1(\mu)$?

My thanks to Thomas for pointing out that I did something a bit cheeky here. We haven't studied that space $C_{\mathbb{K}}([0,\infty))$ before, as $[0,\infty)$ is not compact. Here are some solutions out of this problem:

- Just work in $C_{\mathbb{K}}([0, N])$ for some N.
- If we interpret $C_{\mathbb{K}}([0,\infty))$ to mean the vector space of *bounded* continuous functions $[0,\infty) \to \mathbb{K}$, then actually $C_{\mathbb{K}}([0,\infty))$ is a Banach space: the proof I have still works in the non-compact case.
- The really sophisticated method might be to work with $[0, \infty]$, defined here as the *one-point compactification*¹ of $[0, \infty)$. The $C_{\mathbb{K}}([0, \infty])$ can be identified with the space of continuous functions $f : [0, \infty) \to \mathbb{K}$ with $\lim_{t\to\infty} f(t)$ existing.

Proof: Obviously (because we are integrating) T is well-defined on $\mathcal{L}^1(\mu)$, and so also on X. Let $f \in X$, so there exists K > 0 with $|f| \leq K$ a.e. and so for $t \geq 0$ and h > 0, we have

$$|g(t+h) - g(t)| = \left| \int_{(t,t+h]} f \, d\mu \right| \le \int_{(t,t+h]} |f| \, d\mu \le Kh.$$

Hence g is continuous. Clearly T is linear. We see that

$$\|g\|_{\infty} = \sup_{t \ge 0} \left| \int_{[0,t]} f \, d\mu \right| \le \sup_{t \ge 0} \int_{[0,t]} |f| \, d\mu \le \int_{\mathbb{R}} |f| \, d\mu = \|f\|_{1}.$$

Thus $||T|| \leq 1$. If $f = \chi_{[0,1]}$, then

$$g(t) = \int_{[0,t]} \chi_{[0,1]} \ d\mu = \mu([0,1] \cap [0,t]) = \mu([0,\min(t,1)]) = \min(t,1).$$

So $||g||_{\infty} = 1 = ||f||_1$, and so ||T|| = 1.

Finally, as X is dense in $\mathcal{L}^1(\mu)$, if $f \in \mathcal{L}^1(\mu)$, then there exists a sequence (f_n) in X with $f_n \to f$. In particular, (f_n) is Cauchy, so for $\epsilon > 0$, there exists N such that $||f_n - f_m|| < \epsilon$ for $n, m \ge N$. Then

$$||T(f_n) - T(f_m)|| \le ||f_n - f_m|| < \epsilon \qquad (n, m \ge N).$$

So $(T(f_n))$ is Cauchy in $C_{\mathbb{K}}([0,\infty))$, which is a Banach space, and hence converges to T(f) say. This is well-defined, for if $g_n \to f$ as well, then for each $\epsilon > 0$, there exists M with $||f - f_n|| < \epsilon/2$ and $||f - g_n|| < \epsilon/2$ for $n \ge M$. Thus $||f_n - g_n|| < \epsilon$ for $n \ge M$, showing that $||T(f_n) - T(g_n)|| < \epsilon$ for $n \ge M$. Hence $\lim_n T(f_n) = \lim_n T(g_n)$.

We can similarly show that T is linear, bounded, and that ||T|| = 1.

However, notice that it's not obvious, just from the definition, that T is defined on $\mathcal{L}^{1}(\mu)$ (because why would we get a *continuous* function by integrating an \mathcal{L}^{1} function?)

Question 3: With notation as from Question 1: for $1 , let <math>X_p \subseteq \mathcal{L}^p(\mu)$ have the same definition as X. Show quickly that X_p is a subspace. By using Question 1, and the fact that $\mathcal{L}^p(\mu)^* = \mathcal{L}^q(\mu)$, show that X_p is dense in $\mathcal{L}^p(\mu)$.

Proof: It is simple to show that X_p is a subspace. If X_p is not dense, that we could find a non-zero $g \in \mathcal{L}^p(\mu)^* = \mathcal{L}^q(\mu)$ which kills all² of X_p . We shall show that this is not possible, so that X_p is dense.

So suppose $g \in \mathcal{L}^q(\mu)$ is such that

$$\int_{\mathbb{R}} fg \ d\mu = 0 \qquad (f \in X_p).$$

¹See Wikipedia

²In Chapter 1, we used the Hahn-Banach theorem to show that if X is a Banach space, and Y a subspace, then for $x \in X$, we have that x is in the closure of Y if and only if $\mu(x) = 0$ whenever $\mu \in X^*$ has $Y \subseteq \ker \mu$. So it follows that Y is dense in X (that is, the closure of Y is all of X) if and only if, whenever $\mu \in X^*$ with $Y \subseteq \ker \mu$, we actually have that $\mu = 0$.

In particular, if $A \subseteq \mathbb{R}$ has finite measure, then $\chi_A \in X_p$, as $\|\chi_A\|_p = \mu(A)^{1/p} < \infty$. Thus

$$\int_A g \ d\mu = \int_{\mathbb{R}} \chi_A g \ d\mu = 0.$$

So let $\epsilon > 0$, let $B = \{x \in \mathbb{R} : g(x) \ge \epsilon\}$, and suppose towards a contradiction that $\mu(B) \ne 0$. Then

$$0 \neq \mu(B) = \lim_{n \to \infty} \mu \big(B \cap [-n, n] \big),$$

so for some n > 0, we have that $\mu(B \cap [-n, n]) > 0$. As $B \cap [-n, n]$ has finite measure, it follows that

$$0 = \int_{B \cap [-n,n]} g \ d\mu \ge \epsilon \mu(B \cap [-n,n]) > 0,$$

a contradiction. Thus $\{x \in \mathbb{R} : g(x) \ge \epsilon\}$ is null for all $\epsilon > 0$, and so $\{x \in \mathbb{R} : g(x) > 0\}$ is null.³ Similarly, $\{x \in \mathbb{R} : g(x) < 0\}$ is null. So g = 0 a.e. as required.

Question 4: We show that C([0,1]) is not dense in $\mathcal{L}^{\infty}([0,1])$ (over either \mathbb{R} or \mathbb{C}). Let $f:[0,1] \to [-1,1]$ be defined by

$$f(x) = \begin{cases} 0 & : x = 0, \\ \sin(1/x) & : 0 < x \le 1. \end{cases}$$

As f is continuous, except at 0, it is measurable. Clearly f is bounded everywhere, so $f \in \mathcal{L}^{\infty}([0,1])$. By considering what happens at zero, show that for any $g \in C([0,1])$, we have that $||f - g||_{\infty} \ge 1$.

Answer: Notice that

$$f\left(\frac{1}{2\pi n + \pi/2}\right) = 1, \quad f\left(\frac{1}{2\pi n - \pi/2}\right) = -1 \qquad (n \in \mathbb{N}).$$

As g is continuous, for $\epsilon > 0$, there exists $\delta > 0$ such that $|g(0) - g(t)| < \epsilon$ when $|t| < \delta$. Then there exists n with $(2\pi n + \pi/2)^{-1} < \delta$, and $(2\pi n - \pi/2)^{-1} < \delta$, so

$$\left| f\left(\frac{1}{2\pi n + \pi/2}\right) - g\left(\frac{1}{2\pi n + \pi/2}\right) \right| \ge |1 - g(0)| - \epsilon,$$

and

$$\left| f\left(\frac{1}{2\pi n - \pi/2}\right) - g\left(\frac{1}{2\pi n - \pi/2}\right) \right| \ge |-1 - g(0)| - \epsilon,$$

so for some choice, we certainly get a number greater than $1 - \epsilon$, and so we have that $\sup_{0 \le t \le 1} |f(t) - g(t)| \ge 1 - \epsilon$.

However, we need to deal with essential supremums. Suppose for the moment that $g(0) \leq 0$. Then let N be such that $2\pi N + \pi/2 > 1/\delta$, let $\gamma > 0$ be small, and let

$$A_{\epsilon} = \bigcup_{n \ge N} \left(\frac{1}{2\pi n + \pi/2 + \gamma}, \frac{1}{2\pi n + \pi/2 - \gamma} \right).$$

Then if γ is sufficiently small, we have that $t \in A_{\epsilon}$ implies that $f(t) > 1 - \epsilon$. Notice that A_{ϵ} is not a null set. Then, if $t \in A_{\epsilon}$, then

$$|f(t) - g(t)| \ge |f(t) - g(0)| - |g(0) - g(t)| \ge 1 - \epsilon - g(0) - \epsilon \ge 1 - 2\epsilon$$

³If you don't see this, think about the proof from lectures of the fact that for $f \in L^{\infty}(\mu)$, we have that $|f| \leq ||f||_{\infty}$ almost everywhere.

Hence we see that

$$\text{ess-sup}_{[0,1]} |f - g| \ge 1 - 2\epsilon.$$

As $\epsilon > 0$ was arbitrary, we conclude that $||f - g||_{\infty} \ge 1$ in $\mathcal{L}^{\infty}([0, 1])$. A similar argument applies when $g(0) \ge 0$.

Question 5: Let $([0,1], \mathcal{R}, \mu)$ be the restriction of the Lebesgue measure to [0,1]. Let $f \in \mathcal{L}^{\infty}(\mu)$. Show that $f \in \mathcal{L}^{p}(\mu)$ for $1 \leq p < \infty$, and $\sup\{\|f\|_{p} : 1 \leq p < \infty\} < \infty$. **Answer:** As $|f| \leq \|f\|_{\infty}$ almost everywhere, for any $p \geq 1$, we have $|f|^{p} \leq \|f\|_{\infty}^{p}$ almost everywhere. Hence

$$\|f\|_p = \left(\int_{[0,1]} |f|^p \ d\mu\right)^{1/p} \le \left(\|f\|_{\infty}^p\right)^{1/p} = \|f\|_{\infty}.$$

Question continued: Conversely, suppose that $f : [0,1] \to \mathbb{K}$ is measurable, that $f \in \mathcal{L}^p(\mu)$ for each $1 \leq p < \infty$, and that $\sup\{\|f\|_p : 1 \leq p < \infty\} < \infty$. Show that $f \in \mathcal{L}^{\infty}(\mu)$.

Answer: Let K > 0, and suppose $A = \{x \in [0,1] : |f(x)| \ge K\}$ is not null. Hence $|f| \ge K\chi_A$, and so for $p \ge 1$, also $|f|^p \ge K^p\chi_A$, so

$$K\mu(A)^{1/p} = \left(K^p\mu(A)\right)^{1/p} = \left(\int_{[0,1]} K^p\chi_A \ d\mu\right)^{1/p} \le \left(\int_{[0,1]} |f|^p \ d\mu\right)^{1/p} = \|f\|_p.$$

For $0 < t \le 1$, we have that $\sup_{p \ge 1} t^{1/p} = 1$, so

$$K = K \sup_{p \ge 1} \mu(A)^{1/p} \le \sup_{p \ge 1} ||f||_p.$$

We hence conclude that

$$\|f\|_{\infty} \le \sup_{p \ge 1} \|f\|_p,$$

showing that $f \in \mathcal{L}^{\infty}(\mu)$.

Question continued: Finally, show that if $f \in \mathcal{L}^{\infty}(\mu)$, then

$$\|f\|_{\infty} = \lim_{p \to \infty} \|f\|_p.$$

Answer: From the above, we saw that if $|f| \ge K$ on a non-null set, then

$$K \le \lim_{p \to \infty} \|f\|_p$$

Hence we see that

$$||f||_{\infty} \le \liminf_{p \to \infty} ||f||_p.$$

Conversely, by the first part, we see that

$$\limsup_{p \to \infty} \|f\|_p \le \|f\|_{\infty}.$$

In conclusion,

$$\limsup_{p \to \infty} \|f\|_p \le \|f\|_{\infty} \le \liminf_{p \to \infty} \|f\|_p \le \limsup_{p \to \infty} \|f\|_p,$$

so we have equality throughout, and by a previous sheet, $||f||_p$ tends to a limit, which must be $||f||_{\infty}$.

Question 6: We know that $(\ell^1)^* = \ell^\infty$, so it might be tempting to believe that $(\ell^\infty)^* = \ell^1$. This is impossible, as ℓ^∞ is not separable, while ℓ^1 is. However, let us give a more direct argument.

Treat c_0 as a (closed) subspace of ℓ^{∞} . Let $A \subseteq \mathbb{N}$ be infinite, so $\chi_A \in \ell^{\infty}$, but $\chi_A \notin c_0$. Show that

$$d(\chi_A, c_0) := \inf \left\{ \|\chi_A - x\|_{\infty} : x \in c_0 \right\} = 1.$$

Answer: If $x \in c_0$ then for $\epsilon > 0$, there exists N such that $|x_n| < \epsilon$ when $n \ge N$. Then, as A is infinite, there exists $n \in A$ with $n \ge N$, so that

$$|\chi_A(n) - x_n| = |1 - x_n| \ge 1 - \epsilon.$$

Hence $\|\chi_A - x_n\|_{\infty} \ge 1 - \epsilon$, and so as $\epsilon > 0$ was arbitrary, $\|\chi_A - x_n\|_{\infty} \ge 1$. Conversely, as $\|\chi_A\|_{\infty} = 1$, taking x = 0 gives $d(\chi_A, c_0) = 1$.

Question continued: Show that the linear map defined by

$$\phi: c_0 + \mathbb{K}\chi_A = \{x + t\chi_A : x \in c_0, t \in \mathbb{K}\} \to \mathbb{K}, \quad \phi(x + t\chi_A) = t,$$

is well-defined, and that $\|\phi\| = 1$. Hence, by the Hahn-Banach Theorem, show that there exists $\psi \in (\ell^{\infty})^*$ such that

$$\psi(\chi_A) = 1, \qquad \psi(x) = 0 \qquad (x \in c_0).$$

Answer: If $x_1 + t_1\chi_A = x_2 + t_2\chi_A$, then either $t_1 = t_2$, or otherwise, $\chi_A = (t_1 - t_2)^{-1}(x_2 - x_1) \in c_0$, a contradiction. So ϕ is well-defined. If t = 0, then $\chi(x + t\chi_A) = 0 \leq ||x + t\chi_A||$. For $t \neq 0$, from above, we have

$$1 \le ||t^{-1}x + \chi_A||_{\infty} = |t^{-1}|||x + t\chi_A||_{\infty},$$

and so $|\phi(x + t\chi_A)| = |t| \le ||x + t\chi_A||_{\infty}$, showing that $||\phi|| \le 1$. As $||\phi(\chi_A)|| = 1 = ||\chi_A||$, we have $||\phi|| = 1$. So let ψ be a Hahn-Banach extension to a member of $(\ell^{\infty})^*$. Clearly ψ has the stated properties.

Question continued: Show that there cannot exist $(a_n) \in \ell^1$ such that

$$\psi(x) = \sum_{n=1}^{\infty} a_n x_n \qquad (x = (x_n) \in \ell^{\infty}).$$

Answer: Suppose there does exist such an (a_n) . Then let $x_n = \overline{a_n}$ for each n, so as $\sum_n |a_n| < \infty$, clearly $(x_n) \in c_0$, and yet

$$\psi(x) = \sum_{n} a_n x_n = \sum_{n} |a_n|^2,$$

so we must have $a_n = 0$ for all n, giving that

$$1 = \psi(\chi_A) = \sum_{n \in A} a_n = 0,$$

a contradiction.

So ψ is not a member of ℓ^1 .

Linear Analysis I: Worked Solutions 9

Question 1: Let K be a compact space. Let (f_n) be a sequence of positive functions in $C_{\mathbb{R}}(K)$, and let $f \in C_{\mathbb{R}}(K)$ be such that for each $x \in K$,

$$f_1(x) \le f_2(x) \le \cdots, \qquad f(x) = \lim_n f_n(x).$$

Show that

$$\lambda(f) = \lim_{n} \lambda(f_n) \qquad (\lambda \in C_{\mathbb{R}}(K)^*).$$

Hint: Use the Riesz Representation Theorem, Hahn-Decomposition, and Monotone Convergence.

Answer: By the Riesz Representation Theorem, there exists a finite, regular, Borel signed measure μ on K such that

$$\lambda(g) = \int_{K} g \ d\mu \qquad (g \in C_{\mathbb{R}}(K))$$

By the Hahn-Decomposition, we can write $\mu = \mu_+ - \mu_-$ for some positive measures μ_+ and μ_- . By the conditions on (f_n) and f, the Monotone Convergence Theorem implies that

$$\int_{K} f \ d\mu_{+} = \lim_{n} \int_{K} f_{n} \ d\mu_{+}, \quad \int_{K} f \ d\mu_{-} = \lim_{n} \int_{K} f_{n} \ d\mu_{-}$$

Hence

$$\lambda(f) = \int_{K} f \, d\mu = \int_{K} f \, d\mu_{+} - \int_{K} f \, d\mu_{-} = \lim_{n} \int_{K} f_{n} \, d\mu_{+} - \int_{K} f_{n} \, d\mu_{-}$$
$$= \lim_{n} \int_{K} f_{n} \, d\mu = \lim_{n} \lambda(f_{n}),$$

as required.

Question 2: Let K be a compact space, let (f_n) be a sequence in $C_{\mathbb{C}}(K)$, let $f \in C_{\mathbb{C}}(K)$ and let M > 0 be such that

 $||f_n||_{\infty} \le M \quad (n \in \mathbb{N}), \qquad f(x) = \lim_n f_n(x) \qquad (x \in K).$

Show that

$$\lambda(f) = \lim_{n} \lambda(f_n) \qquad (\lambda \in C_{\mathbb{C}}(K)^*).$$

Hint: Use the Riesz Representation Theorem, Hahn-Decomposition, Dominated Convergence, and take positive and negative parts.

Answer: This is similar to Question 1. By the Riesz Representation Theorem for complex numbers, there exists a complex, regular, finite, Borel measure μ on K which induces λ . Split μ up as $\mu_r + i\mu_i$ for signed measures μ_r and μ_i . Then split these up as $\mu_r = \mu_+^{(r)} - \mu_-^{(r)}$ and $\mu_r = \mu_+^{(i)} - \mu_-^{(i)}$ for positive measures $\mu_+^{(r)}, \mu_-^{(r)}, \mu_+^{(i)}$ and $\mu_-^{(i)}$. By the conditions on (f_n) , as the constant function M is integrable on K (as all our measures are finite) we can apply the dominated convergence theorem to see that

$$\int_{K} f \ d\mu_{+}^{(r)} = \lim_{n} \int_{K} f_{n} \ d\mu_{+}^{(r)},$$

and for $\mu_{-}^{(r)}$, $\mu_{+}^{(i)}$ and $\mu_{-}^{(i)}$. The result then follows.

Question 3: Let K = [0, 1] and for each n, define $f_n \in C_{\mathbb{R}}(K)$ by

$$f_n(x) = \begin{cases} n^2 x & : 0 \le x \le 1/n, \\ 2n - n^2 x & : 1/n \le x \le 2/n, \\ 0 & : x > 2/n. \end{cases}$$

Show that $f_n(x) \to 0$ for each $x \in K$, but that there exists $\mu \in C_{\mathbb{R}}(K)^*$ such that $\mu(f_n) \not\to 0$.

Answer: We have that $f_n(0) = 0$ for all n, while, if t > 0, then for n sufficiently large, $f_n(t) = 0$, as eventually t > 2/n. Hence $f_n \to 0$ pointwise.

However, define $\lambda \in C_{\mathbb{R}}(K)^*$ by integrating against Lebesgue Measure μ , say

$$\lambda(f) = \int_{[0,1]} f \, d\mu \qquad (f \in C_{\mathbb{R}}([0,1])).$$

Then, for each n,

$$\lambda(f_n) = \int_0^{1/n} n^2 x \, dx + \int_{1/n}^{2/n} 2n - n^2 x \, dx$$
$$= \left[\frac{n^2 x^2}{2}\right]_{x=0}^{1/n} + \left[2nx - \frac{n^2 x^2}{2}\right]_{x=1/n}^{2/n} = \frac{1}{2} + 4 - 2 - 2 + \frac{1}{2} = 1.$$

Question 4: Let K be a topological space. We shall define the *Borel* σ -algebra on K to be the σ -algebra generated by open sets in K; again we write $\mathcal{B}(K)$ for this. In particular, we get $\mathcal{B}(\mathbb{K})$.

Given two topological spaces K and L, we shall say that a map $f: K \to L$ is *Borel* if $f^{-1}(E) \in \mathcal{B}(K)$ for each $E \in \mathcal{B}(L)$.

Now let K be a compact space, and consider K with the Borel σ -algebra $\mathcal{B}(K)$. Show that $f: K \to \mathbb{K}$ is measurable if and only if f is Borel.

Answer: If f is measurable, then by definition, if $U \subseteq \mathbb{K}$ is open, then $f^{-1}(U) \in \mathcal{B}(K)$. But we need to show this for all Borel sets, for which a little trick is required. Define

$$\mathcal{S} = \{ A \subseteq \mathbb{K} : f^{-1}(A) \in \mathcal{B}(K) \}.$$

We claim that this is a σ -algebra on K. Then it will contain all the open sets, and hence contains the σ -algebra generated by the open sets, that is, $\mathcal{B}(\mathbb{K}) \subseteq \mathcal{S}$, showing that f is Borel.

So how to prove the claim? Well, clearly $\emptyset, \mathbb{K} \in \mathcal{S}$. If $A \in \mathcal{S}$, then

$$f^{-1}(\mathbb{K} \setminus A) = K \setminus f^{-1}(A) \in \mathcal{B}(K),$$

so $\mathbb{K} \setminus A \in \mathcal{S}$. If $(A_n)_{n=1}^{\infty}$ is a sequence in \mathcal{S} , then

$$f^{-1}\left(\bigcup_{n} A_{n}\right) = \bigcup_{n} f^{-1}(A_{n}) \in \mathcal{B}(K),$$

so $\bigcup_n A_n \in \mathcal{S}$. So \mathcal{S} is a σ -algebra.

Conversely, let f be Borel. Then every open set is Borel in \mathbb{K} , and so automatically f is measurable.

Question 5: Let E and F be Banach spaces, and let $T \in \mathcal{B}(E, F)$. Show that there exists $S \in \mathcal{B}(F^*, E^*)$ with the following property: for $\phi \in F^*$, we have that $S(\phi) = \psi \in E^*$, where

$$\psi(x) = \phi(T(x)) \qquad (x \in E).$$

We call S the *adjoint* of T, and write $S = T^*$.

Answer: As T and ϕ is linear, the map

$$E \to \mathbb{K}, \quad x \mapsto \phi(T(x))$$

is linear, and so ψ is linear. Then, for $x \in E$,

$$|\psi(x)| = |\phi(T(x))| \le ||\phi|| ||T(x)|| \le ||\phi|| ||T|| ||x||.$$

As x was arbitrary, it follows that $\|\psi\| \leq \|\phi\| \|T\|$. So $\psi \in E^*$ as claimed.

It is easy to see that the map $\phi \mapsto \psi$ is linear, and so $S : F^* \to E^*$ is defined and linear. Then, for $\phi \in F^*$,

$$||S(\phi)|| = ||\psi|| \le ||\phi|| ||T||_{2}$$

so S is bounded, and $||S|| \leq ||T||$.

If you wish, try to use the Hahn-Banach theorem to show that actually ||S|| = ||T|| (this is a bit tricky: ask if you are interested).

Question 6: Let (X, \mathcal{R}, μ) be a measure space. We say that $E \in \mathcal{R}$ is an *atom* if $\mu(E) \neq 0$, and if $F \in \mathcal{R}$ with $F \subseteq E$ then either $\mu(F) = \mu(E)$ or $\mu(F) = 0$.

Suppose that for some $x \in X$, we have that $\{x\} \in \mathcal{R}$. Show that $\{x\}$ is an atom if and only if $\mu(\{x\}) \neq 0$.

Answer: If $\mu(\{x\}) \neq 0$ then if $F \subseteq \{x\}$, either $F = \{x\}$, so $\mu(F) = \mu(\{x\})$, or $F = \emptyset$, so $\mu(\emptyset) = 0$. Hence $\{x\}$ is an atom. Conversely, if $\{x\}$ is an atom, then by definition, $\mu(\{x\}) \neq 0$.

Question continued: Let $E \in \mathcal{R}$ be an atom. Let $(E_n)_{n=1}^{\infty}$ be a *partition* of E; that is, $E_n \in \mathcal{R}$ and $E_n \subseteq E$ for each n, for $n \neq m$ we have $E_n \cap E_m = \emptyset$, and finally $\bigcup_n E_n = E$. If μ is finite, show that there exists a unique n_0 with E_{n_0} being an atom.

Answer: Suppose that no E_n is an atom, so by definition, for each n, we can find $F_n \in \mathcal{R}$ with $F_n \subseteq E_n$, and with $0 < \mu(F_n) < \mu(E_n)$. Let $F = \bigcup_n F_n \in \mathcal{R}$, so that

$$0 < \sum_{n} \mu(F_n) = \mu(F) = \sum_{n} \mu(F_n) < \sum_{n} \mu(E_n) = \mu(E),$$

so $0 < \mu(F) < \mu(E)$, which contradicts E being an atom.

So there exists n_0 with E_{n_0} being an atom. In particular, $\mu(E_{n_0}) \neq 0$. Then $E_{n_0} \in \mathcal{R}$ and $E_{n_0} \subseteq E$, so as E is an atom, $\mu(E_{n_0}) = \mu(E)$. Thus

$$0 = \mu(E \setminus E_{n_0}) = \sum_{n \neq n_0} \mu(E_n),$$

showing that no other E_n can an atom (as they all have zero measure).

Question continued: Is this still true if μ is not finite?

Answer: Where did we use that E is finite? We actually used it in the final displayed equation! Indeed,

$$\mu(E) = \mu(E_{n_0}) + \mu(E \setminus E_{n_0}) = \mu(E) + \mu(E \setminus E_{n_0})$$

for any measure, but we can only conclude that $\mu(E \setminus E_{n_0}) = 0$ if $\mu(E) < \infty$.

A silly example is given by the following: let X be an infinite set, let \mathcal{R} be power set of X, and define μ on \mathcal{R} by $\mu(\emptyset) = 0$ and $\mu(A) = \infty$ for any non-empty $A \subseteq X$. Then μ is a measure, and every non-empty set is an atom!

Question 7: This follows on from Question 6. Let K be a compact Hausdorff space, and let μ be a finite, regular (positive) Borel measure. Let $E \in \mathcal{B}(K)$ be an atom. Show that there exists a closed set $F \subseteq E$ which is an atom. **Answer:** As μ is regular,

 $\mu(E) = \sup \left\{ \mu(F) : F \subseteq E \text{ is compact} \right\}$

As E is an atom, $\mu(E) > 0$. So we can find $F \subseteq E$ compact with $\mu(F) > 0$. As E is an atom, we must have that $\mu(F) = \mu(E)$. If F is not an atom, then we can find $G \in \mathcal{B}(K)$ with $G \subseteq F$ and $0 < \mu(G) < \mu(F)$. Then $G \subseteq E$ and $\mu(G) < \mu(E)$, which contradicts E being an atom.

Question continued: Suppose, towards a contradiction, that $x \in F$ implies that $\{x\}$ is not an atom. Show that for each $x \in F$ there exists an open set U_x with $x \in U_x$ and $\mu(U_x) < \mu(F)$.

As F is compact, and $\{U_x : x \in F\}$ is an open cover, there exist x_1, \dots, x_n in F with $U_{x_1} \cup \dots \cup U_{x_n} \supseteq F$. Let $A_j = U_{x_j} \cap F$ for $1 \leq j \leq n$, let $B_1 = A_1$ and $B_j = A_j \setminus (A_1 \cup \dots \cup A_{j-1})$ for $j \geq 2$. Why is $(B_j)_{j=1}^n$ a partition of F? Show that $\mu(B_j) < \mu(F)$ for each j, and hence derive a contradiction (think about Question 6 here). Answer: By the above, this is equivalent to $\mu(\{x\}) = 0$ for all $x \in F$. As μ is regular,

$$0 = \mu(\lbrace x \rbrace) = \inf \left\{ \mu(U) : \lbrace x \rbrace \subseteq U \text{ is open } \right\}.$$

So we can find U_x and open set with $x \in U_x$ and $\mu(U_x)$ as small as we like, certainly $\mu(U_x) < \mu(F)$.

Following the hint, we find $x_1, \dots, x_n \in F$ with $F \subseteq U_{x_1} \cup \dots \cup U_{x_n}$. By definition,

$$F = \bigcup_{j} U_{x_j} \cap F = \bigcup_{j} A_j = \bigcup_{j} B_j$$

and clearly the (B_i) are pairwise disjoint. Then

$$\mu(B_j) \le \mu(A_j) \le \mu(U_{x_j}) < \mu(F).$$

By the previous question, this is a contradiction, as one B_i must be an atom.

This contradiction shows that for some $x \in F$, we have that $\{x\}$ is an atom.

Question continued: Hence show that if $E \in \mathcal{B}(K)$ is an atom, then there exists a unique $x \in E$ with $\{x\}$ being an atom, and $\mu(E \setminus \{x\}) = 0$.

Answer: We have shown that if E is an atom, then there exists $x \in E$ with $\{x\}$ an atom. If $\mu(E) \neq \mu(\{x\})$, then $0 < \mu(E \setminus \{x\}) < \mu(E)$, contradicting E being an atom.

Question 8: Let K be a compact space. Given a Borel map $\psi : K \to K$ and $\mu \in M_{\mathbb{C}}(K)$, show (carefully) that

$$\psi(\mu) : \mathcal{B}(K) \to \mathbb{C}, \quad A \mapsto \mu(\psi^{-1}(A)) \qquad (A \in \mathcal{B}(K))$$

defines a measure on $\mathcal{B}(K)$.

Answer: As ψ is Borel, for $A \in \mathcal{B}(K)$, we have that $\psi^{-1}(A) \in \mathcal{B}(K)$, and so $\mu(\psi^{-1}(A))$ is defined. Clearly $\psi(\mu)(\emptyset) = 0$. Let (A_n) be a sequence of pairwise disjoint sets in $\mathcal{B}(K)$. Then, as inverse images behave very nicely with respect to disjoint unions, we have

$$\psi(\mu)\Big(\bigcup_n A_n\Big) = \mu\psi^{-1}\Big(\bigcup_n A_n\Big) = \mu\Big(\bigcup_n \psi^{-1}(A_n)\Big) = \sum_n \mu(\psi^{-1}(A_n)) = \sum_n \psi(\mu)(A_n).$$

So $\psi(\mu)$ is a measure.

Question continued: Do you think that $\psi(\mu)$ need be regular? What if ψ is even continuous?

Answer: There appears to no reason why $\psi(\mu)$ should be regular, as we know very little about what ψ^{-1} will do to compact sets, say.

If ψ is continuous, however, then we can argue as follows. Let $A \in \mathcal{B}(K)$. If $B \subseteq A$ then $\psi^{-1}(B) \subseteq \psi^{-1}(A)$, so automatically

$$\mu(\psi^{-1}(A)) \ge \sup \left\{ \mu(\psi^{-1}(B)) : B \subseteq A \text{ is compact} \right\}.$$

As μ is regular, we know that

$$\mu(\psi^{-1}(A)) = \sup \left\{ \mu(C) : C \subseteq \psi^{-1}(A) \text{ is compact} \right\}.$$

For $\epsilon > 0$, pick $C \subseteq \psi^{-1}(A)$ compact with $\mu(C) > \mu(\psi^{-1}(A)) - \epsilon$. Then $\psi(C)$ is also compact¹ and as $C \subseteq \psi^{-1}(A)$, we have that $\psi(C) \subseteq A$. Then let $D = \psi^{-1}(\psi(C))$ so that $C \subseteq D$. Then

$$\mu(\psi^{-1}(\psi(C))) = \mu(D) \ge \mu(C) > \mu(\psi^{-1}(A)) - \epsilon.$$

As $\epsilon > 0$ was arbitrary, we conclude that

$$\mu(\psi^{-1}(A)) \le \sup \left\{ \mu(\psi^{-1}(B)) : B \subseteq A \text{ is compact} \right\},\$$

and so we actually have that equality. So $\psi(\mu)$ is inner regular.

We now use a trick which we saw a couple of sheets ago. Let $A' = K \setminus A$, so $A' \in \mathcal{B}(K)$, and hence

$$\mu(\psi^{-1}(A')) = \sup\left\{\mu(\psi^{-1}(B)) : B \subseteq A' \text{ is compact}\right\}$$

For $\epsilon > 0$, we can hence find $B \subseteq A'$ compact (hence closed) with $\mu(\psi^{-1}(B)) > \mu(\psi^{-1}(A')) - \epsilon$. Let $U = K \setminus B$, so that U is open, and $A \subseteq U$. Then

$$\mu(\psi^{-1}(U)) = \mu(\psi^{-1}(K)) - \mu(\psi^{-1}(B)) < \mu(K) - \mu(\psi^{-1}(A')) + \epsilon$$

= $\mu(K) + \epsilon - \mu(K \setminus \psi^{-1}(A)) = \mu(K) + \epsilon - \mu(K) + \mu(\psi^{-1}(A))$
= $\mu(\psi^{-1}(A)) + \epsilon.$

As $\epsilon > 0$ was arbitrary, we conclude that

$$\mu(\psi^{-1}(A)) = \inf \left\{ \mu(\psi^{-1}(U)) : A \subseteq U \text{ is open} \right\}.$$

So $\psi(\mu)$ is regular in the case that ψ is continuous.

Question 9: This uses the notation of Question 5, and continued from Question 8. Let $\psi: K \to K$ be a continuous map. Show that we can define $S_{\psi}: C_{\mathbb{K}}(K) \to C_{\mathbb{K}}(K)$ by

$$S_{\psi}(f) = f \circ \psi \qquad (f \in C_{\mathbb{K}}(K)).$$

Show that S_{ψ} is bounded. What is $||S_{\psi}||$?

Answer: As ψ is continuous, for $f \in C_{\mathbb{K}}(K)$, we have that $f \circ \psi \in C_{\mathbb{K}}(K)$. Obviously S_{ψ} is linear. Then

$$||f \circ \psi||_{\infty} = \sup_{t \in K} |f(\psi(t))| \le \sup_{s \in K} |f(s)| = ||f||_{\infty}.$$

So $||S_{\psi}(f)|| \leq ||f||_{\infty}$, so S_{ψ} is bounded with $||S_{\psi}|| \leq 1$. Notice that if 1 denotes the constant function, then $S_{\psi}(1) = 1$, and so actually $||S_{\psi}|| = 1$.

¹This is a lemma from Topology: the image of a compact set under a continuous map is always compact.

Question continued: Calculate what S_{ψ}^* is: you will need to use the proof of the Riesz-representation theorem.

Answer: Well, S_{ψ}^* should map from $M_{\mathbb{K}}(K)$ to $M_{\mathbb{K}}(K)$. So let $\mu \in M_{\mathbb{K}}(K)$ and let $\lambda = S_{\psi}^*(\mu)$. Then

$$\int_{K} f \ d\lambda = S_{\psi}^{*}(\mu)(f) = \int_{K} f \circ \psi \ d\mu \qquad (f \in C_{\mathbb{K}}(K)).$$

Following the vague hint, we might hope that $\lambda = \psi(\mu)$. Let's prove this!

Let's suppose that μ is positive! By (the proof of) the Riesz Representation Theorem, for $U \subseteq K$ open

$$\lambda(U) = \sup \left\{ \lambda(f) : f \in C_{\mathbb{K}}(K), 0 \le f \le \chi_U, \operatorname{supp}(f) \subseteq U \right\}$$
$$= \sup \left\{ \int_K f \circ \psi \ d\mu : f \in C_{\mathbb{K}}(K), 0 \le f \le \chi_U, \operatorname{supp}(f) \subseteq U \right\}.$$

Now, if $0 \leq f \leq \chi_U$ and $\operatorname{supp}(f) \subseteq U$, then

$$0 \le f(\psi(s)) \le \chi_U(\psi(s)) = \chi_{\psi^{-1}(U)}.$$

If $t \in \operatorname{supp}(f \circ \psi)$ then there exists (t_n) with $t_n \to t$ and $f(\psi(t_n)) \neq 0$ for each n. Then $\psi(t_n) \to \psi(t)$, so $\psi(t) \in \operatorname{supp}(f)$, that is, $t \in \psi^{-1}(\operatorname{supp}(f)) \subseteq \psi^{-1}(U)$. [²] So, setting $g = f \circ \psi$, we see that

$$\lambda(U) \leq \sup\left\{\int_{K} g \ d\mu : g \in C_{\mathbb{K}}(K), 0 \leq g \leq \chi_{\psi^{-1}(U)}, \operatorname{supp}(g) \subseteq \psi^{-1}(U)\right\}$$
$$= \mu(\psi^{-1}(U)).$$

Conversely, let $0 \leq g \leq \chi_{\psi^{-1}(U)}$ with $\operatorname{supp}(g) \subseteq \psi^{-1}(U)$. We cannot expect to find $f \in C_{\mathbb{K}}(K)$ with $g = f \circ \psi$. But we only need to find f with $f \circ \psi \geq g$ (as ultimately we take an supremum), and of course with f continuous, $0 \leq f \leq \chi_U$ and $\operatorname{supp}(f) \subseteq U$. For the moment, let's assume that we can do this!

So we have $f \in C_{\mathbb{K}}(K)$ with $0 \leq f \leq \chi_U$, $\operatorname{supp}(f) \subseteq U$, and $f \circ \psi \geq g$. Thus

$$\lambda(U) \ge \sup \Big\{ \int_K g(t) \ d\mu(t) : g \in C_{\mathbb{K}}(K), 0 \le g \le \chi_{\psi^{-1}(U)}, \operatorname{supp}(g) \subseteq \psi^{-1}(U) \Big\}.$$

So we conclude that $\lambda(U) = \mu(\psi^{-1}(U))$ for open U.

By the previous question, we know that $\psi(\mu)$ is a regular measure. We now also know that $\psi(\mu)(U) = \lambda(U)$ for all open sets U, and that λ is regular. So, for any $E \in \mathcal{B}(K)$, we have

$$\lambda(E) = \inf \left\{ \lambda(U) : E \subseteq U \text{ is open} \right\} = \inf \left\{ \mu(\psi^{-1}(U)) : E \subseteq U \text{ is open} \right\} = \psi(\mu)(E).$$

So $\psi(\mu) = \lambda$, as required.

I $think^3$ that the general case follows by taking real and imaginary parts, and then using the Hahn-Decomposition.

Okay, so it remains to prove that we can construct such a g. The following is very much off syllabus, but if you are interested, it is hopefully interesting!

 $^{^{2}}$ This assumes a metric space: a more tedious argument works for a general topological space.

³Which means: I haven't checked the details

Recall the setup of the Riesz Representation theorem. We have a compact space K, the Borel σ -algebra $\mathcal{B}(K)$, and a *positive* $\lambda \in C_{\mathbb{K}}(K)^*$. We define an outer measure μ^* by, for $U \subseteq K$ open,

$$\mu^*(U) = \sup \left\{ \lambda(f) : f \in C_{\mathbb{K}}(K), 0 \le f \le \chi_U, \operatorname{supp}(f) \subseteq U \right\}.$$

We had a lemma in the lectures which, vaguely, justified this definition; the weird condition on the support of f is, basically, because it makes a certain proof work! Then for arbitrary $E \subseteq K$, we define

$$\mu^*(E) = \inf \left\{ \mu^*(U) : K \subseteq U, U \text{ is open} \right\}.$$

Then μ^* is an outer measure, and every member of $\mathcal{B}(K)$ is μ^* -measurable, so if we let μ be the restriction of μ^* to $\mathcal{B}(K)$, then μ is a measure.

Let's think about this, and apply Urysohn's Lemma repeatedly. Let $U \subseteq K$ be open, and let f be continuous with $0 \leq f \leq \chi_U$ and $\operatorname{supp}(f) \subseteq U$.

Then, immediately, Urysohn, applied to the closed sets $\operatorname{supp}(f)$ and $K \setminus U$, yields a continuous function $g: K \to [0,1]$ with $g \equiv 0$ on $K \setminus U$ and $g \equiv 1$ on $\operatorname{supp}(f)$. Then clearly $0 \leq f \leq g \leq \chi_U$, but we do not have that $\operatorname{supp}(g) \subseteq U$, because $\operatorname{supp}(g)$ involves a closure. So g is not a "valid test function".

We have to study the proof of Urysohn. Recall that the key idea is that K, being compact, is *normal*, so given disjoint closed sets E and F, we can find disjoint open sets W and V with $E \subseteq W$ and $F \subseteq V$. We apply this to $\operatorname{supp}(f)$ and $K \setminus U$ to find disjoint open sets W and V with $\operatorname{supp}(f) \subseteq W$ and $K \setminus U \subseteq V$. Let \overline{V} be the closure of V. As $V \subseteq K \setminus W$ which is closed, $\overline{V} \subseteq K \setminus W$, and so \overline{V} is disjoint from $\operatorname{supp}(f)$.

Applying Urysohn to the disjoint closed sets $\operatorname{supp}(f)$ and \overline{V} , we find a continuous $g: K \to [0, 1]$ with $g \equiv 1$ on $\operatorname{supp}(f)$ and $g \equiv 0$ on \overline{V} . In particular, $g \equiv 0$ on V, and so $\{x: g(x) \neq 0\} \subseteq K \setminus V$, a closed set. Hence $\operatorname{supp}(g) \subseteq K \setminus V$, so as $K \setminus U \subseteq V$, it follows that $K \setminus V \subseteq U$, and so $\operatorname{supp}(g) \subseteq U$.

In summary, given any continuous f with $0 \le f \le \chi_U$ and $\operatorname{supp}(f) \subseteq U$, we can find a continuous g with $g \equiv 1$ on $\operatorname{supp}(f), 0 \le g \le \chi_U$ and $\operatorname{supp}(g) \subseteq U$.

In fact, we have proved more. Given any closed set F contained in U, we can find a continuous g with $g \equiv 1$ on F, $0 \leq g \leq \chi_U$ and $\operatorname{supp}(g) \subseteq U$. Call this g_F . It follows immediately that

$$\mu(U) = \sup \left\{ \lambda(g_F) : F \subseteq U \text{ is closed} \right\}.$$

So why not define μ^* in this way? I think because it is hard to motivate, and because it makes life very difficult later on: when showing that μ^* is an outer measure, I think the proof really uses the freedom to use arbitrary continuous functions f, and not just these special functions g_F .

However, now we can complete the proof above. Recall that we have $0 \leq g \leq \chi_{\psi^{-1}(U)}$ with $\operatorname{supp}(g) \subseteq \psi^{-1}(U)$. We seek f with $0 \leq f \leq \chi_U$, $\operatorname{supp}(f) \subseteq U$ and with $f \circ \psi \geq g$. If you play with this for a while, it seems natural to define

$$F = \text{closure of } \{\psi(x) : g(x) > 0\}.$$

If $F \subseteq U$, then can let $f = g_F$. Then if g(x) > 0 then $\psi(x) \in F$ so $f(\psi(x)) = 1$, showing that $f \circ \psi \geq g$, as required.

So it remains to show that $F \subseteq U$. We again assume that K is a metric space. If $F \not\subseteq U$, then we can find $x \in F$ with $x \notin U$. Hence there exists a sequence (x_n) with $\psi(x_n) \to x$ and $g(x_n) > 0$ for each n. So (x_n) is a sequence in the compact set $\operatorname{supp}(g)$, so we may suppose, by moving to a subsequence, that x_n converges, say to y. Then $\psi(y) = \lim_n \psi(x_n) = x$. As $y \in \operatorname{supp}(g) \subseteq \psi^{-1}(U)$, it follows that $x = \psi(y) \in U$, a contradiction as required.

Linear Analysis I: Worked Solutions 10

Question 1: Let E and G be Banach spaces, and let $F \subseteq E$ be a subspace which is dense. Let $T: F \to G$ be a bounded linear map. Show that we can extend T to give a bounded linear map $E \to G$. Show that such an extension must be unique.

Answer: First we show uniqueness. Let $T_1, T_2 : E \to G$ be extensions. Let $x \in E$, so as F is dense, we can find a sequence (x_n) in F with $\lim_n x_n = x$. Then as T_1 and T_2 are continuous,

$$T_1(x) = \lim_n T_1(x_n) = \lim_n T(x_n) = \lim_n T_2(x_n) = T_2(x).$$

As x was arbitrary, $T_1 = T_2$.

Now to existence. We extend T be continuity. Let $x \in E$, so we can find a sequence (x_n) in F with $x_n \to x$. In particular, (x_n) is Cauchy, so for $\epsilon > 0$, there exists N_{ϵ} such that $||x_n - x_m|| < \epsilon$ if $n, m \ge N_{\epsilon}$. Then

$$||T(x_n) - T(x_m)|| = ||T(x_n - x_m)|| \le ||T|| ||x_n - x_m|| < \epsilon ||T|| \qquad (n, m \ge N_{\epsilon}).$$

Hence $(T(x_n))$ is a Cauchy sequence in G, which is a Banach space, and so $T(x_n) \to \hat{T}(x)$ say. Notice that

$$\|\hat{T}(x)\| = \lim_{n} \|T(x_n)\| \le \|T\| \lim_{n} \|x_n\| = \|T\| \|x\|.$$

Firstly, we note that if $x \in F$ to start with, then $\hat{T}(x) = \lim_n T(x_n) = T(x)$, so \hat{T} and T agree on F. If now $x \in E$ is arbitrary, and (y_n) is another sequence converging to x, then for $\epsilon > 0$, there exists N such that both $||x_n - x|| < \epsilon$, and $||y_n - x|| < \epsilon$, for $n \ge N$. Hence $||x_n - y_n|| < 2\epsilon$ for $n \ge N$, and so $(x_n - y_n)$ is a sequence converging to 0. Hence $T(x_n - y_n) \to 0$, and so $\lim_n T(x_n) = \lim_n T(y_n)$. Hence \hat{T} is well-defined.

Finally, if $x, y \in E$ and $\alpha \in \mathbb{K}$, then if $x_n \to x$ and $y_n \to y$ with (x_n) and (y_n) sequences in F, then $\alpha x_n + y_n \to \alpha x + y$, and so

$$\hat{T}(\alpha x + y) = \lim_{n} T(\alpha x_n + y_n) = \lim_{n} \alpha T(x_n) + \lim_{n} T(y_n) = \alpha \hat{T}(x) + \hat{T}(y),$$

showing that \hat{T} is linear. We showed above that \hat{T} was bounded. So \hat{T} is our extension.

Actually, this argument would also show the following: if X and Y are metric spaces, $X_0 \subseteq X$ is dense, $f : X_0 \to Y$ is continuous, and Y is *complete*, then f has a unique extension to all of X. I thought that you would have seen this in the Topology course, but apparently not.

Question 2: Define $f : [0,1] \to \mathbb{C}$ by

$$f(t) = \begin{cases} \exp(t) & : 0 \le t \le 1/2, \\ \exp(1-t) & : 1/2 \le t \le 1. \end{cases}$$

Thus f is periodic. Calculate the Fourier transform of f.

By using Fejer's Theorem, and evaluating at t = 0 and t = 1/2, show that

$$\sum_{k=1}^{\infty} \frac{1}{1+16\pi^2 k^2} = \frac{1}{4(e^{1/2}-1)} - \frac{3}{8}.$$

Answer: Notice that f(1-t) = f(t) for $1/2 \le t \le 1$. So

$$\hat{f}(n) = \int_0^1 f(t)e^{2\pi i n t} dt = \int_0^{1/2} f(t)e^{2\pi i n t} dt + \int_{1/2}^1 f(1-t)e^{2\pi i n t} dt$$
$$= \int_0^{1/2} f(t)e^{2\pi i n t} dt + \int_0^{1/2} f(s)e^{2\pi i n (1-s)} ds$$
$$= \int_0^{1/2} f(t) \left(e^{2\pi i n t} + e^{-2\pi i n t}\right) dt$$

Now,

$$\int_0^{1/2} e^t e^{2\pi i n t} dt = \left[\frac{e^{t(1+2\pi i n)}}{1+2\pi i n}\right]_{t=0}^{1/2} = \frac{e^{1/2+\pi i n}-1}{1+2\pi i n} = \frac{e^{1/2}(-1)^n-1}{1+2\pi i n}.$$

Putting these together, we get

$$\hat{f}(n) = \frac{e^{1/2}(-1)^n - 1}{1 + 2\pi i n} + \frac{e^{1/2}(-1)^{-n} - 1}{1 - 2\pi i n} = \frac{2((-1)^n e^{1/2} - 1)}{1 + 4\pi^2 n^2}.$$

You could also do the integral directly, of course!

We consider the partial sums at 0,

$$\sum_{k=-n}^{n} \hat{f}(k)e^{-2\pi i k0} = \sum_{k=-n}^{n} \hat{f}(k) = \sum_{k=-n}^{n} 2\frac{(-1)^{k}e^{1/2} - 1}{1 + 4\pi^{2}k^{2}}.$$

This is (absolutely) convergent, so the Cesaro sums converge to the same limit, and hence by Fejer's Theorem,

$$1 = f(0) = 2\sum_{k=-\infty}^{\infty} \frac{(-1)^k e^{1/2} - 1}{1 + 4\pi^2 k^2} = 2(e^{1/2} - 1) + 4\sum_{k=1}^{\infty} \frac{(-1)^k e^{1/2} - 1}{1 + 4\pi^2 k^2}.$$

Re-arrange, and we get

$$3 - 2e^{1/2} = 4\sum_{k=1}^{\infty} \frac{(-1)^k e^{1/2} - 1}{1 + 4\pi^2 k^2}.$$

If we evaluate at 1/2 instead, we get

$$\begin{split} f(1/2) &= e^{1/2} = 2\sum_{k=-\infty}^{\infty} (-1)^k \frac{(-1)^k e^{1/2} - 1}{1 + 4\pi^2 k^2} = 2\sum_{k=-\infty}^{\infty} \frac{e^{1/2} - (-1)^k}{1 + 4\pi^2 k^2} \\ &= 2(e^{1/2} - 1) + 4\sum_{k=1}^{\infty} \frac{e^{1/2} - (-1)^k}{1 + 4\pi^2 k^2}, \end{split}$$

and so

$$2 - e^{1/2} = 4 \sum_{k=1}^{\infty} \frac{e^{1/2} - (-1)^k}{1 + 4\pi^2 k^2}.$$

Adding these two, and taking even parts, we get

$$5 - 3e^{1/2} = 4\sum_{k=1}^{\infty} \frac{(-1)^k e^{1/2} - 1 + e^{1/2} - (-1)^k}{1 + 4\pi^2 k^2} = 8\sum_{k=1}^{\infty} \frac{e^{1/2} - 1}{1 + 16\pi^2 k^2}.$$

We conclude

$$\sum_{k=1}^{\infty} \frac{1}{1+16\pi^2 k^2} = \frac{5-3e^{1/2}}{8(e^{1/2}-1)} = \frac{1}{4(e^{1/2}-1)} - \frac{3}{8}.$$

At least, if I haven't made a mistake!

Question 3: Let $f(t) = e^t$ for $0 \le t \le 1$; show that $f \in \mathcal{L}^2([0,1])$ and compute $||f||_2$. Find $\mathcal{F}(f)$, and hence deduce that

$$\sum_{n=1}^{\infty} \frac{1}{1+4\pi^2 n^2} = \frac{3-e}{4(e-1)}$$

Answer: We have that

$$|f||_{2}^{2} = \int_{0}^{1} |e^{t}|^{2} dt = \int_{0}^{1} e^{2t} dt = \left[\frac{e^{2t}}{2}\right]_{t=0}^{1} = \frac{e^{2} - 1}{2}.$$

So $f \in \mathcal{L}^2([0,1])$. Also

$$\hat{f}(n) = \int_0^1 e^t e^{2\pi i n t} \, dt = \left[\frac{\exp(t(1+2\pi i n))}{1+2\pi i n}\right]_{t=0}^1 = \frac{\exp(1+2\pi i n)-1}{1+2\pi i n} = \frac{e-1}{1+2\pi i n}.$$

So by Parseval (that is, the Fourier transform is an isometry $\mathcal{L}^2([0,1]) \to \ell^2(\mathbb{Z}))$,

$$\frac{e^2 - 1}{2} = \|f\|_2^2 = \|\mathcal{F}(f)\|_2^2 = \sum_{n = -\infty}^{\infty} \frac{(e - 1)^2}{1 + 4\pi^2 n^2} = (e - 1)^2 + 2\sum_{n = 1}^{\infty} \frac{(e - 1)^2}{1 + 4\pi^2 n^2}.$$

And so we see that

$$\sum_{n=1}^{\infty} \frac{1}{1+4\pi^2 n^2} = \frac{1}{2(e-1)^2} \left(\frac{e^2 - 1}{2} - (e-1)^2 \right) = \frac{(e-1)(e+1)}{4(e-1)^2} - \frac{1}{2}$$
$$= \frac{e+1}{4(e-1)} - \frac{1}{2} = \frac{e+1 - 2(e-1)}{4(e-1)} = \frac{3-e}{4(e-1)}$$

Question 4: Show that $C_{\mathbb{C}}(\mathbb{T})$ is dense in $\mathcal{L}^2(\mathbb{T}) = \mathcal{L}^2([0,1])$.

Proof: We know that $C_{\mathbb{C}}([0,1])$ is dense in $\mathcal{L}^2([0,1])$. So for $f \in \mathcal{L}^2([0,1])$ and $\epsilon > 0$, there exists $g \in C_{\mathbb{C}}([0,1])$ with $||f - g||_2 < \epsilon$. Pick $\delta > 0$ small and define $h : [0,1] \to \mathbb{C}$ by

$$h(t) = \begin{cases} g(t) & : 0 \le t \le 1 - \delta, \\ g(t)\frac{1-t}{\delta} + g(0)\frac{t-1+\delta}{\delta} & : 1 - \delta \le t \le 1. \end{cases}$$

In words, h is g, except that we chop it off at $1 - \delta$ and linearly interpolate between $g(1 - \delta)$ and g(0) to get a periodic function.

Then h is continuous, and h(1) = g(0) = h(0), so $h \in C_{\mathbb{C}}(\mathbb{T})$. Furthermore, for $1 - \delta \leq t \leq 1$, we see that

$$\begin{aligned} |h(t) - g(t)| &= \left| g(t) \frac{1 - t}{\delta} + g(0) \frac{t - 1 + \delta}{\delta} - g(t) \right| \\ &\leq |g(t)| \frac{\delta - (1 - t)}{\delta} + |g(0)| \frac{t - 1 + \delta}{\delta} \leq |g(t)| + |g(0)| \leq 2 ||g||_{\infty}. \end{aligned}$$

Hence

$$\|h - g\|_{2} = \left(\int_{1-\delta}^{1} |h(t) - g(t)|^{2} d\mu(t)\right)^{1/2} \le \left(4\|g\|_{\infty}^{2}\delta\right)^{1/2} = 2\sqrt{\delta}\|g\|_{\infty},$$

which is $\leq \epsilon$ if δ is sufficiently small. Hence

$$\|f - h\|_2 \le 2\epsilon,$$

as required.

Question 5: Let (f_n) be a sequence in $C_{\mathbb{C}}([0,1])$ converging to f with respect to the $\|\cdot\|_{\infty}$ norm. Suppose each f_n is differentiable (to be precise, on (0,1), or suppose each f_n is periodic) with a continuous derivative, and $f'_n \to g \in C_{\mathbb{C}}([0,1])$ with respect to the $\|\cdot\|_{\infty}$ norm. Show that f is differentiable with derivative g. Answer: For $0 \leq t \leq 1$, define

$$h(t) = \int_0^t g(x) \, dx + f(0).$$

Hence $h \in C_{\mathbb{C}}([0,1])$. For $\epsilon > 0$, there exists N such that both $||f'_n - g||_{\infty} < \epsilon$ and $||f_n - f||_{\infty} < \epsilon$, when $n \ge N$. Hence for $0 \le t \le 1$ and $n \ge N$,

$$|h(t) - f_n(t)| = \left| h(t) - \int_0^t f'_n(x) \, dx - f_n(0) \right| \le \left| \int_0^t g(x) - f'_n(x) \, dx \right| + |f(0) - f_n(0)|$$

$$\le t ||g - f'_n||_{\infty} + ||f - f_n||_{\infty} < (1+t)\epsilon \le 2\epsilon.$$

Hence $||h - f_n||_{\infty} \leq 2\epsilon$ for $n \geq N$. So $h = \lim_n f_n = f$, and clearly h is differentiable with derivative g, as required.

Question 6: For $n \ge 1$ let $x_n = (x_m^{(n)})_{m \in \mathbb{Z}} \in c_0(\mathbb{Z})$ be defined by

$$x_m^{(n)} = \begin{cases} 1 & : |m| \le n, \\ 0 & : |m| > n. \end{cases}$$

Then $x_n \in \ell^1(\mathbb{Z})$ so that $\mathcal{F}^{-1}(x_n)$ makes sense. Show that $\|\mathcal{F}^{-1}(x_n)\|_1$ is large.

Hence, by using a result from lectures that \mathcal{F} is injective, and assuming the Open Mapping Theorem, show that \mathcal{F} does not map $\mathcal{L}^1([0,1])$ onto $c_0(\mathbb{Z})$.

Answer: We calculate that for $0 \le t \le 1$,

$$\mathcal{F}^{-1}(x_n)(t) = \sum_{k=-n}^n e^{-2\pi i kt} = e^{2\pi i nt} \left(1 + z + \dots + z^{2n}\right) = e^{2\pi i nt} \frac{1 - z^{2n+1}}{1 - z}$$
$$= \frac{z^{-n} - z^{n+1}}{1 - z} = \frac{z^{-n-1/2} - z^{n+1/2}}{z^{-1/2} - z^{1/2}} = \frac{2i \sin(2\pi (n+1/2)t)}{2i \sin(2\pi (1/2)t)} = \frac{\sin((2n+1)\pi t)}{\sin(\pi t)}$$

where $z = e^{-2\pi i t}$. Of course, $\mathcal{F}^{-1}(x_n)(0) = 2n + 1$.

I now copy Korner.¹ We know that (or we can prove that)

$$0 \le s \le \pi/2 \implies \frac{2s}{\pi} \le \sin(s) \le s.$$

So letting $s = \pi t$, we see that

$$0 \le t \le 1/2 \implies 2t \le \sin(\pi t) \le \pi t \implies 2 \le \frac{\sin(\pi t)}{t} \le \pi.$$

¹See chapter 18; I don't understand Korner's proof, so this is a little different!

Thus

$$\int_{[0,1]} |\mathcal{F}^{-1}(x_n)| \, d\mu = \int_0^1 \left| \frac{\sin((2n+1)\pi t)}{\sin(\pi t)} \right| \, dt = 2 \int_0^{1/2} \left| \frac{\sin((2n+1)\pi t)}{\sin(\pi t)} \right| \, dt$$
$$\geq 2 \int_0^{1/2} \left| \frac{\sin((2n+1)\pi t)}{\pi t} \right| \, dt$$
$$= 2 \sum_{r=0}^{2n} \int_{r/(4n+2)}^{(r+1)/(4n+2)} \frac{\left| \sin((2n+1)\pi t) \right|}{\pi t} \, dt$$
$$= 2 \sum_{r=0}^{2n} \int_0^{1/(4n+2)} \frac{\left| \sin((2n+1)\pi t + \pi r/2) \right|}{\pi t + r\pi/(4n+2)} \, dt.$$

For $0 \le t \le 1/(4n+2)$, by our previous inequality, with $s = (2n+1)\pi t$, we get $(4n+2)t \le \sin((2n+1)\pi t) \le (2n+1)\pi t.$

So, when r = 0, we see

$$\int_0^{1/(4n+2)} \frac{\left|\sin((2n+1)\pi t)\right|}{\pi t} dt \ge \int_0^{1/(4n+2)} \frac{4n+2}{\pi} dt = \frac{1}{\pi}.$$

When r > 0, as also $0 \le t \le 1/(4n+2)$, we use the simple inequality

$$\frac{1}{\pi t + r\pi/(4n+2)} \ge \frac{1}{(r+1)\pi/(4n+2)} = \frac{4n+2}{(r+1)\pi}$$

So we get an new estimate for our integral,

$$\geq \frac{2}{\pi} + 2\sum_{r=1}^{2n} \frac{4n+2}{(r+1)\pi} \int_0^{1/(4n+2)} \left| \sin((2n+1)\pi t + \pi r/2) \right| dt$$
$$= \frac{2}{\pi} + 2\sum_{r=1}^{2n} \frac{1}{(r+1)\pi} \int_0^1 \left| \sin(\pi t/2 + \pi r/2) \right| dt$$
$$= \frac{2}{\pi} + 2\sum_{r=1}^{2n} \frac{1}{(r+1)\pi} \int_0^1 \sin(\pi t/2) dt \quad \text{(draw a picture!)}$$
$$= \frac{2}{\pi} + 2\sum_{r=1}^{2n} \frac{1}{(r+1)\pi} \frac{2}{\pi} \geq \frac{4}{\pi^2} \sum_{r=0}^{2n} \frac{1}{r+1}.$$

This of course is the harmonic series, which diverges! So we conclude that

$$\lim_{n \to \infty} \left\| \mathcal{F}^{-1}(x_n) \right\|_1 = \infty.$$

Of course, $||x_n||_{\infty} = 1$ for all n. So let $f_n = \mathcal{F}^{-1}(x_n)$ for each n. As $x_n \in c_0(\mathbb{Z}) \cap \ell^1(\mathbb{Z})$, we see that $\mathcal{F}(f_n) = x_n$.

Suppose that $\mathcal{F} : \mathcal{L}^1([0,1]) \to c_0(\mathbb{Z})$ is surjective. By a result from the lectures, \mathcal{F} is injective. By the Open Mapping Theorem, there exists a *bounded* map $T : c_0(\mathbb{Z}) \to \mathcal{L}^1([0,1])$ such that $T\mathcal{F}$ is the identity on $\mathcal{L}^1([0,1])$. Then

$$n < ||f_n||_1 = ||T\mathcal{F}(f_n)||_1 \le ||T|| ||\mathcal{F}(f_n)||_{\infty} = ||T|| ||x_n||_{\infty} = ||T||.$$

This contradicts ||T|| being finite. So \mathcal{F} is not surjective.²

²To be honest, this is the *only* way which I can think of to show this result. But maybe it is possible to simply write down something in $c_0(\mathbb{Z})$ and show, directly, that it cannot be the image of something $\mathcal{L}^1([0,1])$, but I don't see it. Let me know if you find an example!

Thinking more about Riesz Representation

Question i: For a compact (Hausdorff) space K let $M_{\mathbb{C}}(K)$ be the space of finite, complex, regular Borel measures on K. For $\mu \in M_{\mathbb{C}}(K)$ define $\phi_{\mu} \in C_{\mathbb{C}}(K)^*$ by

$$\phi_{\mu}(f) = \int_{K} f \ d\mu \qquad (f \in C_{\mathbb{C}}(K)).$$

Let $g : K \to \mathbb{C}$ be a simple function (of course, not assumed continuous!) with $||g||_{\infty} \leq 1$. Show that

$$\Big|\int_K g \, d\mu\Big| \le \|\mu\|.$$

Now let $f \in C_{\mathbb{C}}(K)$ with $||f||_{\infty} \leq 1$. Show that we can find a sequence (g_n) of simple functions with $g_n \to f$ pointwise, and with $|g_n| \leq |f|$ everywhere for each n. (*Hint:* Apply our "canonical" method for getting simple functions, but taking account of real and imaginary parts, etc.) Conclude, by using the Dominated Convergence Theorem, that $|\phi_{\mu}(f)| \leq ||\mu||$. Conclude that $||\phi_{\mu}|| \leq ||\mu||$.

Answer: Let $g = \sum_{n} a_n \chi_{A_n}$. As $||g||_{\infty} \leq 1$, we have that $|a_n| \leq 1$, or $\mu(A_n) = 0$, for each *n*. Of course, we may suppose that the (A_n) are pairwise disjoint. Thus

$$\left|\int_{K} g \, d\mu\right| = \left|\sum_{n} a_{n} \mu(A_{n})\right| \le \sum_{n} |a_{n}| |\mu(A_{n})| \le \sum_{n} |\mu(A_{n})| \le \|\mu\|$$

by the definition of $\|\mu\|$.

If $f \ge 0$ then we can let

$$g_n = \min(n, 2^{-n} \lfloor 2^n f \rfloor),$$

as usual. If f is real-valued, let

$$g_n = \min(n, 2^{-n} \lfloor 2^n f_+ \rfloor) - \min(n, 2^{-n} \lfloor 2^n f_- \rfloor).$$

If f is complex-valued, take real and imaginary parts (which is tedious to type). Clearly we have that $|g_n| \leq |f|$ everywhere, and that $g_n \to f$ pointwise. As |f| is integrable for μ , Dominated Convergence shows that

$$\left|\int_{K} f d\mu\right| = \lim_{n} \left|\int_{K} g_{n} d\mu\right| \le \|\mu\|$$

as $|g_n| \leq 1$ everywhere. So $|\phi_{\mu}(f)| \leq ||\mu||$. Taking the supremum over such f, we conclude that $||\phi_{\mu}|| \leq ||\mu||$.

Question ii: Firstly, prove the following useful lemma. Let τ be a positive Borel measure. Show that τ is regular if and only if, for each $E \in \mathcal{B}(K)$ and $\epsilon > 0$, we can find an open set U and a closed set C with $C \subseteq E \subseteq U$ and with $\tau(U \setminus C) < \epsilon$.

Proof: If τ is regular, then we can find such U and C with $\tau(C) > \tau(E) - \epsilon/2$ and $\tau(U) < \tau(E) + \epsilon/2$. Then $\tau(U \setminus C) = \tau(U) - \tau(C) = \tau(U) - \tau(E) + \tau(E) - \tau(C) < \epsilon$. Conversely, if we can find U and C, then $\tau(U) - \tau(E) \leq \tau(U) - \tau(C) = \tau(U \setminus C) < \epsilon$ so $\tau(U) < \tau(E) + \epsilon$. Similarly, $\tau(C) > \tau(E) - \epsilon$, and so τ is regular.

Question continued: For a signed measure τ , we defined $|\tau| = \tau_+ + \tau_-$, where τ_+ and τ_- are defined by way of a Hahn-Decomposition for τ . Show that

$$|\tau|(E) = \sup\left\{\tau(U) - \tau(V) : U, V \in \mathcal{B}(K), U \cap V = \emptyset, U \cup V = E\right\} \qquad (E \in \mathcal{B}(K)).$$

So we don't actually need a Hahn-Decomposition to define $|\tau|$ (and this works for any measure on any σ -algebra).

Answer: Let (A, B) be a Hahn-Decomposition for τ , so that

$$|\tau|(E) = \tau_{+}(E) + \tau_{-}(E) = \tau(E \cap A) - \tau(E \cap B).$$

If $U = E \cap A$ and $V = E \cap B$, then $E = U \cup V$ is a disjoint union, and $|\tau|(E) = \tau(U) - \tau(V)$. Conversely, let $U \cup V = E$ be a pairwise disjoint union. Then

$$\tau(U) - \tau(V) = \tau(U \cap A) + \tau(U \cap B) - \tau(V \cap A) - \tau(V \cap B).$$

Now, as B is a negative set, $\tau(U \cap B) \leq 0$. Similarly, $-\tau(V \cap A) \leq 0$. So

$$\tau(U) - \tau(V) \le \tau(U \cap A) - \tau(V \cap B) = \tau_+(U) + \tau_-(V) \le \tau_+(E) + \tau_-(E) = |\tau|(E).$$

So $|\tau|(E)$ does equal the supremum (and the supremum is obtained!)

Question continued: Now prove a third useful lemma. Let $\tau \in M_{\mathbb{R}}(K)$. Show that τ is regular (defined to mean that τ_+ and τ_- are regular) if and only if $|\tau|$ is regular.

Answer: We use the condition given by the first lemma. If τ is regular, then as τ_+ and τ_- are regular, by our first lemma, given E and $\epsilon > 0$, we can find closed sets C_+ and C_- and open sets U_+ and U_- with $C_{\pm} \subseteq E \subseteq U_{\pm}$, and with $\tau_{\pm}(U_{\pm} \setminus C_{\pm}) < \epsilon$. Let $U = U_+ \cap U_-$ and $C = C_+ \cup C_-$, so that $U \setminus C \subseteq U_{\pm} \setminus C_{\pm}$, and hence both $\tau_+(U \setminus C) < \epsilon$ and $\tau_-(U \setminus C) < \epsilon$. Thus $|\tau|(U \setminus C) < 2\epsilon$.

Conversely, if we have $C \subseteq E \subseteq U$ with $|\tau|(U \setminus C) < \epsilon$, then certainly both $\tau_+(U \setminus C) < \epsilon$ and $\tau_-(U \setminus C) < \epsilon$. Thus τ_+ and τ_- are regular.

Question continued: Let $\mu, \lambda \in M_{\mathbb{R}}(K)$, and let $\tau = \mu + \lambda$. Using the 2nd lemma, show that $|\tau| \leq |\mu| + |\lambda|$. Deduce, using the 3rd lemma, that τ is regular. Answer: For $E \in \mathcal{B}(K)$, we have that

$$\begin{aligned} |\tau|(E) &= \sup \left\{ \tau(U) - \tau(V) : E = U \cup V, U \cap V = \emptyset \right\} \\ &= \sup \left\{ \mu(U) - \mu(V) + \lambda(U) - \lambda(V) : E = U \cup V, U \cap V = \emptyset \right\} \\ &\leq \sup \left\{ \mu(U) - \mu(V) : E = U \cup V, U \cap V = \emptyset \right\} \\ &+ \sup \left\{ \lambda(U) - \lambda(V) : E = U \cup V, U \cap V = \emptyset \right\} \\ &= |\mu|(E) + |\lambda|(E). \end{aligned}$$

So $|\tau| \leq |\mu| + |\lambda|$.

So, for $E \in \mathcal{B}(K)$ and $\epsilon > 0$, we can find open sets U, V which contain E, and we can find closed sets C, D contained in E, with

$$|\mu|(U \setminus C) < \epsilon, \quad |\lambda|(V \setminus D) < \epsilon.$$

Let $U' = U \cap V$ and $C' = C \cup D$, so $U \setminus C \supseteq U' \setminus C'$, and $V \setminus D \supseteq U' \setminus C'$, and still $C' \subseteq E \subseteq U'$. Then

$$|\tau|(U' \setminus C') \le |\mu|(U' \setminus C') + |\lambda|(U' \setminus C') < 2\epsilon.$$

This show that $\tau = \mu + \lambda$ is regular, as required.

Question continued: Show the same for complex measures: this is easier, as we can directly take real and imaginary parts.

Answer: This is easy: if $\mu, \lambda \in M_{\mathbb{C}}(K)$, then by definition, μ_r, μ_i, λ_r and λ_i are regular. So $(\mu + \lambda)_r = \mu_r + \lambda_r$ is regular, as is $(\mu + \lambda)_i$. So $\mu + \lambda$ is regular. Question iii: Let K be compact and Hausdorff, and let $\lambda \in C_{\mathbb{C}}(K)$ with $\|\lambda\| = 1$. It is possible³ to construct a positive $\Phi \in C_{\mathbb{R}}(K)^*$ with the property that for any $f \in C_{\mathbb{C}}(K)$,

$$|\lambda(f)| \le \Phi(|f|) \le ||f||_{\infty},$$

where |f|(x) = |f(x)| for each $x \in K$. Show that $||\Phi|| = 1$. **Answer:** As $||\lambda|| = 1$, for each $\epsilon > 0$ we can find $f \in C_{\mathbb{C}}(K)$ with $||f||_{\infty} = 1$ and $|\lambda(f)| > 1 - \epsilon$. Then clearly $|||f||_{\infty} = 1$ as well, so that as

$$1 - \epsilon < |\lambda(f)| \le \Phi(|f|) \le ||f||_{\infty} = 1,$$

we see that $\|\Phi\| > 1 - \epsilon$. So $\|\Phi\| \ge 1$, but by assumption, also $\|\Phi\| \le 1$.

Question continued: We can then apply Riesz representation to find some a regular, positive Borel measure μ_0 with

$$\Phi(g) = \int_{K} g \ d\mu_0 \qquad (g \in C_{\mathbb{R}}(K)).$$

As $\|\Phi\| = 1$, we have that $\mu_0(K) = 1$.

We can hence form that space $\mathcal{L}^1(\mu_0)$. There is a natural map $C_{\mathbb{C}}(K) \to \mathcal{L}^1(\mu_0)$; let X be the image, so that X is a subspace of $\mathcal{L}^1(\mu_0)$. Show that the map

$$\phi: X \to \mathbb{C}; \quad f \mapsto \lambda(f)$$

is linear and bounded. What is $\|\phi\|$? Using that $\mathcal{L}^1(\mu_0)^* \cong \mathcal{L}^\infty(\mu_0)$ (and Hahn-Banach), show that there exists $h \in \mathcal{L}^\infty(\mu_0)$ with

$$\lambda(f) = \int_K fh \ d\mu_0 \qquad (f \in C_{\mathbb{C}}(K)).$$

Answer: Let us write $\iota : C_{\mathbb{C}}(K) \to \mathcal{L}^1(\mu_0)$ be the map; notice that ι need not be injective. So ϕ is really defined by $\iota(f) \mapsto \lambda(f)$. This is well-defined, for if $\iota(f) = \iota(g)$, then f - g = 0 in $\mathcal{L}^1(\mu_0)$, so f - g = 0 almost everywhere (with respect to μ_0). Hence also |f - g| = 0 almost everywhere. So

$$\Phi(|f - g|) = \int_{K} |f - g| \ d\mu_0 = 0.$$

Thus $|\lambda(f-g)| \le \Phi(|f-g|) = 0$, so $\lambda(f) = \lambda(g)$.

It is easy to see that ϕ is linear. Then, for $f \in C_{\mathbb{C}}(K)$,

$$|\phi(\iota(f))| = |\lambda(f)| \le \Phi(|f|) = \int_K |f| \ d\mu_0 = \|\iota(f)\|_1,$$

from which it follows that $\|\phi\| \leq 1$. Conversely,

$$|\lambda(f)| = |\phi(\iota(f))| \le ||\phi|| ||\iota(f)||_1 = ||\phi|| \int_K |f| \ d\mu_0 = ||\phi|| \Phi(|f|) \le ||\phi|| ||f||_{\infty}.$$

As we can find f with $||f||_{\infty} = 1$ and $|\lambda(f)|$ as close as we like to 1, we must have that $||\phi|| = 1$.

So ϕ is a norm one functional defined on a subspace of $\mathcal{L}^1(\mu)$. By Hahn-Banach, we extend ϕ to a norm one functional defined on all of $\mathcal{L}^1(\mu)$. So there exists some $h \in \mathcal{L}^{\infty}(\mu)$ with $\|h\|_{\infty} = 1$ and with

$$\int_{K} fh \ d\mu_{0} = \phi(\iota(f)) = \lambda(f) \qquad (f \in C_{\mathbb{C}}(K))$$

³See Rudin's book; the construction is very similar to how we defined λ_+ given $\lambda \in C_{\mathbb{R}}(K)$.

Question continued: Let $\mu = h\mu_0$, so μ is the complex measure with

$$\mu(E) = \int_K \chi_E h \ d\mu_0.$$

This is regular: this isn't too hard to show, if you adopt the philosophy of question ii. We immediately see that

$$\lambda(f) = \int_{K} f \, d\mu \qquad (f \in C_{\mathbb{C}}(K)).$$

Finally, show that $||h||_{\infty} = 1$ (hint: what is $||\phi||$?) Deduce that $||\mu|| = 1 = ||\lambda||$ (hint: Use Question i).

Answer: Formally, to show that μ is a measure, we need to show countable additivity, which would require the Dominated Convergence Theorem (or take real+imaginary, and positive+negative parts, and use Monotone Convergence). Now we should regularity.

As μ_0 is regular, for $E \in \mathcal{B}(K)$ and $\epsilon > 0$, we can find an open set U and a closed set C with $C \subseteq E \subseteq U$, and with $\mu_0(U \setminus C) < \epsilon$. By Question ii, to show that μ is regular, it is enough to show that $|\mu_r|$ and $|\mu_i|$ are regular. But clearly $|\mu_r| = |\Re h|\mu_0$, so

$$|\mu_r|(U \setminus C) = \int_{U \setminus C} |\Re h| \ d\mu_0 \le \int_{U \setminus C} 1 \ d\mu_0 = \mu_0(U \setminus C) < \epsilon,$$

and similarly $|\mu_i|(U \setminus C) < \epsilon$. This establishes that μ is indeed regular.

As $||h||_{\infty} = 1$, we see that if (A_n) is a partition of K, then

$$\sum_{n} |\mu(A_n)| = \sum_{n} \left| \int_{K} \chi_{A_n} h \ d\mu_0 \right| \le \sum_{n} \int_{K} \chi_{A_n} |h| \ d\mu_0 = \int_{K} |h| \ d\mu_0 \le \mu_0(K) = 1.$$

So $\|\mu\| \leq 1$. By Question 1, $1 = \|\lambda\| \leq \|\mu\|$, so we must have equality.

Question A: Let $(a_n) \in \ell^1(\mathbb{Z})$ be a sequence such that $(na_n) \in \ell^1(\mathbb{Z})$ as well. Let $f = \mathcal{F}^{-1}((a_n))$. Show that f is differentiable. Answer: We let

$$f_n(t) = \sum_{k=-n}^n a_k e^{-2\pi i k t},$$

so as $(a_n) \in \ell^1(\mathbb{Z})$, by Fejer's Theorem, we have that $f_n \to f$ in $C_{\mathbb{C}}([0,1])$. Then

$$f'_{n}(t) = \sum_{k=-n}^{n} (-2\pi i k) a_{k} e^{-2\pi i k t} = -2\pi i \sum_{k=-n}^{n} k a_{k} e^{-2\pi i k t}$$

As $(ka_k) \in \ell^1(\mathbb{Z})$, we see that f'_n converges to $g \in C_{\mathbb{C}}([0,1])$ defined by

$$g(t) = -2\pi i \sum_{k \in \mathbb{Z}} k a_k e^{-2\pi i k t}$$

Thus by Question 5, f is differentiable with derivative g.

Question C: Let X be the subspace of $C_{\mathbb{C}}(\mathbb{T})$ spanned by functions of the form $t \mapsto e^{2\pi i n t}$, for $n \in \mathbb{Z}$. We saw in lectures that, because of Fejer's Theorem, X is dense in $C_{\mathbb{C}}(\mathbb{T})$.

Now let $f : [0,1] \to \mathbb{R}$ be continuous (but not necessarily periodic) and define $g \in C_{\mathbb{C}}(\mathbb{T})$ by

$$g(t) = \begin{cases} f(2t) & : 0 \le t \le 1/2, \\ f(2-2t) & : 1/2 \le t \le 0. \end{cases}$$

Fix $\epsilon > 0$. Then we can find $h \in X$ with $||g - h||_{\infty} < \epsilon$. We know that on the interval [0, 1] and for $n \in \mathbb{Z}$, we have that

$$\sum_{k=0}^{K} \frac{(2\pi int)^k}{k!}$$

converges uniformly to $e^{2\pi i n t}$, as $K \to \infty$. Use this to approximate h by a complex polynomial in t.

By taking real parts, and thinking about the definition of g, show that we have approximated f be a real polynomial.

This is the Weierstrauss Approximation Theorem, see "Fourier Analysis", Chapter 4. **Answer:** Notice that g is periodic, so we can certainly find $h \in X$ with $||g - h||_{\infty} < \epsilon$. Say that

$$h(t) = \sum_{k=-n}^{n} a_k e^{2\pi i k t} \qquad (t \in \mathbb{T}).$$

Then for each k with $|k| \leq n$, we can find L(k) such that

$$\left| e^{2\pi i k t} - \sum_{l=0}^{L(k)} \frac{(2\pi i k t)^l}{l!} \right| < \epsilon \Big(\sum_{|k| \le n} |a_k| \Big)^{-1} \qquad (0 \le t \le 1).$$

Let

$$G(t) = \sum_{k=-n}^{n} a_k \sum_{l=0}^{L(k)} \frac{(2\pi i k t)^l}{l!} \qquad (t \in \mathbb{T}),$$

so that G is a complex polynomial in t. Then

$$|G(t) - h(t)| \le \sum_{k=-n}^{n} |a_k| \epsilon \Big(\sum_{|k|\le n} |a_k|\Big)^{-1} = \epsilon \qquad (t \in \mathbb{T}),$$

so that $||g - G||_{\infty} \leq ||G - h||_{\infty} + ||h - g||_{\infty} < 2\epsilon$. For a complex number z let $\Re(z)$ and $\Im(z)$ be the real and imaginary parts of z, respectively. Then

$$\Re G(t) = \sum_{k=-n}^{n} \sum_{l=0}^{L(k)} \frac{\Re(a_k i^l (2\pi kt)^l)}{l!}$$

$$= \sum_{k=-n}^{n} \sum_{l=0}^{L(k)} \frac{(2\pi kt)^l}{l!} \Re(a_k i^l)$$

$$= \sum_{k=-n}^{n} \Big(\sum_{0 \le l \le L(k), l \text{ even}} \frac{(2\pi kt)^l}{l!} \Re(a_k) i^l - \sum_{0 \le l \le L(k), l \text{ odd}} \frac{(2\pi kt)^l}{l!} \Im(a_k) i^{l-1} \Big),$$

which is a real polynomial in t. As g is real valued, clearly $||g - \Re G||_{\infty} < 2\epsilon$.

By definition, f(t) = g(t/2) for $0 \le t \le 1$. Hence if

 $F(t) = \Re G(t/2)$ $(0 \le t \le 1),$

then F is a real-valued polynomial, and $||f - F||_{\infty} \le ||g - \Re G||_{\infty} < 2\epsilon$.