
Linear Analysis I: Banach and Normed Spaces
Updated: 4th November 2009

Recall what a vector space is. We will work with either the field of real numbers R or the
complex numbers C. To avoid repetition, we use K to denote either R or C. A norm on a
vector space V is a map ‖ · ‖ : V → [0,∞) such that ‖u‖ = 0 only when u = 0; ‖λu‖ = |λ|‖u‖
for λ ∈ K and u ∈ V ; ‖u+ v‖ ≤ ‖u‖+ ‖v‖ for u, v ∈ V .

A norm induces a metric on V by setting d(u, v) = ‖u − v‖. When V is complete for this
metric, we say that V is a Banach space.

Theorem: Every finite-dimensional normed vector space is a Banach space. �

Hölder’s Inequality: For 1 < p < ∞, let q ∈ (1,∞) be such that 1/p + 1/q = 1. For n ≥ 1
and u, v ∈ Kn, we have that

n∑
j=1

|ujvj| ≤
( n∑
j=1

|uj|p
)1/p( n∑

j=1

|vj|q
)1/q

.

Minkowski’s Inequality: For 1 < p <∞, and n ≥ 1, let u, v ∈ Kn. Then

( n∑
j=1

|uj + vj|p
)1/p

≤
( n∑
j=1

|uj|p
)1/p

+
( n∑
j=1

|vj|p
)1/p

.

Minkowski’s inequality shows that for 1 ≤ p < ∞ (the case p = 1 is easy) we can define a
norm ‖ · ‖p on Kn by

‖u‖p =
( n∑
j=1

|uj|p
)1/p

(u = (u1, · · · , un) ∈ Kn).

We can define an infinite analogue of this. Let 1 ≤ p < ∞, let `p be the space of all scalar
sequences (xn) with

∑
n |xn|p <∞. A careful use of Minkowski’s inequality shows that `p is a

vector space. Then `p becomes a normed space for the ‖ · ‖p norm.

Recall that a Cauchy sequence in a normed space is bounded: if (xn) is Cauchy then we can
find N with ‖xn − xm‖ < 1 for all n,m ≥ N . Then ‖xn‖ ≤ ‖xn − xN‖+ ‖xN‖ < ‖xN‖+ 1 for
n ≥ N , so in particular, ‖xn‖ ≤ max(‖x1‖, ‖x2‖, · · · , ‖xN−1‖, ‖xN‖+ 1).

Theorem: For 1 ≤ p <∞, the space `p is a Banach space.

Proof: Most completeness proofs are similar to this, so we shall prove this result in detail. Let
(xn) be a Cauchy-sequence in `p; we wish to show this converges to some vector in `p.

For each n, xn ∈ `p so is a sequence of scalars, say (x
(n)
k )∞k=1. As (xn) is Cauchy, for each

ε > 0 there exists Nε so that ‖xn − xm‖p ≤ ε for n,m ≥ Nε.

For k fixed,

|x(n)
k − x

(m)
k | ≤

(∑
j

|x(n)
j − x

(m)
j |p

)1/p

= ‖xn − xm‖p ≤ ε,

when n,m ≥ Nε. Thus the scalar sequence (x
(n)
k )∞n=1 is Cauchy in K and hence converges, to

yk say.

Let y = (yk), so that y is a candidate for the limit of (xn). Firstly, we check that y ∈ `p. We
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calculate,

‖y‖p = lim
K→∞

( K∑
k=1

|yk|p
)1/p

= lim
K→∞

( K∑
k=1

lim
n→∞

|x(n)
k |

p
)1/p

= lim
K→∞

lim
n→∞

( K∑
k=1

|x(n)
k |

p
)1/p

≤ lim
K→∞

lim
n→∞

( ∞∑
k=1

|x(n)
k |

p
)1/p

= lim
n→∞

‖xn‖p <∞,

as (xn) is Cauchy, and hence bounded.
Finally, we check that xn → y in `p. For ε > 0, let n ≥ Nε, so that

‖xn − y‖p = lim
K→∞

( K∑
k=1

|x(n)
k − yk|

p
)1/p

= lim
K→∞

( K∑
k=1

lim
m→∞

|x(n)
k − x

(m)
k |

p
)1/p

= lim
K→∞

lim
m→∞

( K∑
k=1

|x(n)
k − x

(m)
k |

p
)1/p

≤ lim
K→∞

lim
m→∞

( ∞∑
k=1

|x(n)
k − x

(m)
k |

p
)1/p

= lim
m→∞

‖xn − xm‖p ≤ ε,

as n ≥ Nε. Hence ‖xn − y‖p → 0. �

For p =∞, there are two analogies to the `p spaces. The first is arguably more natural, but
we write c0 for it. c0 is the space of all scalar sequences (xn) which converge to 0. We equip c0
with the sup norm,

‖(xn)‖∞ = sup
n∈N
|xn| ((xn) ∈ c0).

This is defined, as if xn → 0, then (xn) is bounded. Similarly, we define `∞ to be the vector
space of all bounded scalar sequences, with the ‖ · ‖∞ norm. Hence c0 is a subspace of `∞, and
we can check that c0 is closed.

Theorem: The spaces c0 and `∞ are Banach spaces.
Proof: This will be a variant of the previous proof: it’s shorter, but the “trick” is maybe
harder to remember. We do the `∞ case. Again, let (xn) be a Cauchy sequence in `∞, and for

each n, let xn = (x
(n)
k )∞k=1. For ε > 0 we can find N such that ‖xn − xm‖∞ < ε for n,m ≥ N .

Thus, for any k, we see that |x(n)
k − x

(m)
k | < ε when n,m ≥ N . So (x

(n)
k )∞n=1 is Cauchy, and

hence converges, say to xk ∈ K. Let x = (xk).
Let m ≥ N , so that for any k, we have that

|xk − x(m)
k | = lim

n→∞
|x(n)
k − x

(m)
k | ≤ ε.

As k was arbitrary, we see that supk |xk − x
(m)
k | ≤ ε. So, firstly, this shows that (x− xm) ∈ `∞,

and so also x = (x − xm) + xm ∈ `∞. Secondly, we have shown that ‖x − xm‖∞ ≤ ε when
m ≥ N , so xm → x in norm. �

Bounded linear operators

Recall what a linear map is. A linear map T : E → F between normed spaces is bounded
if there exists M > 0 such that ‖T (x)‖ ≤ M‖x‖ for x ∈ E. A bounded linear map is often
called an operator. We write B(E,F ) for the set of operators from E to F . For the natural
operations, B(E,F ) is a vector space. We norm B(E,F ) by setting

‖T‖ = sup
{‖T (x)‖
‖x‖

: x ∈ E, x 6= 0
}
.
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This is a norm, and we equivalently have

‖T‖ = sup
{
‖T (x)‖ : x ∈ E, ‖x‖ ≤ 1

}
= sup

{
‖T (x)‖ : x ∈ E, ‖x‖ = 1

}
.

Proposition: For a linear map T : E → F between normed spaces, the following are equivalent:

1. T is continuous (for the metrics induced by the norms on E and F );

2. T is continuous at 0;

3. T is bounded. �

Theorem: Let E be a normed space, and let F be a Banach space. Then B(E,F ) is a Banach
space.

Proof: Let (Tn) be a Cauchy sequence in B(E,F ). For x ∈ E, check that (Tn(x)) is Cauchy in
F , and hence converges to, say, T (x), as F is complete. Then check that T : E → F is linear,
bounded, and that ‖Tn − T‖ → ∞. �

We write B(E) for B(E,E). For normed spaces E, F and G, and for T ∈ B(E,F ) and
S ∈ B(F,G), we have that ST = S ◦ T ∈ B(E,G) with ‖ST‖ ≤ ‖S‖‖T‖.

For T ∈ B(E,F ), if there exists S ∈ B(F,E) with ST = IE, the identity of E, and TS = IF ,
then T is said to be invertible, and write T = S−1. In this case, we say that E and F are
isomorphic spaces, and that T is an isomorphism.

If ‖T (x)‖ = ‖x‖ for each x ∈ E, we say that T is an isometry. If additionally T is an
isomorphism, then T is an isometric isomorphism, and we say that E and F are isometrically
isomorphic.

Dual Spaces

Let E be a normed vector space, and let E∗ (also written E ′) be B(E,K), the space of
bounded linear maps from E to K, which we call functionals, or more correctly, bounded linear
functionals. Notice that as K is complete, the above theorem shows that E∗ is always a Banach
space.

Theorem: Let 1 < p < ∞, and again let q be such that 1/p + 1/q = 1. Then the map
`q → (`p)∗;u 7→ φu, is an isometric isomorphism, where φu is defined, for u = (uj) ∈ `q, by

φu(x) =
∞∑
j=1

ujxj
(
x = (xj) ∈ `p

)
.

Proof: By Holder’s inequality, we see that

|φu(x)| ≤
∞∑
j=1

|uj||xj| ≤
( ∞∑
j=1

|uj|q
)1/q( ∞∑

j=1

|xj|p
)1/p

= ‖u‖q‖x‖p.

So the sum converges, and hence φu is defined. Clearly φu is linear, and the above estimate
also shows that ‖φu‖ ≤ ‖u‖q. The map u 7→ φu is also clearly linear, and we’ve just shown that
it is norm-decreasing.

Now let φ ∈ (`p)∗. For each n, let en = (0, · · · , 0, 1, 0, · · · ) with the 1 in the nth position.
Then, for x = (xn) ∈ `p, ∥∥∥x− n∑

k=1

xkek

∥∥∥
p

=
( ∞∑
k=n+1

|xk|p
)1/p

→ 0,

as n→∞. As φ is continuous, we see that

φ(x) = lim
n→∞

n∑
k=1

φ(xkek) =
∞∑
k=1

xkφ(ek).
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Let uk = φ(ek) for each k. If u = (uk) ∈ `q then we would have that φ = φu.
Let N ∈ N, and define

xk =

{
0 : uk = 0 or k > N,

uk|uk|q−2 : uk 6= 0.

Then we see that
∞∑
k=1

|xk|p =
N∑
k=1

|uk|p(q−1) =
N∑
k=1

|uk|q,

as p(q − 1) = q. So x = (xk) ∈ `p. Then, by the previous paragraph,

φ(x) =
∞∑
k=1

xkuk =
N∑
k=1

|uk|q.

Hence

‖φ‖ ≥ |φ(x)|
‖x‖p

=
( N∑
k=1

|uk|q
)1−1/p

=
( N∑
k=1

|uk|q
)1/q

.

By letting N →∞, it follows that u ∈ `q with ‖u‖q ≤ ‖φ‖. So φ = φu and ‖φ‖ = ‖φu‖ ≤ ‖u‖q.
Hence every element of (`p)∗ arises as φu for some u, and also ‖φu‖ = ‖u‖q. �

Loosely speaking, we say that `q = (`p)∗, although we should always be careful to keep in
mind the exact map which gives this.

Similarly, we can show that c∗0 = `1 and that (`1)∗ = `∞ (the implementing isometric
isomorphism is giving by the same summation formula).

Diversion: Zorn’s Lemma. A poset is a set X with a relation � such that a � a for all
a ∈ X, if a � b and b � a then a = b, and if a � b and b � c, then a � c. We say that (X,�) is
total if for every a, b ∈ X, either a � b or b � a. For a subset S ⊆ X, an element a ∈ X is an
upper bound for S if s � a for every s ∈ S. An element a ∈ X is maximal if whenever b ∈ X
is such that a � b, then also b � a.

Then Zorn’s Lemma tells us that if X is a non-empty poset such that every total subset
has an upper bound, then X has a maximal element. Really this is an axiom which we have
to assume, in addition to the usual axioms of set-theory. Zorn’s Lemma is equivalent to the
axiom of choice.

Hahn-Banach Theorem: Let E be a normed vector space, and let F ⊆ E be a subspace.
Let φ ∈ F ∗. Then there exists ψ ∈ E∗ with ‖ψ‖ ≤ ‖φ‖ and ψ(x) = φ(x) for each x ∈ F .

Proof: We do the real case. An “extension” of φ is a bounded linear map φG : G → R such
that F ⊆ G ⊆ E, φG(x) = φ(x) for x ∈ F , and ‖φG‖ ≤ ‖φ‖. A Zorn’s Lemma argument shows
that a maximal extension φG : G→ R exists. We shall show that if G 6= E, then we can extend
φG, a contradiction.

Let x0 6∈ G, so an extension φ0 of φG to the linear span of G and x0 must have the form

φ0(x+ ax0) = φG(x) + aα0 (x ∈ G, a ∈ R),

for some α0 ∈ R. Under this, φ0 is linear and extends φG, but we also need to ensure that
‖φ0‖ ≤ ‖φ‖. That is, we need

|φG(x) + aα0| ≤ ‖φ‖‖x+ ax0‖ (x ∈ G, a ∈ R).

For x, y ∈ G, we have that

φG(x)− φG(y) = φG(x− y) ≤ ‖φ‖‖x− y‖ ≤ ‖φ‖
(
‖x+ x0‖+ ‖y + x0‖

)
.

Consequently,
−φG(y)− ‖φ‖‖y + x0‖ ≤ −φG(x) + ‖φ‖‖x+ x0‖.
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As x and y were arbitrary,

sup
y∈G
−φG(y)− ‖φ‖‖y + x0‖ ≤ inf

x∈G
−φG(x) + ‖φ‖‖x+ x0‖.

Hence we can choose α0 between the inf and the sup. Hence in particular,

−φG(x)− ‖φ‖‖x+ x0‖ ≤ α0 ≤ −φG(x) + ‖φ‖‖x+ x0‖ (x ∈ G).

Re-arranging, we get ∣∣α0 + φG(x)
∣∣ ≤ ‖φ‖‖x+ x0‖,

and so for non-zero a ∈ R,∣∣aα0 + φG(x)
∣∣ = |a|

∣∣α0 + φG(a−1x)
∣∣ ≤ |a|‖φ‖‖a−1x+ x0‖ = ‖φ‖‖x+ ax0‖,

which shows that ‖φ0‖ ≤ ‖φG‖, as required.
The complex case follows by “complexification”. �

The Hahn-Banach theorem tells us that a functional from a subspace can be extended to
the whole space without increasing the norm. In particular, extending a functional on a one-
dimensional subspace yields the following.

Corollary: Let E be a normed vector, and let x ∈ E. Then there exists φ ∈ E∗ with ‖φ‖ = 1
and φ(x) = ‖x‖. �

Another useful result which can be proved by Hahn-Banach is the following.

Corollary: Let E be a normed vector, and let F be a subspace of E. For x ∈ E, the following
are equivalent:

1. x ∈ F the closure of F ;

2. for each φ ∈ E∗ with φ(y) = 0 for each y ∈ F , we have that φ(x) = 0.

Proof: (1)⇒(2) follows because we can find a sequence (yn) in F with yn → x; then it’s
immediate that φ(x) = 0, because φ is continuous. Conversely, we show that if (1) doesn’t hold
then (2) doesn’t hold (that is, the contrapositive to (2)⇒(1)).

So, x 6∈ F . Define ψ : lin{F, x} → K by

ψ(y + tx) = t (y ∈ F, t ∈ K).

This is well-defined, for if y+tx = y′+t′x then either t = t′, or otherwise x = (t−t′)−1(y′−y) ∈ F
which is a contradiction. The map ψ is obviously linear, so we need to show that it is bounded.
Towards a contradiction, suppose that ψ is not bounded, so we can find a sequence (yn + tnx)
with ‖yn+tnx‖ ≤ 1 for each n, and yet |ψ(yn+tnx)| = |tn| → ∞. Then ‖t−1

n yn+x‖ ≤ 1/|tn| → 0,
so that the sequence (−t−1

n yn), which is in F , converges to x. So x is in the closure of F , a
contradiction. So ψ is bounded. By Hahn-Banach, we can find some φ ∈ E∗ extending ψ. For
y ∈ F , we have φ(y) = ψ(y) = 0, while φ(x) = ψ(x) = 1, so (2) doesn’t hold, as required. �

C(X) spaces1

All our topological spaces are assumed Hausdorff. Let X be a compact space, and let CK(X)
be the space of continuous functions from X to K, with pointwise operations, so that CK(X)
is a vector space. We norm CK(X) by setting

‖f‖∞ = sup
x∈X
|f(x)| (f ∈ CK(X)).

Theorem: Let X be a compact space. Then CK(X) is a Banach space. �
1This section is not examinable, BUT a pre-requisite for the course is the Topology course, and so I assume that you know the

basics about compact spaces, and so forth. Standard facts about topology will be used in later sections of the course.

5



Let E be a vector space, and let ‖·‖(1) and ‖·‖(2) be norms on E. These norms are equivalent
if there exists m > 0 with

m−1‖x‖(2) ≤ ‖x‖(1) ≤ m‖x‖(2) (x ∈ E).

Theorem: Let E be a finite-dimensional vector space with basis {e1, . . . , en}, so we can identify
E with Kn as vector spaces, and hence talk about the norm ‖ · ‖2 on E. If ‖ · ‖ is any norm on
E, then ‖ · ‖ and ‖ · ‖2 are equivalent. �

Corollary: Let E be a finite-dimensional normed space. Then a subset X ⊆ E is compact if
and only if it is closed and bounded. �

Lemma: Let E be a normed vector space, and let F be a closed subspace of E with E 6= F .
For 0 < θ < 1, we can find x0 ∈ E with ‖x0‖ ≤ 1 and ‖x0 − y‖ > θ for y ∈ F . �

Theorem: Let E be an infinite-dimensional normed vector space. Then the closed unit ball of
E, the set {x ∈ E : ‖x‖ ≤ 1}, is not compact.

Proof: Use the above lemma to construct a sequence (xn) in the closed unit ball of E with,
say, ‖xn − xm‖ ≥ 1/2 for each n 6= m. Then (xn) can have no convergent subsequence, and so
the closed unit ball cannot be compact. �
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Linear Analysis II: Measure Theory
Updated: 20th October 2009

Let X be a set. A σ-algebra on X is a collection of subsets of X, say R ⊆ 2X , such that
∅, X ∈ R, if A, B ∈ R, then A \ B ∈ R, and finally, if (An) is any sequence in R, then⋃

n An ∈ R. For a σ-algebra R and A, B ∈ R, we have

A ∩B = X \
(
X \ (A ∩B)

)
= X \

(
(X \ A) ∪ (X \B)

)
∈ R;

similarly, R is closed under taking (countably) infinite intersections.
As the intersection of a family of σ-algebras is again a σ-algebra, and the power set 2X is a

σ-algebra, it follows that given any collection D ⊆ 2X , there is a σ-algebra R such that D ⊆ R,
such that if S is any other σ-algebra, with D ⊆ S, then R ⊆ S. We call R the σ-algebra
generated by D.

We introduce the symbols +∞,−∞, and treat these as being “extended real numbers”, so
−∞ < t < ∞ for t ∈ R. We define t +∞ = ∞, t∞ = ∞ if t > 0 and so forth. We do not (and
cannot, in a consistent manner) define ∞−∞ or 0∞.

A measure if a map µ : R → [0,∞] defined on a σ-algebra R, such that µ(∅) = 0, and if
(An) is a sequence in R which is pairwise disjoint (that is, An ∩ Am = ∅ for n 6= m), then
µ
( ⋃

n An

)
=

∑
n µ(An). This last property says that µ is countably additive. If the sum

diverges, then as it will be the sum of positive numbers, we can, without problem, define it to
be +∞.

Proposition: Let µ be a measure on a σ-algebra R. Then:

1. If A, B ∈ R with A ⊆ B, then µ(A) ≤ µ(B);

2. If A, B ∈ R with A ⊆ B and µ(B) < ∞, then µ(B \ A) = µ(B)− µ(A);

3. If (An) is a sequence in R, with A1 ⊆ A2 ⊆ A3 ⊆ · · · . Then

lim
n→∞

µ(An) = µ
( ⋃

An

)
.

4. If (An) is a sequence in R, with A1 ⊇ A2 ⊇ A3 ⊇ · · · . If µ(Am) < ∞ for some m, then

lim
n→∞

µ(An) = µ
( ⋂

An

)
.

Measures are useful, but hard to define. An outer measure on a set X is a map µ∗ : 2X →
[0,∞] such that µ∗(∅) = 0, if A ⊆ B then µ∗(A) ≤ µ∗(B), and if (An) is any sequence in 2X ,
then µ∗

( ⋃
n An

)
≤

∑
n µ∗(An). The final condition says that an outer measure is countably

sub-additive.
The Lebesgue outer measure on R is defined, for A ⊆ R, as

µ∗(A) = inf
{ ∞∑

j=1

(bj − aj) : A ⊆
∞⋃

j=1

(aj, bj)
}

.

We make this definition, as intuitively, the “length”, or measure, of the interval (a, b) is (b−a).
We can check that µ∗ is an outer measure.

For example, µ∗(A) = 0 for any countable set, which follows, as clearly µ∗({x}) = 0 for any
x ∈ R.
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Lemma: Let a < b. Then µ∗([a, b]) = b− a.

Proof: For ε > 0, as [a, b] ⊆ (a− ε, b + ε), we have that µ∗([a, b]) ≤ b− a + 2ε. As ε > 0, was
arbitrary, µ∗([a, b]) ≤ b− a.

Let [a, b] ⊆
⋃

n(an, bn), where we assume that an < bn for each n. As [a, b] is compact, by

re-ordering, there exists some N with [a, b] ⊆
⋃N

n=1(an, bn). Again, by re-ordering, we may
suppose that a1 ≤ a2 ≤ · · · ≤ aN . If bk ≥ bj for some k < j, then (aj, bj) ⊆ (ak, bk), and so we
can remove (aj, bj). Hence we may suppose that b1 < b2 < · · · < bN . If b1 ≤ a, then (a1, b1)
does not cover any of [a, b], so we can remove (a1, b1). So we may suppose that a1 < a < b1,

and similarly, that bN−1 ≤ b. Suppose, towards a contradiction, that
∑N

n=1(bn− an) < b− a. If
ak+1 < bk for 1 ≤ k < N , then

N∑
n=1

bn − an >

N−1∑
n=1

an+1 − an + bN − aN = bN − a1 > b− a1 > b− a,

a contradiction. Hence ak+1 ≥ bk for some k. As a < b1 ≤ bk ≤ bN−1 ≤ b, we have that
bk ∈ [a, b], and so bk ∈ (aj, bj) for some j. As b1 < b2 < · · · < bk−1 < bk, we must have that

j > k. However, then bk ≤ ak+1 ≤ aj, a contradiction. We conclude that
∑N

n=1 bn− an ≥ b− a,
and hence that µ∗([a, b]) = b− a. �

Our next aim is to construct measures from outer measures. Given an outer measure µ∗, we
define E ⊆ X to be measurable if

µ∗(A) = µ∗(A ∩ E) + µ∗(A \ E) (A ⊆ X).

As µ∗ is sub-additive, this is equivalent to

µ∗(A) ≥ µ∗(A ∩ E) + µ∗(A \ E) (A ⊆ X),

as the other inequality is automatic.

Theorem: Let µ∗ be an outer measure on X, and let R be the collection of all measurable sets
for µ∗. Then R is a σ-algebra, and if µ is the restriction of µ∗ to R, then µ is a measure.

This is useful, but notice that {X, ∅} is a σ-algebra, so we have to check that the σ-algebra
this theorem constructs is usefully large. This is the case for the Lebesgue outer measure.

Proposition: For any x ∈ R, the sets (−∞, x] and [x,∞) are Lebesgue measurable (that is,
measurable with respect to the Lebesgue outer measure).

Proof: The idea is to take A ⊆ R, and for an open cover of A, we can split up the intervals in
the open cover to give covers for (−∞, x]∩A and (x,∞)∩A (some care is required, as (−∞, x]
is closed, so you have to tweak the open intervals). �

Corollary: Let E ⊆ R be open or closed. Then E is Lebesgue measurable.

Proof: This is a common trick, using the density and the countability of the rationals. As σ-
algebras are closed under taking complements, we need only show that open sets are Lebesgue
measurable. As (−∞, x) = R \ [x,∞), it is Lebesgue measurable, as is (x,∞), for each x ∈ R.
Hence (a, b) = (−∞, b) ∩ (a,∞) is also Lebesgue measurable, for any a < b.

Now let U ⊆ R be open. For each x ∈ U , there exists a < b with x ∈ (a, b) ⊆ R. By making
a slightly larger, and b slightly smaller, we can ensure that a, b ∈ Q. Let D = {(a, b) : a, b ∈
Q, a < b}, and let DU = {W ∈ D : W ⊆ U}. Thus U =

⋃
DU . Notice that each member of D

is Lebesgue measurable, and D is countable. The same facts are true for DU , and thus U is the
countable (or finite) union of Lebesgue measurable sets, and hence U is Lebesgue measurable
itself. �

We call a measure µ defined on R complete if whenever E ⊆ X is such that there exists
F ∈ R with µ(F ) = 0 and E ⊆ F , we have that E ∈ R. Measures constructed from outer
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measures by the above theorem are always complete. On the example sheet, we saw how to form
a complete measure from a given measure. We call sets like E null sets : complete measures
are useful, because it is useful to be able to say that null sets are in our σ-algebra. Null sets
can be quite complicated. For the Lebesgue measure, all countable subsets of R are null, but
then so is the Cantor set, which is uncountable.

Integration
We now come to the main use of measure theory: to define a general theory of integration.

From now on, by a measure space we shall mean a triple (X,R, µ), where X is a set, R is a σ-
algebra on X, and µ is a measure defined on R. We say that the members of R are measurable,
or R-measurable, if necessary to avoid confusion.

A function f : X → K is measurable if f−1(U) ∈ R for each open U ⊆ K. We shall mostly
work with K = R in what follows: the complex numbers will be used in later chapters.

Lemma: Let f, g : X → R be measurable. Then f + g, fg, max(f, g) and min(f, g) are all
measurable.

Proof: See the example sheet. We shall repeatedly use these results in what follows. �

A function f : X → R is simple if there exist A1, · · · , An ∈ R which are pairwise disjoint,
and there exist t1, · · · , tn ∈ R, such that

f(x) =

{
tk : x ∈ Ak for some 1 ≤ k ≤ n,

0 : otherwise.

For A ⊆ X, we define χA to be the indicator function of A, by

χA(x) =

{
1 : x ∈ A,

0 : x 6∈ A.

Then, if χA is measurable, then χ−1
A ((1/2, 3/2)) = A ∈ R; conversely, if A ∈ R, then X\A ∈ R,

and we see that for any U ⊆ R open, χ−1
A (U) is either ∅, A, X \A, or X, all of which are in R.

So χA is measurable if and only if A ∈ R.

Lemma: A function f : X → R is simple if and only if

f =
n∑

k=1

tkχAk

for some (tk)
n
k=1 ⊆ R and A1, · · · , Ak ∈ R. That is, simple functions are linear combinations

of indicator functions of measurable sets.

Proof: The easiest way to prove this is to first prove that a function is simple if and only if
its image is a finite subset of R. Notice that it is now obvious that the collection of simple
functions forms a vector space: this wasn’t clear from the original definition. �

We define the integral of a simple function f : X → [0,∞) by setting∫
f dµ =

∫
X

f dµ =
n∑

k=1

tkµ(Ak) if f has the representation f =
n∑

k=1

tkχAk
.

In this special setting, we define 0µ(A) = 0 for any A, even if µ(A) = ∞. We allow the integral
to be ∞. It is another combinatorial exercise to show that this definition is independent of the
way we write f .
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Then, for an arbitrary measurable f : X → [0,∞), we define∫
X

f dµ = sup
{∫

X

g dµ : g ≥ 0, g is simple, g ≤ f
}

,

where the supremum may be infinite. When it’s finite, we say that f is integrable. Notice that
by “g ≤ f ′′, I mean that g(x) ≤ f(x) for all x ∈ X.

Finally, for a measurable f : X → R, we say that f is integrable if |f | is integrable. Notice
that |f | = f+ + f− where

f+ = max(f, 0), f− = −min(f, 0),

which are measurable functions, and so |f | is also measurable. Furthermore, |f | is integrable if
and only if f+ and f− are both integrable, and we define∫

X

f dµ =

∫
X

f+ dµ−
∫

X

f− dµ.

Showing that integration satisfies even simple properties requires a bit of a detour.

Proposition: Let f, g : X → [0,∞) be simple, and let a, b ∈ [0,∞). Then:

1.
∫

X
af + bg dµ = a

∫
X

f dµ + b
∫

X
g dµ;

2. If f ≤ g then
∫

X
f dµ ≤

∫
X

g dµ;

3.
∫

X
f dµ = 0 if and only if µ({x ∈ X : f(x) 6= 0}) = 0.

Proof: This is another slightly tedious combinatorial exercise. If you can prove that the integral
of a simple function is well-defined, in the sense that it is independent of the way we choose to
write the simple function, then the rest of the proposition is easy.1 �

The following important theorem allows us to draw conclusions about the pointwise limit of
functions (which is, say, a rare thing when dealing with continuous functions: you’d normally
need some sense of uniform convergence).

Theorem (Monotone Convergence): Let fn : X → [0,∞) be a sequence of measurable
functions, and let f : X → [0,∞) be a function. Suppose that for each x ∈ X, we have
f1(x) ≤ f2(x) ≤ · · · , and f(x) = limn fn(x). Then f is measurable, and∫

X

f dµ = lim
n→∞

∫
X

fn dµ.

Proof: We give the proof, as it illustrates the general strategy for many proofs in this area.
Firstly, we show that f is measurable. By the arguments we used above, it is enough to show

1In previous years, I have stated this result for functions mapping into R, not [0,∞). I also stated that a simple function
f : X → R is integrable if and only if f admits a representation

f =
nX

k=1

tkχAk

where (tk)n
k=1 ⊆ R and A1, · · · , Ak are measurable and pairwise disjoint, with

nX
k=1

|tk|µ(Ak) < ∞.

I think you could prove these results fairly easily as well, by splitting f into f+ and f−, but it seemed easier to work with positive
functions, and then deduce the general case later.
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that f−1((−∞, t]), f−1([t,∞)) ∈ R for each t ∈ R. Notice that

x ∈ f−1((−∞, t]) ⇔ lim
n

fn(x) = f(x) ≤ t

⇔ fn(x) ≤ t for all n

⇔ x ∈
∞⋂

n=1

f−1
n

(
(−∞, t]

)
.

However, for each n, f−1
n ((−∞, t]) ∈ R as fn is measurable, and so f−1((−∞, t]) ∈ R. Now

notice that

x ∈ f−1([t,∞)) ⇔ lim
n

fn(x) = f(x) ≥ t

⇔ lim
n

fn(x) > t− ε for all ε > 0

⇔ ∀ ε > 0 ∃n ≥ 1, fn(x) > t− ε

⇔ x ∈
∞⋂

m=1

∞⋃
n=1

f−1
n ((t− 1/m,∞)).

This is more complicated, but we can still conclude that f−1([t,∞)) ∈ R.
I. Suppose fn = χAn for each n, so we must have that An ∈ R for all n, and A1 ⊆ A2 ⊆ · · ·

as the fn are increasing. Similarly, then f = χA where A =
⋃

n An, and so the result follows
from a proposition above, as

lim
n

∫
X

fn dµ = lim
n

µ(An) = µ
( ⋃

n

An

)
= µ(A) =

∫
X

f dµ.

II. Suppose that f = χA, and each fn is simple. For ε > 0, if we set An = {x ∈ X : fn(x) >
1− ε} = f−1

n ((1− ε,∞)) ∈ R, then A1 ⊆ A2 ⊆ · · · and, assuming ε < 1, we have that

x ∈ A ⇔ f(x) > 1− ε ⇔ lim
n

fn(x) > 1− ε ⇔ ∃n, x ∈ An.

So A =
⋃

n An. Also notice that for each n,

(1− ε)χAn ≤ fn ≤ f = χA.

As each fn is simple, by the proposition above, as f1 ≤ f2 ≤ · · · we have that
∫

X
f1 dµ ≤∫

X
f2 dµ ≤ · · · . Also, as f is simple and fn ≤ f , we have that

∫
X

fn dµ ≤
∫

X
f dµ for each n.

Hence limn→∞
∫

X
fn dµ exists.

So, in conclusion,

(1− ε)µ(An) ≤
∫

X

fn dµ ≤
∫

X

f dµ = µ(A).

By part 1, we know that µ(An) → µ(A), so as ε > 0 was arbitrary, and the sandwich rule, we
must have that limn→∞

∫
X

fn dµ =
∫

X
f dµ as required.

III. Suppose that each fn is simple, and that f is simple. Let

f =
N∑

k=1

tkχAk
,

where we may suppose that tk > 0 for each k, and the (Ak) are pairwise disjoint. As f is
measurable, we see that Ak ∈ R for each k. Then we see that t−1

k χAk
fn ↑ t−1

k χAk
f = χAk

,
where ↑ means “increasing pointwise”. So by part 2, we have that

lim
n

∫
X

t−1
k χAk

fn dµ = µ(Ak).
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As the (Ak) are pairwise disjoint, and f(x) = 0 if x 6∈ A1 ∪ · · · ∪ AN , we must have that

fn =
n∑

k=1

fnχAk

for all n. Hence

lim
n

∫
X

fn dµ = lim
n

N∑
k=1

∫
X

fnχAk
dµ =

N∑
k=1

tkµ(Ak) =

∫
X

f dµ.

IV. Now suppose that each fn is simple, and that f ≥ 0 is measurable. Let g be simple
with 0 ≤ g ≤ f . Then min(g, fn) is simple for each n, and min(g, fn) ↑ g as fn ↑ f and g ≤ f .
So by part 3,

lim
n

∫
X

min(g, fn) dµ =

∫
X

g dµ.

As min(g, fn) ≤ fn for each n, we have∫
X

g dµ = lim
n

∫
X

min(g, fn) dµ ≤ lim
n

∫
X

fn dµ.

Thus, by the definition of the integral,∫
X

f dµ ≤ lim
n

∫
X

fn dµ,

as
∫

X
f dµ is the supremum of

∫
X

g dµ. However, each fn is simple and fn ≤ f , so by the
definition of the integral, certainly∫

X

fn dµ ≤
∫

X

f dµ (∀n) =⇒ lim
n

∫
X

fn dµ ≤
∫

X

f dµ,

so we must have equality.
V. We finally do the general case. For each t ∈ R, let btc be the largest integer which is less

than or equal to t. Then define, for each n,

gn = min
(
n, 2−nb2nfnc

)
.

A moment’s thought should reveal that each gn is simple, and that gn ≤ fn. Thus∫
X

gn dµ ≤
∫

X

fn dµ (n ≥ 1).

If h is a simple function with h ≤ fn then as fn ≤ f , also h ≤ f . Taking the supremum over
all such h shows that ∫

X

fn dµ ≤
∫

X

f dµ (n ≥ 1).

For x ∈ X, if n is much larger than f(x), then as b2nfn(x)c ≤ 2nfn(x) < b2nfn(x)c + 1, we
have that

fn(x)− 2−n < gn(x) = 2−nb2nfn(x)c ≤ fn(x) ≤ f(x).

Thus fn ↑ f implies that also gn ↑ f , and so by part 4,∫
X

f dµ = lim
n

∫
X

gn dµ ≤ lim
n

∫
X

fn dµ ≤
∫

X

f dµ,

so we have equality throughout, as required. �
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Let us pull some important things out of this proof. The notation fn ↑ f means that for
each x ∈ X, both f1(x) ≤ f2(x) ≤ · · · and fn(x) → f(x). Given a measurable, positive f ,
letting

fn = min
(
n, 2−nb2nfnc

)
is a standard, and very useful, way of getting some simple functions2 with fn ↑ f .

Theorem: Let f, g : X → [0,∞) be measurable, and let a, b ≥ 0. Then:

1.
∫

X
af + bg dµ = a

∫
X

f dµ + b
∫

X
g dµ;

2. If f ≤ g, then
∫

X
f dµ ≤

∫
X

g dµ;

3.
∫

X
f dµ = 0 if and only if µ({x ∈ X : f(x) 6= 0}) = 0.

Proof: We show (1). Let fn = min(n, 2−nb2nfc) and gn = min(n, 2−nb2ngc). Hence fn and gn

are simple functions, for each n, and hence∫
X

afn + bgn dµ = a

∫
X

fn dµ + b

∫
X

fn dµ.

We can check that f1(x) ≤ f2(x) ≤ · · · and f(x) = limn fn(x), for each x ∈ X. We write fn ↑ f
to denote this. As gn ↑ g and also afn + bgn ↑ af + bg, by Monotone Convergence,∫

X

af + bg dµ = lim
n

∫
X

afn + bgn dµ = lim
n

a

∫
X

fn dµ + b

∫
X

fn dµ

= a

∫
X

f dµ + b

∫
X

g dµ,

as required. It is worth noting that this result seems impossible to prove without using Mono-
tone Convergence, or some similar tool. �

Theorem: Let f, g : X → R be measurable, and let a, b ∈ R. Then:

1.
∫

X
af + bg dµ = a

∫
X

f dµ + b
∫

X
g dµ;

2. If f ≤ g, then
∫

X
f dµ ≤

∫
X

g dµ;

3. If µ({x ∈ X : f(x) 6= 0}) = 0, then
∫

X
f dµ = 0.

Proof: We show (2). Notice that f+ − f− = f ≤ g = g+ − g−, so by rearranging, f+ + g− ≤
g+ + f−, and so by the previous theorem,

∫
X

f+ + g− dµ ≤
∫

X
g+ + f− dµ, as all the functions

are positive. By splitting up the integrals and rearranging again, and then recombining the
integrals, we get

∫
X

f dµ ≤
∫

X
g dµ, as required. �

We now recall the notion of the Riemann integral. Instead of defining it here, we shall simply
remember the Fundamental Theorem of Calculus. Namely, if f : [a, b] → R is continuous, and
we define F : [a, b] → R by

F (t) =

∫ t

a

f(x) dx (a ≤ t ≤ b),

then F is differentiable on (a, b), and F ′(t) = f(t) for a < t < b.

Theorem: Let f : [a, b] → R be continuous. Then f is Lebesgue integrable, and if we define
G : [a, b] → R by

G(t) =

∫
R

fχ[a,t] dµ,

2It’s unimportant that we use n and 2n: any increasing sequences would work.

7



then G is differentiable on (a, b), and G′(t) = f(t) for a < t < b. As a result, the Riemann and
Lebesgue integrals of f over [a, b] agree.

Proof: As f is continuous on a compact set, it is bounded, and hence |f | is bounded, and so
has finite integral (as also [a, b] has finite measure). Hence f is Lebesgue integrable. We show
that G is differentiable in a similar way to the proof of the Fundamental Theorem of Calculus
for the Riemann integral.

Then, as G′ = F ′ on (a, b), and G(a) = F (a), we conclude that G(b) = F (b), that is,∫ b

a

f(x) dx =

∫
R

fχ[a,b] dµ =

∫
[a,b]

f dµ.

From now on, we shall hence identify the Riemann Integral and the Lebesgue Integral, at least
for continuous functions defined on closed intervals. �

If P is a property of the points of a measure space (X,R, µ), then we say that P holds almost
everywhere if µ({x ∈ X : P (x) not true }) = 0. For example, if f, g : X → K are measurable
functions, then we say that f = g almost everywhere (or a.e.) if µ({x ∈ X : f(x) 6= g(x)}) = 0.

Theorem (Fatou’s Lemma): Let (fn) be a sequence of measurable functions X → [0,∞),
and define

f(x) =

{
lim infn fn(x) : if lim infn fn(x) < ∞,

0 : otherwise.

Then f is measurable, and ∫
X

f dµ ≤ lim inf
n

∫
X

fn dµ.

This version of Fatou’s Lemma might be different to the statement you can find in a book3.
This is because I have decided that I do not want to allow functions to take the value ∞ (or
−∞).

Theorem (Dominated Convergence Theorem): Let (fn) be a sequence of measurable
functions X → R such that f(x) = limn→∞ fn(x) exists for almost every x ∈ X; define
f(x) = 0 otherwise. Suppose furthermore that for some integrable g : X → [0,∞), we have
that |fn| ≤ g almost everywhere, for each n. Then f is integrable, and∫

X

f dµ = lim
n→∞

∫
X

fn dµ.

In words, this means that we can push a pointwise limit through the integral, as long as
every function in question is dominated by some functions with finite integral. The Monotone
Convergence Theorem tells us the same, under the condition that the limit is increasing. We
have seen examples which show that we cannot push a pointwise limit through an integral
without one of these extra conditions.

Notation
For a measure space (X,R, µ) and an integrable function f : X → R, we have∫

X

f dµ =

∫
f dµ =

∫
X

f(x) dµ(x).

The form of the right hand side is useful when, say, f might depend upon two variables (for
example, as in the next section).

3Or on wikipedia
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When Y ⊆ X is measurable (that is, Y ∈ R) we saw on the example sheet that

RY := {A ∩ Y : A ∈ R} = {A ∈ R : A ⊆ Y }

is a σ-algebra on Y . Furthermore, the restriction of µ to RY defines a measure on RY , so
(Y,RY , µ) becomes a measure space.

In particular, when [a, b] is a closed interval of R, we can restrict the Lebesgue measure
to [a, b]. Clearly every open subset of [a, b] is then Lebesgue measurable. If f : [a, b] → R is
integrable, then we can either integrate it over the restriction of Lebesgue measure on [a, b]; or
we can multiply f by χ[a,b] and regard fχ[a,b] as a function R → R, and then integrate this. A
quick check shows that we get the same answer, and so we write∫

[a,b]

f dµ =

∫
R

fχ[a,b] dµ.

We try to avoid the notation
∫ b

a
f dµ, as this could be confused with Riemann integration.

Many books will use this, however.

Product Measures
How do we handle integration on R2? We could re-develop Lebesgue measure, say using

rectangles instead of intervals as our “test” sets. This is boring, and would also make doing
calculations hard. From Multi-variate Calculus, we expect to be able to split up integration
over R2 into two integrals over R.

Formally, we wish to handle X × Y for measure spaces X and Y . To simplify things, we
shall mostly work with finite measure spaces, that is, when the measure of the whole space is
finite. So [0, 1] with Lebesgue measure is finite, but R is not. The results do hold for spaces
like R, however (but the proofs become even more technical).

Let X and Y be spaces, and let R and S be σ-algebras on X and Y respectively. Then R⊗S
is the σ-algebra generated by {A × B : A ∈ R, B ∈ S}. These sets are sort of “generalised
rectangles”, but R⊗S contains everything we can get by taking countably infinite unions, set
differences, and so forth.4

Lemma: Let f : X × Y → R be measurable with respect to R ⊗ S. For each x ∈ X, let
fx : Y → R be the slice of f , defined by fx(y) = f(x, y). Then fx is S-measurable.

Lemma: Suppose that (Y,S, λ) is a finite measure space. Let f : X × Y → R be R ⊗ S-
measurable, and bounded. Then the function f1 : X → R, defined by

f1(x) =

∫
Y

fx dλ =

∫
Y

f(x, y) dλ(y), (x ∈ X)

is bounded and R-measurable.

Theorem: Now suppose that both (X,R, µ) and (Y,S, λ) are finite measure spaces. There
exists a unique measure µ⊗ λ on R⊗ S such that

(µ⊗ λ)(A×B) = µ(A)λ(B) (A ∈ R, B ∈ S).

Proof: For A ∈ R ⊗ S, f = χA is measurable and bounded, and so we can apply the above

lemmas to see that f1 is bounded and R-measurable. As X is finite, f1 is integrable, and so
we can define

(µ⊗ λ)(A) =

∫
X

f1 dµ =

∫
X

∫
Y

χA(x, y) dλ(y) dµ(x).

4R⊗ S is very complicated, which is why the proofs in this section are so complicated.
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Monotone convergence needs to be used to show that this is a measure. �

We defined f1 above when f was assumed bounded. Now suppose that f : X × Y → [0,∞)
is (R⊗ S)-measurable. Define

f1(x) =

{∫
Y

fx dλ when this is finite,

0 otherwise.

Then ∫
X

∫
Y

f(x, y) dλ(y) dµ(x) is defined to be

∫
X

f1 dµ.

Proposition: Let f : X × Y → [0,∞) be (R⊗ S)-measurable, and µ⊗ λ-integrable. Then∫
X×Y

f d(µ⊗ λ) =

∫
X

∫
Y

f(x, y) dλ(y) dµ(x).

Proposition: Let f : X × Y → [0,∞) be (R⊗S)-measurable. Then f is (µ⊗ λ)-integrable if
and only if:

1.
∫

Y
f(x, y) dλ(y) =

∫
Y

fx dλ < ∞ almost everywhere, with respect to µ; and

2.
∫

X
f1 dµ < ∞.

Finally, suppose that f : X × Y → R is (R⊗ S)-measurable. Define

f1(x) =

{∫
Y

fx dλ when
∫

Y
|fx| dλ < ∞,

0 otherwise.

Notice that
∫

Y
|fx| dλ < ∞ if and only if fx is λ-integrable.

Theorem (Fubini’s Theorem): Let f : X × Y → R be (R⊗ S)-measurable. If f is µ⊗ λ-
integrable, then:

1. the map fx : Y → R; y 7→ f(x, y) is λ-integrable for µ-almost every x ∈ X;

2. the map f1 : X → R is µ-integrable.

3. ∫
X×Y

f d(µ⊗ λ) =

∫
X

∫
Y

f(x, y) dλ(y) dµ(x),

where the right-hand-side is defined to be
∫

X
f1 dµ.

We have done everything on the “right” first and then on the “left” (that is, integrate first
over Y , and then over X). However, we could do everything the other way around. This yields
a corollary, which is actually how Fubini’s Theorem is most often applied.

Corollary: Let f : X × Y → R be (R⊗ S)-measurable. If f is µ⊗ λ-integrable, then∫
X

∫
Y

f(x, y) dλ(y) dµ(x) =

∫
Y

∫
X

f(x, y) dµ(x) dλ(y).

Deciding if f is (R⊗ S)-measurable seems to be hard. But if, for example, X = Y = [0, 1]
with the Lebesgue measure, then if f is continuous (except maybe at finitely many points)
then f is certainly (R ⊗ S)-measurable. We have seen examples of such f which are not
µ⊗ λ-integrable, and for which the order of integration does matter.
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Linear Analysis III: Lp spaces
Updated: 15th November 2009

Let (X,R, µ) be a measure space. For 1 ≤ p <∞, we define Lp(µ) to be the space of
measurable functions f : X → K such that∫

X

|f |p dµ <∞.

We define ‖ · ‖p : Lp(µ)→ [0,∞) by

‖f‖p =
(∫

X

|f |p dµ
)1/p

(f ∈ Lp(µ)).

Notice that if f = 0 almost everywhere, then |f |p = 0 almost everywhere, and so ‖f‖p = 0.
However, there can be non-zero functions such that f = 0 almost everywhere. So ‖ · ‖p is
not a norm on Lp(µ).

Lemma: Let 1 < p <∞, let q ∈ (1,∞) be such that 1/p+ 1/q = 1. For f ∈ Lp(µ) and
g ∈ Lq(µ), we have that fg is integrable, and∫

X

|fg| dµ ≤ ‖f‖p‖g‖q.

Proof: Recall that we know that

|ab| ≤ |a|
p

p
+
|b|q

q
(a, b ∈ K).

Define measurable functions a, b : X → K by setting

a(x) =
f(x)

‖f‖p
, b(x) =

g(x)

‖g‖q
(x ∈ X).

So we have that

|a(x)b(x)| ≤ |f(x)|p

p‖f‖pp
+
|g(x)|q

q‖g‖qq
(x ∈ X).

By integrating, we see that∫
X

|ab| dµ ≤ 1

p‖f‖pp

∫
X

|f |p dµ+
1

q‖g‖qq

∫
X

|g|q dµ =
1

p
+

1

q
= 1.

Hence, by the definition of a and b,∫
X

|fg| ≤ ‖f‖p‖g‖q,

as required. �

Lemma: Let f, g ∈ Lp(µ) and let a ∈ K. Then:

1. ‖af‖p = |a|‖f‖p;

2. ‖f + g‖p ≤ ‖f‖p + ‖g‖p.
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In particular, Lp is a vector space.

Proof: Part (1) is easy. For (2), we need a version of Minkowski’s Inequality, which will
follow from the previous lemma. Notice that the p = 1 case is easy, so suppose that
1 < p <∞. We have that∫

X

|f + g|p dµ =

∫
X

|f + g|p−1|f + g| dµ

≤
∫
X

|f + g|p−1
(
|f |+ |g|

)
dµ

=

∫
X

|f + g|p−1|f | dµ+

∫
X

|f + g|p−1|g| dµ.

Applying the lemma, this is

≤ ‖f‖p
(∫

X

|f + g|q(p−1) dµ
)1/q

+ ‖g‖p
(∫

X

|f + g|q(p−1) dµ
)1/q

.

As q(p− 1) = p, we see that

‖f + g‖pp ≤
(
‖f‖p + ‖g‖p

)
‖f + g‖p/qp .

As p− p/q = 1, we conclude that

‖f + g‖p ≤ ‖f‖p + ‖g‖p,

as required.
In particular, if f, g ∈ Lp(µ) then af + g ∈ Lp(µ), showing that Lp(µ) is a vector

space. �

We define an equivalence relation ∼ on the space of measurable functions by setting
f ∼ g if and only if f = g almost everywhere. We can check that ∼ is an equivalence
relation (the slightly non-trivial part is that ∼ is transitive).

Proposition: For 1 ≤ p < ∞, the collection of equivalence classes Lp(µ)/ ∼ is a vector
space, and ‖ · ‖p is a well-defined norm on Lp(µ)/ ∼.

Proof: We need to show that addition, and scalar multiplication, are well-defined on
Lp(µ)/ ∼. Let a ∈ K and f1, f2, g1, g2 ∈ Lp(µ) with f1 ∼ f2 and g1 ∼ g2. Then it’s easy
to see that af1 + g1 ∼ af2 + g2; but this is all that’s required!

If f ∼ g then |f |p = |g|p almost everywhere, and so ‖f‖p = ‖g‖p. So ‖ · ‖p is well-
defined on equivalence classes. In particular, if f ∼ 0 then ‖f‖p = 0. Conversely, if
‖f‖p = 0 then

∫
X
|f |p dµ = 0, so as |f |p is a positive function, we must have that |f |p = 0

almost everywhere. Hence f = 0 almost everywhere, so f ∼ 0. That is,{
f ∈ Lp(µ) : f ∼ 0

}
=
{
f ∈ Lp(µ) : ‖f‖p = 0

}
.

It follows from the above lemma that this is a subspace of Lp(µ).
The above lemma now immediately shows that ‖ · ‖p is a norm on Lp(µ)/ ∼. �

We write1 Lp(µ) for the normed space (Lp(µ)/ ∼, ‖ · ‖p).
We will abuse notation and continue to write members of Lp(µ) as functions. Really

they are equivalence classes, and so care must be taken when dealing with Lp(µ). For
example, if f ∈ Lp(µ), it does not make sense to talk about the value of f at a point.

Theorem: Let (fn) be a Cauchy sequence in Lp(µ). There exists f ∈ Lp(µ) with ‖fn −
f‖p → 0. In fact, we can find a subsequence (nk) such that fnk

→ f pointwise, almost
everywhere.

1I have probably chosen the opposite notation from that used in most books, so be careful if you look in any textbook.
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Proof: We shall show this carefully for L∞(µ) below. This case is similar. �

Corollary: Lp(µ) is a Banach space.

Proposition: Let (X,R, µ) be a measure space, and let 1 < p < ∞. We can define a
map Φ : Lq(µ)→ Lp(µ)∗ by setting Φ(f) = F , for f ∈ Lq(µ), where

F : Lp(µ)→ K, g 7→
∫
X

fg dµ (g ∈ Lp(µ)).

Proof: For f ∈ Lp(µ) and g ∈ Lq(µ), it follows by the above lemma (Holder’s Inequality),
that fg is integrable, and∣∣∣ ∫

X

fg dµ
∣∣∣ ≤ ∫

X

|fg| dµ ≤ ‖f‖q‖g‖p.

Let f1, f2 ∈ Lp(µ) and g1, g2 ∈ Lq(µ) with f1 ∼ f2 and g1 ∼ g2. Then f1g1 = f2g1

almost everywhere and f2g1 = f2g2 almost everywhere, so f1g1 = f2g2 almost everywhere,
and hence ∫

X

f1g1 dµ =

∫
X

f2g2 dµ.

So Φ is well-defined.
Clearly Φ is linear, and we have shown that ‖Φ(f)‖ ≤ ‖f‖q.
Let f ∈ Lq(µ) and define g : X → K by

g(x) =

{
f(x)|f(x)|q−2 : f(x) 6= 0,

0 : f(x) = 0.

Then |g(x)| = |f(x)|q−1 for all x ∈ X, and so∫
X

|g|p dµ =

∫
X

|f |p(q−1) dµ =

∫
X

|f |q dµ,

so ‖g‖p = ‖f‖q/pq , and so, in particular, g ∈ Lp(µ). Let F = Φ(f), so that

F (g) =

∫
X

fg dµ =

∫
X

|f |q dµ = ‖f‖qq.

Thus ‖F‖ ≥ ‖f‖qq/‖g‖p = ‖f‖q. So we conclude that ‖F‖ = ‖f‖q, showing that Φ is an
isometry. �

We will show that Φ is surjective, but this requires some more machinery.

Radon-Nikodym Theory
Let X be a set and let R be a σ-algebra on X. A signed measure on R is a map

ν : R → R ∪ {±∞} such that:

• ν(∅) = 0, and ν takes at most one of the values ∞ and −∞;

• if (An) ⊆ R is a sequence of pairwise-disjoint sets, then ν
(⋃

nAn
)

=
∑

n ν(An).

As ν takes only one of the values ∞ and −∞, we never run into the problem of trying
to evaluate ∞−∞. The second condition is quite strong: it implies that the sum on the
right must actually converge absolutely.
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Theorem: Let ν be a signed measure. There exist A,B ∈ R with A∩B = ∅, A∪B = X
and such that for any E ∈ R,

ν(A ∩ E) ≥ 0, ν(B ∩ E) ≤ 0.

We call (A,B) a Hahn-Decomposition (of X) for ν. This need not be unique.

Proof: We only sketch this. We say that A ∈ R is positive if

ν(E ∩ A) ≥ 0 (E ∈ R),

and similiarly define what it means for a measurable set to be negative. Suppose that ν
never takes the value −∞ (the other case follows by considering the signed measure −ν).

Let β = inf ν(B0) where we take the infimum over all negative sets B0. If β = −∞
then for each n, we can find a negative Bn with ν(Bn) ≤ −n. But then B =

⋃
nBn would

be negative with ν(B) ≤ −n for any n, so that ν(B) = −∞ a contradiction.
So β > −∞ and so for each n we can find a negative Bn ν(Bn) < β + 1/n. Then

we can show that B =
⋃
nBn is negative, and argue that ν(B) ≤ β. As B is negative,

actually ν(B) = β.
There then follows a very tedious argument, by contradiction, to show that A = X \B

is a positive set. Then (A,B) is the required decomposition. �

Given a Hahn-Decomposition (A,B) for a signed measure ν, we define maps ν+, ν− :
R → [0,∞] by

ν+(E) = ν(A ∩ E), ν−(E) = −ν(B ∩ E) (E ∈ R).

It is a simple check that ν+ and ν− are measures (and only one of them can take the
value ∞). We can recover ν by observing that

ν(E) = ν
(
(E ∩ A) ∪ (E ∩B)

)
= ν(E ∩ A) + ν(E ∩B) = ν+(E)− ν−(E) (E ∈ R).

So really signed measures are just the difference of two measures.
Let |ν| = ν+ + ν−, so that |ν| is a measure. Given a measurable function f : X → K,

we define ∫
X

f dν =

∫
X

f dν+ −
∫
X

f dν− =

∫
X

(
fχA − fχB

)
d|ν|.

We can check that integration against ν behaves as we would expect (it is linear and so
forth): this is most easily seen by looking the right hand side.

Let (X,R, µ) be a measure space, and let ν be a signed measure defined on R. We say
that ν is absolutely continuous with respect to µ, written ν << µ, if whenever µ(E) = 0,
we have that ν(E) = 0.

Proposition: Let (X,R, µ) be a finite measure space, and let ν be a finite measure on
R, with ν << µ. Then there exists a measurable function f : X → [0,∞) such that

ν(E) =

∫
E

f dµ =

∫
X

fχE dµ (E ∈ R).

Proof: Again, this is a sketch. Let D be the collection of measurable functions g : X →
[0,∞) such that ∫

E

g dµ ≤ ν(E) (E ∈ R).

Let α = supg∈D
∫
X
g dµ ≤ ν(X) < ∞. So we can find a sequence (gn) in D with∫

X
gn dµ→ α.
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We define f0(x) = supn gn(x). We can show that f0 = ∞ only on a set of µ-measure
zero, so if we adjust f0 on this set, we get a measurable function f : X → [0,∞). There
is now a long argument to show that f is as required. �

Theorem (Radon-Nikodym Theorem): Let (X,R, µ) be a finite measure space, let
ν be a signed measure on R with ν << µ. Let ν = ν+ − ν− be the decomposition given
a Hahn-Decomposition for ν. If |ν| is a finite measure, then there exists a measurable
function f : X → R such that

ν(E) =

∫
E

f dµ (E ∈ R).

If g is another function with this property, then f = g almost everywhere.

Proof: We can find f by applying the previous operation to the measures ν+ and ν− (as
it is easy to verify that ν+, ν− << µ).

We show that f is essentially unique. If g is another function inducing ν, then∫
E

f − g dµ = ν(E)− ν(E) = 0 (E ∈ R).

Let E = {x ∈ X : f(x) − g(x) ≥ 0}, so as f − g is measurable, E ∈ R. Then∫
E
f − g dµ = 0 and f − g ≥ 0 on E, so by our result from integration theory, we have

that f − g = 0 almost everywhere on E. Similarly, if F = {x ∈ X : f(x) − g(x) ≤ 0},
then F ∈ R and f − g = 0 almost everywhere on F . As E ∪ F = X, we conclude that
f = g almost everywhere. �

We now briefly discuss complex measures. Let X be a set and R be a σ-algebra on
X. A complex measure is a map µ : R → C such that, if we define

µr(E) = <µ(E), µi(E) = =µ(E) (E ∈ R),

then µr and µi are signed measures.2 When f : X → C is measurable, and integrable for
µr and µi, we define ∫

X

f dµ =

∫
X

f dµr + i

∫
X

f dµi.

Theorem (Complex Radon-Nikodym Theorem): Let (X,R, µ) be a finite measure
space, let ν be a complex measure on R with ν << µ. Suppose that |νr| and |νi| are
finite measures.3 There exists a measurable function f : X → C such that

ν(E) =

∫
E

f dµ (E ∈ R).

Again, if g is another function with this property, then f = g almost everywhere.

Proof: Just take real and imaginary parts, and apply the main Radon-Nikodym Theo-
rem. �

Application to Lp spaces

Proposition: Let (X,R, µ) be a finite measure space, let 1 < p <∞, and let F ∈ Lp(µ)∗.
Then there exists g ∈ Lq(µ) such that

F (f) =

∫
X

fg dµ (f ∈ Lp(µ)).

2Notice that this definition does not allow a notion of “infinity”, as µ takes values in C. It would be possible to somehow
handle infinity, but for us, it will never be a problem.

3Which is actually automatic for our definition of what a complex measure is!
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Proof: As µ(X) <∞, for E ∈ R, we have that ‖χE‖p = µ(E)1/p <∞. So χE ∈ Lp(µ),
and hence we can define

ν(E) = F (χE) (E ∈ R).

We proceed to show that ν is a signed (or complex) measure. Then we can apply the
Radon-Nikodym Theorem to find a function g : X → K such that

F (χE) = ν(E) =

∫
E

g dµ (E ∈ R).

There is then a long argument to show that g ∈ Lq(µ) and that∫
X

fg dµ = F (f)

for all f ∈ Lp(µ), and not just for f = χE. �

Corollary: For 1 < p < ∞, we have that Lp(µ)∗ = Lq(µ) isometrically, under the
identification of the above results.

Proposition: Let (X,R, µ) be a finite measure space, and let 1 ≤ p < ∞. Then the
collection of simple functions is dense in Lp(µ).

Proof:4 Let f ∈ Lp(µ), and suppose for now that f ≥ 0. For each n ∈ N, let

fn = max(n, 2−nb2nfc).

Then each fn is simple, fn ↑ f , and |fn − f |p → 0 pointwise. For each n, we have that

0 ≤ fn ≤ f =⇒ 0 ≤ f − fn ≤ f,

so that |f − fn|p ≤ |f |p for all n. As
∫
|f |p dµ < ∞, we can apply the Dominated

Convergence Theorem to see that

lim
n

∫
X

|fn − f |p dµ = 0,

that is, ‖fn − f‖p → 0.
The general case follows by taking positive and negative parts, and if K = C, by taking

real and imaginary parts first. �

Proposition: Let ([0, 1],R, µ) be the restriction of Lebesgue measure to [0, 1]. We often
write Lp([0, 1]) instead of Lp(µ). For 1 < p < ∞, we have that CK([0, 1]) is dense in
Lp([0, 1]).

Proof: As [0, 1] is a finite measure space, and each member of CK([0, 1]) is bounded, it is
easy to see that each f ∈ CK([0, 1]) is such that ‖f‖p < ∞. So it makes sense to regard
CK([0, 1]) as a subspace of Lp(µ). If CK([0, 1]) is not dense in Lp(µ), then we can find a
non-zero F ∈ Lp([0, 1])∗ with F (f) = 0 for each f ∈ CK([0, 1]). This was a corollary of
the Hahn-Banach theorem which we proved in Chapter 1.

So there exists a non-zero g ∈ Lq([0, 1]) with∫
[0,1]

fg dµ = 0 (f ∈ CK([0, 1])).

Let a < b in [0, 1]. By approximating χ(a,b) by a continuous function, we can show
that

∫
(a,b)

g dµ =
∫
gχ(a,b) dµ = 0.

4In lectures, we actually needed this argument in proving the above theorem that Lp(µ)∗ = Lq(µ).
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Suppose for now that K = R. Let A = {x ∈ [0, 1] : g(x) ≥ 0} ∈ R. By the definition
of the Lebesgue (outer) measure, for ε > 0, there exist sequences (an) and (bn) with
A ⊆

⋃
n(an, bn), and

∑
n(bn − an) ≤ µ(A) + ε.

For each N , consider
⋃N
n=1(an, bn). If some (ai, bi) overlaps (aj, bj), then we could just

consider the larger interval (min(ai, aj),max(bi, bj)). Formally by an induction argument,

we see that we can write
⋃N
n=1(an, bn) as a finite union of disjoint open intervals. By

linearity, it hence follows that for N ∈ N, if we set BN =
⋃N
n=1(an, bn), then∫

gχBN
dµ =

∫
gχ(a1,b1)∪···∪(aN ,bN ) dµ = 0.

Let B =
⋃
n(an, bn), so A ⊆ B and µ(B) ≤

∑
n(bn − an) ≤ µ(A) + ε. We then have

that ∣∣∣ ∫ gχBN
dµ−

∫
gχB dµ

∣∣∣ =
∣∣∣ ∫ gχB\(a1,b1)∪···∪(aN ,bN ) dµ

∣∣∣.
We now apply the Holder inequality to get

≤
(∫

χB\(a1,b1)∪···∪(aN ,bN ) dµ
)1/p

‖g‖q = µ(B \ (a1, b1) ∪ · · · ∪ (aN , bN))1/p‖g‖q

≤
( ∞∑
n=N+1

(bn − an)
)1/p

‖g‖q.

We can make this arbitrarily small by making N large. Hence we conclude that∫
gχB dµ = 0.

Then we apply Holder again to see that∣∣∣ ∫ gχA dµ
∣∣∣ =

∣∣∣ ∫ gχA dµ−
∫
gχB dµ

∣∣∣ =
∣∣∣ ∫ gχB\A dµ

∣∣∣ ≤ ‖g‖qµ(B \ A)1/p ≤ ‖g‖qε1/p.

As ε > 0 was arbitrary, we see that
∫
A
g dµ = 0. As g is positive on A, we conclude that

g = 0 almost everywhere on A.
A similar argument applied to the set {x ∈ [0, 1] : g(x) ≤ 0} allows us to conclude

that g = 0 almost everywhere. If K = C, then take real and imaginary parts. �

We now turn our attention to L1(µ), and its dual space. As a warning, for some of
what follows, it is necessary (and not just a simplification) to consider finite measure
spaces.5 You may also find different definitions in books, although for finite measure
spaces, these will boil down to being the same as our definitions.

Let (X,R, µ) be a measure space. A measurable function f : X → K is essentially
bounded if there exists K > 0 such that |f | ≤ K almost everywhere. We set

ess-supX |f | = inf
{
K > 0 : |f | ≤ K almost everywhere

}
.

Lemma: For an essentially bounded f : X → K, let K = ess-supX |f |. Then |f | ≤ K
almost everywhere.

Proof: By definition, if we set

An = {x ∈ X : |f(x)| > K + 1/n} (n ∈ N),

5Technically, everything will work for even σ-finite measures, but things do generally go wrong for arbitrary measures.
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then µ(An) = 0. Hence, if A =
⋃
nAn, then µ(A) = 0. If |f(x)| > K then for some n, we

have that |f(x)| > K + 1/n, so that x ∈ A. It follows that A = {x ∈ X : |f(x)| > K},
and so |f | ≤ K almost everywhere. �

We let L∞(µ) be the collection of all essentially bounded functions f : X → K. It is
easy to see that this is a vector space. We define ‖ · ‖∞ on L∞(µ) by setting

‖f‖∞ = ess-supX |f | (f ∈ `∞(µ)).

Proposition: ‖ · ‖∞ is a norm on L∞(µ)/ ∼.

Proof: If f = g almost everywhere and |f | ≤ K almost everywhere, then |g| ≤ K almost
everywhere. So it follows that ‖f‖∞ = ‖g‖∞. Hence ‖ · ‖∞ is well-defined on `∞(µ)/ ∼.
Notice that for f ∈ L∞(µ), ‖f‖∞ = 0 if and only if |f | = 0 almost everywhere. So
L∞(µ)/ ∼ is a vector space.

If f, g ∈ L∞(µ) and a ∈ K, then clearly ‖af‖∞ = |a|‖f‖∞. If |f | ≤ K almost
everywhere, and |g| ≤ L almost everywhere, then it is easy to see that |f + g| ≤ K + L.
It follows that ‖f + g‖∞ ≤ ‖f‖∞ + ‖g‖∞. �

As before, we write L∞(µ) for L∞(µ)/ ∼.

Theorem: For a measure space (X,R, µ), we have that L∞(µ) is a Banach space.

Proof: Again, it is enough to work in L∞(µ). Let (fn) be a Cauchy sequence in L∞(µ).
By moving to a subsequence if necessary, we may suppose that ‖fn − fn+1‖∞ ≤ 2−n for
each n. For each n, let

An = {x ∈ X : |fn − fn+1| > 2−n} ∈ R.

By the definition of ‖ · ‖∞, we see that each An is a null set. Hence A =
⋃
nAn is also

null. Define

f̃n(x) =

{
fn(x) : x 6∈ A,
0 : x ∈ A,

(n ∈ N).

Hence fn ∼ f̃n for each n. For N > 0 and x ∈ X, we see that∑
n≥N

|f̃n(x)− f̃n+1(x)| ≤
∑
n≥N

2−n = 21−N .

So the sum
∑

n f̃n(x)− f̃n+1(x) converges absolutely, and so converges in K, say to g(x).
However, notice that

f̃1(x)−
(N−1∑
n=1

f̃n(x)− f̃n+1(x)
)

= f̃N(x).

So we see that f̃N(x)→ f̃1(x)− g(x) for each x ∈ X. Define f(x) = f̃1(x)− g(x) for each
x ∈ X.

We skip showing that g (and hence f) is measurable (we have seen this proof before,
and you could just state it without proof in an exam).

For x ∈ X, we have that

|f(x)| = |f̃1(x)− g(x)| = lim
N
|f̃N(x)| = lim

N

∣∣∣f̃1(x)−
(N−1∑
n=1

f̃n(x)− f̃n+1(x)
)∣∣∣

≤ |f̃1(x)|+
∞∑
n=1

2−n = 1 + |f̃1(x)|.
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Hence |f | ≤ 1 + |f1| almost everywhere (as f̃1 ∼ f1) and so f ∈ L∞(µ).
Finally, for x ∈ X, we see that for r ≥ 1,

|f(x)− f̃r(x)| = lim
N
|f̃N(x)− f̃r(x)| = lim

N

∣∣∣N−1∑
n=r

f̃n(x)− f̃n+1(x)
∣∣∣ ≤ lim

N

N−1∑
n=r

2−n = 21−r.

So we see that ‖f− f̃r‖∞ → 0, and as fr ∼ f̃r for each r, we also have that ‖f−fr‖∞ → 0,
as required. �

Notice that we haven’t yet really used that our measure space is finite. The next proof
changes this.

Proposition: Let (X,R, µ) be a finite measure space. We can define a map Φ : L∞(µ)→
L1(µ)∗ by setting, for f ∈ L∞(µ), Φ(f) = F , where

F (g) =

∫
X

fg dµ (g ∈ L1(µ)).

Then Φ is a linear map, which is an isometry.

Proof: As in the analogous proof for Lp, we can check that Φ is well-defined on equiva-
lence classes. We note that if |f | ≤ K almost everywhere, then∣∣∣ ∫

X

fg dµ
∣∣∣ ≤ ∫

X

|fg| dµ ≤ K

∫
X

|g| dµ = K‖g‖1.

So the integral is defined, and it hence follows that |F (g)| ≤ ‖g‖1‖f‖∞. Clearly Φ is
linear, and we just showed that ‖Φ‖ ≤ 1.

Fix f ∈ L∞(µ). If ‖f‖∞ = 0 then clearly F = 0. Otherwise, let ε > 0 be such that
‖f‖∞ − ε > 0. Then we see that

A = {x ∈ X : |f(x)| ≥ ‖f‖∞ − ε}

is not null. Define g : X → K by

g(x) =

{
f(x)|f(x)|−1 : x ∈ A,
0 : x 6∈ A.

We have chosen this g because g(x)f(x) = χA(x)|f(x)| for all x ∈ X. Notice first that∫
X

|g| dµ =

∫
A

1 dµ = µ(A) <∞,

so g ∈ L1(µ) with ‖g‖1 = µ(A). Then

|F (g)| =
∣∣∣ ∫

X

fg dµ
∣∣∣ =

∫
A

|f | dµ ≥ µ(A)
(
‖f‖∞ − ε

)
= ‖g‖1

(
‖f‖∞ − ε

)
.

Hence ‖F‖ ≥ ‖f‖∞ − ε. As ε > 0 was arbitrary, we conclude that ‖F‖ = ‖f‖∞, so Φ is
an isometry. �

Theorem: With the notation of the previous proposition, Φ is surjective. That is, for
each F ∈ L1(µ)∗, there exists f ∈ L∞(µ) with

F (g) =

∫
X

fg dµ (g ∈ L1(µ)).
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Proof: We define λ : R → K by

λ(A) = F (χA).

This makes sense, as ‖χA‖1 = µ(A) < ∞. Then λ(∅) = 0. For (An) a sequence of
pairwise disjoint sets in R, let A =

⋃
nAn, so that

∞∑
k=1

µ(Ak) = µ(A) ≤ µ(X) <∞.

Hence the sum converges. We also see that∥∥χA − χA1∪···∪An

∥∥
1

=
∥∥χAn+1∪An+2∪···

∥∥
1

=

∫
χAn+1∪An+2∪··· dµ = µ(An+1 ∪ An+2 ∪ · · · ) =

∑
k>n

µ(Ak),

which tends to 0 as n tends to infinity. So as F is continuous,

λ(A) = F (χA) = lim
n
F (χA1∪···∪An) = lim

n
F (χA1 + · · ·+ χAn)

= lim
n

n∑
k=1

F (χAk
) =

∞∑
k=1

λ(Ak).

So λ is a signed or complex measure.
Clearly, if µ(A) = 0, then χA = 0 in L1(µ), and so λ(A) = 0. Hence λ << µ, so by

Radon-Nikodym, there exists f : X → K measurable with

F (χA) = λ(A) =

∫
A

f dµ =

∫
X

fχA dµ (A ∈ R).

Suppose that K = R. For K > 0 let A = {x ∈ X : f(x) > K} ∈ R. Then

Kµ(A) <

∫
A

f dµ = F (χA) ≤ ‖F‖‖χA‖1 = ‖F‖µ(A).

If A is not null, then K < ‖F‖. So if K = ‖F‖, then A must be null, and so we
conclude that f ≤ ‖F‖ almost everywhere. We can similarly show that f ≥ −‖F‖
almost everywhere. So f ∈ L∞(µ). If K = C, then we take real and imaginary parts (but
note that this won’t give a perfect estimate of ‖f‖∞, but it will show that f ∈ L∞(µ)).

As the linear span of indicator functions is the collection of simple functions, we
immediately see that if g ∈ L1(µ) is a simple function, then

F (g) =

∫
X

fg dµ = Φ(f)(g).

As we showed above that simple functions are dense in L1(µ), and both F and Φ(f) are
continuous, we conclude that F = Φ(f) on all of L1(µ). As Φ is an isometry, we also
have that ‖f‖∞ = ‖F‖. �

We now apply this result.

Proposition: We have that CK([0, 1]) is dense in L1([0, 1]).

Proof: This follows exactly as in the Lp([0, 1]) case, now that we know that L1([0, 1])∗ =
L∞([0, 1]). �

Finally, we recall that on the example sheet, we showed that CK([0, 1]) is not dense in
L∞([0, 1]).
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Linear Analysis IV: The dual of C(K)
Updated: 3rd December 2008

Let K be a compact (always assumed Hausdorff) topological space. The Borel σ-
algebra, B(K), on K, is the σ-algebra generated by the open sets in K (recall what this
means from Chapter 2). A member of B(K) is a Borel set.

Notice that if f : K → K is a continuous function, then clearly f is B(K)-measurable
(the inverse image of an open set will be open, and hence certainly Borel). So if µ :
B(K) → K is a finite signed or complex measure (for K = R or K = C respectively),
then f will be µ-integrable (as f is bounded) and so we can define

φµ : CK(K) → K, φµ(f) =

∫
K

f dµ (f ∈ CK(K)).

Clearly φµ is linear. Suppose for now that µ is positive, so that

|φµ(f)| ≤
∫

K

|f | dµ ≤ ‖f‖∞µ(K) (f ∈ CK(K)).

So φµ ∈ CK(K)∗ with ‖φµ‖ ≤ µ(K).
The aim of this chapter is to show that all of CK(K)∗ arises in this way.
A measure µ : B(K) → [0,∞) is regular if for each A ∈ B(K), we have

µ(A) = sup
{
µ(E) : E ⊆ A and E is compact

}
= inf

{
µ(U) : A ⊆ U and U is open

}
.

As we are working only with compact spaces, for us, “compact” is the same as “closed”.
A signed measure ν is regular if ν+ and ν− are signed measures. A complex measure is
regular if its real and imaginary parts are regular.

Regular measures somehow interact “well” with the underlying topology on K.
We let MR(K) and MC(K) be the collection of all finite, regular, signed or complex

(respectively) measures on B(K). These are real or complex, respectively, vector spaces
for the obvious definition of addition and scalar multiplication.

For µ ∈ MK(K) we define

‖µ‖ = sup
{ ∞∑

n=1

|µ(An)|
}

,

where the supremum is taken over all sequences (An) of pairwise disjoint members of
B(K), with

⋃
n An = K. Such (An) are called partitions.

Proposition: ‖ · ‖ is a norm on MK(K).

Proof: If µ = 0 then clearly ‖µ‖ = 0. If ‖µ‖ = 0, then for A ∈ B(K), let A1 = A, A2 =
K \ A and A3 = A4 = · · · = ∅. Then (An) is a partition, and so

0 =
∞∑

n=1

|µ(An)| = |µ(A)|+ |µ(K \ A)|.

Hence µ(A) = 0, and so as A was arbitrary, we have that µ = 0.
Clearly ‖aµ‖ = |a|‖µ‖ for a ∈ K and µ ∈ MK(K).
For µ, λ ∈ MK(K) and a partition (An), we have that∑

n

|(µ + λ)(An)| =
∑

n

|µ(An) + λ(An)| ≤
∑

n

|µ(An)|+ |λ(An)| ≤ ‖µ‖+ ‖λ‖.

1



As (An) was arbitrary, we see that ‖µ + λ‖ ≤ ‖µ‖+ ‖λ‖. �

To get a handle on the “regular” condition, we need to know a little more about
CK(K).

Theorem (Urysohn’s Lemma): Let K be a compact space, and let E, F be closed
subsets of K with E ∩ F = ∅. There exists f : K → [0, 1] continuous with f(x) = 1 for
x ∈ E and f(x) = 0 for x ∈ F (written f(E) = {1} and f(F ) = {0}).
Proof: See a book on (point set) topology. �

Lemma: Let µ : B(K) → [0,∞) be a regular measure. Then for U ⊆ K open, we have

µ(U) = sup
{∫

K

f dµ : f ∈ CR(K), 0 ≤ f ≤ χU

}
.

Proof: If 0 ≤ f ≤ χU , then

0 =

∫
K

0 dµ ≤
∫

K

f dµ ≤
∫

K

χU dµ = µ(U).

Conversely, let F = K \ U , a closed set. Let E ⊆ U be closed. By Urysohn, there exists
f : K → [0, 1] continuous with f(E) = {1} and f(F ) = {0}. So χE ≤ f ≤ χU , and hence

µ(E) ≤
∫

K

f dµ ≤ µ(U).

As µ is regular,

µ(U) = sup
{
µ(E) : E ⊆ U closed

}
≤ sup

{∫
K

f dµ : 0 ≤ f ≤ χU

}
≤ µ(U).

Hence we have equality throughout. �

Lemma: Let µ ∈ MR(K). Then

‖µ‖ = ‖φµ‖ := sup
{∣∣∣ ∫

K

f dµ
∣∣∣ : f ∈ CR(K), ‖f‖∞ ≤ 1

}
.

Proof: Let (A, B) be a Hahn-Decomposition for µ. For f ∈ CR(K) with ‖f‖∞ ≤ 1, we
have that∣∣∣ ∫

K

f dµ
∣∣∣ ≤ ∣∣∣ ∫

A

f dµ
∣∣∣ +

∣∣∣ ∫
B

f dµ
∣∣∣ =

∣∣∣ ∫
A

f dµ+

∣∣∣ +
∣∣∣ ∫

B

f dµ−

∣∣∣
≤

∫
A

|f | dµ+ +

∫
B

|f | dµ− ≤ ‖f‖∞
(
µ(A)− µ(B)

)
≤ ‖f‖∞‖µ‖,

using the fact that µ(B) ≤ 0 and that (A, B) is a partition of K.
Conversely, as µ is regular, for ε > 0, there exist closed sets E and F with E ⊆ A,

F ⊆ B, and with µ+(E) > µ+(A)− ε and µ−(F ) > µ−(B)− ε. By Urysohn, there exists
f : K → [0, 1] continuous with f(E) = {1} and f(F ) = {0}. Let g = 2f − 1, so g is
continuous, g takes values in [−1, 1], and g(E) = {1}, g(F ) = {−1}. Then∫

K

g dµ =

∫
E

1 dµ +

∫
F

−1 dµ +

∫
K\(E∪F )

g dµ

= µ(E)− µ(F ) +

∫
A\E

g dµ +

∫
B\F

g dµ

2



As E ⊆ A, we have µ(E) = µ+(E), and as F ⊆ B, we have −µ(F ) = µ−(F ). So∫
K

g dµ > µ+(A)− ε + µ−(B)− ε +

∫
A\E

g dµ +

∫
B\F

g dµ

≥ |µ(A)|+ |µ(B)| − 2ε− |µ(A \ E)| − |µ(B \ F )|
≥ |µ(A)|+ |µ(B)| − 4ε.

As ε > 0 was arbitrary, we see that ‖φµ‖ ≥ |µ(A)|+ |µ(B)|.
Finally, let (An) be a partition of K. Then∑

n

|µ(An)| =
∑

n

|µ(An ∩ A) + µ(An ∩B)| ≤
∑

n

|µ(An ∩ A)|+ |µ(An ∩B)|

=
∑

n

µ(An ∩ A)− µ(An ∩B) = µ(A)− µ(B) = |µ(A)|+ |µ(B)|.

So ‖µ‖ = |µ(A)|+ |µ(B)|, finishing the proof. �

We shall deal with the complex case later.
The following is the key point of this chapter.

Theorem (Riesz Representation): Let K be a compact (Hausdorff) space, and let
λ ∈ CK(K)∗. There exists a unique µ ∈ MK(K) such that

λ(f) =

∫
K

f dµ (f ∈ CK(K)).

Furthermore, ‖λ‖ = ‖µ‖.
Proof: Let us show uniqueness. If µ1, µ2 ∈ MK(K) both induce λ then µ = µ1 − µ2

induces the zero functional on CK(K). So for f ∈ CR(K),

0 = <
∫

K

f dµ =

∫
K

f dµr

= =
∫

K

f dµ =

∫
K

f dµi.

So µr and µi both induce the zero functional on CR(K). By the previous lemma, this
means that ‖µr‖ = ‖µi‖ = 0, showing that µ = µr + iµi = 0, as required.

Existence is harder, and we shall only sketch it here. Firstly, we shall suppose that
K = R and that λ is positive, that is, λ(f) ≥ 0 if f ∈ CR(K) with f ≥ 0. We now need a
technical definition. For f ∈ CR(K), we define the support of f , written supp(f), to be
the closure of the set {x ∈ K : f(x) 6= 0}.

Motivated by the above lemmas, for U ⊆ K open, we define

µ∗(U) = sup
{

λ(f) : f ∈ CR(K), 0 ≤ f ≤ χU , supp(f) ⊆ U
}

.

For A ⊆ K general, we define

µ∗(A) = inf
{
µ∗(U) : U ⊆ K is open, A ⊆ U

}
.

We then proceed to show that µ∗ is an outer measure: this requires a technical topo-
logical lemma, where we make use of the support condition in the definition. We then
check that every open set in µ∗-measurable. As B(K) is generated by open sets, and
the collection of µ∗-measurable sets is a σ-algebra, it follows that every member of B(K)
is µ∗-measurable. By using results from Chapter 2, it follows that if we let µ be the
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restriction of µ∗ to B(K), then µ is a measure on B(K). We then check that this measure
is regular. Finally, we show that µ does induce the functional λ. Arguably, it is this last
step which is the hardest (or least natural to prove).

If λ is not positive, then for f ∈ CR(K) with f ≥ 0, we define

λ+(f) = sup
{
λ(g) : g ∈ CR(K), 0 ≤ g ≤ f

}
≥ 0,

λ−(f) = λ+(f)− λ(f) = sup
{
λ(g)− λ(f) : g ∈ CR(K), 0 ≤ g ≤ f

}
= sup

{
λ(h) : h ∈ CR(K), 0 ≤ h + f ≤ f

}
= sup

{
λ(h) : h ∈ CR(K),−f ≤ h ≤ 0

}
≥ 0.

We can check that

λ+(tf) = tλ+(f), λ−(tf) = tλ−(f) (t ≥ 0, f ≥ 0).

For f1, f2 ≥ 0, we have that

λ+(f1 + f2) = sup
{
λ(g) : 0 ≤ g ≤ f1 + f2

}
= sup

{
λ(g1 + g2) : 0 ≤ g1 + g2 ≤ f1 + f2

}
≥ sup

{
λ(g1) + λ(g2) : 0 ≤ g1 ≤ f1, 0 ≤ g2 ≤ f1 + f2

}
= λ+(f1) + λ+(f2).

Conversely, if 0 ≤ g ≤ f1 + f2, then set g1 = min(g, f1), so 0 ≤ g1 ≤ f1. Let g2 = g − g1

so g1 ≤ g implies that 0 ≤ g2. For x ∈ K, if g1(x) = g(x) then g2(x) = 0 ≤ f2(x); if
g1(x) = f1(x) then f1(x) ≤ g(x) and so g2(x) = g(x) − f1(x) ≤ f2(x). So 0 ≤ g2 ≤ f2,
and g = g1 + g2. So in the above displayed equation, we really have equality throughout,
and so λ+(f1 + f2) = λ+(f1) + λ+(f2). As λ is additive, it is now immediate that
λ−(f1 + f2) = λ−(f1) + λ−(f2)

For f ∈ CR(K) we define

λ+(f) = λ+(f+)− λ+(f−), λ−(f) = λ−(f+)− λ−(f−).

As when we were dealing with integration, we can check that λ+ and λ− become linear
functionals; it is easy to see that they are bounded. As λ+ and λ− are positive functionals,
we can find µ+ and µ− positive measures in MR(K) such that

λ+(f) =

∫
K

f dµ+, λ−(f) =

∫
K

f dµ− (f ∈ CR(K)).

Then if µ = µ+ − µ−, we see that

λ(f) = λ+(f)− λ−(f) =

∫
K

f dµ (f ∈ CR(K)).

Finally, if K = C, then we use the same “complexification” trick from the proof of the
Hahn-Banach theorem. Namely, let λ ∈ CC(K)∗, and define λr, λi ∈ CR(K)∗ by

λr(f) = <λ(f), λi(f) = =λ(f) (f ∈ CR(K)).

These are both clearly R-linear. Notice also that |λr(f)| = |<λ(f)| ≤ |λ(f)| ≤ ‖λ‖‖f‖∞,
so λr is bounded; similarly λi.

By the real version of the Riesz Representation Theorem, there exist signed measures
µr and µi such that

<λ(f) = λr(f) =

∫
K

f dµr, =λ(f) = λi(f) =

∫
K

f dµi (f ∈ CR(K)).
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Then let µ = µr + iµi, so for f ∈ CC(K),∫
K

f dµ =

∫
K

f dµr + i

∫
K

f dµi

=

∫
K

<(f) dµr + i

∫
K

=(f) dµr + i

∫
K

<(f) dµi −
∫

K

=(f) dµi

= λr(<(f)) + iλr(=(f)) + iλi(<(f))− λi(=(f))

= <λ(<(f)) + i<λ(=(f)) + i=λ(<(f))−=λ(=(f))

= λ(<(f) + i=(f)) = λ(f),

as required. �

Notice that we have not currently proved that ‖µ‖ = ‖λ‖ in the case K = C. See a
textbook for this.
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Linear Analysis V: Fourier Theory
Updated: 9th December 2009

We shall just develop a tiny bit of Fourier Theory, which is a vast and growing theory.
We shall concentrate of the “pure” side the theory. Fourier Theory underpins much of
modern signal processing theory: every time you listen to a CD, use a MP3 player, or
watch a DVD, you are making use of the Fourier Transform. However, for such “applied”
applications, the mathematical formulation usually uses a finite field, for which you do
not need analysis, never mind measure theory!

I can strongly recommend the book “Fourier Analysis” by T.W. Körner.
We identify T with the unit circle, which is the interval [0, 1], with the points 0 and 1

identified. Hence we identify CK(T) with the continuous functions f : [0, 1] → K such that
f(0) = f(1). Equivalently, we identify CK(T) with the continuous functions f : R → K
such that f(t + n) = f(t) for t ∈ R and n ∈ Z (so T = R/Z).

There are some “obvious” functions in CC(T),

n̂(t) = e2πint = exp(2πint) (n ∈ Z, t ∈ T).

Fourier theory is, basically, interested in decomposition members of CC(T) into linear
combinations of the functions {n̂ : n ∈ Z}. As

n̂(t) = cos(2πnt) + i sin(2πnt),

there are obvious ways to handle real-valued functions. We shall stick to the case K = C.
The Fourier Transform is the map F : L1([0, 1]) → `∞(Z), defined by

F(f) =
( ∫ 1

0

f(t)e2πint dµ(t)
)

n∈Z
.

Here `∞(Z) is just the space of bounded families (an)n∈Z ⊆ C with the norm ‖(an)‖ =
supn |an|. That is, we just replace N by Z. Similarly, we can form `p(Z). You need to
decide how to add up “sequences” indexed by Z, but there is no problem, as we only care
about absolute convergence.

As the set {0, 1} has zero measure, it is trivial to identify L1([0, 1]) with L1(T). I shall
continue to swap between these two Banach spaces.

We have the obvious estimate∣∣∣ ∫ 1

0

f(t)e2πint dµ(t)
∣∣∣ ≤ ∫ 1

0

|f | dµ = ‖f‖1,

which shows that F does map L1([0, 1]) into `∞(Z). In fact, more is true.

Theorem (Riemann-Lebesgue Lemma): F maps into the closed subspace c0(Z) of
`∞(Z).

Proof: Let 0 ≤ a < b ≤ 1, let A = (a, b), so that χA ∈ L1(T). Then we calculate:

lim
|n|→∞

∣∣∣ ∫
T
χAn̂ dµ

∣∣∣ = lim
|n|→∞

∣∣∣ ∫ b

a

e2πint dµ
∣∣∣ = lim

|n|→∞

∣∣∣[e2πint

2πin

]b

t=a
dµ

∣∣∣
= lim

|n|→∞

|e2πinb − e2πina|
2π|n|

≤ lim
|n|→∞

1

π|n|
= 0.

So F(χA) ∈ c0(Z).
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We now use the fact that Lebesgue measure is regular. If A ⊆ [0, 1] is Lebesgue-
measurable, then for ε > 0 there exists K ⊆ A closed, and A ⊆ U open, with µ(U\K) < ε.

For each k ∈ K, we can find a < k < b such that Vk = (a, b) ⊆ U . Thus

K ⊆
⋃
k∈V

Vk ⊆ U,

so as K is compact, there exists k1, · · · , kn such that K ⊆ Vk1 ∪ · · · ∪ Vkn . Let V =
Vk1 ∪ · · · ∪ Vkn , so K ⊆ V ⊆ U . If any of the sets Vki

overlap, then we can combine them
and still have an open interval. So we can write V as the finite union of disjoint open
intervals; as F is linear, it follows that F(χV ) ∈ c0(Z). Then notice that

‖χA − χV ‖1 =

∫
[0,1]

|χA − χV | dµ =

∫
[0,1]

χV \A + χA\V dµ = µ(V \ A) + µ(A \ V ) < ε.

Hence ‖F(χA)−F(χV )‖ < ε, as ‖F‖ ≤ 1. As ε > 0 was arbitrary, and c0(Z) is closed, we
conclude that F(χA) ∈ c0(Z). (This follows as we can approximate F(χA) by something
(namely F(χV )) in c0(Z)).

As c0(Z) is a subspace and F is linear, it follows that F(f) ∈ c0(Z) for any simple
function f ∈ L1([0, 1]). In Chapter 3, we showed that simple functions are dense in
L1([0, 1]). It follows, again by approximation, that F does map into c0(Z). �

Another way to prove this would be to use a uniform continutity argument to show that
if f ∈ CC(T), then F(f) ∈ c0(Z), and then use that CC(T) is dense1 in L1([0, 1]) = L1(T).

The inverse Fourier Transform2 is the map F−1 : `1(Z) → CC(T) defined by

F−1((an)n∈Z) =
( ∑

n∈Z

ane
−2πint

)
t∈T

.

Notice that the sum is absolutely convergent in the Banach space CC(T), and so certainly
converges.

Lemma: If a = (an)n∈Z ∈ `1(Z), then F(F−1(a)) = (an), where we treat (an) as a
sequence in c0(Z). In particular, F−1 is injective.

Proof: Notice that for n, m ∈ Z,∫
[0,1]

e2πinte−2πimt dµ(t) =

∫ 1

0

e2πit(n−m) dt = 1 if n = m,

otherwise, =
[ e2πit(n−m)

2πi(n−m)

]1

t=0
= 0.

Let fn ∈ CC(T) be defined by

fn(t) =
n∑

k=−n

ake
−2πikt (t ∈ T).

Then let f = F−1(a), so that

‖f − fn‖∞ = sup
t∈T

∣∣∣ ∑
|k|>n

ake
−2πikt

∣∣∣ ≤ ∑
|k|>n

|ak| → 0,

1We haven’t proved this, but it’s on the example sheet, and isn’t very hard.
2Notice that, in the set theoretic sense, F and F−1 are not inverses to each other, as they have different domains and

codomains. We clarify this later.
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as n →∞. As F is bounded,

F(f) = lim
n
F(fn) = lim

n

( ∫
[0,1]

n∑
k=−n

ake
−2πikte2πimt dµ(t)

)
m∈Z

= lim
n

( n∑
k=−n

ak

∫ 1

0

e−2πikte2πimt dt
)

m∈Z
= (am)m∈Z.

As F−1 has a left inverse, it must be injective. �
So the “inverse Fourier Transform” is, in a loose sense, the inverse to the “Fourier

Transform”, as long as we’re working in the correct spaces.
Classically, there was a lot of interest in the pointwise limit convergence of Fourier

Series. Namely, if f : T → C is continuous, if we let F(f) = (f̂(n))n∈Z ∈ c0(Z), and if we
define

Sn(f, t) =
∑
|k|≤n

f̂(k)e−2πikt (n ∈ N, t ∈ T),

then when is it true that limn Sn(f, t) = f(t)?

Claim: There exists a continuous function f : T → C such that lim supn Sn(f, 0) = ∞.

So pointwise limits can be badly behaved. Remarkably, if we “tweak” the convergence
method, then we can always recover f .

Theorem (Fejer’s Theorem): Let f : T → C be a continuous function, and for n ∈ N,
define

σn(t) =
1

n + 1

n∑
k=0

Sk(f, t) =
n∑

k=−n

n + 1− |k|
n + 1

f̂(k)e−2πikt (t ∈ T).

Then σn → f in CC(T) (that is, uniform convergence).

Proof: We calculate:

σn(t) =
n∑

k=−n

n + 1− |k|
n + 1

f̂(k)e−2πikt

=
n∑

k=−n

n + 1− |k|
n + 1

∫
[0,1]

f(s)e2πiks dµ(s)e−2πikt

=

∫
[0,1]

f(s)
n∑

k=−n

n + 1− |k|
n + 1

e2πik(s−t) dµ(s)

=

∫
[0,1]

f(r + t)
n∑

k=−n

n + 1− |k|
n + 1

e2πikr dµ(r).

Here we interpret f and e2πik· as periodic functions, so we don’t need to change the
interval which we integrate over. So if we define

Kn(r) =
n∑

k=−n

n + 1− |k|
n + 1

e2πikr (r ∈ T),

then studying Kn is obviously a good idea!
We first show by direct calculation that

Kn(0) = n + 1, Kn(s) =
1

n + 1

(sin(πs(n + 1))

sin(πs)

)2

(s 6= 0).

Once we have this desciption for Kn, it is easy to show:
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1. Kn ≥ 0 for all n;

2. For any δ > 0, on the interval (δ, 1− δ), we have that Kn → 0 uniformly;

3.
∫

[0,1]
Kn dµ = 1 for all n.

We can now finish the proof. We see that, by (3),

|σn(t)− f(t)| =
∣∣∣ ∫

[0,1]

(
f(r + t)− f(t)

)
Kn(r) dµ(r)

∣∣∣
Motivated by (2), and using (1), this is

≤
∫

[0,δ]

|f(r + t)− f(t)|Kn(r) dµ(r) +

∫
[1−δ,1]

|f(r + t)− f(t)|Kn(r) dµ(r)

+

∫
(δ,1−δ)

|f(r + t)− f(t)|Kn(r) dµ(r).

As f is uniformly continuous, for ε > 0, we can find δ > 0 such that |f(r + t)− f(t)| < ε
if |r| < δ. As f is periodic, this also holds if |1− r| < δ. By (2), if n is sufficiently large,
then supδ<r<1−δ |Kn(r)| < ε. So we find that

≤ ε

∫
[0,δ]

Kn(r) dµ(r) + ε

∫
[1−δ,1]

Kn(r) dµ(r) + 2‖f‖∞ε < 2ε(1 + ‖f‖∞),

using (3) again. So ‖σn − f‖∞ → 0, as required. �

Corollary: If we restrict F to CC(T), then F is injective. In particular, if f ∈ CC(T) is
such that F(f) ∈ `1(Z), then F−1F(f) = f .

Proof: If f, g ∈ CC(T) are such that F(f) = F(g), then let h = f − g, so F(h) = 0. By
Fejer’s Theorem, we can reconstruct h from F(h), but as F(h) = 0, we reconstruct the 0
function, so h = 0. So f = g.

If F(f) = a ∈ `1(Z), then F−1(a) is defined, and equals, say, g ∈ CC(T). Then by a
previous result, F(g) = FF−1(a) = a = F(f). So F(f) = F(g), so f = g. �

The following is slightly tricky, but is a nice application of some of the ideas which we
have seen in the course.

Corollary: F : L1([0, 1]) → c0(Z) is injective.

Proof: We exploit “duality”. Let f ∈ L1([0, 1]) and let a = (an) ∈ `1(Z), so that∫
[0,1]

f F−1(a) dµ =

∫
[0,1]

f(s)
∑
n∈Z

ane
−2πins dµ(s) =

∑
n∈Z

an

∫
[0,1]

f(s)e−2πins dµ(s).

As (an) ∈ `1(Z), the sum is absolutely convergent, and so we can swap the sum and
integrals (this does not need Monotone Convergence, or something similar: it’s a simple
estimate). Thus ∫

[0,1]

f F−1(a) dµ =
∑
n∈Z

anF(f)(−n).

Suppose now that F(f) = 0. So
∫

fF−1(a) dµ = 0 for any a ∈ `1(Z).
Let λ be the measure fµ, defined on the Borel sigma algebra B([0, 1]). That is,

λ(A) =

∫
[0,1]

χAf dµ (A ∈ B([0, 1])).
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We know that the Lebesgue measurable sets contain the open sets, and hence contain
all the Borel sets. So this integral is defined, as χAf is measurable for µ, and integrable,
as f ∈ L1(µ). A Dominated Convergence theorem argument shows that λ is countably
additive, and so is a measure. It is actually a regular measure.3 So λ induces a member
of CC([0, 1])∗, say φλ, given by

φλ(g) =

∫
[0,1]

g dλ =

∫
[0,1]

gf dµ.

The final equality needs proof, but isn’t very hard (approximate by simple functions,
then apply a convergence theorem!)

We have proved that if g is in the image of F−1, then φλ(g) = 0. For arbitrary
g ∈ CC(T), form σn as in Fejer’s Theorem, so that σn → g in CC(T). Each σn is a finite
sum of functions of the form e2πint, and so σn is in the image of F−1. Thus

φλ(g) = lim
n

φλ(σn) = 0.

As this is true for all g ∈ CC(T), it follows that φλ = 0. By Riesz Representation, φλ is
induced by a unique finite regular Borel measure. As λ is regular, this measure must be
λ. But as φλ = 0, it follows that λ = 0. But this can only happen if f = 0. So F is
injective. �

We now turn our attention to the Banach space L2(T).

Lemma: Let (an) ∈ `2(Z) be such that an = 0 for all but finitely many n. Then
‖F−1((an))‖2 = ‖(an)‖2.

Proof: Notice that under the conditions on (an), we have that (an) ∈ `1(Z), and so
F−1((an)) is defined. Then we calculate

‖F−1((an))‖2
2 =

∫
[0,1]

∣∣∣ ∑
n

ane
−2πint

∣∣∣2 dµ(t)

=

∫
[0,1]

( ∑
n

ane
−2πint

)( ∑
m

ame2πimt
)

dµ(t)

=
∑
n,m

anam

∫ 1

0

e2πi(m−n)t dµ(t) =
∑

n

anan = ‖(an)‖2
2.

We can do the manipulations, as all the sums are really just finite sums. �

We now prove an abstract result.

Proposition: Let E and F be Banach spaces, let X ⊆ E be a dense subspace, and let
T : X → F be an isometry which has dense range. Then T extends uniquely to an
isometric isomorphism T̃ : E → F .

Proof: Let x ∈ E, so we can find a sequence (xn) in X with xn → x. Then (xn) is
Cauchy, but as T is an isometry,

‖T (xn)− T (xm)‖ = ‖T (xn − xm)‖ = ‖xn − xm‖,

and so we see that (T (xn)) is a Cauchy sequence in F . As F is Banach, there exists a
limit point, say T̃ (x). So T (xn) → T̃ (x).

3Strictly non-examinable! Let A ∈ B([0, 1]). As µ is regular, for each n, we can find an open set Un and a closed set
Kn with Kn ⊆ A ⊆ Un with µ(Un \ Kn) < 1/n. For each n, let Vn = U1 ∩ · · · ∩ Un and Cn = K1 ∪ · · · ∪ Kn, so Vn is
open, Cn is closed, Cn ⊆ A ⊆ Vn, and still µ(Vn \ Cn) < 1/n. Now V1 ⊇ V2 ⊇ V3 ⊇ · · · and C1 ⊆ C2 ⊆ C3 ⊆ · · · , so also
V1 \ C1 ⊇ V2 \ C2 ⊇ · · · . Then a simple calculation shows that χVn\Cn

→ 0 almost everywhere. So also |f |χVn\Cn
→ 0

almost everywhere. As this sequence is dominated by |f |, by Dominated Convergence,
R
|f |χVn\Cn

→ 0. This is enough
to show that |λ| is regular, which shows that λ itself is regular: see the final example sheet.
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If we pick another sequence (yn) with yn → x, then (xn − yn) converges to x− x = 0,
and so also T (xn)− T (yn) → 0, so T (yn) → T̃ (x). So T̃ : E → F is well-defined.

If xn → x and yn → y, for t ∈ K, we have that xn + tyn → x + ty, and so

T̃ (x + ty) = lim
n

T (xn + tyn) = lim
n

T (xn) + lim
n

tT (yn) = T̃ (x) + tT̃ (y).

So T̃ is linear. Also ‖T̃ (x)‖ = limn ‖T (xn)‖ = limn ‖xn‖ = ‖x‖, so we conclude that T̃ is
an isometry.

If S is another continuous extension of T , then

S(x) = lim
n

S(xn) = lim
n

T (xn) = T̃ (x),

so S = T̃ . Hence T̃ is unique.
Finally, we show that T̃ is a surjection (it is automatically an injection, as it is an

isometry). Let y ∈ F , so as T (X) is dense in Y by hypothesis, we can find (xn) in X
with T (xn) → y. Then (T (xn)) is Cauchy in Y , so as T is an isometry, (xn) is Cauchy in
X, and hence converges to x ∈ E, say. Then T̃ (x) = limn T (xn) = y, so T̃ is surjective.�

Proposition: We have that F−1 extends to an isometry `2(Z) → L2([0, 1]).

Proof: We have that F−1 is an isometry on a dense subspace of `2(Z), namely the space
of finite sequences. Its image is just the linear span of {n̂ : n ∈ Z}. By Fejer, this space
is dense in CC(T), which is dense in L2(T). These norms are different, so let’s be careful.
Given f ∈ L2([0, 1]) and ε > 0, we can find4 g ∈ CC(T) with ‖f − g‖2 < ε. Then we can
find σ, a finite combination of {n̂ : n ∈ Z}, with ‖g−σ‖∞ < ε. A simple calculation (use
Holder!) shows that ‖g − σ‖2 < ε. So ‖f − σ‖2 < 2ε.

So all the conditions of the previous result are satisfied, and so we conclude that F−1

has a unique extension to an isometric isomorphism `2(Z) → L2([0, 1]). �

Proposition: F , as defined by the formula at the start of this chapter, actually makes
sense as a map F : L2([0, 1]) → `∞(Z). Then really F is an isometric isomorphism
L2([0, 1]) → `2(Z), which is the inverse of (the extension of) F−1.

Proof: Notice that actually L2([0, 1]) ⊆ L1([0, 1]), for if f ∈ L2([0, 1]), then by Holder,∫
[0,1]

|f | dµ ≤
( ∫

[0,1]

|f |2 dµ
)1/2( ∫

[0,1]

1 dµ
)1/2

= ‖f‖2.

So F is already defined upon L2([0, 1]).
Again, let X be the linear span of the functions (e2πint)t∈[0,1], for n ∈ Z. In the

previous proof, we showed that X is a dense subspace of L2([0, 1]). For f ∈ X we have
that f = F(a) for some sequence a = (an) ∈ `2(Z) which is zero except in finitely many
places. The lemma above shows that

‖a‖2 = ‖f‖2 =⇒ ‖F(f)‖2 = ‖a‖2 = ‖f‖2.

So F is an isometry X → `2(Z), with image the finite sequences (which is a dense
subspace of `2(Z). So, again by our abstract result, F extends uniquely to an isometric
isomorphism. As this extension is unique, and F is already defined on all of L2([0, 1]),
then extension must just be F . �

Finally, turning attention back to pointwise convergence, we have the following theo-
rems, stated without proof.

4For all the details, see the example sheet

6



Theorem (Kolmogorov): There exists a Lebesgue integrable function f : T → C such
that

lim sup
n

∣∣Sn(f, t)
∣∣ = ∞

for all t ∈ T.

So Sn(f, t) can fail, spectacularly, to converge. However, if f is continuous, remarkably,
we have the following:

Theorem (Carleson): Let f ∈ CC(T). Then there exists a null set E ⊆ T such that, if
t 6∈ E, then Sn(f, t) → f(t).

Proof: Hard!5

An easier argument establishes the converse.

Theorem (Kahane and Katznelson): If E ⊆ T is a null set, then there exists f ∈
CC(T) with lim supn |Sn(f, t)| = ∞ for t ∈ E.

5To the extent that this is widely considered to be the hardest result is Fourier analysis: I don’t know enough to judge
if this is fair or not!
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