
Linear Analysis I: Worked Solutions 1
I do not intend to give worked solutions to every question. However, I will give full

solutions to any [Revision] questions.

Question 1: For a normed vector space (V, ‖ · ‖), show that if (xn) is a sequence in V
tending to x, and µ is a scalar, then µxn → µx.
Answer: If µ = 0, then the result is obvious, so we may suppose that |µ| > 0. Let ε > 0,
so as xn → x, there exists an N > 0 such that ‖xn− x‖ < ε|µ|−1 whenever n ≥ N . Then
‖µxn − µx‖ = |µ|‖xn − x‖ < ε. As ε > 0 was arbitrary, we conclude that µxn → µx, as
required.

The other answers are similar.

Question 3: Do you think that the definition

‖f‖∞ = sup
t∈[0,1]

|f(t)| (f ∈ K[0,1]),

makes sense???
Answer: No, because we have said nothing about f . For example, we could have that

f(t) =

{
0 : t = 0,

1/t : 0 < t ≤ 1.

This is a function [0, 1]→ R, and the set {|f(t)| : t ∈ [0, 1]} is simply {0}∪ [1,∞), so the
supremum is ∞, that is, it doesn’t really exist.

We define `∞([0, 1]) to be the bounded functions [0, 1]→ K. Then the supremum does
exist, and it is not too hard to check that it is a norm.

Question 4: [Revision] Recall that we define the norm ‖ · ‖2 on Kn by

‖x‖2 =
( n∑

i=1

|xi|2
)1/2

(x = (xi) ∈ Kn).

Prove that (Kn, ‖ · ‖2) is complete.
Answer: Let (xk) be a Cauchy-sequence in (Kn, ‖ · ‖2). For each k, xk is a vector in Kn,
say that

xk =


xk,1

xk,2
...

xk,n

 .

For ε > 0, there exists N > 0 such that ‖xj − xk‖2 ≤ ε for j, k ≥ N . That is,( n∑
i=1

|xj,i − xk,i|2
)1/2

≤ ε (j, k ≥ N).

Fix t between 1 and n, so that

|xj,t − xk,t| ≤
( n∑

i=1

|xj,i − xk,i|2
)1/2

≤ ε (j, k ≥ N).

1



Hence (xk,t)
∞
k=1 is a Cauchy-sequence in K, and hence converges to, say, at. Let

x =


a1

a2
...
an

 ∈ Kn.

Then

lim
k
‖x− xk‖2 = lim

k

( n∑
i=1

|ai − xk,i|2
)1/2

=
(

lim
k

n∑
i=1

|ai − xk,i|2
)1/2

=
( n∑

i=1

lim
k
|ai − xk,i|2

)1/2

= 0,

as required.

Question 5: Let K[X] be the space of polynomials over K. For p(X) = anX
n +

an−1X
n−1 + · · ·+ a1X + a0 ∈ K[X], we define

‖p‖1 =
n∑

i=0

|ai|.

For n ≥ 1, let pn be the polynomial

pn(X) =
1

2n
Xn +

1

2n−1
Xn−1 + · · ·+ 1

4
X2 +

1

2
X.

Show that (pn) is a Cauchy sequence. Does (pn) converge to a limit in K[X]?
Answer: For n > m, we calculate that

‖pn − pm‖1 =
n∑

i=m+1

1

2i
= 2−m

n−m∑
i=1

2−i ≤ 2−m.

Hence (pn) is a Cauchy sequence in (K[X], ‖ · ‖1).
Let p(X) = akX

k + ak−1X
k−1 + · · ·+ a0 ∈ K[X] be some polynomial. Then, for large

n,

‖p− pn‖1 = |a0|+
k∑

i=1

|ai − 2−i|+
n∑

i=k+1

2−i ≥
n∑

i=k+1

2−i ≥ 2−k−1.

Thus we see that pn 6→ p. As p was arbitrary, we conclude that (pn) does not converge
to any member of K[X]. So (K[X], ‖ · ‖1) is not complete.

Actually, we have used nothing about the structure of the polynomials here. The
completion would be simply the Banach space `1.

Question 6: We define c0 to be the collection of sequences in K which converge to 0,
with the norm

‖(xn)‖∞ = sup
n
|xn| ((xn) ∈ c0).

Show that c0 is complete.
Answer: Let (xn) be a Cauchy-sequence in c0. Hence, for each n, xn ∈ c0, say that xn =

(x
(n)
k )∞k=1, so that limk x

(n)
k = 0. For ε > 0, there exists N > 0 such that ‖xn − xm‖∞ ≤ ε

for n,m ≥ N . For k fixed, we see that

|x(n)
k − x

(m)
k | ≤ sup

j
|x(n)

j − x
(m)
j | = ‖xn − xm‖∞ ≤ ε,
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so we see that (x
(n)
k )∞n=1 is a Cauchy-sequence in K, and so converges to ak say.

We first check that limk ak = 0, so that (ak) ∈ c0. Let ε > 0, so for some N > 0, we

have that ‖xn−xm‖∞ ≤ ε for n,m ≥ N . Then limk x
(N)
k = 0, so there exists M > 0 such

that |x(N)
k | ≤ ε for k ≥M . For k ≥M , we see that

|ak − x(N)
k | = lim

n
|x(n)

k − x
(N)
k | ≤ lim

n
‖xn − xN‖∞ ≤ ε.

We conclude that

|ak| ≤ |ak − x(N)
k |+ |x

(N)
k | ≤ 2ε (k ≥M).

As ε > 0 was arbitrary, we conclude that limk ak = 0, as required.
Finally, we check that limn ‖xn − (ak)‖ = 0. Let ε > 0, so, again, there exists N > 0

such that ‖xn − xm‖∞ ≤ ε for n,m ≥ N . Let k ≥ 1, and let n ≥ N , so that

|x(n)
k − ak| = lim

m
|x(n)

k − x
(m)
k | ≤ lim

m
‖xn − xm‖∞ ≤ ε.

As k was arbitrary, we see that

‖xn − (ak)‖∞ = sup
k
|x(n)

k − ak| ≤ ε.

As n ≥ N was arbitrary, we conclude that limn ‖xn − (ak)‖ = 0, as required.

Question 7: Let (X, d) be a metric space, and let Y ⊆ X be a subset. The restriction
of d to Y turns Y into a metric space in its own right. What does it mean for Y to be
closed in X? What does it mean for Y to be open in X? If X is complete, show that Y
is closed in X if and only if Y is complete.
Answer: Y is closed in X if whenever (yn) is a sequence in Y converging to x ∈ X, then
actually x ∈ Y .
Y is open in X if for each y ∈ Y , there exists ε > 0 such that

B(y, ε) = {x ∈ X : d(x, y) < ε} ⊆ Y.

Let X be complete. Suppose that Y is closed in X. If (yn) is Cauchy in Y , then (yn)
is Cauchy in X, and so converges to x ∈ X. As Y is closed, x ∈ Y , so we see that every
Cauchy sequence in Y converges in Y . Hence Y is complete.

Conversely, suppose that Y is complete, and let (yn) be a sequence in Y converging
to x ∈ X. Then (yn) is Cauchy, so as Y is complete, (yn) converges to y ∈ Y . Then
d(x, y) = limn d(x, yn) = 0, so that x = y, and hence Y is closed.

Question 8: A metric space (X, d) is compact if whenever (xn)∞n=1 is a sequence in X,
we can find a subsequence n(1) < n(2) < · · · such that (xn(k))

∞
k=1 is convergent.

If (X, d) is a metric space, we say that a subset Y ⊆ X is compact if Y is compact for
the metric inherited from X. Show that if Y is compact, then Y is closed in X.
Answer: Let (yn) be a sequence in Y converging to x ∈ X. As Y is compact, there
exists n(1) < n(2) < · · · such that (yn(k)) is convergent in Y , say to y ∈ Y . Clearly
(yn(k)) also converges to x, so as above, x = y. Hence Y is closed.

Question 8 cont.: The Bolzano–Weierstraß theorem states that if (xn) is a bounded
sequence of real numbers, then (xn) has a convergent subsequence. Use this result to
prove that a subset Y ⊆ R is compact (for the usual metric on R) if and only if Y is
closed and bounded.
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Answer: If Y is compact, then by the above, it is closed. If Y is not bounded, then
for every n, we can find yn ∈ Y with |yn| > n. Then (yn) can not have any convergent
subsequences, so Y cannot be compact, a contradiction. Hence Y is bounded.

Conversely, let Y be closed and bounded. Let (yn) be a sequence in Y . As Y is
bounded, so is (yn), and hence the Bolzano–Weierstraß theorem tells us that a subse-
quence (yn(k)) converges, say to y ∈ R. As Y is closed, y ∈ Y , and so we may conclude
that Y is compact.

Question 8 cont.: The Heine–Borel theorem tells us that a subset Y ⊆ (Rn, ‖ · ‖2) is
compact if and only if Y is closed and bounded. Prove this.
Answer: If Y is compact, then much the same argument as above shows that Y is closed
and bounded. Conversely, let Y be closed and bounded, say that for M > 0, each y ∈ Y
satisfies ‖y‖2 ≤ M . Let (yk) be a sequence in Y . For each k, let yk = (yk,1, · · · , yk,n)
(here I am using row vectors, instead of column vectors, for space reasons). For each k,

|yk,1| ≤ ‖yk,1‖2 ≤M,

so we see that (yk,1) is a bounded sequence in R. By Bolzano–Weierstraß, we can find a
subsequence k1(1) < k1(2) < · · · such that (yk1(j),1)

∞
j=1 converges.

Similarly, (yk1(j), 2) is a bounded sequence in R, and so we can find a subsequence
k2(1) < k2(2) < · · · of (k1(j)), such that (yk2(j),2)

∞
j=1 converges. As (k2(j)) is a subse-

quence of (k1(j)), we also have that (yk2(j),1)
∞
j=1 converges.

Continuing, we can ultimately find a subsequence kn(1) < kn(2) < · · · such that
(ykn(j),i)

∞
j=1 converges for each i, say limj ykn(j),i = zi. Let z = (z1, · · · , zn) ∈ Rn, so as in

Question 4 above, we thus have that limj(ykn(j)) = z. Thus Y is compact, as required.

Question 8 cont.: Prove the same result for (Cn, ‖ · ‖2).
Answer: Define a map θ : Cn → R2n as follows. Let x = (x1, · · · , xn) ∈ Cn, so for each
i, we have that xi = yi + ızi say, where ı2 = −1. Let

θ(x) = (y1, z1, y2, z2, · · · , yn, zn) ∈ R2n.

The θ is a bijection. Furthermore, θ is a distance preserving map for the metrics induced
by ‖ · ‖2. Hence Y ⊆ Cn is compact, or closed and bounded, if and only if θ(Y ) ⊆ R2n is
compact, or closed and bounded, respectively. The claim in the question follows at once.

Question 9: We shall now apply these ideas. Let (X, d) be a metric space, and let
CK(X) be the vector space of all continuous functions from X to K.

We say that f ∈ CK(X) is uniformly continuous if for each ε > 0 there exists δ > 0
such that whenever x, y ∈ X satisfy d(x, y) ≤ δ, we have that |f(x) − f(y)| ≤ ε. Show
that as X is compact, every f ∈ CK(X) is uniformly continuous.
Answer: Suppose not, so that some f ∈ CK(X) is not uniformly continuous. That is,
there exists some ε > 0 such that for each δ > 0, we can find x, y ∈ X with d(x, y) ≤ δ,
but |f(x)− f(y)| > ε. Hence for each n, we can find xn, yn ∈ X with d(xn, yn) ≤ 1/n and
|f(xn)− f(yn)| > ε. As X is compact, we can find a subsequence n(1) < n(2) < · · · such
that (xn(k))

∞
k=1 converges in X. Similarly, we can find a subsequence (m(k)) or (n(k))

such that (ym(k))
∞
k=1 converges. Let

x = lim
k
xm(k) = lim

k
xn(k), y = lim

k
xm(k).

Notice that
d(x, y) = lim

k
d(xm(k), ym(k)) ≤ lim

k
1/m(k) = 0,
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so that x = y. As f is continuous, we have that

f(x) = lim
k
f(xm(k)), f(y) = lim

k
f(ym(k)),

and so we have that

0 = |f(x)− f(y)| = lim
k
|f(xm(k))− f(ym(k))| ≥ ε,

giving us our required contradiction.

Question 9 cont.: Show that any f ∈ CK(X) attains its supremum.
Answer: By the definition of the supremum, for each n, we can find xn ∈ X with

|f(xn)| > sup
x∈X
|f(x)| − 1

n
.

We can find a subsequence (xn(k)) which converges to, say, y ∈ X. As f is continuous,

|f(y)| = lim
k
|f(xn(k)| ≥ lim

k
sup
x∈X
|f(x)| − 1

n(k)
= sup

x∈X
|f(x)|,

as required.
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Linear Analysis I: Worked Solutions 2
Question 1: Let E and F be normed vector spaces, and let T : E → F be a bounded linear
map. The first line of the following is the original definition of the norm of T . Prove carefully
that the other expressions really are equal:

‖T‖ = sup
{‖T (x)‖

‖x‖
: x ∈ E, x 6= 0

}
= sup

{
‖T (x)‖ : x ∈ E, ‖x‖ ≤ 1

}
= sup

{
‖T (x)‖ : x ∈ E, ‖x‖ = 1

}
.

Answer: We show that the 2nd and 3rd expressions are equal. Set

K2 = sup
{
‖T (x)‖ : x ∈ E, ‖x‖ ≤ 1

}
, K3 = sup

{
‖T (x)‖ : x ∈ E, ‖x‖ = 1

}
.

As we are taking the supremum over a smaller set, clearly K3 ≤ K2. For x ∈ E with ‖x‖ ≤ 1,
let y = x/‖x‖, so that ‖y‖ = 1. Then ‖T (y)‖ = ‖T (x)‖/‖x‖ ≥ ‖T (x)‖ as 1/‖x‖ ≥ 1. This
shows that K3 ≥ K2, so that actually K2 = K3.

Question 2: Let E be a normed vector space, and let φ : E → K be a linear map. When φ is
bounded, show that

kerφ = {x ∈ E : φ(x) = 0} = φ−1
(
{0}

)
is closed.
Answer: Quick proof: as φ is continuous, and {0} is closed, we have that φ−1({0}) is closed.
Longer proof: Let (xn) ⊆ kerφ with xn → x. Then ‖xn−x‖ → 0, so |φ(xn−x)| ≤ ‖φ‖‖xn−x‖ →
0. However, φ(xn) = 0 for each n, so |φ(x)| = 0, so x ∈ kerφ.

Question continued: Now suppose that φ is linear, and we know that kerφ is closed in E.
We shall show that φ is bounded. Firstly, if kerφ = E, show that φ is bounded.
Answer: If kerφ = E then φ = 0, and so φ is obviously bounded!

Question continued: Now suppose that kerφ 6= E. Let x0 ∈ E \ kerφ. Show that every
vector x ∈ E can be written as

x = λx0 + y

for some λ ∈ K and y ∈ kerφ. Suppose, towards a contradiction, that φ is not bounded, so
we can find a sequence (xn) in E with ‖xn‖ ≤ 1 and |φ(xn)| ≥ n for each n. By writing each
xn = λnx0 + yn for some λn ∈ K and yn ∈ kerφ, derive a contradiction.
Answer: Following the hint, we calculate that

φ
(
x− φ(x0)

−1φ(x)x0

)
= φ(x)− φ(x0)

−1φ(x)φ(x0) = 0.

So y = x− φ(x0)
−1φ(x)x0 ∈ kerφ, and then

x =
φ(x)

φ(x0)
x0 + y,

as claimed.
We write xn = λnx0 + yn as suggested. Then ‖λnx0 + yn‖ ≤ 1 for each n, and |φ(xn)| =

|λn||φ(x0)| ≥ n for each n. All we know is that kerφ is closed. So lets look at

zn = λ−1
n xn = x0 + λ−1

n yn.

Then

‖zn‖ = |λn|−1‖xn‖ ≤ |λn|−1 ≤ |φ(x0)|
n

→ 0.

However, then ‖x0 + λ−1
n yn‖ → 0, so as each vector (−λ−1

n yn) ∈ kerφ, and this is a closed
subspace, we conclude that x0 ∈ kerφ. This is a contradiction.
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Question 3: Let E be a normed vector space, let φ ∈ E∗, and let ψ : E → K be a linear map.
Show that if kerφ ⊆ kerψ, then ψ = λφ for some λ ∈ K, and hence in particular, ψ ∈ E∗.
Answer: If kerφ = E then φ = 0, and E ⊆ kerψ, so kerψ = E and hence ψ = 0 = 0φ, as
required.

If φ 6= 0 then pick x0 ∈ E with φ(x0) 6= 0. For x ∈ E, notice that x − φ(x0)
−1φ(x)x0 ∈

kerφ ⊆ kerψ, and so

0 = ψ
(
x− φ(x0)

−1φ(x)x0

)
= ψ(x)− ψ(x0)

φ(x0)
φ(x).

As x was arbitrary, we conclude that ψ = ψ(x0)φ(x0)
−1φ as required.

Question 4: Let E = c0 and let F be the subspace of all sequences (xn) ∈ c0 such that∑∞
n=1 2−nxn = 0. Consider the linear map

f : c0 → K, f
(
(xn)

)
=

∞∑
n=1

2−nxn ((xn) ∈ c0).

Show that f is bounded with ‖f‖ ≤ 1, and hence that F is closed.
Answer: We have that

|f((xn))| ≤
∑

n

2−n|xn| ≤ ‖(xn)‖∞
∑

n

2−n = ‖(xn)‖∞,

so ‖f‖ ≤ 1, and hence F = ker f is closed.

Question continued: Suppose that there exists x0 ∈ E with ‖x0‖ ≤ 1 and ‖x0 − y‖ ≥ 1 for
each y ∈ F . Show that f(x0) = 1, and hence derive a contradiction.

Answer: Let ε > 0, and pickN such that
∑N

n=1 2−n > 1−ε. Define y = (yn) by setting yn = 1 if

n ≤ N , and yn = 0 otherwise. Then limn yn = 0, so that y ∈ c0. Then f(y) =
∑N

n=1 2−n > 1−ε,
and ‖y‖∞ = 1. As in question 2 above, observe that z = x0 − f(y)−1f(x0)y ∈ F , so by the
hypthosis,

1 ≤ ‖x0 − z‖ =
∥∥x0 − x0 + f(y)−1f(x0)y

∥∥ = |f(y)|−1|f(x0)|‖y‖ <
|f(x0)|
1− ε

.

Hence |f(x0)| > 1− ε, so as ε > 0 was arbitrary, we conclude that |f(x0)| ≥ 1.
But, now let x0 = (xn) ∈ c0, so limn xn = 0. Hence, for some M , we have that |xn| < 1

2
for

n > M . As ‖x0‖ ≤ 1, we have that |xn| ≤ 1 for every n. Hence

1 ≤ |f(x0)| =
∣∣∣ M∑

n=1

2−nxn +
∑
n>M

2−nxn

∣∣∣ ≤ M∑
n=1

2−n +
1

2

∑
n>M

2−n < 1,

a contradiction.

Question 5: We work in the Banach space c0. Define subspaces

Y =
{
(xn)∞n=1 ∈ c0 : x2k−1 = 0 for k = 1, 2, 3, · · ·

}
Z =

{
(xn)∞n=1 ∈ c0 : x2k = k2x2k−1 for k = 1, 2, 3, · · ·

}
.

Show that Y and Z are closed subspaces.
Answer: For each k, the map

φk : c0 → K, (xn) 7→ x2k−1

is linear and bounded (as ‖φk‖ = 1). Then Y is the intersection
⋂

k≥1 kerφk, which is closed,
as each kerφk is closed.

2



Similarly, define
ψk : c0 → K, (xn) 7→ x2k − k2x2k−1.

Clearly ψk is linear, and |ψk((xn))| ≤ |x2k| + k2|x2k−1| ≤ (k2 + 1)‖(xn)‖∞, so ψk is bounded
(and actually, ‖ψk‖ = k2 + 1). Then Z =

⋂
k≥1 kerψk is also closed.

Question continued: Show that the vector x = (1, 0, 1/4, 0, 1/9, 0, 1/16, 0, · · · ) is in the
closure of the subspace Y +Z. That is, for each ε > 0, you need to find y ∈ Y and z ∈ Z with
‖x− (y + z)‖∞ < ε.
Answer: Let x = (xn), so that x2k = 0 for each k, and x2k−1 = 1/k2, for each k. Pick ε > 0,
and pick K with 1/K2 < ε.

We have little choice but to set z = (1, 1, 1/4, 1, 1/9, 1, · · · , 1/K2, 1, 0, 0, · · · ), that is,

z2k−1 = 1/k2, z2k = 1 (1 ≤ k ≤ K),

and z2k−1 = z2k = 0 for k > K. Thus z ∈ Z. Then we set y = (0, 1, 0, 1, · · · , 1, 0, 0, · · · ), that
is, y2k−1 = 0 for all k, and y2k = 1 for 1 ≤ k ≤ K, while y2k = 0 for k > K. Thus y ∈ Y .
Then y + z = (1, 0, 1/4, 0, 1/9, 0, · · · , 1/K2, 0, 0, · · · ), so ‖x − (y + z)‖∞ = 1/(K + 1)2 < ε, as
required.

Question continued: Show, however, that x is not in Y + Z.
Answer: Suppose that we can find y ∈ Y and z ∈ Z with x = y + z. As y2k−1 = 0 for all k,
we must have that z2k−1 = x2k−1 = 1/k2 for all k. As z ∈ Z, we have that z2k = k2z2k−1 = 1
for all k. However, z ∈ c0, so zk → 0 as k →∞, a contradiction.

Question 6: Show that c∗0 = `1. That is, for a = (an) ∈ `1, define φa : c0 → K by

φa(x) =
∞∑

n=1

anxn (x = (xn) ∈ c0).

Show that φa is linear, bounded, and that ‖φa‖ ≤ ‖a‖1.
Answer: Notice that φa is defined, as∣∣∣ ∞∑

n=1

anxn

∣∣∣ ≤ ∞∑
n=1

|an||xn| ≤
∞∑

n=1

‖x‖∞|an| = ‖a‖1‖x‖∞.

Thus also φa is bounded, with ‖φa‖ ≤ ‖a‖1. Also, φa is linear, for given x = (xn), y = (yn) ∈ c0
and t ∈ K,

φa(x+ ty) =
∞∑

n=1

an(xn + tyn) =
∞∑

n=1

anxn + t
∞∑

n=1

anyn = φa(x) + tφa(y).

Question continued: Hence the map `1 → c∗0; a 7→ φa is linear and bounded. We wish to
show that this is a bijection and an isometry.
Answer: Let φ ∈ c∗0. For each n, let en ∈ c0 be the sequence which is zero, except that in the
nth place, we have 1. Let an = φ(en) for all n.

Fix some large N ∈ N. For each n, define

xn =

{
0 : an = 0 or n > N,

an/an : an 6= 0.

Thus limn xn = 0, so x = (xn) ∈ c0. Notice also that |xn| = 1 or 0 for all n, so ‖x‖∞ ≤ 1.
Finally, notice that

x =
N∑

n=1

xnen.
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Thus

φ(x) =
N∑

n=1

φ(xnen) =
N∑

n=1

xnφ(en) =
N∑

n=1

xnan =
N∑

n=1

anan/an =
N∑

n=1

|an|.

But |φ(x)| ≤ ‖φ‖‖x‖∞ ≤ ‖φ‖. By letting N tend to infinity, we conclude that
∞∑

n=1

|an| ≤ ‖φ‖.

So a = (an) ∈ `1 with ‖a‖1 ≤ ‖φ‖.
For any y = (yn) ∈ c0, we observe that∥∥∥y − N∑

n=1

ynen

∥∥∥
∞

= sup
n>N

|yn|,

which converges to 0 as N →∞, because limn yn = 0. So

y =
∞∑

n=1

ynen

which convergence in norm. As φ is bounded and hence continuous,

φ(y) =
∞∑

n=1

φ(ynen) =
∞∑

n=1

ynan = φa(y).

So φa = φ, and so the map `1 → c∗0 is surjective. Notice also that ‖φ‖ = ‖φa‖ ≤ ‖a‖1 ≤ ‖φ‖,
so we have equality throughout. Hence our map `1 → c∗0 is an isometry, and hence injective,
and so bijective.

Question 7: Recall that `∞ is the space of all bounded scalar sequences (xn) with the norm
‖ · ‖∞. Show that (`1)∗ = `∞.
Answer: For u = (un) ∈ `∞ define φu : `1 → K by

φu(x) =
∞∑

n=1

xnun (x = (xn) ∈ `1).

This is well-defined, as ∣∣∣ ∞∑
n=1

xnun

∣∣∣ ≤ ‖u‖∞‖x‖1,

and so we see that φu ∈ (`1)∗ with ‖φu‖ ≤ ‖u‖∞.
Let φ ∈ (`1)∗, let en ∈ `1 be the usual sequence which is zero, apart from a one in the nth

place. Let un = φ(en), so that |un| ≤ ‖φ‖‖en‖ = ‖φ‖. Hence u = (un) ∈ `∞ with ‖u‖∞ ≤ ‖φ‖.
Let x = (xn) ∈ `1 and observe that

lim
N

∥∥∥x− N∑
n=1

xnen

∥∥∥
1

= lim
N

∞∑
n=N+1

|xn| = 0,

as
∑

n |xn| converges. Thus

φ(x) = lim
N

N∑
n=1

φ(xnen) = lim
N

N∑
n=1

xnun = φu(x).

As x ∈ `1 was arbitrary, we conclude that φ = φu and that

‖φu‖ ≤ ‖u‖∞ ≤ ‖φ‖ = ‖φu‖.
Hence the map `∞ → (`1)∗;u 7→ φu is an isometric isomorphism of Banach spaces, as

required.
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Linear Analysis I: Worked Solutions 3
Answer 1: Let φ ∈ E∗ with ‖φ‖ ≤ 1 and φ(y) = 0 for all y ∈ F . Then, for y ∈ F ,

|φ(x0)| = |φ(x0 − y)| ≤ ‖φ‖‖x0 − y‖ ≤ ‖x0 − y‖.

Hence taking the infimum, we conclude that

|φ(x0)| ≤ d(x0, F ),

as required. We define ψ : lin{F, x0} → K by

ψ(λx0 + y) = λd(x0, F ) (λ ∈ K, y ∈ F ).

If x0 ∈ F , then d(x0, F ) = 0, so ψ = 0. Otherwise, if λx0 + y = µx0 + z then (λ−µ)x0 =
z−y ∈ F , and so λ = µ, so we can conclude that ψ is well-defined. Obviously ψ is linear.
Let λ ∈ K and y ∈ F . If λ = 0 then ψ(λx0 + y) = 0 ≤ ‖λx0 + y‖. Otherwise, we have
that

d(x0, F ) ≤ ‖x0 + λ−1y‖ = |λ|−1‖λx0 + y‖,

and so |λ|d(x0, F ) = |ψ(λx0 + y)| ≤ ‖λx0 + y‖. Hence ‖ψ‖ ≤ 1. By the Hahn-Banach
theorem, there exists φ ∈ E∗ extending ψ with ‖φ‖ ≤ ‖ψ‖ ≤ 1. As φ(x0) = ψ(x0) =
d(x0, F ), we are done.

Question 2: Let 1 ≤ p < ∞, and define a map S : `p → `p by setting S(x) = y where,
if x = (x1, x2, x3, · · · ), then y = (0, x1, x2, x3, · · · ). Show that S is linear, bounded, and
satisfies ‖S‖ = 1.

Show that there is a bounded linear map T ∈ B(`p) such that T ◦ S is the identity on
`p. Is S ◦ T the identity? Is S invertible in B(`p)?
Answer: Clearly S is linear, and observe that

‖S(x)‖p =
(
0p +

∞∑
n=1

|xn|p
)1/p

= ‖x‖p (x ∈ `p),

so that S is even an isometry.
Let T be the “left-shift”, that is, T (x) = y where is x = (x1, x2, x3, · · · ) then y =

(x2, x3, x4, · · · ). Similarly T is linear, bounded and satisfies ‖T‖ ≤ 1. Clearly TS = I`p

the identity on `p. However, ST (x1, x2, · · · ) = (0, x2, x3, · · · ), so that ST is not the
identity.

Suppose that S is invertible with inverse S−1. Then S−1 = I`pS−1 = TSS−1 = TI`p =
T , but then ST = SS−1 = I`p , a contradiction.

Question 3: Let X be a compact topological space (remember that we always assume
the Hausdorff condition). Fix f ∈ CK(X), and define Mf : CK(X) → CK(X) by setting
Mf (g) = gf for g ∈ CK(X). Show that Mf ∈ B(CK(X)), and calculate ‖Mf‖.
Answer: Clearly Mf is linear, and for g ∈ CK(X),

‖Mf (g)‖∞ = ‖fg‖∞ = sup
x∈X

|f(x)||g(x)| ≤ ‖f‖∞ sup
x∈X

|g(x)| = ‖f‖∞‖g‖∞.

Hence ‖Mf‖ ≤ ‖f‖∞. The constant function 1 is in CK(X), with ‖1‖∞ = 1, and we see
that Mf (1) = f , so that ‖Mf‖ ≥ ‖Mf (1)‖∞ = ‖f‖∞. Hence ‖Mf‖ = ‖f‖∞.

Question 4: Show that if
inf

{
|f(x)| : x ∈ X

}
> 0,

1



then there exists h ∈ CK(X) with MhMf = MfMh being the identity on CK(X). If
inf

{
|f(x)| : x ∈ X

}
= 0, then is Mf invertible?

Answer: Let h = f−1, so for g ∈ CK(X),

MhMf (g) = Mh(fg) = fhg = Mf (hg) = MfMh(g).

Hence MhMf = MfMh and as fhg = ff−1g = g, MhMf is the identity on CK(X).
Suppose now that inf

{
|f(x)| : x ∈ X

}
= 0, and yet T = M−1

f exists. Let h = T (1),
so that

fh = Mf (h) = MfT (1) = MfM
−1
f (1) = 1,

and so f(x)h(x) = 1 for all x ∈ X, that is, h(x) = f(x)−1. Hence

inf
{
|f(x)| : x ∈ X

}
= sup

{
|f(x)|−1 : x ∈ X

}−1
= ‖h‖−1

∞ > 0,

a contradiction.
Aside: Upon re-reading this, I realise that I have not used that X is compact. As X

is compact, |f | attains its minimum, so either f is bounded below, or there exists x ∈ X
with f(x) = 0. This would make the proof a little easier.

Question 5: Let E and F be normed spaces, and let T ∈ B(E,F ). Show that the
following are equivalent:

1. T is invertible;

2. T is surjective, and there exists M > 0 such that, for all x ∈ E,

M−1‖x‖ ≤ ‖T (x)‖ ≤M‖x‖.

Answer: If (1) holds, then first note that for y ∈ F , then T (T−1(y)) = y, so that T is
surjective. For x ∈ E,

‖x‖ = ‖T−1T (x)‖ ≤ ‖T−1‖‖T (x)‖ ≤ ‖T−1‖‖T‖‖x‖,

so that (2) holds with M = max{‖T‖, ‖T−1‖}.
If (2) holds, then suppose that T (x) = T (y) for x, y ∈ E. Then T (x− y) = 0, so that

M−1‖x− y‖ ≤ ‖T (x− y)‖ = 0, so that ‖x− y‖ = 0, that is, x = y. Hence T is injective,
and surjective, and so T−1 exists. By basic linear algebra, T−1 is linear. Then, for y ∈ F ,
let x ∈ E be such that T (x) = y, so that

‖T−1(y)‖ = ‖T−1(T (x))‖ = ‖x‖ ≤M‖T (x)‖ = M‖y‖.

Hence T−1 is bounded, with ‖T−1‖ ≤M .

Question 6: We define a measure space to be a triple (X,R, µ) where X is a set, R is
a σ-algebra on X and µ is a measure defined on R. Let Y ∈ R, and define RY by

RY = {S ∩ Y : S ∈ R}.

Show that RY is a σ-algebra on Y . Define µY : RY → [0,∞] by µY (S) = µ(S ∩ Y ) for
S ∈ RY . Show that µY is a measure on RY .
Answer: Clearly ∅ ∈ RY , and as Y = X∩Y , we see that Y ∈ RY . Let S∩Y, T ∩Y ∈ RY

so that (S ∩ Y ) \ (T ∩ Y ) = (S \ T ) ∩ Y ∈ RY as S \ T ∈ R. If (Tn) is a sequence in
RY , say Tn = Sn ∩ Y for some sequence (Sn) in R. Then S =

⋃
n Sn ∈ R, so that⋃

n Tn = S ∩ Y ∈ RY . Hence RY is a σ-algebra on Y (notice that we didn’t use that
Y ∈ R).
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As Y ∈ R, for S ∈ R, we have that S ∩ Y ∈ R, so that µ(S ∩ Y ) is defined. Clearly
µY (∅) = 0, and if (Sn ∩ Y ) is a sequence of pairwise-disjoint sets in Y , then

µY

( ⋃
n

(Sn ∩ Y )
)

= µ
( ⋃

n

(Sn ∩ Y )
)

=
∑

n

µ(Sn ∩ Y ) =
∑

n

µY (Sn ∩ Y ),

so that µY is a measure.

Question 7: Let (X,R, µ) be a measure space. Define R to be the collection of sets
E ∪N where E ∈ R, and N ⊆ X is a null set. Show that:

1. If (Nn) is a sequence of null sets, then
⋃

nNn is null.

2. If E ∪N ∈ R, and M is null, then (E ∪N) \M ∈ R.

Show that R is a σ-algebra.
Answer: For (1), as each Nn is null, there exists Fn ∈ R with Nn ⊆ Fn and µ(Fn) = 0.
Let F =

⋃
n Fn so that

⋃
nNn ⊆ F , and µ(F ) ≤

∑
n µ(Fn) = 0, as µ is a measure.

For (2), notice that

(E ∪N) \M = (E \M) ∪ (N \M).

Clearly N \M is null. As M is null, M ⊆ F for some F ∈ R with µ(F ) = 0. Then

E \M = (E \ F ) ∪ (F \M),

so as F \M ⊆ F , we have that F \M is null. By (1), we see that (F \M) ∪ (N \M) is
null. As E \ F ∈ R, we conclude that E \M ∈ R, as required.

Clearly ∅, X ∈ R. By (1), if (En ∪ Nn) is a sequence in R, then
⋃

n(En ∪ Nn) =⋃
nEn ∪

⋃
nNn ∈ R. Let E1 ∪N1, E2 ∪N2 ∈ R, so that

(E1 ∪N1) \ (E2 ∪N2) =
(
(E1 ∪N1) \ E2

)
\N2.

By (2), if (E1 ∪N1) \ E2 ∈ R, then (E1 ∪N1) \ (E2 ∪N2) ∈ R. Notice that

(E1 ∪N1) \ E2 = (E1 \ E2) ∪ (N1 \ E2).

Here E1 \ E2 ∈ R and N1 \ E2 ⊆ N1 is null, so we are done.

Question continued: Define µ : R → [0,∞] by µ(E ∩N) = µ(E) for E ∈ R and any
null set N . Show that µ is a measure on R.
Answer: First we should check that µ is well-defined. That is, suppose that E∪N = E ′∪
N ′ for some E,E ′ ∈ R and null sets N and N ′. Then we can find F, F ′ ∈ R with N ⊆ F ,
N ′ ⊆ F ′ and µ(F ) = µ(F ′) = 0. Then µ(E) ≤ µ(E ∪ F ) ≤ µ(E) + µ(F ) = µ(E), so that
µ(E∪F ) = µ(E). Similarly µ(E ′∪F ′) = µ(E ′). Finally, as E ⊆ E∪N = E ′∪N ′ ⊆ E ′∪F ′,
we see that µ(E) ≤ µ(E ′∪F ′) = µ(E ′). By symmetry, also µ(E ′) ≤ µ(E), so we conclude
that µ(E) = µ(E ′). Hence µ is well-defined.

Clearly µ(∅) = 0. Let (An) be a sequence of pairwise disjoint sets in R, say An =
En ∪ Nn, for each n, where En ∈ R and Nn is null. Then (En) is pairwise disjoint.
Observe that ⋃

n

An =
⋃
n

En ∪
⋃
n

Nn,

where as above, N =
⋃

nNn is null. Thus

µ
( ⋃

An

)
= µ

( ⋃
En

)
=

∑
n

µ(En) =
∑

n

µ(En ∪Nn) =
∑

n

µ(An).
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So µ is a measure.

Bonus Question 8: For x, y ∈ E and t ∈ K, we have, for f ∈ E∗,

J(x+ ty)(f) = f(x+ ty) = f(x) + tf(y) = J(x)(f) + tJ(y)(f).

Thus J(x+ ty) = J(x) + tJ(y), so that J is linear.
For x ∈ E,

‖J(x)‖ = sup{|J(x)(f)| : f ∈ E∗, ‖f‖ ≤ 1} = sup{|f(x)| : f ∈ E∗, ‖f‖ ≤ 1} = ‖x‖,

by using Corollary ??? from lectures.

Bonus Question 9: The isometric isomorphism from `q to (`p)∗ is u 7→ φu where, for
u = (un) ∈ `q, we have that

φu : `p → K, φu((xn)) =
∞∑

n=1

xnun.

Let this be φ : `q → (`p)∗. Similarly, let ψ : `p → (`q)∗.
We need to show that J is surjective. Let F ∈ (`p)∗∗. Define g ∈ (`q)∗ by

g(φ−1(f)) = F (f) (f ∈ (`p)∗).

An equivalent (and less scary) way to define this is as

g(u) = F (φu) (u ∈ `q).

Clearly g is linear, as both F and φ are. Also, g is bounded, as ‖g‖ ≤ ‖F‖‖φ‖ = ‖F‖.
So g ∈ (`q)∗ as required.

Let x = (xn) ∈ `p with ψx = g. Let f ∈ (`p)∗, and let u = (un) ∈ `q with φu = f .
Then

J(x)(f) = f(x) = φu(x) =
∞∑

n=1

xnun = ψx(u) = g(u) = F (φu) = F (f).

As f was arbitrary, we conclude that J(x) = F . Thus J is surjective.
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Linear Analysis I: Worked Solutions 4
Question 1: Let E be a Banach space, and let (xn)∞n=1 be a sequence of vectors in E
such that

∑∞
n=1 ‖xn‖ < ∞. Show that

∑∞
n=1 xn converges.

Answer: For N < M , we see that by the triangle inequality∥∥∥ M∑
n=N

xn

∥∥∥ ≤ M∑
n=N

‖xn‖ ≤
∞∑

n=N

‖xn‖,

which is small if N is large, as
∑

n ‖xn‖ < ∞. So the sequence of partial sums( N∑
n=1

xn

)
N≥1

is a Cauchy sequence and hence converges, as E is a Banach space.

Question continued: Let (zn) be a Cauchy sequence in E. Show that we can find
1 = n(1) < n(2) < · · · such that, if

x1 = z1, xk = zn(k) − zn(k−1) (k ≥ 2),

then
∑

n ‖xn‖ < ∞. What is
∑N

n=1 xn? Conclude that if z =
∑

n xn that z is the limit
of the Cauchy sequence (zn).
Answer: As (zn) is a Cauchy sequence, for each m we can find Nm such that

‖zk − zl‖ < 2−m (k, l ≥ Nm).

Set n(1) = 1 as required, and then choose n(k) arbitrarily, with the condition that
n(k) ≥ Nk for all k, and n(1) < n(2) < · · · . Then, as xk = zn(k) − zn(k−1) and n(k) >

n(k − 1) ≥ Nk−1, we see that ‖xk‖ < 2−(k−1). Thus∑
k

‖xk‖ = ‖x1‖+
∑
k≥2

‖xk‖ ≤ ‖z1‖+
∑
k≥2

21−k = 1 + ‖z1‖ < ∞.

Notice also that

N∑
n=1

xn = z1 + (zn(2) − z1) + (zn(3) − zn(2)) + · · ·+ (zn(N) − zn(N−1)) = zn(N).

So if z =
∑

n xn then limk zn(k) = z, so (zn(k))k converges. This implies that (zn) converges,
as required.

Question 2: Let X be a compact (Hausdorff) space. Let φ : X → X be a continuous
map. Show that we can define a linear map T : CR(X) → CR(X) by

T (f) = g where g(x) = f(φ(x)).

Show that T is bounded, and find ‖T‖.
Proof: As φ is continuous, for f : X → R continuous, x 7→ f(φ(x)) is continuous. So
T (f) ∈ CR(X).

We write T (f)(x) = f(φ(x)) for x ∈ X, so that for f1, f2 ∈ CR(X) and λ ∈ R,
T (f1 + λf2)(x) = f1(φ(x)) + λf2(φ(x)) = T (f1)(x) + λT (f2)(x). So T is linear.

Then notice that

‖T (f)‖∞ = sup
x∈X

|T (f)(x)| = sup
x
|f(φ(x))| ≤ sup

x
|f(x)| = ‖f‖∞,

1



so T is bounded with ‖T‖ ≤ 1. As T (1) = 1, where 1 is the constant function, we see
that ‖T‖ = 1.

Bonus Question 3: With notation as in Question 2, now let X = [0, 1] and let φ be
defined by

φ(t) =
1

2
+

t− 1
2

2
(0 ≤ t ≤ 1).

So φ(1/2) = 1/2, φ(0) = 1/4 and φ(1) = 3/4. Define T as in Question 2. Let T 2 =
TT, T 3 = TTT and so forth.

Show that for each f ∈ CR([0, 1]),

lim
n→∞

T n(f) = g

where g(t) = f(1/2) for all t ∈ [0, 1]. That is, g is a constant function.
Proof: Motivated by the contractive mapping theorem, we look at the iterates of φ.
Clearly φ maps [0, 1] onto [1/4, 3/4]. Then φ maps [1/4, 3/4] onto [1/2−1/8, 1/2+1/8] =
[3/8, 5/8], so that φ2 maps [0, 1] onto [3/8, 5/8]. We can show (by induction) that φn maps
[0, 1] onto [1/2 − 2−1−n, 1/2 + 2−1−n]. For f ∈ CR([0, 1]), as f is continuous at 1/2, for
each ε > 0 there exists N so that, for n ≥ N , if |t−1/2| < 2−1−n then |f(t)−f(1/2)| < ε.
Thus |f(φn(t)) − f(1/2)| < ε for any t ∈ [0, 1], that is, ‖T n(f) − g‖∞ < ε. As this was
true for all n ≥ N , we see that T n(f) → g, as required.

Question continued: Is it true that (T n) converges in the Banach space B(CR([0, 1]))?
Proof: Suppose that T n → S in norm. Then, for each f ∈ CR([0, 1]), we have that
T n(f) → S(f), so S(f)(t) = f(1/2) for all t ∈ [0, 1]. That is, S maps f to the constant
function t 7→ f(1/2).

Hopefully, our intuition from the previous section is that the more f oscillates, the
slower the convergence of T n(f) is. Let N > 0 and let f(t) = sin(4πNt) for t ∈ [0, 1].
Then

f(1/2) = sin(2πN) = 0, f(1/2 + 1/8N) = sin(2πN + π/2) = sin(π/2) = 1.

Hence T n(f) → 0, so S(f) = 0. Thus, as φn maps [0, 1] onto [1/2−2−1−n, 1/2+2−1−n], if
1/8N ≤ 2−1−n, then ‖T n(f)− 0‖∞ = 1. But ‖f‖∞ = 1, so choose N with 1/8N ≤ 2−1−n

to see that
‖T n − S‖ ≥ ‖T n(f)− S(f)‖∞ = 1.

So (T n) does not converge to S.

Comment: Saying that T n(f) converges for each f is saying that (T n) converges in the
strong operator topology. Clearly norm convergence implies strong operator convergence,
and we have just seen that the converse doesn’t hold.

Question 4: Let (X,R, µ) be a measure space. Let f : X → R be a simple function (see
the definition from the lectures). Show carefully that f is measurable, and that f takes
finitely many values.
Proof: Let f =

∑n
k=1 tkχAk

where (Ak) is a pairwise disjoint family in R and (tk) ⊆ R.
Let A0 = X \ (A1 ∪ · · · ∪ An) ∈ R. Let U ⊆ R be open, and define E ⊆ {0, 1, · · · , n} by
0 ∈ E if and only if 0 ∈ U , and for 1 ≤ k ≤ n, k ∈ E if and only if tk ∈ U . You should
hopefully see that

f−1(U) =
⋃
k∈E

Ak ∈ R.

So f is measurable.
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Clearly f only takes the values {t1, t2, · · · , tk}, and possibly also 0 if A0 6= ∅.
Question continued: Conversely, show that if f : X → R is measurable and takes
finitely many values, then f is a simple function.
Proof: Suppose that f takes only the values {t1, · · · , tn}. Let Ak = f−1({tk}), for
1 ≤ k ≤ n. As {tk} is closed in R, the set R \ {tk} is open, and so

X \ Ak = f−1(R \ {tk}) ∈ R,

so also Ak ∈ R. (Remember that taking inverse images commutes with unions, intersec-
tions and set differences). By definition, (Ak) is a pairwise disjoint family, and so clearly
f =

∑n
k=1 tkχAk

is a simple function.

Question continued: In particular, show that if (Ak)
n
k=1 is any collection of subsets of

R, and (tk)
n
k=1 ⊆ R, then

f =
n∑

k=1

tkχAk

is simple.
Proof: Just observe that f can only possibly take the values

{0, t1, · · · , tn, t1 + t2, · · · , t1 + tn, t2 + t3, · · · , t2 + tn, · · · , t1 + · · ·+ tn},

which is a finite set.

Question 5: Let X be a set, let R = 2X , and let µ be the counting measure on R, so
µ(A) is the size of A, if A is finite, and is ∞ otherwise. Which functions f : X → R are
measurable?
Answer: As every subset of X is inR, we see that any function f : X → R is measurable.

Question Continued: Let f : X → [0,∞) be a simple function. Show that f is
integrable if and only if f is zero except at finitely many points of X. Conversely, show
that if f : X → [0,∞) is any function which is zero except at finitely many points, then
f is an integrable, simple function.
Answer: Write a simple function f : X → [0,∞) as

f =
n∑

k=1

tkχAk
,

where we may assume the (Ak) are pairwise disjoint. Then f is integrable if and only if
µ(Ak) = ∞ only when tk = 0. As µ is counting measure, we have that µ(Ak) = ∞ if and
only if Ak is infinite. Hence f is non-zero only on a finite set.

Conversely, if f : X → [0,∞) is non-zero only on a finite set, say A, then we can write

f =
∑
x∈A

f(x)χ{x},

a simple function.

Question 6: Let (X,R, µ) be a measure space. A function f : X → R is measurable
if f−1(U) ∈ R for any open set U ⊆ R. Let f : X → R be a function such that
f−1((x, y)) ∈ R for any x, y ∈ R with x < y. By thinking about the proof of Corollary 2.7,
show that f is measurable.
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Answer: Let D = {(a, b) : a, b ∈ Q, a < b}, a countable set of open sets in R. Let
U ⊆ R be open, so for x ∈ U , there exists (a, b) ∈ D with x ∈ (a, b) and (a, b) ⊆ U . Let
DU = {(a, b) ∈ D : (a, b) ⊆ U}, so that U =

⋃
DU . Hence

f−1(U) =
⋃

f−1(DU) ∈ R,

as DU is countable and f−1(a, b) ∈ R for each (a, b) ∈ D. Hence f is measurable.

Question 7: We work with notation as in Question 5. Which measurable functions
f : X → [0,∞) are integrable? What about functions f : X → R? You might find it
easier to assume that X = N here.
Answer: Suppose that f : X → [0,∞) is integrable. Let A ⊆ X be a finite set, and let
fA = fχA. Then fA is non-zero only on A, so fA is a simple function, and is integrable.
By definition, ∑

x∈A

f(x) =
∑
x∈A

f(x)µ({x}) =

∫
X

fA dµ ≤
∫

X

f dµ < ∞.

Hence we see that
sup

A⊆X finite

∑
x∈A

f(x) < ∞.

(This was perhaps a little unfair of me. For positive functions on an infinite, possibly
uncountable, set, we define

∑
x∈X f(x) to be the supremum. I doubt you have seen this

before). Conversely, if this supremum is finite, then it is easy to check, by using the
previous bit of the question, that if g : X → [0,∞) is simple and integrable, with g ≤ f ,
then

∫
X

g dµ is less than the supremum, and hence f is integrable.
By definition, f : X → R is integrable if and only if f+ and f− are, which is if and

only if |f | is integrable. That is, if

sup
A⊆X finite

∑
x∈A

|f(x)| < ∞.

Question Continued: Show that if X = N, then we can identify `1 with the space of
integrable functions f : X → R.
Answer: f : N → R is integrable if and only if

sup
A⊆N finite

∑
n∈A

|f(n)| < ∞.

We claim that this is equivalent to
∑∞

n=1 |f(n)| < ∞, that is, f ∈ `1. Let us check this.
Clearly, we have that

∞∑
n=1

|f(n)| = sup
N

N∑
n=1

|f(n)| ≤ sup
A⊆N finite

∑
n∈A

|f(n)|.

Conversely, let A ⊆ N be finite, and let N ≤ max(A), so that

∑
n∈A

|f(n)| ≤
N∑

n=1

|f(n)| ≤
∞∑

n=1

|f(n)|,

and so

sup
A⊆N finite

∑
n∈A

|f(n)| ≤
∞∑

n=1

|f(n)|.
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Bonus Question: Let (X,R, µ) be a measure space. Let f, g : X → R be measurable.
Show that f + g is measurable.
Proof: We follow the hint; let a ∈ R, and we try to prove that

(f+g)−1((a,∞)) = {x ∈ X : a < f(x)+g(x)} =
⋃
q∈Q

{x ∈ X : q < f(x) and a−q < g(x)}.

Firstly, let x ∈ X with a < f(x) + g(x). We can find ε > 0 with a + ε < f(x) + g(x).
Then pick q ∈ Q with q < f(x) < q + ε (which we can do as Q is dense in R). Then
g(x) > a + ε − f(x) > a + ε − q − ε = a − q, as required to show that x is in the
left-hand side. Conversely, if x ∈ X and q ∈ Q with q < f(x) and a − q < g(x), then
f(x) + g(x) > q + a− q = a, as required to show that x is in the right-hand side. So we
have proved the equality.

Thus
(f + g)−1((a,∞)) =

⋃
q∈Q

f−1((q,∞)) ∩ g−1((a− q,∞)).

For each q ∈ Q, as f and g are measurable, f−1((q,∞)) ∈ R and g−1((a−q,∞)) ∈ R. So
f−1((q,∞))∩g−1((a−q,∞) ∈ R. As Q is countable, we conclude (f +g)−1((a,∞)) ∈ R.

Exactly the same sort of argument will show that (f + g)−1((−∞, a) ∈ R for each
a ∈ R. So also

(f + g)−1((a, b)) = (f + g)−1((a,∞)) ∩ (f + g)−1((−∞, b) ∈ R,

for a < b. Finally, let U ⊆ R be open, so as in the proof of Corollary 2.7 we can write U
as the countable union of open intervals. It follows that f−1(U) ∈ R, as required.

Question continued: Show that {x ∈ X : f(x) ≥ g(x)} ∈ R.
Proof: If f measurable and C ⊆ R is closed, then

f−1(C) = f−1(R \ (R \ C)) = X \ f−1(R \ C) ∈ R,

as R \ C is open, and so f−1(R \ C) ∈ R.
We follow the hint:

{x ∈ X : f(x) ≥ g(x)} =
⋂

q∈Q,q>0

⋃
r∈Q

{x ∈ X : f(x) > r > g(x)− q}.

To prove this, first let x ∈ X with f(x) ≥ g(x). Then, for every q ∈ Q with q > 0, we
have that f(x) > g(x) − q, and so there exists r ∈ Q with f(x) > r > g(x) − q. So we
have “⊆”. Conversely, suppose that for all q ∈ Q with q > 0, for some r ∈ Q, we have
that f(x) > r > g(x)− q. In particular, f(x) > g(x)− q for all q > 0 with q ∈ Q, so that
f(x) ≥ g(x). Hence we have equality, as claimed.

Now, for q, r ∈ Q with q > 0, we have that

{x ∈ X : f(x) > r > g(x)− q} = {x ∈ X : f(x) > r} ∩ {x ∈ X : r + q > g(x)}
= f−1((r,∞)) ∩ g−1((−∞, r + q)) ∈ R.

Hence, for q ∈ Q with q > 0, we have that⋃
r∈Q

{x ∈ X : f(x) > r > g(x)− q} ∈ R,

5



as this is a countable union. Similarly, by taking a countable intersection, we see that⋂
q∈Q,q>0

⋃
r∈Q

{x ∈ X : f(x) > r > g(x)− q} ∈ R.

So {x ∈ X : f(x) ≥ g(x)} ∈ R, as required.

Question continued: Show that fg is measurable.
Cheeky proof: Let Y be a topological space. We say that a map f : X → Y is
measurable if f−1(U) ∈ R for every open set U ⊆ Y . This generalises our definition for
maps to R.

Let α : X → R2 be the map α(x) = (f(x), g(x)), and let c : R2 → R be some
continuous map. In particular, we can take c(t, s) = t + s or c(t, s) = ts, so that
c ◦ α = f + g or fg, respectively.

We first check that α is measurable. Firstly, let a < b and c < d, so that

α−1((a, b)× (c, d)) = {x : a < f(x) < b, c < g(x) < d} = f−1((a, b)) ∩ g−1((c, d)),

which is in R, as f and g are measurable. Now we use our usual trick. Let U ⊆ R2 be
open, and let x ∈ U . Then we can find rationals a, b, c, d with x ∈ (a, b) × (c, d) ⊆ U .
Hence

U =
⋃

a,b,c,d∈Q,(a,b)×(c,d)⊆U

(a, b)× (c, d),

which is a countable union. Hence

α−1(U) =
⋃

a,b,c,d∈Q,(a,b)×(c,d)⊆U

α−1((a, b)× (c, d)),

which is in R.
Finally, consider U ⊆ R open. As c is continuous, c−1(U) ⊆ R2 is open, and so

(cα)−1 = α−1c−1(U) ∈ R. Hence cα is measurable, as required.
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Linear Analysis I: Worked Solutions 5
Question 1: Let (an) be a convergent sequence of positive reals. Prove that

lim
n

an = lim sup
n

an = lim inf
n

an.

Let (an) be any sequence of positive reals. Show that

lim inf
n

an ≤ lim sup
n

an,

where these may be ±∞. Show that if

lim inf
n

an = lim sup
n

an,

then (an) converges.
Answer: Let (an) be convergent, with limit a. For ε > 0, there exists Nε such that
|an − a| < ε for n ≥ Nε. Hence, for m ≥ Nε,

a + ε ≥ sup
n≥m

an ≥ a− ε, a− ε ≤ inf
n≥m

an ≤ a + ε,

which is enough to ensure that

lim
n

an = lim sup
n

an = lim inf
n

an.

Now let (an) be an arbitrary sequence in R. Then, for all n,

inf
k≥n

ak ≤ sup
k≥n

ak,

and so, by taking the limit, lim infn an ≤ lim supn an. Now suppose that lim infn an =
lim supn an, which means that for all ε > 0, there exists Nε such that∣∣ inf

n≥Nε

an − sup
n≥Nε

an

∣∣ = sup
n≥Nε

an − inf
n≥Nε

an < ε.

This implies that |an− am| < ε for any n, m ≥ Nε. Hence (an) is a Cauchy sequence, and
hence converges.

Question 2: Use the monotone convergence theorem to evaluate
∫

R f(x) dµ(x) for the
following.

1. f(x) = e−|x|.

Answer: f is continuous and hence measurable. Let fn(x) = e−|x|χ[−n,n], so that
fn ↑ f , and hence by MCT∫

R
f dµ = lim

n→∞

∫
R

fn dµ = lim
n→∞

∫ n

−n

e−|x| dx

= lim
n→∞

∫ 0

−n

ex dx +

∫ n

0

e−x dx = lim
n→∞

2(1− e−n) = 2.

2. f(x) = x−1/2χ(0,1].

Answer: f is continuous on (0, 1] and zero elsewhere, so as (0, 1] is measurable, f
is measurable (check this if you don’t believe it!) Let fn(x) = x−1/2χ[1/n,1], so that
fn ↑ f , and hence by MCT∫

R
f dµ = lim

n→∞

∫
R

fn dµ = lim
n→∞

∫ 1

1/n

x−1/2 dx

= lim
n→∞

[
2x1/2

]1

x=1/n
= lim

n→∞
2− 2/

√
n = 2.

1



Similarly, establish that the following have finite integral.

1. f(x) = e−x2
.

Answer: f is continuous, so measurable. Let fn(x) = e−x2
χ[−n,n]. Then fn ↑ f , and

so by MCT∫
R

f dµ = lim
n→∞

∫
R

fn dµ = lim
n→∞

∫ n

−n

e−x2

dx = lim
n→∞

2

∫ n

0

e−x2

dx

≤ lim
n→∞

2

∫ 1

0

1 dx + 2

∫ n

1

e−x dx = 2 + lim
n→∞

2(e−1 − e−n) = 2 + 2e−1.

This uses that −x2 ≤ −x for x ≥ 1, and that e−x2 ≤ 1 for x ∈ [0, 1].

2. f(x) = x−2 sin(x)χ[π,∞).

Answer: f is the restriction of a continuous function to the measurable set [π,∞),
and so f is measurable. Notice that f(x) ≥ 0 if and only if x < π or sin(x) ≥ 0,
that is, if and only if x < π or 2kπ ≤ x ≤ (2k + 1)π for some k ∈ N. Hence let

A = (−∞, π) ∪
⋃
k∈N

[2kπ, (2k + 1)π],

so that

f+ = fχA, f− = −fχR\A.

Then, by monotone convergence,∫
R

f+ dµ =

∫
A

f dµ = lim
n→∞

n∑
k=1

∫ (2k+1)π

2kπ

x−2 sin(x) dx

≤ lim
n→∞

n∑
k=1

∫ (2k+1)π

2kπ

x−2 dx = lim
n→∞

n∑
k=1

1

2kπ
− 1

(2k + 1)π

= lim
n→∞

n∑
k=1

π

2k(2k + 1)π2
≤

∞∑
k=1

k−2 < ∞.

A similar argument applies to f−.

Finally, show that the following are not Lebesgue integrable (that is, they have infinite
integrals).

1. f(x) = x−1χ[1,∞).

Answer: Let fn = x−1χ[1,n], so fn ↑ f , and hence∫
R

f dµ = lim
n→∞

∫ n

1

1

x
dx = lim

n→∞
log(n) = ∞.

2. f(x) = log(x)χ[1,∞).

Answer: Let fn = log(x)χ[1,n], so fn ↑ f , and hence∫
R

f dµ = lim
n→∞

∫ n

1

log(x) dx = lim
n→∞

n log(n)− n + 1 = ∞.
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Question 3: Recall that f(x) = sin(x)/x is a continuous function R → R. This is not
Lebesgue integrable, as f+ and/or f− do not have finite integral. Carefully prove this.
Answer: Notice that

f(x) ≥ 0 ⇔

{
x ≥ 0, 2kπ ≤ x ≤ (2k + 1)π for some k ∈ N,

x < 0, (2k + 1)π ≤ x ≤ (2k + 2)π for some k ∈ Z.

So by Monotone convergence,∫
R

f+ dµ = lim
n→∞

n∑
k=0

∫ (2k+1)π

2kπ

sin(x)

x
dx +

∫ −2kπ

(−2k−1)π

sin(x)

x
dx.

Notice that (
2k +

1

4

)
π ≤ x ≤

(
2k +

3

4

)
π =⇒ sin(x) ≥ 1√

2
,

and so ∫
R

f+ dµ ≥
∞∑

k=0

∫ (2k+3/4)π

(2k+1/4)π

1

x
√

2
dx +

∫ (−2k−1/4)π

(−2k−3/4)π

1

|x|
√

2
dx

≥ 1√
2

∞∑
k=0

π/2

(2k + 3/4)π
+

π/2

(2k + 1/4)π
≥
√

2
∞∑

k=1

1

k
= ∞.

It might be easier to see this if you draw a sketch!!

Question 4: For each n, let fn(x) = n3/2x(1 + n2x2)−1 for x ∈ [0, 1]. By using the
Dominated Convergence Theorem, find

lim
n

∫ 1

0

fn(x) dx.

Answer: For 0 < x ≤ 1, consider the function

θx : [1,∞) → [0,∞), t 7→ 1

t−3/2 + t1/2x2
,

which has a turning point at
√

3/x. We check that

θx(1) =
1

1 + x2
, θx(

√
3/x) =

1

3−3/4x3/2 + 31/4x3/2
=

1

x3/2(3−3/4 + 31/4)
,

and clearly θx(t) → 0 as t →∞. So the maximum of θx is (x3/2(3−3/4 + 31/4))−1.
So if we define g : [0, 1] → [0,∞) by g(0) = 0, and

g(x) = sup
n

fn(x) = sup
n

n3/2x

1 + n2x2
= sup

n
xθx(n),

then we get the crude estimate that g(x) ≤ x−1/2 for x > 0. Hence∫
[0,1]

g dµ =
[
2x1/2

]1

0
= 2.

So g is integrable, and |fn| = fn ≤ g for all n. So by Dominated Convergence,

lim
n

∫
[0,1]

fn dµ =

∫
[0,1]

lim
n

fn dµ = 0.

3



Question 5: Use the Dominated Convergence Theorem to show that f : [0, 4] → R,
defined by

f(x) =

{
0 : x = 0,

x−1/2 sin(1/x) : 0 < x ≤ 4,

is integrable.
Answer: Set fn(x) = x−1/2 sin(1/x)χ(1/n,4], so fn → f pointwise, but fn does not increase
to f , so we cannot apply the Monotone Convergence Theorem. Instead, we notice that
|fn(x)| ≤ x−1/2 for 0 < x ≤ 4. So define

g(x) =

{
x−1/2 : 0 < x ≤ 4,

0 : x ≤ 0, x > 4.

We can use Monotone Convergence to show that∫
R

g dµ = lim
n→∞

∫ 4

1/n

x−1/2 dx = lim
n→∞

2(2− 1/
√

n) = 4.

Hence g is integrable, and as |fn| ≤ g, each fn is integrable. Apply the Dominated
Convergence Theorem, we see that f is also integrable, as required.

Question 6: Define fn : [0, 1] → [0,∞) by

fn(x) =

{
n : 0 ≤ x ≤ 1/n,

0 : x > 1/n.

Show that fn(x) → 0 almost everywhere, but that∫ 1

0

fn dµ = 1,

for all n. Why can we not apply either the Monotone or the Dominated Convergence
Theorems in this case?
Answer: For x > 0, if n is large enough, then x > 1/n, implying that fn(x) = 0. Hence
fn → 0 except on {0}. But a singleton is a null set, so fn → 0 almost everywhere.
However, as fn is a simple function,∫ 1

0

fn dµ = nµ([0, 1/n]) = 1,

for all n.
Clearly fn is not an increasing sequence, so Monotone Convergence does not apply.

Let
g(x) = sup

n
fn(x) = sup{n ∈ N : x ≤ 1/n}.

Hence g(x) = n for (n + 1)−1 < x ≤ 1/n, and so, for each N ,∫ 1

0

g dµ ≥
N∑

n=1

n
( 1

n
− 1

n + 1

)
=

N∑
n=1

n

n(n + 1)
=

N+1∑
n=2

n−1.

This sum diverges (as N → ∞), and so g has infinite integral. Hence we cannot bound
the sequence (fn) by an integrable function, and so we cannot apply the Dominated
Convergence Theorem.
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Question 7: Let (X,R, µ) be a measure space, and let Y ∈ R. On a previous example
sheet, we saw how to define the sub-measure space (Y,RY , µY ). Let f : X → R be
measurable, and let fY be the restriction of f to Y . Show that fY is measurable with
respect to RY . Show that fχY is measurable. Show that∫

Y

fY dµY =

∫
X

fχY dµ.

Hence integrating with respect to a sub-measure space, or just multiplying by the char-
acteristic function of a measurable subset, gives the same answer.
Answer: Recall that RY = {A∩Y : A ∈ R}, and µY is simply the restriction of µ to Y .
Firstly we check that fY is RY -measurable. Let U ⊆ R be open, so that f−1(U) ∈ R, as
f is R-measurable. Hence

f−1
Y (U) = {y ∈ Y : f(y) ∈ Y } = f−1(U) ∩ Y ∈ RY ,

and so we conclude that fY is RY -measurable.
Next we show that fχY is R-measurable. Again, let U ⊆ R be open with 0 ∈ U , so

that

(fχY )−1(U) = {x ∈ X : f(x)χY (x) ∈ U} = {x ∈ Y : f(x) ∈ U} ∪ {x ∈ X \ Y }
=

(
f−1(U) ∩ Y

)
∪ (X \ Y ) ∈ R.

If 0 6∈ U , then

(fχY )−1(U) = {x ∈ Y : f(x) ∈ U} = f−1(U) ∩ Y ∈ R.

So fχY is measurable (this uses that Y ∈ R).
Let f =

∑n
k=1 tkχAk

be a simple function, with the (Ak) disjoint, so we have that∫
Y

fY dµY =
n∑

k=1

tkµY (Ak ∩ Y ) =
n∑

k=1

tkµ(Ak ∩ Y ) =

∫
X

fχY dµ.

If f : X → [0,∞) is measurable, then let

fn = 2−1
⌊
2nf

⌋
(n ∈ N),

so that each fn is simple, and fn ↑ f . Obviously also fnχY ↑ fχY , so by the MCT,∫
Y

fY dµY = lim
n

∫
Y

(fn)Y dµY = lim
n

∫
X

fnχY dµ =

∫
X

fχY dµ.

Finally, to handle a general measurable f : X → R, we simply consider positive and
negative parts.
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Linear Analysis I: Worked Solutions 6
Question 1: Let (X,R, µ) be a measure space. Let f : X → [0,∞) be measurable. For
each A ∈ R, define

µf (A) =

∫
X

fχA dµ (A ∈ R).

Show that µf is a measure.
Answer: Clearly µf (∅) = 0. Let (An) be a sequence of pairwise disjoint sets in R, and
let A =

⋃
n An. Let g = χA and fn = χA1∪···∪An for each n. Then

A1 ∪ · · · ∪ An ⊆ A1 ∪ · · · ∪ An+1 =⇒ fn ≤ fn+1, (n ∈ N),

so (fn) is an increasing sequence. If x ∈ A, then for some n, we have x ∈ An, and so
fn(x) → 1. Thus fn(x) → g(x). If x 6∈ A then x 6∈ An for each n, so that 0 = g(x) = fn(x)
for all n. Thus g = χA = limn fn.

As f is positive, we see that ffn increases to fχA. By the Monotone Convergence
Theorem,

µf (A) =

∫
X

fχA dµ = lim
n→∞

∫
X

ffn dµ = lim
n→∞

∫
X

fχA1∪···∪An dµ.

As integration is linear,

µf (A) = lim
n→∞

n∑
k=1

∫
X

fχAk
dµ = lim

n→∞

n∑
k=1

µf (Ak) =
∞∑

n=1

µf (An).

So µf is countably additive, and hence a measure.

Question continued: Furthermore, show that if g is a simple function, then∫
X

g dµf =

∫
X

gf dµ.

Conclude (using Monotone convergence) that this holds for any integrable function g :
X → R.
Answer: We can write a simple function as

g =
n∑

k=1

akχAk
,

for some pairwise disjoint (Ak), and scalars (ak). Then, by definition, and using linearity,∫
X

g dµf =
n∑

k=1

akµf (Ak) =
n∑

k=1

ak

∫
X

fχAk
dµ =

∫
X

n∑
k=1

akfχAk
dµ =

∫
X

fg dµ.

Now let g : X → [0,∞) be measurable, and as usual, set

gn = min(n, 2−nb2ngc),

so each gn is simple, and gn ↑ g. Similarly, gnf ↑ fg. Thus, by Monotone Convergence,∫
X

g dµf = lim
n→∞

∫
X

gn dµf = lim
n→∞

∫
X

gnf dµ =

∫
X

gf dµ,

as required. The claim then follows by taking positive and negative parts.
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Question 2: Let (X,R, µ) be a measure space. A function f : X → R is essentially
bounded if there exists K > 0 such that |f | ≤ K almost everywhere. The inf of such K
is called the essential supremum of f , and is denoted by

ess-supx∈X |f(x)| or simply ess-supX |f |.

Let f be essentially bounded, and suppose that g : X → R is measurable and inte-
grable. Show that fg is integrable, and that∫

X

|fg| dµ ≤
(

ess-supX |f |
) ∫

X

|g| dµ.

Answer: Let ε > 0, and set K = ess-supX |f |. Then |f | ≤ K + ε almost everywhere, so
A = {x ∈ X : |f(x)| ≥ K + ε} is a null set. Thus f = fχX\A almost everywhere, and
|fχX\A| ≤ K + ε.

Then |fχX\Ag| ≤ (K + ε)|g|, and so∫
X

|fχX\Ag| dµ ≤ (K + ε)

∫
X

|g| dµ < ∞.

As |fχX\Ag| = |fg| almost everywhere, we also have that∫
X

|fg| dµ =

∫
X

|fχX\Ag| dµ ≤ (K + ε)

∫
X

|g| dµ.

As ε > 0 was arbitrary, we are done.

Question 3: We define Lebesgue measure on R3 by identifying R3 with R × R × R.
The volume of a measurable set A ⊆ R3 is then simply the integral of the characteristic
function of A. Carefully apply Fubini’s Theorem to find the volumes of the sets:

1. {(x, y, z) : 0 ≤ z ≤ 2− x2 − y2}.

2. {(x, y, z) : x + y + z ≤ 1, x ≥ 0, y ≥ 0, z ≥ 0}.

Notice that these sets are bounded, so we can work in a finite measure space if we wish.

Answer: It is quite possible that I have made mistakes here, so check these integrals!
For (1), we have, being careful,

Volume =

∫
R3

χ{(x,y,z):0≤z≤2−x2−y2} dµ3,

where here I write µ3 for Lebesgue measure on R3. The set we are integrating over is
bounded, and hence has finite measure. So we can apply Fubini. Hence

Volume =

∫
R2

χ{(x,y):x2+y2≤2}

( ∫ 2−x2−y2

0

1 dz
)

dµ2.

Then, for x fixed with x2 ≤ 2, we have that x2 + y2 ≤ 2 if and only if (x2 − 2)1/2 ≤ y ≤

2



(2− x2)1/2. Hence

Volume =

∫ √
2

−
√

2

∫ (2−x2)1/2

(x2−2)1/2

∫ 2−x2−y2

0

1 dz dy dx

=

∫ √
2

−
√

2

∫ (2−x2)1/2

(x2−2)1/2

2− x2 − y2 dy dx

=

∫ √
2

−
√

2

2(2− x2)1/2(2− x2)−
[y3

3

](2−x2)1/2

y=(x2−2)1/2
dx

=

∫ √
2

−
√

2

2(2− x2)3/2 − 2

3
(2− x2)3/2 dx

=
4

3

∫ √
2

−
√

2

(2− x2)3/2 dx.

Let x =
√

2 sin(t), so that dx/dt =
√

2 cos(t), and hence

Area =
4

3

∫ π/2

−π/2

23/2
√

2 cos4(t) dt =
16

3

∫ π/2

−π/2

cos4(t) dt

=
2

3

∫ π/2

−π/2

cos(4t) + 4 cos(2t) + 3 dt =
2

3

[sin(4t)

4
+ 2 sin(2t) + 3t

]π/2

t=−π/2
= 2π

If you’d seen this question in a Calculus Course, you would probably change into plane
polar coordinates. There is a way to handle change of variables for Lebesgue (or more
general) integrable functions. I haven’t covered this in the course, in the interests of time,
but in an easy form, it is rather similar to change of variables for Riemann integration.
In a more complicated form, it is not very useful for practical calculations.

For (2), with much less justification this time, we have

Volume =

∫ 1

0

∫ 1−x

0

∫ 1−x−y

0

1 dz dy dx =

∫ 1

0

∫ 1−x

0

1− x− y dy dx

=

∫ 1

0

(1− x)2 −
[y2

2

]1−x

y=0
dx =

1

2

∫ 1

0

(1− x)2 dx =
1

2

[
x− x2 +

x3

3

]1

x=0
=

1

6
.

Question 4: Let (X,R, µ) and (Y,S, λ) be finite measure spaces. Let f : X → R be
R-measurable, and let g : Y → R be S-measurable. Let h : X × Y → R be defined
by h(x, y) = f(x)g(y). Show that h is (R ⊗ S)-measurable. Suppose that f and g are
integrable with respect to µ and λ, respectively. Use Fubini to show that∫

X×Y

h d(µ⊗ λ) =

∫
X

f dµ

∫
Y

g dλ.

Answer: Let U ⊆ R be open. Consider the continuous map α : R2 → R defined by
α(x, y) = xy. Consider also the map β : R2 → R2 defined by β(x, y) = (f(x), g(y)). Then
h = αβ, and so h−1(U) = β−1α−1(U). As α is continuous, α−1(U) is open. Suppose that
β is R⊗ S-measurable, in the sense that if V ⊆ R × R is open, then β−1(V ) ∈ R ⊗ S.
Then we have that h−1(U) ∈ R⊗ S, showing that h is R⊗ S-measurable.

So we want β to be measurable. Let U, V ⊆ R be open, so that f−1(U) ∈ R and
g−1(V ) ∈ S, as f and g are measurable. So, by the definition of R ⊗ S, we have that
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β−1(U × V ) = f−1(U)× g−1(V ) ∈ R ⊗ S. We now “exploit the rationals”. Let U ⊆ R2

be open, let D be the collection of all open intervals (a, b) with a, b ∈ Q. Then

U =
⋃

{A,B∈D:A×B⊆U}

A×B,

a countable union, so

β−1(U) =
⋃

{A,B∈D:A×B⊆U}

f−1(A)× g−1(B)

is in R⊗ S. Hence β is measurable.
As f and g are measurable, by Fubini (for positive functions) we see that∫

X×Y

|h| d(µ⊗ λ) =

∫
X

|h|1 dµ,

where

|h|1(x) =

{∫
Y
|h|(x, y) dλ(y) : this is finite,

0 : otherwise.

However, in this case∫
Y

|h|(x, y) dλ(y) =

∫
Y

|f |(x)|g|(y) dλ(y) = |f(x)|
∫

Y

|g| dλ.

Thus ∫
X×Y

|h| d(µ⊗ λ) =

∫
X

|f(x)|
∫

Y

|g| dλ dµ(x)

=

∫
X

|f(x)| dµ(x)

∫
Y

|g(y)| dλ(y) < ∞.

Hence h is integrable, and so by Fubini,∫
X×Y

h d(µ⊗ λ) =

∫
X

f dµ

∫
Y

g dλ,

by just repeating the argument.

Question 5: Define f : [0, 1]2 → R by

f(x, y) =

{
x2−y2

(x2+y2)2
: (x, y) 6= (0, 0),

0 : otherwise.

Show by calculation that∫ 1

0

∫ 1

0

f(x, y) dx dy 6=
∫ 1

0

∫ 1

0

f(x, y) dy dx.

Why can we not apply Fubini’s Theorem in this case?
Answer: We see that for y > 0,∫ 1

0

x2 − y2

(x2 + y2)2
dx =

[ −x

x2 + y2

]1

x=0
=

−1

1 + y2
.
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Hence we have that∫ 1

0

∫ 1

0

x2 − y2

(x2 + y2)2
dx dy =

∫ 1

0

−1

1 + y2
dy =

[
− tan−1(y)

]1

y=0
= −π/4.

By symmetry, we have that for x > 0,∫ 1

0

x2 − y2

(x2 + y2)2
dy =

[ y

x2 + y2

]1

y=0
=

1

1 + x2
.

and consequently, ∫ 1

0

∫ 1

0

x2 − y2

(x2 + y2)2
dy dx = π/4.

We cannot apply Fubini’s Theorem as |f | has infinite integral over [0, 1]2, that is, f is
NOT integrable. This follows as∫ 1

0

|x2 − y2|
(x2 + y2)2

dx =

∫ y

0

y2 − x2

(x2 + y2)2
dx +

∫ 1

y

x2 − y2

(x2 + y2)2
dx

=
[ x

x2 + y2

]y

x=0
+

[ −x

x2 + y2

]1

x=y

=
y

y2 + y2
+

−1

1 + y2
− −y

y2 + y2
=

1

y
− 1

1 + y2
.

Hence ∫ 1

0

∫ 1

0

|x2 − y2|
(x2 + y2)2

dx dy =

∫ 1

0

1

y
− 1

1 + y2
dy = ∞−

∫ 1

0

1

1 + y2
dy = ∞.

Formally, we should use Monotone Convergence in this last calculation.

Question 6: Let (X,R, µ) and (Y,S, λ) be finite measure spaces, and let E ∈ R ⊗ S.
For each x ∈ X, let Ex = {y ∈ Y : (x, y) ∈ E}, a cross-section of E. Show that the
following are equivalent:

1. (µ⊗ λ)(E) = 0;

2. λ(Ex) = 0 for almost all x with respect to µ (that is, µ({x ∈ X : λ(Ex) 6= 0}) = 0).

Answer: Let f = χE a measurable function on X × Y . By the results in lectures, we
know that each Ex is in S, so we can let fx = χEx a measurable function on Y . Notice
that fx(y) = χE(x, y) for x ∈ X and y ∈ F . As f is positive and bounded, we can apply
(the easiest form of) Fubini to see that

(µ⊗ λ)(E) =

∫
X×Y

f d(µ⊗ λ) =

∫
X

∫
Y

f(x, y) dλ(y) dµ(x)

=

∫
X

∫
Y

fx dλ dµ(x) =

∫
X

λ(Ex) dµ(x).

So (µ⊗λ)(E) = 0 if and only if x 7→ λ(Ex) has zero integral over X, which is if and only
if λ(Ex) = 0 for almost every x with respect to µ.

Question 7: Let X be a set, and let R be a σ-algebra on X. For x ∈ X, define a map
δx : R→ [0,∞) by

δx(A) =

{
1 : x ∈ A,

0 : x 6∈ A.
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Show that δx is a measure.
Answer: Clearly δx(∅) = 0. For (An) a sequence of pairwise disjoint sets in R, let
A =

⋃
n An. If x 6∈ A, then x 6∈ An for all n, and so

0 = δx(A) =
∑

n

δx(An).

If x ∈ A, then by pairwise disjointness, there exists a unique n0 with x ∈ An0 . Then

1 = δx(A) =
∑

n

δx(An) = δx(An0) = 1,

as required to show that δx is countably additive. So δx is a measure.

Question continued: Determine the completion of δx (that is, what are the null sets
for δx?)
Answer: This is slightly a trick question! If {x} ∈ R, then also X \ {x} ∈ R, and
δx(X \{x}) = 0. It follows easily now that every set not containing x is null, as such sets
are contained in X \ {x}. In the completed σ-algebra, every set is measurable, and δx is
defined in the same way as before.

However, maybe R is the trivial σ-algebra, R = {X, ∅}. Then δx(X) = 1, so the only
set in R which has zero measure is ∅. So completing does nothing in this case.

Question continued: For a measurable function f : X → [0,∞), what is
∫

X
f dδx?

Which functions f : X → R are integrable for δx?
Answer: Intuition suggests that

∫
f dδx = f(x). Let us prove this! For A ∈ R, we

have
∫

χA dδx = δx(χA) = χA(x). By taking linear combinations, it is easy to see that∫
g dδx = g(x) for any simple function g : X → [0,∞). We could now use Monotone

Convergence, in the usual way.
However, let’s be different, and use the definition of the integral. So, if g ≤ f and g is

simple, then
∫

g dδx = g(x) ≤ f(x), so by definition,∫
f dδx ≤ f(x).

Conversely, for ε > 0, notice that

A = {y ∈ X : f(x)− ε ≤ f(y) ≤ f(x)} = f−1([f(x)− ε, f(x)])

is in R, as f is measurable. Then x ∈ A, and for any y ∈ A, f(y) ≥ f(x)− ε. So

fχA ≥ (f(x)− ε)χA =⇒
∫

f dδx ≥ (f(x)− ε)δx(χA) = f(x)− ε.

As ε > 0 was arbitrary, we conclude that
∫

f dδx = f(x), as required.
Maybe (or maybe not!) you worry that we haven’t used any facts about R here! Well,

if R = {X, ∅}, then there are very few measurable functions f : X → [0,∞). Indeed, a
moment’s thought shows that f must actually be constant (prove this!)

So any positive measurable function has a finite integral. By taking positive and
negative parts, we see that any measure function f : X → R is integrable, with

∫
f dδx =

f(x).

Question 8: Let A ⊆ R be a Lebesgue measurable set with finite Lebesgue measure.
Show that for ε > 0, we can find an open set U with A ⊆ U and µ(U) < µ(A) + ε.
Answer: By the definition of Lebesgue outer measure, for ε > 0, we can find U , a
countable union of open intervals, with A ⊆ U and µ(U) < µ(A) + ε. (This follows, as
by definition, µ(A) is the infimum of µ(U) for such U).
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Question continued: Show that for ε > 0, we can find a compact (that is, closed and
bounded) set K with K ⊆ A and µ(K) > µ(A)− ε.
Answer: Suppose first that A is bounded, that is, A ⊆ [−n, n] for some n > 0. Then
let B = [−n, n] \A which is also Lebesgue measurable, so by the first bit of the question,
we can find some open set U with B ⊆ U and µ(U) < µ(B) + ε. At this point, drawing a
diagram may help! Then let K = [−n, n] \ U = [−n, n] ∩ (R \ U) a closed and bounded
set. For k ∈ K, we have that k ∈ [−n, n] but k 6∈ U , so certainly k 6∈ B. Thus k ∈ A (use
the definition of B). So K ⊆ A. A bit of thought shows that A \K = U ∩ A ⊆ U \ B.
Thus

µ(A \K) = µ(A)− µ(K) ≤ µ(U \B) = µ(U)− µ(B) < ε,

so that µ(A)− ε < µ(K).
Let An = A∩[−n, n], so that A1 ⊆ A2 ⊆ · · · and A =

⋃
n An. Then µ(A) = limn µ(An),

and so as µ(A) < ∞, there exists n with µ(An) > µ(A) − ε/2. As An ⊆ [−n, n],
then above shows that there exists a closed and bounded K with K ⊆ An ⊆ A with
µ(K) > µ(An)− ε/2. Thus µ(K) > µ(A)− ε, as we want.

Question continued: Conclude that

sup{µ(K) : K ⊆ A is compact } = µ(A) = inf{µ(U) : A ⊆ U is open }.

This shows that µ is a regular measure. We will learn more about regular measures later
in the course.
Answer: This is immediate, as ε > 0 was arbitrary.
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Linear Analysis I: Worked Solutions 7
Question 1: Consider the set N together with the trivial σ-algebra consisting of all
subsets of N. Let (ωn) be a sequence of positive reals, with (ωn) ∈ `1. Show that we may
define a measure µ by

µ(A) =
∑
n∈A

ωn (A ⊆ N).

What are the null sets for this measure?
Proof: Firstly we remark that as ωn ≥ 0 for all n, the order which we take the sum does
not matter. Clearly µ(∅) = 0; if (An) is a pairwise disjoint collection of subsets of N, and
A =

⋃
nAn, then it is pretty clear that∑

n

µ(An) =
∑
n

∑
k∈An

ωk =
∑
k∈A

ωk.

Exercise: Give an ε-δ proof of this!
We claim that A ⊆ N is null if and only if ωn = 0 for each n ∈ A. The “if” case is

easy; conversely, if µ(A) = 0 then
∑

n∈A ωn = 0, so as each ωn is positive, we must have
that ωn = 0 for each n ∈ A, as claimed.

Question 2: This follows on from Question 1. Determine when a function f : N→ C is
in Lp(µ). Describe, briefly, the space Lp(µ).
Proof: Let’s do this carefully (having told you not to bother being too careful, maybe
it’s good to see the details). Let f : N→ R be simple, say

f =
n∑
k=1

akχAk

for some pairwise disjoint (Ak). Then

|f |p =
n∑
k=1

|ak|pχAk
=⇒

∫
|f |p dµ =

n∑
k=1

|ak|p
∑
j∈Ak

ωj =
∑
j∈N

|f(j)|pωj.

Now let f : N→ R be arbitrary, and let g ≤ f be simple. Then∫
|g|p dµ =

∑
j∈N

|g(j)|pωj ≤
∑
j∈N

|f(j)|pωj.

By the definition of the integral, taking the supremum over such g, we conclude that∫
|f |p dµ ≤

∑
j∈N

|f(j)|pωj.

Conversely, let n ∈ N, and define g : N → R by g(j) = f(j) if j ≤ n, and g(j) = 0
otherwise. Then g is simple, so we see that∫

|f |p dµ ≥
∫
|g|p dµ =

n∑
j=1

|f(j)|pωj.

Letting n→∞, we have that ∫
|f |p dµ ≥

∑
j∈N

|f(j)|pωj.
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So we have equality. As usual, we could have used a Monotone Convergence argument
instead.

So f : N→ C is in Lp(µ) if and only if

∞∑
j=1

|f(j)|pωj <∞.

Then Lp(µ) is Lp(µ), modulo functions which are equal almost everywhere. Using
Question 1, we see that f ∼ g if and only if f(j) 6= g(j) implies that ωj = 0.

So, if we let A = {j ∈ N : ωj 6= 0}, we could consider Lp(µ) to be the space of functions
f : A→ C with ∑

j∈A

|f(j)|pωj <∞.

Question 3: Let (X,R, µ) be a finite measure space. Show that if 1 ≤ p < r <∞, then
Lr(µ) ⊆ Lp(µ). Hint: Given a function f ∈ Lr(µ), write

f = fχ{x:|f(x)|≤1} + fχ{x:|f(x)|>1},

then think about whether these two functions are in Lp(µ).
Proof: We follow the hint. Let f ∈ Lr(µ), and fix a representative of f . If |f(x)| > 1,
then |f(x)|p ≤ |f(x)|r as p < r. Thus∫

|f |p dµ =

∫
{x∈X:|f(x)|≤1}

|f |p dµ+

∫
{x∈X:|f(x)|>1}

|f |p dµ

≤
∫
{x∈X:|f(x)|≤1}

1 dµ+

∫
{x∈X:|f(x)|>1}

|f |r dµ

≤ µ({x ∈ X : |f(x)| ≤ 1}) + ‖f‖rr ≤ µ(X) + ‖f‖rr <∞,

as µ is finite. Hence f ∈ Lp(µ) and so defines a member of Lp(µ) (and notice that if
f ∼ g in Lr(µ), the same is true in Lp(µ)).

Question continued: Try to use the Holder inequality!
Proof: How might we use Holder? Well, let s ∈ (1,∞), so by Holder∫

|f |p dµ =

∫
|f |p1 dµ ≤

(∫
|f |ps dµ

)1/s(∫
1t dµ

)1/t

,

where 1/s+ 1/t = 1, as usual. We only know that
∫
|f |r dµ <∞, so it seems natural to

let ps = r, that is, s = r/p. As p < r, we see that r/p > 1, so s is in the interval (1,∞).
Then 1/t = 1− 1/s = 1− p/r. Thus∫

|f |p dµ ≤
(∫
|f |r dµ

)p/r
µ(X)1−p/r <∞,

as
∫
|f |r <∞ and µ(X) <∞.

Question 4: By considering R with Lebesgue measure, or otherwise, show that the
conclusions of Question 5 no longer hold if we are not working with a finite measure
space.
Proof: We first do the p = 1 case. So we try to find f ∈ Lr(µ) with

∫
|f | dµ = ∞, so

that f 6∈ L1(µ). Try
f(x) = x−1χ(1,∞).
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Then (formally, we use Monotone convergence here)∫
|f |r dµ = lim

n

∫ n

1

x−r dµ = lim
n

[ x1−r

1− r

]n
1

= lim
n

1− n1−r

r − 1
=

1

r − 1
.

So f ∈ Lr(µ). However,∫
|f | dµ = lim

n

∫ n

1

x−1 dµ = lim
n

[
log(x)

]n
1

= lim
n

log(n) =∞,

so f 6∈ L1(µ).
To do the general case, just use

f(x) = x−1/pχ(1,∞),

so that |f |p = x−1χ(1,∞) while |f |r = x−r/pχ(1,∞), which has finite integral, as r/p > 1.

Question 5: Let (R,R, µ) be Lebesgue measure on the real line. Let f : R → R be a
Lebesgue integrable function. Define a map λ : R → R by

λ(E) =

∫
E

f dµ (E ∈ R).

Show quickly that λ is a signed measure. Let A ∪ B be a Hahn-Decomposition for λ.
How can we relate the sets A and B to the function f?
Proof: Clearly λ(∅) = 0. Let (En) be a pairwise disjoint sequence in R, and let E =⋃
nEn. As the (En) are pairwise disjoint, we have that

(
fχE1∪···∪En

)
± =

n∑
k=1

f±χEk
,

(
fχE

)
± = f±χE.

Then
(
fχE1∪···∪En

)
± ↑ f±χE, so by Monotone convergence,

∑
k

∫
Ek

f dµ =
∑
k

(∫
Ek

f+ dµ−
∫
Ek

f− dµ
)

= lim
n

n∑
k=1

∫
f+χEk

− f−χEk
dµ

= lim
n

∫
f+χE1∪···∪En dµ− lim

n

∫
f−χE1∪···∪En dµ

=

∫
f+χE dµ−

∫
f−χE dµ =

∫
fχE dµ,

showing that λ is countably additive.
Let A = {x ∈ X : f(x) ≥ 0} and B = {x ∈ X : g(x) < 0}. As f is measurable, A ∈ R

and B ∈ R. Then, for any E ∈ R, we see that f is positive on E ∩ A, and negative on
E ∩B, so that

λ(E ∩ A) =

∫
E∩A

f dµ ≥ 0, λ(E ∩B) ≤ 0.

So (A,B) is a Hahn-Decomposition.

Question 6: Let (R,R, µ) be Lebesgue measure on the real line. Show, quickly, that we
can define a measure ν on R by

ν(A) =

∫
A

|x| dµ(x) (A ∈ R).
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Show that ν << µ. However, show that for any ε > 0, there does not exist δ > 0 such
that µ(A) ≤ δ implies that ν(A) ≤ ε.
Proof: Clearly ν(∅) = 0; if (An) are pairwise disjoint, then for A =

⋃
nAn,∑

n

ν(An) =
∑
n

∫
An

|x| dµ(x) =

∫
A

|x| dµ(x) = ν(A),

by Monotone Convergence, as

χA1∪···∪An|x| ↑ χA|x|.

If µ(A) = 0, then ν(A) =
∫
|x|χA dµ(x) = 0, as |x|χA = 0 almost everywhere for µ.

Hence ν << µ.
However, let δ > 0, and let t > 0 be very large, so that

ν((t, t+ δ)) =

∫ t+δ

t

x dx ≥ tδ.

Thus, for all δ > 0, there exists A ∈ R with µ(A) = δ, but ν(A) arbitrarily large.

Question 7: Let (X,R) be a set with a σ-algebra, and let µ, λ be finite measures on R.
Show that the following are equivalent:

1. µ << λ and λ << µ;

2. A ∈ R is µ-null if and only if it is λ-null;

3. there exists a measurable function f : X → (0,∞) (note that I am not using [0,∞)
or [0,∞]) such that λ(A) =

∫
A
f dµ for all A ∈ R.

Proof: Clearly (1) if and only if (2). If (1) holds, then by applying Radon-Nikodym, we
can find a measurable f : X → [0,∞) such that

λ(A) =

∫
A

f dµ (A ∈ R).

Let B = {x ∈ X : f(x) = 0}, so that

λ(B) =

∫
B

f dµ =

∫
B

0 dµ = 0.

As µ << λ, we also have that µ(B) = 0. Define f̃ : X → (0,∞) by

f̃(x) =

{
f(x) : x 6∈ B,
1 : x ∈ B.

Then for A ∈ R, we have∫
A

f̃ dµ =

∫
A∩B

1 dµ+

∫
A\B

f dµ = µ(A ∩B) + λ(A \B)

= λ(A \B) = λ(A)− λ(A ∩B) = λ(A),

as µ(A ∩B) ≤ µ(B) = 0, and λ(A ∩B) ≤ λ(B) = 0. So we have shown (3).
Finally, suppose (3) holds. Let A ∈ R be such that µ(A) = 0, so clearly λ(A) = 0.

Conversely, if λ(A) = 0, then for each ε > 0,

0 = λ(A) =

∫
A

f dµ =

∫
A∩{x∈X:f(x)≥ε}

f dµ+

∫
A∩{x∈X:f(x)<ε}

f dµ

≥ εµ
(
A ∩ {x ∈ X : f(x) ≥ ε}

)
.
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Hence A ∩ {x ∈ X : f(x) ≥ ε} is a µ-null set for each ε > 0. Thus

A =
∞⋃
n=1

A ∩ {x ∈ X : f(x) ≥ 1/n}

is also a µ-null set, which follows as f > 0 everywhere. Hence we have shown (2).

Question 8: Let (R,R, µ) be Lebesgue measure on the real line. Let (rn) be an enu-
meration of the rationals. For each n, let

An = (rn − 2−n, rn + 2−n), fn = 2nχAn .

Hence fn ≥ 0 and
∫
X
fn dµ = 2.

Let B be the set of x ∈ R such that x is in infinitely many of the sets An. Show that

B =
∞⋂
n=1

∞⋃
k=n

Ak.

Using Proposition 2.3, show that µ(B) = 0. Hence show that
∑

n fn < ∞ almost
everywhere.
Proof: If x is in infinitely many of the sets An, then for each n, we have x ∈

⋃∞
k=n, and

so x ∈ B. Conversely, if x ∈ B, then for all n, x ∈
⋃∞
k=n, so we must have that x is in

infinitely many Ak, as required.
We see that

µ(B) = lim
n→∞

µ
( ∞⋃
k=n

Ak

)
≤ lim

n→∞

∞∑
k=n

21−k = lim
n→∞

2−n = 0.

Finally, let f(x) =
∑

n fn(x) =
∑

n 2nχAn(x), which we allow to be infinity. Then
f(x) = ∞ if and only if x is in infinitely many of the An, which is if and only if x ∈ B.
As µ(B) = 0, we see that f <∞ almost everywhere.
Question continued: Define a measure λ : R → [0,∞] by

λ(A) =
∞∑
n=1

∫
A

fn dµ.

For a < b, show that λ((a, b)) = ∞. Hint: There must be infinitely many rational
numbers in the open set (a, b). Conclude that λ(U) =∞ for any open set U ⊆ R.

Show, however, that λ << µ. Hence absolutely continuous measures can be pretty
nasty!
Proof: First notice that for A ∈ R,

λ(A) =
∞∑
n=1

∫
A

fn dµ =
∞∑
n=1

∫
A

2nχAn dµ =
∞∑
n=1

2nµ(A ∩ An).

For a < b, let X = {n ∈ N : a < rn < b}, so that X is infinite. For n ∈ X, we see that

A ∩ An = A ∩ (rn − 2−n, rn + 2−n) =
(

max(a, rn − 2−n),min(b, rn + 2−n)
)
.

If 2−n < (b− a)/2, then we crudely estimate that

µ(A ∩ An) ≥ 2−n.
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Hence we conclude that

λ(A) ≥
∑
n∈X

2nµ(A ∩ An) ≥
∑
n∈X

1 =∞.

If U is open, then we can find a < b with (a, b) ⊆ U , so that

λ(U) ≥ λ((a, b)) =∞.

However, if µ(A) = 0, then clearly λ(A) = 0, so λ << µ.
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Linear Analysis I: Worked Solutions 8
Question 1: Let (R,R, µ) be Lebesgue measure on the real line. Let X be the subset
of L1(µ) consisting of those f ∈ L1(µ) such that, for some K > 0, we have that |f | ≤ K
almost everywhere (loosely, we could write f ∈ L1(µ) ∩ L∞(µ)). Hence X is also a
subspace of L1(µ).

Show that f : R→ [0,∞) defined by

f(x) =

{
n1/2 : (n+ 1)−1 < x ≤ n−1 for some n ∈ N,
0 : otherwise,

is in L1(µ). Hence, or otherwise, show carefully show that X 6= L1(µ).
Show, however, that X is dense in L1(µ).

Answer: We see, again technically by Monotone Convergence, that∫
R
|f | dµ =

∞∑
n=1

n1/2
( 1

n
− 1

n+ 1

)
=
∞∑
n=1

n1/2

n(n+ 1)
≤

∞∑
n=1

n−3/2 <∞.

Hence f ∈ L1(µ). However, for any n, we see that |f | > n1/2 on, say, the interval
((n+2)−1, (n+1)−1), which does not have measure zero. Hence there can exist no K > 0
with |f | ≤ K almost everywhere.

Suppose there exists g ∈ L1(µ) and K > 0 with |g| ≤ K almost everywhere, and
yet f = g almost everywhere (so that f and g define the same vector in L1(µ)). Then
|f | ≤ K almost everywhere, which is a contradiction. So f 6∈ X.

Suppose there exists h ∈ L1(µ) and ε > 0, such that for every g ∈ X, we have
‖h− g‖1 ≥ ε. In particular, for each n ∈ N,

hn = hχ{x∈X:|h|≤n} ∈ X,

because |hn| ≤ n, and as |hn| ≤ |h|, also hn ∈ L1(µ). Thus, for each n,

ε ≤ ‖h− hn‖1 =

∫
{x∈X:|h|>n}

|h| dµ.

However, we clearly have that |hn| ↑ |h|, and so by Monotone Convergence,∫
X

|h| dµ = lim
n→∞

∫
X

|hn| dµ.

Hence

ε ≤ lim
n→∞

∫
X

|h|χ{x∈X:|h|>n} dµ = lim
n→∞

∫
X

|h| − |hn| dµ = 0,

a contradiction.

Question 2: This continues from Question 1. Show that the mapping

T (f) = g where g(t) =

∫
[0,t]

f dµ (t ≥ 0),

is a well-defined map X → CK([0,∞)).
As usual, we give CK([0,∞)) the ‖ · ‖∞ norm. Show that T is linear and bounded.

What is ‖T‖?
Does the definition of T make sense on L1(µ)?

My thanks to Thomas for pointing out that I did something a bit cheeky here. We
haven’t studied that space CK([0,∞)) before, as [0,∞) is not compact. Here are some
solutions out of this problem:
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• Just work in CK([0, N ]) for some N .

• If we interpret CK([0,∞)) to mean the vector space of bounded continuous functions
[0,∞)→ K, then actually CK([0,∞)) is a Banach space: the proof I have still works
in the non-compact case.

• The really sophisticated method might be to work with [0,∞], defined here as the
one-point compactification1 of [0,∞). The CK([0,∞]) can be identified with the
space of continuous functions f : [0,∞)→ K with limt→∞ f(t) existing.

Proof: Obviously (because we are integrating) T is well-defined on L1(µ), and so also
on X. Let f ∈ X, so there exists K > 0 with |f | ≤ K a.e. and so for t ≥ 0 and h > 0,
we have

|g(t+ h)− g(t)| =
∣∣∣ ∫

(t,t+h]

f dµ
∣∣∣ ≤ ∫

(t,t+h]

|f | dµ ≤ Kh.

Hence g is continuous. Clearly T is linear. We see that

‖g‖∞ = sup
t≥0

∣∣∣ ∫
[0,t]

f dµ
∣∣∣ ≤ sup

t≥0

∫
[0,t]

|f | dµ ≤
∫

R
|f | dµ = ‖f‖1.

Thus ‖T‖ ≤ 1. If f = χ[0,1], then

g(t) =

∫
[0,t]

χ[0,1] dµ = µ([0, 1] ∩ [0, t]) = µ([0,min(t, 1)]) = min(t, 1).

So ‖g‖∞ = 1 = ‖f‖1, and so ‖T‖ = 1.
Finally, as X is dense in L1(µ), if f ∈ L1(µ), then there exists a sequence (fn) in

X with fn → f . In particular, (fn) is Cauchy, so for ε > 0, there exists N such that
‖fn − fm‖ < ε for n,m ≥ N . Then

‖T (fn)− T (fm)‖ ≤ ‖fn − fm‖ < ε (n,m ≥ N).

So (T (fn)) is Cauchy in CK([0,∞)), which is a Banach space, and hence converges to
T (f) say. This is well-defined, for if gn → f as well, then for each ε > 0, there exists M
with ‖f − fn‖ < ε/2 and ‖f − gn‖ < ε/2 for n ≥ M . Thus ‖fn − gn‖ < ε for n ≥ M ,
showing that ‖T (fn)− T (gn)‖ < ε for n ≥M . Hence limn T (fn) = limn T (gn).

We can similarly show that T is linear, bounded, and that ‖T‖ = 1.
However, notice that it’s not obvious, just from the definition, that T is defined on

L1(µ) (because why would we get a continuous function by integrating an L1 function?)

Question 3: With notation as from Question 1: for 1 < p < ∞, let Xp ⊆ Lp(µ) have
the same definition as X. Show quickly that Xp is a subspace. By using Question 1, and
the fact that Lp(µ)∗ = Lq(µ), show that Xp is dense in Lp(µ).
Proof: It is simple to show that Xp is a subspace. If Xp is not dense, that we could
find a non-zero g ∈ Lp(µ)∗ = Lq(µ) which kills all2 of Xp. We shall show that this is not
possible, so that Xp is dense.

So suppose g ∈ Lq(µ) is such that∫
R
fg dµ = 0 (f ∈ Xp).

1See Wikipedia
2In Chapter 1, we used the Hahn-Banach theorem to show that if X is a Banach space, and Y a subspace, then for

x ∈ X, we have that x is in the closure of Y if and only if µ(x) = 0 whenever µ ∈ X∗ has Y ⊆ kerµ. So it follows that Y
is dense in X (that is, the closure of Y is all of X) if and only if, whenever µ ∈ X∗ with Y ⊆ kerµ, we actually have that
µ = 0.
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In particular, if A ⊆ R has finite measure, then χA ∈ Xp, as ‖χA‖p = µ(A)1/p <∞. Thus∫
A

g dµ =

∫
R
χAg dµ = 0.

So let ε > 0, let B = {x ∈ R : g(x) ≥ ε}, and suppose towards a contradiction that
µ(B) 6= 0. Then

0 6= µ(B) = lim
n→∞

µ
(
B ∩ [−n, n]

)
,

so for some n > 0, we have that µ(B ∩ [−n, n]) > 0. As B ∩ [−n, n] has finite measure,
it follows that

0 =

∫
B∩[−n,n]

g dµ ≥ εµ(B ∩ [−n, n]) > 0,

a contradiction. Thus {x ∈ R : g(x) ≥ ε} is null for all ε > 0, and so {x ∈ R : g(x) > 0}
is null.3 Similarly, {x ∈ R : g(x) < 0} is null. So g = 0 a.e. as required.

Question 4: We show that C([0, 1]) is not dense in L∞([0, 1]) (over either R or C). Let
f : [0, 1]→ [−1, 1] be defined by

f(x) =

{
0 : x = 0,

sin(1/x) : 0 < x ≤ 1.

As f is continuous, except at 0, it is measurable. Clearly f is bounded everywhere, so
f ∈ L∞([0, 1]). By considering what happens at zero, show that for any g ∈ C([0, 1]), we
have that ‖f − g‖∞ ≥ 1.
Answer: Notice that

f
( 1

2πn+ π/2

)
= 1, f

( 1

2πn− π/2

)
= −1 (n ∈ N).

As g is continuous, for ε > 0, there exists δ > 0 such that |g(0)− g(t)| < ε when |t| < δ.
Then there exists n with (2πn+ π/2)−1 < δ, and (2πn− π/2)−1 < δ, so∣∣∣f( 1

2πn+ π/2

)
− g
( 1

2πn+ π/2

)∣∣∣ ≥ |1− g(0)| − ε,

and ∣∣∣f( 1

2πn− π/2

)
− g
( 1

2πn− π/2

)∣∣∣ ≥ | − 1− g(0)| − ε,

so for some choice, we certainly get a number greater than 1 − ε, and so we have that
sup0≤t≤1 |f(t)− g(t)| ≥ 1− ε.

However, we need to deal with essential supremums. Suppose for the moment that
g(0) ≤ 0. Then let N be such that 2πN + π/2 > 1/δ, let γ > 0 be small, and let

Aε =
⋃
n≥N

( 1

2πn+ π/2 + γ
,

1

2πn+ π/2− γ

)
.

Then if γ is sufficiently small, we have that t ∈ Aε implies that f(t) > 1− ε. Notice that
Aε is not a null set. Then, if t ∈ Aε, then

|f(t)− g(t)| ≥ |f(t)− g(0)| − |g(0)− g(t)| ≥ 1− ε− g(0)− ε ≥ 1− 2ε.

3If you don’t see this, think about the proof from lectures of the fact that for f ∈ L∞(µ), we have that |f | ≤ ‖f‖∞
almost everywhere.

3



Hence we see that
ess-sup[0,1] |f − g| ≥ 1− 2ε.

As ε > 0 was arbitrary, we conclude that ‖f − g‖∞ ≥ 1 in L∞([0, 1]). A similar argument
applies when g(0) ≥ 0.

Question 5: Let ([0, 1],R, µ) be the restriction of the Lebesgue measure to [0, 1]. Let
f ∈ L∞(µ). Show that f ∈ Lp(µ) for 1 ≤ p <∞, and sup{‖f‖p : 1 ≤ p <∞} <∞.
Answer: As |f | ≤ ‖f‖∞ almost everywhere, for any p ≥ 1, we have |f |p ≤ ‖f‖p∞ almost
everywhere. Hence

‖f‖p =
(∫

[0,1]

|f |p dµ
)1/p

≤
(
‖f‖p∞

)1/p
= ‖f‖∞.

Question continued: Conversely, suppose that f : [0, 1] → K is measurable, that
f ∈ Lp(µ) for each 1 ≤ p < ∞, and that sup{‖f‖p : 1 ≤ p < ∞} < ∞. Show that
f ∈ L∞(µ).
Answer: Let K > 0, and suppose A = {x ∈ [0, 1] : |f(x)| ≥ K} is not null. Hence
|f | ≥ KχA, and so for p ≥ 1, also |f |p ≥ KpχA, so

Kµ(A)1/p =
(
Kpµ(A)

)1/p
=
(∫

[0,1]

KpχA dµ
)1/p

≤
(∫

[0,1]

|f |p dµ
)1/p

= ‖f‖p.

For 0 < t ≤ 1, we have that supp≥1 t
1/p = 1, so

K = K sup
p≥1

µ(A)1/p ≤ sup
p≥1
‖f‖p.

We hence conclude that
‖f‖∞ ≤ sup

p≥1
‖f‖p,

showing that f ∈ L∞(µ).
Question continued: Finally, show that if f ∈ L∞(µ), then

‖f‖∞ = lim
p→∞
‖f‖p.

Answer: From the above, we saw that if |f | ≥ K on a non-null set, then

K ≤ lim
p→∞
‖f‖p.

Hence we see that
‖f‖∞ ≤ lim inf

p→∞
‖f‖p.

Conversely, by the first part, we see that

lim sup
p→∞

‖f‖p ≤ ‖f‖∞.

In conclusion,
lim sup
p→∞

‖f‖p ≤ ‖f‖∞ ≤ lim inf
p→∞

‖f‖p ≤ lim sup
p→∞

‖f‖p,

so we have equality throughout, and by a previous sheet, ‖f‖p tends to a limit, which
must be ‖f‖∞.

Question 6: We know that (`1)∗ = `∞, so it might be tempting to believe that (`∞)∗ =
`1. This is impossible, as `∞ is not separable, while `1 is. However, let us give a more
direct argument.
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Treat c0 as a (closed) subspace of `∞. Let A ⊆ N be infinite, so χA ∈ `∞, but χA 6∈ c0.
Show that

d(χA, c0) := inf
{
‖χA − x‖∞ : x ∈ c0

}
= 1.

Answer: If x ∈ c0 then for ε > 0, there exists N such that |xn| < ε when n ≥ N . Then,
as A is infinite, there exists n ∈ A with n ≥ N , so that

|χA(n)− xn| = |1− xn| ≥ 1− ε.

Hence ‖χA − xn‖∞ ≥ 1− ε, and so as ε > 0 was arbitrary, ‖χA − xn‖∞ ≥ 1. Conversely,
as ‖χA‖∞ = 1, taking x = 0 gives d(χA, c0) = 1.
Question continued: Show that the linear map defined by

φ : c0 + KχA = {x+ tχA : x ∈ c0, t ∈ K} → K, φ(x+ tχA) = t,

is well-defined, and that ‖φ‖ = 1. Hence, by the Hahn-Banach Theorem, show that there
exists ψ ∈ (`∞)∗ such that

ψ(χA) = 1, ψ(x) = 0 (x ∈ c0).

Answer: If x1 +t1χA = x2 +t2χA, then either t1 = t2, or otherwise, χA = (t1−t2)−1(x2−
x1) ∈ c0, a contradiction. So φ is well-defined. If t = 0, then χ(x+ tχA) = 0 ≤ ‖x+ tχA‖.
For t 6= 0, from above, we have

1 ≤ ‖t−1x+ χA‖∞ = |t−1|‖x+ tχA‖∞,

and so |φ(x+ tχA)| = |t| ≤ ‖x+ tχA‖∞, showing that ‖φ‖ ≤ 1. As ‖φ(χA)‖ = 1 = ‖χA‖,
we have ‖φ‖ = 1. So let ψ be a Hahn-Banach extension to a member of (`∞)∗. Clearly
ψ has the stated properties.
Question continued: Show that there cannot exist (an) ∈ `1 such that

ψ(x) =
∞∑
n=1

anxn (x = (xn) ∈ `∞).

Answer: Suppose there does exist such an (an). Then let xn = an for each n, so as∑
n |an| <∞, clearly (xn) ∈ c0, and yet

ψ(x) =
∑
n

anxn =
∑
n

|an|2,

so we must have an = 0 for all n, giving that

1 = ψ(χA) =
∑
n∈A

an = 0,

a contradiction.
So ψ is not a member of `1.
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Linear Analysis I: Worked Solutions 9
Question 1: Let K be a compact space. Let (fn) be a sequence of positive functions in
CR(K), and let f ∈ CR(K) be such that for each x ∈ K,

f1(x) ≤ f2(x) ≤ · · · , f(x) = lim
n
fn(x).

Show that
λ(f) = lim

n
λ(fn) (λ ∈ CR(K)∗).

Hint: Use the Riesz Representation Theorem, Hahn-Decomposition, and Monotone Con-
vergence.

Answer: By the Riesz Representation Theorem, there exists a finite, regular, Borel
signed measure µ on K such that

λ(g) =

∫
K

g dµ (g ∈ CR(K)).

By the Hahn-Decomposition, we can write µ = µ+ − µ− for some positive measures µ+

and µ−. By the conditions on (fn) and f , the Monotone Convergence Theorem implies
that ∫

K

f dµ+ = lim
n

∫
K

fn dµ+,

∫
K

f dµ− = lim
n

∫
K

fn dµ−.

Hence

λ(f) =

∫
K

f dµ =

∫
K

f dµ+ −
∫
K

f dµ− = lim
n

∫
K

fn dµ+ −
∫
K

fn dµ−

= lim
n

∫
K

fn dµ = lim
n
λ(fn),

as required.

Question 2: Let K be a compact space, let (fn) be a sequence in CC(K), let f ∈ CC(K)
and let M > 0 be such that

‖fn‖∞ ≤M (n ∈ N), f(x) = lim
n
fn(x) (x ∈ K).

Show that
λ(f) = lim

n
λ(fn) (λ ∈ CC(K)∗).

Hint: Use the Riesz Representation Theorem, Hahn-Decomposition, Dominated Conver-
gence, and take positive and negative parts.

Answer: This is similar to Question 1. By the Riesz Representation Theorem for com-
plex numbers, there exists a complex, regular, finite, Borel measure µ on K which in-
duces λ. Split µ up as µr + iµi for signed measures µr and µi. Then split these up as

µr = µ
(r)
+ − µ

(r)
− and µr = µ

(i)
+ − µ

(i)
− for positive measures µ

(r)
+ , µ

(r)
− , µ

(i)
+ and µ

(i)
− . By the

conditions on (fn), as the constant function M is integrable on K (as all our measures
are finite) we can apply the dominated convergence theorem to see that∫

K

f dµ
(r)
+ = lim

n

∫
K

fn dµ
(r)
+ ,

and for µ
(r)
− , µ

(i)
+ and µ

(i)
− . The result then follows.
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Question 3: Let K = [0, 1] and for each n, define fn ∈ CR(K) by

fn(x) =


n2x : 0 ≤ x ≤ 1/n,

2n− n2x : 1/n ≤ x ≤ 2/n,

0 : x > 2/n.

Show that fn(x) → 0 for each x ∈ K, but that there exists µ ∈ CR(K)∗ such that
µ(fn) 6→ 0.

Answer: We have that fn(0) = 0 for all n, while, if t > 0, then for n sufficiently large,
fn(t) = 0, as eventually t > 2/n. Hence fn → 0 pointwise.

However, define λ ∈ CR(K)∗ by integrating against Lebesgue Measure µ, say

λ(f) =

∫
[0,1]

f dµ (f ∈ CR([0, 1])).

Then, for each n,

λ(fn) =

∫ 1/n

0

n2x dx+

∫ 2/n

1/n

2n− n2x dx

=
[n2x2

2

]1/n

x=0
+

[
2nx− n2x2

2

]2/n

x=1/n
=

1

2
+ 4− 2− 2 +

1

2
= 1.

Question 4: Let K be a topological space. We shall define the Borel σ-algebra on K to
be the σ-algebra generated by open sets in K; again we write B(K) for this. In particular,
we get B(K).

Given two topological spaces K and L, we shall say that a map f : K → L is Borel if
f−1(E) ∈ B(K) for each E ∈ B(L).

Now let K be a compact space, and consider K with the Borel σ-algebra B(K). Show
that f : K → K is measurable if and only if f is Borel.

Answer: If f is measurable, then by definition, if U ⊆ K is open, then f−1(U) ∈ B(K).
But we need to show this for all Borel sets, for which a little trick is required. Define

S = {A ⊆ K : f−1(A) ∈ B(K)}.

We claim that this is a σ-algebra on K. Then it will contain all the open sets, and hence
contains the σ-algebra generated by the open sets, that is, B(K) ⊆ S, showing that f is
Borel.

So how to prove the claim? Well, clearly ∅,K ∈ S. If A ∈ S, then

f−1(K \ A) = K \ f−1(A) ∈ B(K),

so K \ A ∈ S. If (An)
∞
n=1 is a sequence in S, then

f−1
( ⋃

n

An

)
=

⋃
n

f−1(An) ∈ B(K),

so
⋃
nAn ∈ S. So S is a σ-algebra.

Conversely, let f be Borel. Then every open set is Borel in K, and so automatically f
is measurable.

Question 5: Let E and F be Banach spaces, and let T ∈ B(E,F ). Show that there exists
S ∈ B(F ∗, E∗) with the following property: for φ ∈ F ∗, we have that S(φ) = ψ ∈ E∗,
where

ψ(x) = φ
(
T (x)

)
(x ∈ E).
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We call S the adjoint of T , and write S = T ∗.

Answer: As T and φ is linear, the map

E → K, x 7→ φ(T (x))

is linear, and so ψ is linear. Then, for x ∈ E,

|ψ(x)| =
∣∣φ(T (x))

∣∣ ≤ ‖φ‖‖T (x)‖ ≤ ‖φ‖‖T‖‖x‖.

As x was arbitrary, it follows that ‖ψ‖ ≤ ‖φ‖‖T‖. So ψ ∈ E∗ as claimed.
It is easy to see that the map φ 7→ ψ is linear, and so S : F ∗ → E∗ is defined and

linear. Then, for φ ∈ F ∗,
‖S(φ)‖ = ‖ψ‖ ≤ ‖φ‖‖T‖,

so S is bounded, and ‖S‖ ≤ ‖T‖.
If you wish, try to use the Hahn-Banach theorem to show that actually ‖S‖ = ‖T‖

(this is a bit tricky: ask if you are interested).

Question 6: Let (X,R, µ) be a measure space. We say that E ∈ R is an atom if
µ(E) 6= 0, and if F ∈ R with F ⊆ E then either µ(F ) = µ(E) or µ(F ) = 0.

Suppose that for some x ∈ X, we have that {x} ∈ R. Show that {x} is an atom if
and only if µ({x}) 6= 0.

Answer: If µ({x}) 6= 0 then if F ⊆ {x}, either F = {x}, so µ(F ) = µ({x}), or F = ∅,
so µ(∅) = 0. Hence {x} is an atom. Conversely, if {x} is an atom, then by definition,
µ({x}) 6= 0.

Question continued: Let E ∈ R be an atom. Let (En)
∞
n=1 be a partition of E; that is,

En ∈ R and En ⊆ E for each n, for n 6= m we have En∩Em = ∅, and finally
⋃
nEn = E.

If µ is finite, show that there exists a unique n0 with En0 being an atom.

Answer: Suppose that no En is an atom, so by definition, for each n, we can find Fn ∈ R
with Fn ⊆ En, and with 0 < µ(Fn) < µ(En). Let F =

⋃
n Fn ∈ R, so that

0 <
∑
n

µ(Fn) = µ(F ) =
∑
n

µ(Fn) <
∑
n

µ(En) = µ(E),

so 0 < µ(F ) < µ(E), which contradicts E being an atom.
So there exists n0 with En0 being an atom. In particular, µ(En0) 6= 0. Then En0 ∈ R

and En0 ⊆ E, so as E is an atom, µ(En0) = µ(E). Thus

0 = µ(E \ En0) =
∑
n6=n0

µ(En),

showing that no other En can an atom (as they all have zero measure).

Question continued: Is this still true if µ is not finite?

Answer: Where did we use that E is finite? We actually used it in the final displayed
equation! Indeed,

µ(E) = µ(En0) + µ(E \ En0) = µ(E) + µ(E \ En0)

for any measure, but we can only conclude that µ(E \ En0) = 0 if µ(E) <∞.
A silly example is given by the following: let X be an infinite set, let R be power set

of X, and define µ on R by µ(∅) = 0 and µ(A) = ∞ for any non-empty A ⊆ X. Then µ
is a measure, and every non-empty set is an atom!
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Question 7: This follows on from Question 6. Let K be a compact Hausdorff space,
and let µ be a finite, regular (positive) Borel measure. Let E ∈ B(K) be an atom. Show
that there exists a closed set F ⊆ E which is an atom.
Answer: As µ is regular,

µ(E) = sup
{
µ(F ) : F ⊆ E is compact

}
As E is an atom, µ(E) > 0. So we can find F ⊆ E compact with µ(F ) > 0. As E is an
atom, we must have that µ(F ) = µ(E). If F is not an atom, then we can find G ∈ B(K)
with G ⊆ F and 0 < µ(G) < µ(F ). Then G ⊆ E and µ(G) < µ(E), which contradicts E
being an atom.

Question continued: Suppose, towards a contradiction, that x ∈ F implies that {x}
is not an atom. Show that for each x ∈ F there exists an open set Ux with x ∈ Ux and
µ(Ux) < µ(F ).

As F is compact, and {Ux : x ∈ F} is an open cover, there exist x1, · · · , xn in
F with Ux1 ∪ · · · ∪ Uxn ⊇ F . Let Aj = Uxj

∩ F for 1 ≤ j ≤ n, let B1 = A1 and
Bj = Aj \ (A1 ∪ · · · ∪ Aj−1) for j ≥ 2. Why is (Bj)

n
j=1 a partition of F? Show that

µ(Bj) < µ(F ) for each j, and hence derive a contradiction (think about Question 6 here).

Answer: By the above, this is equivalent to µ({x}) = 0 for all x ∈ F . As µ is regular,

0 = µ({x}) = inf
{
µ(U) : {x} ⊆ U is open

}
.

So we can find Ux and open set with x ∈ Ux and µ(Ux) as small as we like, certainly
µ(Ux) < µ(F ).

Following the hint, we find x1, · · · , xn ∈ F with F ⊆ Ux1 ∪ · · · ∪ Uxn . By definition,

F =
⋃
j

Uxj
∩ F =

⋃
j

Aj =
⋃
j

Bj

and clearly the (Bj) are pairwise disjoint. Then

µ(Bj) ≤ µ(Aj) ≤ µ(Uxj
) < µ(F ).

By the previous question, this is a contradiction, as one Bj must be an atom.
This contradiction shows that for some x ∈ F , we have that {x} is an atom.

Question continued: Hence show that if E ∈ B(K) is an atom, then there exists a
unique x ∈ E with {x} being an atom, and µ(E \ {x}) = 0.

Answer: We have shown that if E is an atom, then there exists x ∈ E with {x} an
atom. If µ(E) 6= µ({x}), then 0 < µ(E \ {x}) < µ(E), contradicting E being an atom.

Question 8: Let K be a compact space. Given a Borel map ψ : K → K and µ ∈MC(K),
show (carefully) that

ψ(µ) : B(K) → C, A 7→ µ(ψ−1(A)) (A ∈ B(K))

defines a measure on B(K).

Answer: As ψ is Borel, for A ∈ B(K), we have that ψ−1(A) ∈ B(K), and so µ(ψ−1(A))
is defined. Clearly ψ(µ)(∅) = 0. Let (An) be a sequence of pairwise disjoint sets in B(K).
Then, as inverse images behave very nicely with respect to disjoint unions, we have

ψ(µ)
( ⋃

n

An

)
= µψ−1

( ⋃
n

An

)
= µ

( ⋃
n

ψ−1(An)
)

=
∑
n

µ(ψ−1(An)) =
∑
n

ψ(µ)(An).

So ψ(µ) is a measure.
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Question continued: Do you think that ψ(µ) need be regular? What if ψ is even
continuous?

Answer: There appears to no reason why ψ(µ) should be regular, as we know very little
about what ψ−1 will do to compact sets, say.

If ψ is continuous, however, then we can argue as follows. Let A ∈ B(K). If B ⊆ A
then ψ−1(B) ⊆ ψ−1(A), so automatically

µ(ψ−1(A)) ≥ sup
{
µ(ψ−1(B)) : B ⊆ A is compact

}
.

As µ is regular, we know that

µ(ψ−1(A)) = sup
{
µ(C) : C ⊆ ψ−1(A) is compact

}
.

For ε > 0, pick C ⊆ ψ−1(A) compact with µ(C) > µ(ψ−1(A)) − ε. Then ψ(C) is also
compact1 and as C ⊆ ψ−1(A), we have that ψ(C) ⊆ A. Then let D = ψ−1(ψ(C)) so that
C ⊆ D. Then

µ(ψ−1(ψ(C))) = µ(D) ≥ µ(C) > µ(ψ−1(A))− ε.

As ε > 0 was arbitrary, we conclude that

µ(ψ−1(A)) ≤ sup
{
µ(ψ−1(B)) : B ⊆ A is compact

}
,

and so we actually have that equality. So ψ(µ) is inner regular.
We now use a trick which we saw a couple of sheets ago. Let A′ = K\A, so A′ ∈ B(K),

and hence
µ(ψ−1(A′)) = sup

{
µ(ψ−1(B)) : B ⊆ A′ is compact

}
.

For ε > 0, we can hence find B ⊆ A′ compact (hence closed) with µ(ψ−1(B)) >
µ(ψ−1(A′))− ε. Let U = K \B, so that U is open, and A ⊆ U . Then

µ(ψ−1(U)) = µ(ψ−1(K))− µ(ψ−1(B)) < µ(K)− µ(ψ−1(A′)) + ε

= µ(K) + ε− µ(K \ ψ−1(A)) = µ(K) + ε− µ(K) + µ(ψ−1(A))

= µ(ψ−1(A)) + ε.

As ε > 0 was arbitrary, we conclude that

µ(ψ−1(A)) = inf
{
µ(ψ−1(U)) : A ⊆ U is open

}
.

So ψ(µ) is regular in the case that ψ is continuous.

Question 9: This uses the notation of Question 5, and continued from Question 8. Let
ψ : K → K be a continuous map. Show that we can define Sψ : CK(K) → CK(K) by

Sψ(f) = f ◦ ψ (f ∈ CK(K)).

Show that Sψ is bounded. What is ‖Sψ‖?
Answer: As ψ is continuous, for f ∈ CK(K), we have that f ◦ ψ ∈ CK(K). Obviously
Sψ is linear. Then

‖f ◦ ψ‖∞ = sup
t∈K

|f(ψ(t))| ≤ sup
s∈K

|f(s)| = ‖f‖∞.

So ‖Sψ(f)‖ ≤ ‖f‖∞, so Sψ is bounded with ‖Sψ‖ ≤ 1. Notice that if 1 denotes the
constant function, then Sψ(1) = 1, and so actually ‖Sψ‖ = 1.

1This is a lemma from Topology: the image of a compact set under a continuous map is always compact.
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Question continued: Calculate what S∗ψ is: you will need to use the proof of the
Riesz-representation theorem.

Answer: Well, S∗ψ should map from MK(K) to MK(K). So let µ ∈ MK(K) and let
λ = S∗ψ(µ). Then ∫

K

f dλ = S∗ψ(µ)(f) =

∫
K

f ◦ ψ dµ (f ∈ CK(K)).

Following the vague hint, we might hope that λ = ψ(µ). Let’s prove this!
Let’s suppose that µ is positive! By (the proof of) the Riesz Representation Theorem,

for U ⊆ K open

λ(U) = sup
{
λ(f) : f ∈ CK(K), 0 ≤ f ≤ χU , supp(f) ⊆ U

}
= sup

{∫
K

f ◦ ψ dµ : f ∈ CK(K), 0 ≤ f ≤ χU , supp(f) ⊆ U
}
.

Now, if 0 ≤ f ≤ χU and supp(f) ⊆ U , then

0 ≤ f(ψ(s)) ≤ χU(ψ(s)) = χψ−1(U).

If t ∈ supp(f ◦ ψ) then there exists (tn) with tn → t and f(ψ(tn)) 6= 0 for each n. Then
ψ(tn) → ψ(t), so ψ(t) ∈ supp(f), that is, t ∈ ψ−1(supp(f)) ⊆ ψ−1(U). [2] So, setting
g = f ◦ ψ, we see that

λ(U) ≤ sup
{∫

K

g dµ : g ∈ CK(K), 0 ≤ g ≤ χψ−1(U), supp(g) ⊆ ψ−1(U)
}

= µ(ψ−1(U)).

Conversely, let 0 ≤ g ≤ χψ−1(U) with supp(g) ⊆ ψ−1(U). We cannot expect to find
f ∈ CK(K) with g = f ◦ ψ. But we only need to find f with f ◦ ψ ≥ g (as ultimately we
take an supremum), and of course with f continuous, 0 ≤ f ≤ χU and supp(f) ⊆ U . For
the moment, let’s assume that we can do this!

So we have f ∈ CK(K) with 0 ≤ f ≤ χU , supp(f) ⊆ U , and f ◦ ψ ≥ g. Thus

λ(U) ≥ sup
{∫

K

g(t) dµ(t) : g ∈ CK(K), 0 ≤ g ≤ χψ−1(U), supp(g) ⊆ ψ−1(U)
}
.

So we conclude that λ(U) = µ(ψ−1(U)) for open U .
By the previous question, we know that ψ(µ) is a regular measure. We now also know

that ψ(µ)(U) = λ(U) for all open sets U , and that λ is regular. So, for any E ∈ B(K),
we have

λ(E) = inf
{
λ(U) : E ⊆ U is open

}
= inf

{
µ(ψ−1(U)) : E ⊆ U is open

}
= ψ(µ)(E).

So ψ(µ) = λ, as required.
I think 3 that the general case follows by taking real and imaginary parts, and then

using the Hahn-Decomposition.

Okay, so it remains to prove that we can construct such a g. The following is very
much off syllabus, but if you are interested, it is hopefully interesting!

2This assumes a metric space: a more tedious argument works for a general topological space.
3Which means: I haven’t checked the details
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Recall the setup of the Riesz Representation theorem. We have a compact space K,
the Borel σ-algebra B(K), and a positive λ ∈ CK(K)∗. We define an outer measure µ∗

by, for U ⊆ K open,

µ∗(U) = sup
{
λ(f) : f ∈ CK(K), 0 ≤ f ≤ χU , supp(f) ⊆ U

}
.

We had a lemma in the lectures which, vaguely, justified this definition; the weird con-
dition on the support of f is, basically, because it makes a certain proof work! Then for
arbitrary E ⊆ K, we define

µ∗(E) = inf
{
µ∗(U) : K ⊆ U,U is open

}
.

Then µ∗ is an outer measure, and every member of B(K) is µ∗-measurable, so if we let
µ be the restriction of µ∗ to B(K), then µ is a measure.

Let’s think about this, and apply Urysohn’s Lemma repeatedly. Let U ⊆ K be open,
and let f be continuous with 0 ≤ f ≤ χU and supp(f) ⊆ U .

Then, immediately, Urysohn, applied to the closed sets supp(f) and K \ U , yields a
continuous function g : K → [0, 1] with g ≡ 0 on K \ U and g ≡ 1 on supp(f). Then
clearly 0 ≤ f ≤ g ≤ χU , but we do not have that supp(g) ⊆ U , because supp(g) involves
a closure. So g is not a “valid test function”.

We have to study the proof of Urysohn. Recall that the key idea is that K, being
compact, is normal, so given disjoint closed sets E and F , we can find disjoint open sets
W and V with E ⊆ W and F ⊆ V . We apply this to supp(f) and K \U to find disjoint
open sets W and V with supp(f) ⊆ W and K \ U ⊆ V . Let V be the closure of V . As
V ⊆ K \W which is closed, V ⊆ K \W , and so V is disjoint from supp(f).

Applying Urysohn to the disjoint closed sets supp(f) and V , we find a continuous
g : K → [0, 1] with g ≡ 1 on supp(f) and g ≡ 0 on V . In particular, g ≡ 0 on V , and
so {x : g(x) 6= 0} ⊆ K \ V , a closed set. Hence supp(g) ⊆ K \ V , so as K \ U ⊆ V , it
follows that K \ V ⊆ U , and so supp(g) ⊆ U .

In summary, given any continuous f with 0 ≤ f ≤ χU and supp(f) ⊆ U , we can find
a continuous g with g ≡ 1 on supp(f), 0 ≤ g ≤ χU and supp(g) ⊆ U .

In fact, we have proved more. Given any closed set F contained in U , we can find a
continuous g with g ≡ 1 on F , 0 ≤ g ≤ χU and supp(g) ⊆ U . Call this gF . It follows
immediately that

µ(U) = sup
{
λ(gF ) : F ⊆ U is closed

}
.

So why not define µ∗ in this way? I think because it is hard to motivate, and because
it makes life very difficult later on: when showing that µ∗ is an outer measure, I think
the proof really uses the freedom to use arbitrary continuous functions f , and not just
these special functions gF .

However, now we can complete the proof above. Recall that we have 0 ≤ g ≤ χψ−1(U)

with supp(g) ⊆ ψ−1(U). We seek f with 0 ≤ f ≤ χU , supp(f) ⊆ U and with f ◦ ψ ≥ g.
If you play with this for a while, it seems natural to define

F = closure of {ψ(x) : g(x) > 0}.
If F ⊆ U , then can let f = gF . Then if g(x) > 0 then ψ(x) ∈ F so f(ψ(x)) = 1, showing
that f ◦ ψ ≥ g, as required.

So it remains to show that F ⊆ U . We again assume that K is a metric space. If
F 6⊆ U , then we can find x ∈ F with x 6∈ U . Hence there exists a sequence (xn) with
ψ(xn) → x and g(xn) > 0 for each n. So (xn) is a sequence in the compact set supp(g),
so we may suppose, by moving to a subsequence, that xn converges, say to y. Then
ψ(y) = limn ψ(xn) = x. As y ∈ supp(g) ⊆ ψ−1(U), it follows that x = ψ(y) ∈ U , a
contradiction as required.
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Linear Analysis I: Worked Solutions 10
Question 1: Let E and G be Banach spaces, and let F ⊆ E be a subspace which is
dense. Let T : F → G be a bounded linear map. Show that we can extend T to give a
bounded linear map E → G. Show that such an extension must be unique.

Answer: First we show uniqueness. Let T1, T2 : E → G be extensions. Let x ∈ E, so as
F is dense, we can find a sequence (xn) in F with limn xn = x. Then as T1 and T2 are
continuous,

T1(x) = lim
n

T1(xn) = lim
n

T (xn) = lim
n

T2(xn) = T2(x).

As x was arbitrary, T1 = T2.

Now to existence. We extend T be continuity. Let x ∈ E, so we can find a sequence
(xn) in F with xn → x. In particular, (xn) is Cauchy, so for ε > 0, there exists Nε such
that ‖xn − xm‖ < ε if n, m ≥ Nε. Then

‖T (xn)− T (xm)‖ = ‖T (xn − xm)‖ ≤ ‖T‖‖xn − xm‖ < ε‖T‖ (n, m ≥ Nε).

Hence (T (xn)) is a Cauchy sequence in G, which is a Banach space, and so T (xn) → T̂ (x)
say. Notice that

‖T̂ (x)‖ = lim
n
‖T (xn)‖ ≤ ‖T‖ lim

n
‖xn‖ = ‖T‖‖x‖.

Firstly, we note that if x ∈ F to start with, then T̂ (x) = limn T (xn) = T (x), so T̂ and
T agree on F . If now x ∈ E is arbitrary, and (yn) is another sequence converging to x,
then for ε > 0, there exists N such that both ‖xn− x‖ < ε, and ‖yn− x‖ < ε, for n ≥ N .
Hence ‖xn − yn‖ < 2ε for n ≥ N , and so (xn − yn) is a sequence converging to 0. Hence

T (xn − yn) → 0, and so limn T (xn) = limn T (yn). Hence T̂ is well-defined.

Finally, if x, y ∈ E and α ∈ K, then if xn → x and yn → y with (xn) and (yn)
sequences in F , then αxn + yn → αx + y, and so

T̂ (αx + y) = lim
n

T (αxn + yn) = lim
n

αT (xn) + lim
n

T (yn) = αT̂ (x) + T̂ (y),

showing that T̂ is linear. We showed above that T̂ was bounded. So T̂ is our extension.

Actually, this argument would also show the following: if X and Y are metric spaces,
X0 ⊆ X is dense, f : X0 → Y is continuous, and Y is complete, then f has a unique
extension to all of X. I thought that you would have seen this in the Topology course,
but apparently not.

Question 2: Define f : [0, 1] → C by

f(t) =

{
exp(t) : 0 ≤ t ≤ 1/2,

exp(1− t) : 1/2 ≤ t ≤ 1.

Thus f is periodic. Calculate the Fourier transform of f .

By using Fejer’s Theorem, and evaluating at t = 0 and t = 1/2, show that

∞∑
k=1

1

1 + 16π2k2
=

1

4(e1/2 − 1)
− 3

8
.
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Answer: Notice that f(1− t) = f(t) for 1/2 ≤ t ≤ 1. So

f̂(n) =

∫ 1

0

f(t)e2πint dt =

∫ 1/2

0

f(t)e2πint dt +

∫ 1

1/2

f(1− t)e2πint dt

=

∫ 1/2

0

f(t)e2πint dt +

∫ 1/2

0

f(s)e2πin(1−s) ds

=

∫ 1/2

0

f(t)
(
e2πint + e−2πint

)
dt

Now, ∫ 1/2

0

ete2πint dt =
[et(1+2πin)

1 + 2πin

]1/2

t=0
=

e1/2+πin − 1

1 + 2πin
=

e1/2(−1)n − 1

1 + 2πin
.

Putting these together, we get

f̂(n) =
e1/2(−1)n − 1

1 + 2πin
+

e1/2(−1)−n − 1

1− 2πin
=

2((−1)ne1/2 − 1)

1 + 4π2n2
.

You could also do the integral directly, of course!
We consider the partial sums at 0,

n∑
k=−n

f̂(k)e−2πik0 =
n∑

k=−n

f̂(k) =
n∑

k=−n

2
(−1)ke1/2 − 1

1 + 4π2k2
.

This is (absolutely) convergent, so the Cesaro sums converge to the same limit, and hence
by Fejer’s Theorem,

1 = f(0) = 2
∞∑

k=−∞

(−1)ke1/2 − 1

1 + 4π2k2
= 2(e1/2 − 1) + 4

∞∑
k=1

(−1)ke1/2 − 1

1 + 4π2k2
.

Re-arrange, and we get

3− 2e1/2 = 4
∞∑

k=1

(−1)ke1/2 − 1

1 + 4π2k2
.

If we evaluate at 1/2 instead, we get

f(1/2) = e1/2 = 2
∞∑

k=−∞

(−1)k (−1)ke1/2 − 1

1 + 4π2k2
= 2

∞∑
k=−∞

e1/2 − (−1)k

1 + 4π2k2

= 2(e1/2 − 1) + 4
∞∑

k=1

e1/2 − (−1)k

1 + 4π2k2
,

and so

2− e1/2 = 4
∞∑

k=1

e1/2 − (−1)k

1 + 4π2k2
.

Adding these two, and taking even parts, we get

5− 3e1/2 = 4
∞∑

k=1

(−1)ke1/2 − 1 + e1/2 − (−1)k

1 + 4π2k2
= 8

∞∑
k=1

e1/2 − 1

1 + 16π2k2
.
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We conclude
∞∑

k=1

1

1 + 16π2k2
=

5− 3e1/2

8(e1/2 − 1)
=

1

4(e1/2 − 1)
− 3

8
.

At least, if I haven’t made a mistake!

Question 3: Let f(t) = et for 0 ≤ t ≤ 1; show that f ∈ L2([0, 1]) and compute ‖f‖2.
Find F(f), and hence deduce that

∞∑
n=1

1

1 + 4π2n2
=

3− e

4(e− 1)
.

Answer: We have that

‖f‖2
2 =

∫ 1

0

|et|2 dt =

∫ 1

0

e2t dt =
[e2t

2

]1

t=0
=

e2 − 1

2
.

So f ∈ L2([0, 1]). Also

f̂(n) =

∫ 1

0

ete2πint dt =
[exp(t(1 + 2πin))

1 + 2πin

]1

t=0
=

exp(1 + 2πin)− 1

1 + 2πin
=

e− 1

1 + 2πin
.

So by Parseval (that is, the Fourier transform is an isometry L2([0, 1]) → `2(Z)),

e2 − 1

2
= ‖f‖2

2 = ‖F(f)‖2
2 =

∞∑
n=−∞

(e− 1)2

1 + 4π2n2
= (e− 1)2 + 2

∞∑
n=1

(e− 1)2

1 + 4π2n2
.

And so we see that
∞∑

n=1

1

1 + 4π2n2
=

1

2(e− 1)2

(e2 − 1

2
− (e− 1)2

)
=

(e− 1)(e + 1)

4(e− 1)2
− 1

2

=
e + 1

4(e− 1)
− 1

2
=

e + 1− 2(e− 1)

4(e− 1)
=

3− e

4(e− 1)

Question 4: Show that CC(T) is dense in L2(T) = L2([0, 1]).
Proof: We know that CC([0, 1]) is dense in L2([0, 1]). So for f ∈ L2([0, 1]) and ε > 0,
there exists g ∈ CC([0, 1]) with ‖f − g‖2 < ε. Pick δ > 0 small and define h : [0, 1] → C
by

h(t) =

{
g(t) : 0 ≤ t ≤ 1− δ,

g(t)1−t
δ

+ g(0) t−1+δ
δ

: 1− δ ≤ t ≤ 1.

In words, h is g, except that we chop it off at 1 − δ and linearly interpolate between
g(1− δ) and g(0) to get a periodic function.

Then h is continuous, and h(1) = g(0) = h(0), so h ∈ CC(T). Furthermore, for
1− δ ≤ t ≤ 1, we see that

|h(t)− g(t)| =
∣∣∣g(t)

1− t

δ
+ g(0)

t− 1 + δ

δ
− g(t)

∣∣∣
≤ |g(t)|δ − (1− t)

δ
+ |g(0)|t− 1 + δ

δ
≤ |g(t)|+ |g(0)| ≤ 2‖g‖∞.

Hence

‖h− g‖2 =
( ∫ 1

1−δ

|h(t)− g(t)|2 dµ(t)
)1/2

≤
(
4‖g‖2

∞δ
)1/2

= 2
√

δ‖g‖∞,
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which is ≤ ε if δ is sufficiently small. Hence

‖f − h‖2 ≤ 2ε,

as required.

Question 5: Let (fn) be a sequence in CC([0, 1]) converging to f with respect to the
‖ · ‖∞ norm. Suppose each fn is differentiable (to be precise, on (0, 1), or suppose each
fn is periodic) with a continuous derivative, and f ′n → g ∈ CC([0, 1]) with respect to the
‖ · ‖∞ norm. Show that f is differentiable with derivative g.
Answer: For 0 ≤ t ≤ 1, define

h(t) =

∫ t

0

g(x) dx + f(0).

Hence h ∈ CC([0, 1]). For ε > 0, there exists N such that both ‖f ′n − g‖∞ < ε and
‖fn − f‖∞ < ε, when n ≥ N . Hence for 0 ≤ t ≤ 1 and n ≥ N ,

|h(t)− fn(t)| =
∣∣∣h(t)−

∫ t

0

f ′n(x) dx− fn(0)
∣∣∣ ≤ ∣∣∣ ∫ t

0

g(x)− f ′n(x) dx
∣∣∣ + |f(0)− fn(0)|

≤ t‖g − f ′n‖∞ + ‖f − fn‖∞ < (1 + t)ε ≤ 2ε.

Hence ‖h − fn‖∞ ≤ 2ε for n ≥ N . So h = limn fn = f , and clearly h is differentiable
with derivative g, as required.

Question 6: For n ≥ 1 let xn = (x
(n)
m )m∈Z ∈ c0(Z) be defined by

x(n)
m =

{
1 : |m| ≤ n,

0 : |m| > n.

Then xn ∈ `1(Z) so that F−1(xn) makes sense. Show that ‖F−1(xn)‖1 is large.
Hence, by using a result from lectures that F is injective, and assuming the Open

Mapping Theorem, show that F does not map L1([0, 1]) onto c0(Z).

Answer: We calculate that for 0 ≤ t ≤ 1,

F−1(xn)(t) =
n∑

k=−n

e−2πikt = e2πint
(
1 + z + · · ·+ z2n

)
= e2πint 1− z2n+1

1− z

=
z−n − zn+1

1− z
=

z−n−1/2 − zn+1/2

z−1/2 − z1/2
=

2i sin(2π(n + 1/2)t)

2i sin(2π(1/2)t)
=

sin((2n + 1)πt)

sin(πt)
,

where z = e−2πit. Of course, F−1(xn)(0) = 2n + 1.
I now copy Korner.1 We know that (or we can prove that)

0 ≤ s ≤ π/2 =⇒ 2s

π
≤ sin(s) ≤ s.

So letting s = πt, we see that

0 ≤ t ≤ 1/2 =⇒ 2t ≤ sin(πt) ≤ πt =⇒ 2 ≤ sin(πt)

t
≤ π.

1See chapter 18; I don’t understand Korner’s proof, so this is a little different!
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Thus ∫
[0,1]

|F−1(xn)| dµ =

∫ 1

0

∣∣∣sin((2n + 1)πt)

sin(πt)

∣∣∣ dt = 2

∫ 1/2

0

∣∣∣sin((2n + 1)πt)

sin(πt)

∣∣∣ dt

≥ 2

∫ 1/2

0

∣∣∣sin((2n + 1)πt)

πt

∣∣∣ dt

= 2
2n∑

r=0

∫ (r+1)/(4n+2)

r/(4n+2)

∣∣ sin((2n + 1)πt)
∣∣

πt
dt

= 2
2n∑

r=0

∫ 1/(4n+2)

0

∣∣ sin((2n + 1)πt + πr/2)
∣∣

πt + rπ/(4n + 2)
dt.

For 0 ≤ t ≤ 1/(4n + 2), by our previous inequality, with s = (2n + 1)πt, we get

(4n + 2)t ≤ sin((2n + 1)πt) ≤ (2n + 1)πt.

So, when r = 0, we see∫ 1/(4n+2)

0

∣∣ sin((2n + 1)πt)
∣∣

πt
dt ≥

∫ 1/(4n+2)

0

4n + 2

π
dt =

1

π
.

When r > 0, as also 0 ≤ t ≤ 1/(4n + 2), we use the simple inequality

1

πt + rπ/(4n + 2)
≥ 1

(r + 1)π/(4n + 2)
=

4n + 2

(r + 1)π
.

So we get an new estimate for our integral,

≥ 2

π
+ 2

2n∑
r=1

4n + 2

(r + 1)π

∫ 1/(4n+2)

0

∣∣ sin((2n + 1)πt + πr/2)
∣∣ dt

=
2

π
+ 2

2n∑
r=1

1

(r + 1)π

∫ 1

0

∣∣ sin(πt/2 + πr/2)
∣∣ dt

=
2

π
+ 2

2n∑
r=1

1

(r + 1)π

∫ 1

0

sin(πt/2) dt (draw a picture!)

=
2

π
+ 2

2n∑
r=1

1

(r + 1)π

2

π
≥ 4

π2

2n∑
r=0

1

r + 1
.

This of course is the harmonic series, which diverges! So we conclude that

lim
n→∞

∥∥F−1(xn)
∥∥

1
= ∞.

Of course, ‖xn‖∞ = 1 for all n. So let fn = F−1(xn) for each n. As xn ∈ c0(Z)∩ `1(Z),
we see that F(fn) = xn.

Suppose that F : L1([0, 1]) → c0(Z) is surjective. By a result from the lectures, F
is injective. By the Open Mapping Theorem, there exists a bounded map T : c0(Z) →
L1([0, 1]) such that TF is the identity on L1([0, 1]). Then

n < ‖fn‖1 = ‖TF(fn)‖1 ≤ ‖T‖‖F(fn)‖∞ = ‖T‖‖xn‖∞ = ‖T‖.

This contradicts ‖T‖ being finite. So F is not surjective.2

2To be honest, this is the only way which I can think of to show this result. But maybe it is possible to simply write
down something in c0(Z) and show, directly, that it cannot be the image of something L1([0, 1]), but I don’t see it. Let me
know if you find an example!
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Thinking more about Riesz Representation

Question i: For a compact (Hausdorff) space K let MC(K) be the space of finite,
complex, regular Borel measures on K. For µ ∈ MC(K) define φµ ∈ CC(K)∗ by

φµ(f) =

∫
K

f dµ (f ∈ CC(K)).

Let g : K → C be a simple function (of course, not assumed continuous!) with
‖g‖∞ ≤ 1. Show that ∣∣∣ ∫

K

g dµ
∣∣∣ ≤ ‖µ‖.

Now let f ∈ CC(K) with ‖f‖∞ ≤ 1. Show that we can find a sequence (gn) of simple
functions with gn → f pointwise, and with |gn| ≤ |f | everywhere for each n. (Hint:
Apply our “canonical” method for getting simple functions, but taking account of real
and imaginary parts, etc.) Conclude, by using the Dominated Convergence Theorem,
that |φµ(f)| ≤ ‖µ‖. Conclude that ‖φµ‖ ≤ ‖µ‖.
Answer: Let g =

∑
n anχAn . As ‖g‖∞ ≤ 1, we have that |an| ≤ 1, or µ(An) = 0, for

each n. Of course, we may suppose that the (An) are pairwise disjoint. Thus∣∣∣ ∫
K

g dµ
∣∣∣ =

∣∣∣ ∑
n

anµ(An)
∣∣∣ ≤ ∑

n

|an||µ(An)| ≤
∑

n

|µ(An)| ≤ ‖µ‖,

by the definition of ‖µ‖.
If f ≥ 0 then we can let

gn = min(n, 2−nb2nfc),

as usual. If f is real-valued, let

gn = min(n, 2−nb2nf+c)−min(n, 2−nb2nf−c).

If f is complex-valued, take real and imaginary parts (which is tedious to type). Clearly
we have that |gn| ≤ |f | everywhere, and that gn → f pointwise. As |f | is integrable for
µ, Dominated Convergence shows that∣∣∣ ∫

K

f dµ
∣∣∣ = lim

n

∣∣∣ ∫
K

gn dµ
∣∣∣ ≤ ‖µ‖,

as |gn| ≤ 1 everywhere. So |φµ(f)| ≤ ‖µ‖. Taking the supremum over such f , we conclude
that ‖φµ‖ ≤ ‖µ‖.

Question ii: Firstly, prove the following useful lemma. Let τ be a positive Borel measure.
Show that τ is regular if and only if, for each E ∈ B(K) and ε > 0, we can find an open
set U and a closed set C with C ⊆ E ⊆ U and with τ(U \ C) < ε.

Proof: If τ is regular, then we can find such U and C with τ(C) > τ(E) − ε/2 and
τ(U) < τ(E) + ε/2. Then τ(U \ C) = τ(U) − τ(C) = τ(U) − τ(E) + τ(E) − τ(C) < ε.
Conversely, if we can find U and C, then τ(U)− τ(E) ≤ τ(U)− τ(C) = τ(U \C) < ε so
τ(U) < τ(E) + ε. Similarly, τ(C) > τ(E)− ε, and so τ is regular.

Question continued: For a signed measure τ , we defined |τ | = τ+ + τ−, where τ+ and
τ− are defined by way of a Hahn-Decomposition for τ . Show that

|τ |(E) = sup
{
τ(U)− τ(V ) : U, V ∈ B(K), U ∩ V = ∅, U ∪ V = E

}
(E ∈ B(K)).
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So we don’t actually need a Hahn-Decomposition to define |τ | (and this works for any
measure on any σ-algebra).

Answer: Let (A, B) be a Hahn-Decomposition for τ , so that

|τ |(E) = τ+(E) + τ−(E) = τ(E ∩ A)− τ(E ∩B).

If U = E∩A and V = E∩B, then E = U∪V is a disjoint union, and |τ |(E) = τ(U)−τ(V ).
Conversely, let U ∪ V = E be a pairwise disjoint union. Then

τ(U)− τ(V ) = τ(U ∩ A) + τ(U ∩B)− τ(V ∩ A)− τ(V ∩B).

Now, as B is a negative set, τ(U ∩B) ≤ 0. Similarly, −τ(V ∩ A) ≤ 0. So

τ(U)− τ(V ) ≤ τ(U ∩ A)− τ(V ∩B) = τ+(U) + τ−(V )

≤ τ+(E) + τ−(E) = |τ |(E).

So |τ |(E) does equal the supremum (and the supreumu is obtained!)

Question continued: Now prove a third useful lemma. Let τ ∈ MR(K). Show that τ
is regular (defined to mean that τ+ and τ− are regular) if and only if |τ | is regular.

Answer: We use the condition given by the first lemma. If τ is regular, then as τ+

and τ− are regular, by our first lemma, given E and ε > 0, we can find closed sets C+

and C− and open sets U+ and U− with C± ⊆ E ⊆ U±, and with τ±(U± \ C±) < ε. Let
U = U+ ∩U− and C = C+ ∪C−, so that U \C ⊆ U± \C±, and hence both τ+(U \C) < ε
and τ−(U \ C) < ε. Thus |τ |(U \ C) < 2ε.

Conversely, if we have C ⊆ E ⊆ U with |τ |(U \C) < ε, then certainly both τ+(U \C) <
ε and τ−(U \ C) < ε. Thus τ+ and τ− are regular.

Question continued: Let µ, λ ∈ MR(K), and let τ = µ + λ. Using the 2nd lemma,
show that |τ | ≤ |µ|+ |λ|. Deduce, using the 3rd lemma, that τ is regular.

Answer: For E ∈ B(K), we have that

|τ |(E) = sup
{
τ(U)− τ(V ) : E = U ∪ V, U ∩ V = ∅

}
= sup

{
µ(U)− µ(V ) + λ(U)− λ(V ) : E = U ∪ V, U ∩ V = ∅

}
≤ sup

{
µ(U)− µ(V ) : E = U ∪ V, U ∩ V = ∅

}
+ sup

{
λ(U)− λ(V ) : E = U ∪ V, U ∩ V = ∅

}
= |µ|(E) + |λ|(E).

So |τ | ≤ |µ|+ |λ|.
So, for E ∈ B(K) and ε > 0, we can find open sets U, V which contain E, and we can

find closed sets C, D contained in E, with

|µ|(U \ C) < ε, |λ|(V \D) < ε.

Let U ′ = U ∩ V and C ′ = C ∪ D, so U \ C ⊇ U ′ \ C ′, and V \ D ⊇ U ′ \ C ′, and still
C ′ ⊆ E ⊆ U ′. Then

|τ |(U ′ \ C ′) ≤ |µ|(U ′ \ C ′) + |λ|(U ′ \ C ′) < 2ε.

This show that τ = µ + λ is regular, as required.

Question continued: Show the same for complex measures: this is easier, as we can
directly take real and imaginary parts.

Answer: This is easy: if µ, λ ∈ MC(K), then by definition, µr, µi, λr and λi are regular.
So (µ + λ)r = µr + λr is regular, as is (µ + λ)i. So µ + λ is regular.
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Question iii: Let K be compact and Hausdorff, and let λ ∈ CC(K) with ‖λ‖ = 1. It
is possible3 to construct a positive Φ ∈ CR(K)∗ with the property that for any f ∈ CC(K),

|λ(f)| ≤ Φ(|f |) ≤ ‖f‖∞,

where |f |(x) = |f(x)| for each x ∈ K. Show that ‖Φ‖ = 1.

Answer: As ‖λ‖ = 1, for each ε > 0 we can find f ∈ CC(K) with ‖f‖∞ = 1 and
|λ(f)| > 1− ε. Then clearly ‖ |f | ‖∞ = 1 as well, so that as

1− ε < |λ(f)| ≤ Φ(|f |) ≤ ‖f‖∞ = 1,

we see that ‖Φ‖ > 1− ε. So ‖Φ‖ ≥ 1, but by assumption, also ‖Φ‖ ≤ 1.

Question continued: We can then apply Riesz representation to find some a regular,
positive Borel measure µ0 with

Φ(g) =

∫
K

g dµ0 (g ∈ CR(K)).

As ‖Φ‖ = 1, we have that µ0(K) = 1.
We can hence form that space L1(µ0). There is a natural map CC(K) → L1(µ0); let

X be the image, so that X is a subspace of L1(µ0). Show that the map

φ : X → C; f 7→ λ(f)

is linear and bounded. What is ‖φ‖? Using that L1(µ0)
∗ ∼= L∞(µ0) (and Hahn-Banach),

show that there exists h ∈ L∞(µ0) with

λ(f) =

∫
K

fh dµ0 (f ∈ CC(K)).

Answer: Let us write ι : CC(K) → L1(µ0) be the map; notice that ι need not be
injective. So φ is really defined by ι(f) 7→ λ(f). This is well-defined, for if ι(f) = ι(g),
then f − g = 0 in L1(µ0), so f − g = 0 almost everywhere (with respect to µ0). Hence
also |f − g| = 0 almost everywhere. So

Φ(|f − g|) =

∫
K

|f − g| dµ0 = 0.

Thus |λ(f − g)| ≤ Φ(|f − g|) = 0, so λ(f) = λ(g).
It is easy to see that φ is linear. Then, for f ∈ CC(K),

|φ(ι(f))| = |λ(f)| ≤ Φ(|f |) =

∫
K

|f | dµ0 = ‖ι(f)‖1,

from which it follows that ‖φ‖ ≤ 1. Conversely,

|λ(f)| = |φ(ι(f)| ≤ ‖φ‖‖ι(f)‖1 = ‖φ‖
∫

K

|f | dµ0 = ‖φ‖Φ(|f |) ≤ ‖φ‖‖f‖∞.

As we can find f with ‖f‖∞ = 1 and |λ(f)| as close as we like to 1, we must have that
‖φ‖ = 1.

So φ is a norm one functional defined on a subspace of L1(µ). By Hahn-Banach, we
extend φ to a norm one functional defined on all of L1(µ). So there exists some h ∈ L∞(µ)
with ‖h‖∞ = 1 and with∫

K

fh dµ0 = φ(ι(f)) = λ(f) (f ∈ CC(K)).

3See Rudin’s book; the construction is very similar to how we defined λ+ given λ ∈ CR(K).
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Question continued: Let µ = hµ0, so µ is the complex measure with

µ(E) =

∫
K

χEh dµ0.

This is regular: this isn’t too hard to show, if you adopt the philosophy of question ii.
We immediately see that

λ(f) =

∫
K

f dµ (f ∈ CC(K)).

Finally, show that ‖h‖∞ = 1 (hint: what is ‖φ‖?) Deduce that ‖µ‖ = 1 = ‖λ‖ (hint: Use
Question i).

Answer: Formally, to show that µ is a measure, we need to show countable additivity,
which would require the Dominated Convergence Theorem (or take real+imaginary, and
positive+negative parts, and use Monotone Convergence). Now we should regularity.

As µ0 is regular, for E ∈ B(K) and ε > 0, we can find an open set U and a closed set
C with C ⊆ E ⊆ U , and with µ0(U \ C) < ε. By Question ii, to show that µ is regular,
it is enough to show that |µr| and |µi| are regular. But clearly |µr| = |<h|µ0, so

|µr|(U \ C) =

∫
U\C

|<h| dµ0 ≤
∫

U\C
1 dµ0 = µ0(U \ C) < ε,

and similarly |µi|(U \ C) < ε. This establishes that µ is indeed regular.
As ‖h‖∞ = 1, we see that if (An) is a partition of K, then∑

n

|µ(An)| =
∑

n

∣∣∣ ∫
K

χAnh dµ0

∣∣∣ ≤ ∑
n

∫
K

χAn|h| dµ0 =

∫
K

|h| dµ0 ≤ µ0(K) = 1.

So ‖µ‖ ≤ 1. By Question 1, 1 = ‖λ‖ ≤ ‖µ‖, so we must have equality.
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Question A: Let (an) ∈ `1(Z) be a sequence such that (nan) ∈ `1(Z) as well. Let
f = F−1((an)). Show that f is differentiable.
Answer: We let

fn(t) =
n∑

k=−n

ake
−2πikt,

so as (an) ∈ `1(Z), by Fejer’s Theorem, we have that fn → f in CC([0, 1]). Then

f ′n(t) =
n∑

k=−n

(−2πik)ake
−2πikt = −2πi

n∑
k=−n

kake
−2πikt.

As (kak) ∈ `1(Z), we see that f ′n converges to g ∈ CC([0, 1]) defined by

g(t) = −2πi
∑
k∈Z

kake
−2πikt.

Thus by Question 5, f is differentiable with derivative g.

Question C: Let X be the subspace of CC(T) spanned by functions of the form t 7→ e2πint,
for n ∈ Z. We saw in lectures that, because of Fejer’s Theorem, X is dense in CC(T).

Now let f : [0, 1] → R be continuous (but not necessarily periodic) and define g ∈
CC(T) by

g(t) =

{
f(2t) : 0 ≤ t ≤ 1/2,

f(2− 2t) : 1/2 ≤ t ≤ 0.

Fix ε > 0. Then we can find h ∈ X with ‖g − h‖∞ < ε. We know that on the interval
[0, 1] and for n ∈ Z, we have that

K∑
k=0

(2πint)k

k!

converges uniformly to e2πint, as K → ∞. Use this to approximate h by a complex
polynomial in t.

By taking real parts, and thinking about the definition of g, show that we have ap-
proximated f be a real polynomial.

This is the Weierstrauss Approximation Theorem, see “Fourier Analysis”, Chapter 4.
Answer: Notice that g is periodic, so we can certainly find h ∈ X with ‖g − h‖∞ < ε.
Say that

h(t) =
n∑

k=−n

ake
2πikt (t ∈ T).

Then for each k with |k| ≤ n, we can find L(k) such that

∣∣∣e2πikt −
L(k)∑
l=0

(2πikt)l

l!

∣∣∣ < ε
( ∑
|k|≤n

|ak|
)−1

(0 ≤ t ≤ 1).

Let

G(t) =
n∑

k=−n

ak

L(k)∑
l=0

(2πikt)l

l!
(t ∈ T),
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so that G is a complex polynomial in t. Then

|G(t)− h(t)| ≤
n∑

k=−n

|ak|ε
( ∑
|k|≤n

|ak|
)−1

= ε (t ∈ T),

so that ‖g −G‖∞ ≤ ‖G− h‖∞ + ‖h− g‖∞ < 2ε.
For a complex number z let <(z) and =(z) be the real and imaginary parts of z,

respectively. Then

<G(t) =
n∑

k=−n

L(k)∑
l=0

<(aki
l(2πkt)l)

l!

=
n∑

k=−n

L(k)∑
l=0

(2πkt)l)

l!
<(aki

l)

=
n∑

k=−n

( ∑
0≤l≤L(k),l even

(2πkt)l)

l!
<(ak)i

l −
∑

0≤l≤L(k),l odd

(2πkt)l)

l!
=(ak)i

l−1
)
,

which is a real polynomial in t. As g is real valued, clearly ‖g −<G‖∞ < 2ε.
By definition, f(t) = g(t/2) for 0 ≤ t ≤ 1. Hence if

F (t) = <G(t/2) (0 ≤ t ≤ 1),

then F is a real-valued polynomial, and ‖f − F‖∞ ≤ ‖g −<G‖∞ < 2ε.
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