Reading course: Banach spaces and algebras (MATH5002)

Here are some further exercises, loosely collected under the same headings I have used elsewhere. Some questions might be harder than I expect!

1 Revision of normed spaces; dual spaces; Hahn-Banach

2 Weak and weak*-topologies; second duals; geometric forms of Hahn-Banach; Krein-Milman

- Let E be a normed space, and let (x_n) be a sequence in E which converges weakly to x. Show that we can find a sequence (y_n) in E, which converges to x in norm, and with y_n in the convex hull of $\{x_1, x_2, \dots, x_n\}$, for each n.
- Let E be an infinite dimensional normed space. Show that the weak closure of the unit sphere $S = \{x \in E : ||x|| = 1\}$ is precisely the closed unit ball of E.
- Give [0, 1] Lebesgue measure (though this question works for any "reasonable" measure space). Let $1 . Show that the extreme points of the closed unit ball of <math>L^p([0, 1])$ is the unit sphere, $\{f \in L^p([0, 1]) : ||f||_p = 1\}$.
- What are the extreme points of the closed unit ball of $L^1([0,1])$?
- What are the extreme points of the closed unit ball of ℓ^1 ?

3 Baire category, Open Mapping, Closed Graph, Uniform boundedness theorems

- Let *E* be a vector space, and let $\|\cdot\|_1$ and $\|\cdot\|_2$ be norms on *E* such that *E* is Banach for either norm. Let τ_1 and τ_2 be the corresponding topologies on *E*, and suppose that $\tau_1 \subseteq \tau_2$ (that is, if a subset of *E* is open for $\|\cdot\|_1$ then it's open for $\|\cdot\|_2$). Show that $\tau_1 = \tau_2$.
- Let $1 \le p \le \infty$. Let $(a_{i,j})$ be an infinite matrix, and suppose that $(Ax)_i = \sum_j a_{i,j} x_j$ is an element of ℓ^p , whenever $x = (x_j) \in \ell^p$. Show that A defines a bounded linear map on ℓ^p .
- Let E be a normed space, let (f_n) be a sequence in E^* which converges weak^{*} to $f \in E^*$. Show that there is K > 0 such that $||f_n|| \le K$ for all n.

4 Basics of Banach algebras; constructions; group of units

• Let A be an algebra. Suppose that there are $a \in A$ and a sequence (b_n) in A, each b_n is non-zero, such that $ab_n = nb_n$ for all n. Show that there is no algebra norm on A.

Use this result to show that $C(\mathbb{R})$, the algebra of all continuous functions on \mathbb{R} , cannot be given an algebra norm.

• Let A be a commutative Banach algebra such that for each $a \in A$, there is $n \in \mathbb{N}$ with $a^n = 0$. Prove that there is $N \in \mathbb{N}$ with $a^N = 0$ for all $a \in A$. *Hint:* Baire Category.

Can you prove the same for a non-commutative Banach algebra?

5 Spectrum; Characters; Gelfand Theory

• Let A be a Banach algebra, and let $a, b \in A$. Show that $\operatorname{Sp}(ab) \setminus \{0\} = \operatorname{Sp}(ba) \setminus \{0\}$ (this is probably in the book- check that you understand the proof!)

Can it happen that $\operatorname{Sp}(ab) \neq \operatorname{Sp}(ba)$?

Give a proof (by contradiction!) that ab - ba cannot be a multiple of 1 (assuming that A is unital).

- Find examples of 2×2 complex matrices A, B such that $\rho(AB) > \rho(A)\rho(B)$ and $\rho(A + B) > \rho(A) + \rho(B)$. *Hint:* Remember that Sp(A) is just the collection of eigenvalues of A.
- Let A be a Banach algebra, and suppose that for C > 0, we have that $||a|| \leq C\rho(a)$ for all $a \in A$. Show that A is commutative.

Hint: Let $a, b \in A$, and define $f(z) = e^{-za}be^{za}$, for $z \in \mathbb{C}$. Prove that f is analytic and constant. Deduce the result from this.

6 Commutative Banach algebras; holomorphic functional calculus

- Let A be a Banach algebra, let $a \in A$, and suppose that 0 and ∞ belongs to the same unbounded component of $\mathbb{C} \setminus \text{Sp}(a)$. Show that:
 - 1. $a = e^b$ for some $b \in A$;
 - 2. for any $n \in \mathbb{N}$ there is $c \in A$ with $c^n = a$.
 - 3. for $\epsilon > 0$, we can find a complex polynomial P such that $||a^{-1} P(a)|| < \epsilon$.

Show that if M is an $n \times n$ invertible matrix, then $M = e^{L}$ for some matrix L.

7 C*-algebras; continuous functional calculus

- 1. Let A be a C*-algebra, and let $a \in A$. Supposing that a is normal, show that $\text{Sp}(a^*a) = \{|\lambda|^2 : \lambda \in \text{Sp}(a)\}$. Is this always true if a is not normal?
- 2. Let X be a compact Hausdorff space, let A = C(X) with the usual norm. Let $\|\cdot\|_0$ be some other algebra norm on A (we do not assume that $(A, \|\cdot\|_0)$ is Banach). Show that:
 - (a) Let B be the completion of $(A, \|\cdot\|_0)$, so that B is a Banach algebra. Let E be the collection of all characters φ on B, restricted to the algebra A. Show that E forms a non-empty, closed subset of the character space of A (which we identify with X).
 - (b) Using Urysohn's Lemma, show that if $E \neq X$, then there are non-zero $a, b \in A$ with ab = 0 but with $\varphi(a) = 1$ for all $\varphi \in E$. Show that this leads to a contradiction; so E = X.
 - (c) Deduce that for each $f \in A$, we have $||f|| = \rho_B(f)$.

- (d) Deduce that $||f|| \le ||f||_0$ for each $f \in A$.
- 3. Let X, Y be compact Hausdorff spaces, and let $T : C(X) \to C(Y)$ be a unital homomorphism. Show that there is a continuous map $f : Y \to X$ such that $T(a) = a \circ f$ for all $a \in C(X)$.

If you know what the words mean: Show that the category of compact Hausdorff spaces with continuous maps is anti-equivalent to the category of unital commutative C*-algebras with unital homomorphisms.

- 4. In the book, Corollary 2.19 is stated for C*-algebras A and B. Prove that the result still holds if A is merely a Banach *-algebra.
- 5. Consider the Hilbert space $H = \ell^2 = \ell^2(\mathbb{N})$, with the standard orthonormal basis (e_n) (so $e_1 = (1, 0, 0, \dots), e_2 = (0, 1, 0, \dots)$ and so forth). Let (a_n) be a sequence of complex numbers. Show that there is a bounded linear operator T on H with $T(e_n) = a_n e_n$ for all n, if and only if (a_n) is a bounded sequence. Show that T is a normal operator. In terms of the sequence (a_n) , determine when T is: (i) unitary, (ii) self-adjoint.
- 6. We continue with the same notation. For T defined by a sequence (a_n) , determine the spectrum of T.
- 7. We continue with the same notation. Let A be the C*-algebra (in $\mathcal{B}(H)$) generated by T. Show that:
 - (a) As $T^*T = TT^*$, we can talk about a "polynomial in T and T^* ". Show that the collection of all such polynomials, $\mathbb{C}[T, T^*]$ is dense in A. *Hint:* By definition, A is the smallest C*-algebra containing T. Show that any C*-algebra containing T contains $\mathbb{C}[T, T^*]$, and then show that the closure of $\mathbb{C}[T, T^*]$ is a C*-algebra.
 - (b) It follows that A is commutative. Using the results of Section 6.4 in the book, show that if $\varphi \in \Phi_A$, then φ is uniquely determined by the value $\varphi(T)$.
 - (c) By Commutative Gel'fand–Naimark (Theorem 6.24) A is isomorphic to $C(\Phi_A)$. Show that the compact Hausdorff spaces Φ_A and $\operatorname{Sp}(T)$ are homeomorphic. *Hint:* Show firstly that the map $\Phi_A \to \operatorname{Sp}(T)$; $\varphi \mapsto \varphi(T)$ is well-defined and injective. Now prove that it is surjective (and then appeal to the result that a continuous bijection between compact, Hausdorff spaces is a homeomorphism).
- 8. We continue with the same notation. Let f be a continuous function on the spectrum of T, so by the Continuous Functional Calculus, we can make sense of f(T). Now consider the map $\Phi: C(\operatorname{Sp}(T)) \to \mathcal{B}(H)$ which maps f to S, where

$$S(e_n) = f(a_n)e_n$$
 for all n .

Using the previous two questions, show that this is well-defined (that is, $f(a_n)$ makes sense, and that S is bounded). Show that Φ is a unital *-homomorphism with $\Phi(Z) = T$. Conclude that Φ agrees with the Continuous Functional Calculus. *Remark:* So in this case, we have a very concrete picture of what the Continuous Functional Calculus actually is!

8 Representation theory; modules; radicals; uniqueness of norm

- I find the discussion in Section 5.3 hard to follow. Check *carefully* that you understand why the definition of the Radical given for commutative algebras on page 193 agrees with the general definition give on page 232.
- This one is in the book, but let's try to give a nicer proof. Firstly, check that you understand that a unital commutative Banach algebra A is semisimple if and only if the Gelfand transform $\mathcal{G}: A \to C(\Phi_A)$ is injective.

Theorem: Let A and B be unital commutative Banach algebras, with B semisimple. Then any unital homomorphism $T: A \to B$ is continuous.

Here is a strategy for proving this:

- Let φ be a character on B. Show that $\phi = \varphi \circ T$ is a character on A, and hence conclude that ϕ is bounded.
- Let (a_n) be a sequence in A converging to 0, and suppose that $b = \lim_n T(a_n)$ exists in B. Show that $\mathcal{G}(b) = 0$, and hence that b = 0.
- Use the closed graph theorem to conclude that T is continuous.
- Now write all that up neatly!
- Check that you understand why this result implies that a unital commutative semisimple Banach algebra has a unique (complete algebra) norm.

9 Applications and examples to group algebras

10 More additional questions on later parts of the course

- Let u be a unitary element in a unital C*-algebra A. Suppose that Sp(u) is not the whole of the unit circle. Show that there is $a \in A$ with $a^* = a$ and $u = \exp(ia)$. *Hint:* Functional calculus.
- Let \mathbb{T} be the unit circle in \mathbb{C} , and let $u \in C(\mathbb{T})$ be the element u(z) = z. Show that there is no $a \in C(\mathbb{T})$ with $u = \exp(ia)$.
- Let $T, S \in \mathcal{B}(H)$ satisfy $T^*T \leq S^*S$. (Recall that for $A, B \in \mathcal{B}(H)$ we define $A \leq B$ to mean that $(Ax|x) \leq (Bx|x)$ for all $x \in H$). Show that there exists $U \in \mathcal{B}(H)$ with T = US and $||U|| \leq 1$. *Hint:* Show that $U : S(H) \to H; S(x) \mapsto T(x)$ is well-defined, linear, and bounded. Extend U to all of H by orthogonal decomposition.