
Under consideration for publication in Math. Proc. Camb. Phil. Soc. 1

Closed ideals in the Banach algebra of operators on classical
non-separable spaces

By MATTHEW DAWS

St John’s College, Oxford, OX 1 3JP

(Received )

Abstract

The classical result of Gohberg, Markus and Feldman states that, when E is one of
the classical Banach sequence spaces E = lp for 1 ≤ p < ∞ or E = c0, the only closed,
two-sided, non-trivial ideal in B(E), the Banach algebra of operators on a Banach space
E, is K(E), the ideal of compact operators. Gramsch and Luft completely classified the
closed, two-sided ideals in B(H) for an arbitrary Hilbert space H through the idea of
κ-compact operators, for infinite cardinals κ. This paper presents an extension of this
result to the non-separable versions of lp and c0.
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1. Introduction

The structure of closed, two-sided ideals (from now on, all our ideals will be two-sided)
of the Banach algebra of operators on a Banach space E, written B(E), seems to be a
little-understood area. The finite-rank operators, F(E), form the smallest non-zero ideal
in B(E), and thus their closure, A(E) (the approximable operators) forms the smallest
non-zero, closed ideal in B(E). For classical sequence spaces (or, more generally, spaces
with the approximation property), this closed ideal is equal to the closed ideal of compact
operators, K(E). As first shown in [2], in the special case where E = lp for 1 ≤ p < ∞,
or E = c0, this is the only (non-trivial) closed ideal in B(E). It seems to be unknown if
this is true for any other Banach spaces. See [7] for a survey of known results.

In [9] and [3], Gramsch and Luft independently extended this result to non-separable
Hilbert spaces (via the introduction of κ-compact operators, for cardinals κ — see below
for the precise statement). This paper presents a direct generalisation of this result to
non-separable versions of lp and c0. We shall see that, unlike the separable case, there
seems to be a difference between the l1 case and the other cases.

2. Non-separable Banach spaces

We shall sketch the theory of unconditional bases in non-separable Banach spaces
(called extended unconditional bases in [11, Chapter 17]). The proofs of these results
follow in a simple way from the standard theory of unconditional bases, as laid out in,
for example, [8].

When X is a topological vector space and (xα)α∈I is a family in X, we say that (xα)
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sums unconditionally to x ∈ X, written x =
∑

α∈I xα, if, for each open neighbourhood U

of x, there is a finite A ⊆ I such that, if B ⊆ I is finite and A ⊆ B, then
∑

α∈B xα ∈ U .
This definition agrees with the usual one for sequences.

For a Banach space E, a family of vectors (eα)α∈I is an unconditional basis for E if,
for each x ∈ E, there is a unique family of scalars (aα) such that

x =
∑
α∈I

aαeα,

with summation interpreted as above. Again, if I is countable, then E is separable, and
this definition agrees with the usual one of an unconditional basis.

As in the separable case, we can define bounded linear functionals e∗α ∈ E′ such that

〈e∗α, eβ〉 =

{
1 α = β,

0 α 6= β.

Note that, for x ∈ E and µ ∈ E′, we write 〈µ, x〉 = µ(x). If ‖eα‖ = 1 for each α, then
the unconditional basis (xα) is normalised. In this case, the family (e∗α) is bounded.

For each A ⊆ I, we can define a map PA : E → E,

PA(x) =
∑
α∈A

〈e∗α, x〉eα.

A closed-graph argument shows that PA is bounded, so that PA is a projection onto the
subspace PA(E). For x ∈ E, we define the support of x to be

supp(x) = {α ∈ I : 〈e∗α, x〉 6= 0}.

Thus PA(E) is the subspace of vectors in E with support contained in A. From our
meaning of summation, we can see that the support of x is always a countable subset of
I.

A uniform boundedness argument shows that the family (PA)A⊆I is bounded, and
by a standard re-norming, we may suppose that ‖PA‖ = 1 for each A ⊆ I (and so,
in particular, that ‖e∗α‖ = 1 for each α ∈ I). Henceforth we shall suppose that an
unconditional basis is normalised and that ‖PA‖ = 1 for each A ⊆ I.

The family (e∗α)α∈I forms an unconditional basis for the closure of its span in E′. When
this closure is the whole of E′, we say that (eα) is shrinking. For an operator T ∈ B(E),
define its adjoint T ′ ∈ B(E′) by

〈T ′(µ), x〉 = 〈µ, T (x)〉 (x ∈ E,µ ∈ E′),

so that ‖T ′‖ = ‖T‖. Then one can show that (eα) is shrinking if and only if

inf{‖P ′
A(µ)‖ : A ⊆ I, |I \A| < ∞} = 0 (2·1)

for each µ ∈ E′, where |A| is the cardinality of A.
For an infinite set I, write I<∞ = {A ⊆ I : |A| < ∞}. Then we define

c0(I) = {(xi)i∈I : ∀ ε > 0, {i ∈ I : |xi| ≥ ε} ∈ I<∞}

so that c0(I) is a Banach space with the supremum norm. Similarly, for 1 ≤ p < ∞, we
define

lp(I) =

{
(xi)i∈I : ‖(xi)‖p :=

(∑
i∈I

|xi|p
)1/p

< ∞

}
.
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Then the family of vectors (ei)i∈I , defined such that ei = (δij)j∈I , is an unconditional
basis for c0(I) and lp(I). Here δij denotes the Kronecker delta. In all cases except p = 1,
this basis is also shrinking; when p = 1, (e∗i ) spans c0(I) ⊆ l∞(I) = l1(I)′.

The density character of a Banach space E is the least cardinality of a dense subset
of E. Thus E is separable if and only if E has density character ℵ0.

3. Generalisation of compact operators

These definitions are given in [9]. We follow the presentation of cardinal numbers as
given in, for example, [4] or [6]. In particular, the cardinal numbers are ordinal numbers
α such that, if β is an ordinal equipotent with α, then α ≤ β. If κ is a cardinal number,
then κ+ is the successor of κ, that is, the least cardinal strictly greater than κ. If κ is
not the successor of any cardinal, then κ is a limit cardinal ; for example ℵ0 is a limit
cardinal.

For Banach spaces E and F , we write B(E,F ) for the space of bounded linear operators
between E and F . For t > 0 we write

E[t] = {x ∈ E : ‖x‖ ≤ t},

so that E[1] is the closed unit ball of E.
For an infinite cardinal κ and T ∈ B(E,F ), we say that T is κ-compact if, for each

ε > 0, we can find a subset X of E[1] with |X| < κ, and such that

inf{‖T (x− y)‖ : y ∈ X} ≤ ε

for each x ∈ E[1]. We write Kκ(E,F ) for the set of κ-compact operators. As this definition
does not have a useful meaning for finite cardinals, we shall henceforth assume that any
cardinals are infinite. In [9] it is shown that Kκ(E,F ) is a closed operator ideal in the
sense of Pietsch (see [10]); that is, we have the following.

Proposition 3·1. Let E and F be Banach spaces. Then Kκ(E,F ) is a closed subspace
of B(E,F ). Let D and G be Banach spaces, and T ∈ Kκ(E,F ), S ∈ B(D,E) and
R ∈ B(F,G). Then RTS ∈ Kκ(D,G).

We define Kκ(E) to be Kκ(E,E). Then Kκ(E) is a closed ideal in B(E). The ℵ0-
compact operators are just the usual compact operators, so that Kℵ0(E,F ) = K(E,F ).
For higher cardinals, there is an easier description of κ-compact operators, subject to a
technicality. Recall that for a cardinal κ, the cofinality of κ, cf(κ), is the least ordinal
σ ≤ κ such that there is an order-preserving map f : σ → κ which is not bounded above.
See, for example, [6, Chapter 9, Section 2]. Then cf(κ) is a cardinal; if cf(κ) = κ we say
that κ is regular, otherwise κ is singular. In particular, if κ is singular, then κ is a limit
cardinal.

Lemma 3·2. Let κ be a cardinal with cf(κ) > ℵ0 (so that κ > ℵ0). Then, if (An) is a
sequence of sets, each of cardinality less than κ, then |

⋃
n An| < κ.

Proof. For each n ∈ N, let Bn =
⋃

m≤n Am so that (|Bn|) is an increasing sequence
of cardinals with, for each n, |Bn| ≤

∑n
m=1 |Am| < κ. As cf(κ) > ℵ0, (|Bn|) is bounded

above by some σ < κ. Thus |
⋃

n An| ≤ supn |Bn| ≤ σ < κ as required.

Lemma 3·3. Let κ be a cardinal with cf(κ) > ℵ0, and let E and F be Banach spaces.
Then T ∈ B(E,F ) is κ-compact if and only if there is a set A ⊆ E with |A| < κ and
such that T (A) := {T (x) : x ∈ A} is dense in T (E).
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Proof. For T ∈ Kκ(E,F ) and n ∈ N, let An ⊂ E[1] be a set with |An| < κ and

inf{‖T (x− y)‖ : y ∈ An} ≤ n−1

for each x ∈ E[1]. Then let B =
⋃

n An, so, by Lemma 3·2, |B| < κ, and T (B) is dense
in T (E[1]). Then we can let A =

⋃
n∈N nB, so that |A| = |B| and T (A) is dense in T (E).

The converse statement is clear.

We write X (E,F ) for the closed operator ideal of B(E,F ) formed by those operators
with separable image. Thus X (E,F ) = Kℵ1(E,F ). The lemma does not hold more
generally, for consider l1(ℵω), noting that cf(ℵω) = ℵ0. As ℵω is an ordinal, we have
ℵω = {α is an ordinal : α < ℵω} and thus, if α ∈ ℵω, either α is finite, or ℵn−1 ≤ α < ℵn

for some n ≥ 1. Define T ∈ B(l1(ℵω)) by, for α ∈ ℵω, T (eα) = eα if α is finite, or
T (eα) = n−1eα if ℵn−1 ≤ α < ℵn. Then T is clearly ℵω-compact, but if A is a dense
subset of T (E[1]), then |A| = ℵω.

Lemma 3·4. Let E be a Banach space with density character κ. Then B(E) = Kκ+(E),
and, if cf(κ) > ℵ0, then Kκ(E) ( B(E).

Proof. As E contains a dense subset of cardinality κ, clearly every operator on T is
κ+-compact. If, further, cf(κ) > ℵ0, then by Lemma 3·3, if idE is κ-compact, then for
some A ⊆ E with |A| < κ, we have that A is dense in E, a contradiction. Thus Kκ(E) is
a proper ideal in B(E).

Recall that for any Banach space E, T ∈ B(E) is compact if and only if T ′ ∈ B(E′)
is compact. This is not true for higher cardinalities, as the identity on l1 has separable
range, but its adjoint is the identity on l∞, which does not have separable range. The
relation between T being κ-compact and T ′ being κ-compact is only considered for the
Hilbert space case in [9].

Proposition 3·5. Let E and F be Banach spaces, let κ be an infinite cardinal, and
let T ∈ B(E,F ). If T ′ ∈ Kκ(F ′, E′), then T ∈ Kκ(E,F ).

Proof. We may suppose that κ > ℵ0. Fix ε > 0. As T ′ ∈ Kκ(F ′, E′), there exists
Y ⊂ F ′

[1] with |Y | < κ such that, for each µ ∈ F ′
[1],

inf{‖T ′(µ− λ)‖ : λ ∈ Y } < ε.

For each λ ∈ Y , pick xλ ∈ E[1] with |〈T ′(λ), xλ〉| > (1 − ε)‖T ′(λ)‖. Let Q[ı] be the
subfield of C comprising those complex numbers with rational real and imaginary parts.
Then let

X =

{
n∑

i=1

aixλi : n ∈ N, (ai)n
i=1 ⊆ Q[ı], (λi)n

i=1 ⊆ Y

}
so that X is dense in lin(xλ)λ∈Y . We can write X as

X =
∞⋃

n=1

{ n∑
i=1

aixλi
: (ai)n

i=1 ⊆ Q[ı], (λi)n
i=1 ⊆ Y

}
,

so that |X| ≤ ℵ0 ×ℵ0 × |Y | < κ. Let δ > 0 and y ∈ E[1] be such that ‖T (x− y)‖ ≥ δ for
every x ∈ X. Then ‖T (x − y)‖ ≥ δ for every x ∈ lin(xλ)λ∈Y . Thus there exists µ ∈ F ′

with 〈µ, T (x)〉 = 0 for each x ∈ X, with 〈µ, T (y)〉 = δ, and with ‖µ‖ ≤ 1. We can then
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find λ ∈ Y with ‖T ′(µ− λ)‖ < ε. Then

(1− ε)‖T ′(λ)‖ ≤ |〈λ, T (xλ)〉| = |〈λ− µ, T (xλ)〉| = |〈T ′(λ− µ), xλ〉| < ε,

so that ‖T ′(λ)‖ < ε/(1− ε). Hence

δ = |〈µ, T (y)〉| ≤ ‖T ′(µ)‖ ≤ ‖T ′(µ− λ)‖+ ‖T ′(λ)‖ < ε + ε/(1− ε) < 3ε,

if ε < 1/2. Consequently, for each y ∈ E[1], we must have that ‖T (x− y)‖ ≤ 3ε for some
x ∈ X. Thus T (X ∩ E[1]) is 3ε-dense in T (E[1]), so as ε > 0 was arbitrary, we are done.

We now restrict ourselves to spaces with an unconditional basis.

Lemma 3·6. Let E have an unconditional basis (ei)i∈I , and let κ be an infinite car-
dinal. If A ⊆ I with |A| = κ, then PA(E) has density character κ, and PA ∈ Kκ+(E) \
Kκ(E).

Proof. By taking linear combinations over Q[ı], it is clear that PA ∈ Kκ+(E), and thus
that PA(E) has density character ≤ κ.

If κ = ℵ0 then PA ∈ Kκ(E) means that PA is compact, and thus that PA(E) is finite-
dimensional, which in turn means that A is finite, a contradiction. Thus, if PA ∈ Kκ(E),
then κ > ℵ0, and we can find a set Y ⊆ PA(E[1]) such that |Y | < κ and, for each x ∈ E[1],

inf{‖PA(x)− y‖ : y ∈ Y } ≤ 1/2.

Then let B =
⋃

y∈Y supp(y) ⊆ I, so that |B| ≤ ℵ0 × |Y | < κ. As |B| < κ = |A|, we can
find α ∈ A \B. Then eα ∈ PA(E), and, for each y ∈ Y , PB(y) = y, so that PA\B(y) = 0.
Thus, for y ∈ Y , we have 1 = ‖eα‖ = ‖PA\B(eα)‖ = ‖PA\B(eα − y)‖ ≤ ‖eα − y‖, a
contradiction which shows that PA 6∈ Kκ(E), and hence that PA(E) does have density
character κ.

Proposition 3·7. Let E be a Banach space with an unconditional basis (ei)i∈I . For
cardinals κ, σ ≤ |I|, we have that Kκ(E) 6= Kσ(E) if κ 6= σ. Furthermore, K|I|(E) 6=
B(E).

Proof. We may suppose that κ < σ, so that Kκ(E) ⊆ Kσ(E). By Lemma 3·6, we can
find T ∈ Kκ+(E) \ Kκ(E) (indeed, we can have T = PA for a suitable set A ⊆ I), as
κ ≤ |I|. Then, as κ+ ≤ σ, T ∈ Kσ(E) but T 6∈ Kκ(E).

By Lemma 3·6, applied with A = I, we see that idE is |I|+-compact, but not |I|-
compact, so that K|I|(E) 6= B(E).

Note that this is an improvement on Lemma 3·4, in the case where our Banach space
has an unconditional basis.

Thus, when E has an unconditional basis (ei)i∈I , we have a chain of closed ideals in
B(E),

{0} ( K(E) ( Kℵ1(E) ( · · · ( K|I|(E) ( K|I|+(E) = B(E).

Let E be a Banach space such that every closed ideal J in B(E) has the form J = Kκ(E)
for some cardinal κ. Then we say that B(E) has compact ideal structure. If, further, when
κ and σ are infinite cardinals less than or equal to the density character of E, we have
Kκ(E) = Kσ(E) only when κ = σ, and that B(E) = Kτ+(E) where τ is the density
character of E, then B(E) has perfect compact ideal structure.
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Luft and Gramsch proved the following. Recall that the density character of an infinite-
dimensional Hilbert space is the same as its Hilbert space dimension, that is, the cardi-
nality of a complete orthonormal system.

Theorem 3·8. Let H be an infinite-dimensional Hilbert space with density character
κ. Then B(H) has perfect compact ideal structure. Thus, the closed ideals in B(H) form
an ordered chain

{0} ( K(H) ( Kℵ1(H) ( · · · ( Kκ(H) ( Kκ+(H) = B(H).

We shall show that this result holds for lp(I), 1 ≤ p < ∞ and c0(I), the l2(I) case
being precisely the theorem above.

4. Closed ideals in B(lp) and B(c0)

Our starting point is the classical result that the only closed ideals in B(lp) and B(c0)
are the ideals of compact operators. This was first proved in [2], and first shown in a
unified manner in [5]. We sketch an approach which is essentially laid out in [10, Section
5.1], and can also be derived from results in [8].

Let E = lp for 1 ≤ p < ∞, or E = c0. Recall that a block-basis in E is a sequence
of vectors (un)∞n=1 with finite, pairwise disjoint support, and such that max supp(un) <

min supp(un+1) for each n ∈ N. Recall (see [8, Chapter 2.a]) that lin(un), the closed
span of a normalised block-basis (un)∞n=1, is 1-complemented in E, and that (un) is a
basic sequence isometrically equivalent to (en), the canonical unit basis of E.

Lemma 4·1. Let E = lp for 1 ≤ p < ∞, or E = c0, and let T ∈ B(E) \ K(E). Then
there exists δ > 0 such that for each ε > 0, we can find normalised block-bases (un)∞n=1

and (vn)∞n=1 so that
∑∞

n=1 ‖T (un)− δvn‖ < ε.

Proof. This is just a combinatorial argument, starting with a sequence (xn) in E for
which (T (xn)) has no convergent subsequences, and extracting a subsequence (un) which
has the required properties. For further details, see [10, Chapter 5].

Theorem 4·2. Let E = lp for 1 ≤ p < ∞, or E = c0. If J is a non-trivial closed ideal
in B(E), then J = K(E).

Proof. This is well known, but as we shall essentially generalise this proof later, it is
worth presenting the easier case. It is enough to show that, if T ∈ B(E) \ K(E), then
the ideal generated by T is B(E). For such a T , find δ > 0, (un) and (vn) using the
above lemma, where we shall choose ε > 0 later. Let S : E → lin(un) be the isomorphism
defined by S(en) = un.

Let F = lin(vn), and define R : F → lin(T (un)) by R(vn) = δ−1T (un). Then, if
x =

∑
n anvn ∈ F , we have

‖R(x)‖ =
∥∥∥∑

n

anδ−1T (un)
∥∥∥ ≤ δ−1‖T‖

∥∥∥∑
n

anun

∥∥∥ = δ−1‖T‖‖x‖,

so that R is bounded. Let P be a projection onto F of norm 1, recalling that F is spanned
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by a block-basis. If x =
∑

n anvn ∈ F , then

‖P (x)− PR(x)‖ ≤ ‖x−R(x)‖ =
∥∥∥∑

n

an(vn − δ−1T (un))
∥∥∥

≤ ‖(an)‖∞
∑

n

‖vn − δ−1T (un)‖ < δ−1ε‖x‖,

noting that, for each of our spaces E, |an| ≤ ‖x‖ for each n. Now, idF −PR ∈ B(F ),
so we see that ‖ idF −PR‖ < δ−1ε < 1 if ε is sufficiently small. Hence PR ∈ B(F ) is
invertible, so let U = (PR)−1P ∈ B(E).

Finally, let V : F → E be the isomorphism defined by V (vn) = en. Then, for n ∈ N,
R(vn) = δ−1T (un), so that

vn = (PR)−1PR(vn) = δ−1(PR)−1PT (un) = δ−1UT (un) = δ−1UTS(en)

and thus en = V (vn) = δ−1V UTS(en). Hence we see that V UTS = δ idE , and so the
(algebraic) ideal generated by T is all of B(E).

As noted in [5], the key properties of E which we use are that every normalised block-
basis is equivalent to the canonical basis of E, and that the span of each such block-basis is
complemented. As shown by Zippin (see [8, Theorem 2.a.9]), the first of these properties
actually characterises lp, 1 ≤ p < ∞, and c0. Thus there is no obvious way to extend the
above theorem, and indeed, we know of no other Banach spaces E for which K(E) is the
only non-trivial closed ideal in B(E).

Theorem 4·2 is enough to show the following.

Proposition 4·3. Let I be an uncountable set, let E = lp(I), for 1 ≤ p < ∞, or
E = c0(I), and let T ∈ B(E) have separable range, but not be compact. Then the ideal
generated by T is X (E) = Kℵ1(E).

Proof. Note that the ideal generated by T is certainly contained in X (E), as T has
separable range. Let (xn)∞n=1 be a dense sequence in T (E), and let A =

⋃
n supp(xn) ⊆ I,

so that A is countable and PAT = T . Since T is not compact, we can choose a sequence
(yn) in E[1] such that (T (yn)) has no convergent subsequence. Let B =

⋃
n supp(yn), so

that B is countable, and, as PB(yn) = yn, PATPB cannot be compact.
We can view PATPB as an operator on lp(N) or c0(N), as appropriate. Thus, by

Theorem 4·2, the ideal generated by T contains an isomorphism from PB(E) to PA(E)
of the form

S(eβ(n)) = eα(n) (n ∈ N),

where we have enumerations A = {α(n) : n ∈ N} and B = {β(n) : n ∈ N}. We thus see
that, if C ⊆ I is countable, then the ideal generated by T contains PC .

Then as above, if R ∈ X (E), then, for some countable C ⊆ I, we have PCR = R, and
thus R is in the ideal generated by T .

5. Closed ideal structure of B(lp(I)) and B(c0(I))

For the moment we can work with Banach spaces E which merely have an unconditional
basis. For an infinite cardinal κ, as Kκ(E) is a closed ideal in B(E), we can form the
quotient B(E)/Kκ(E), which is a Banach algebra for the norm

‖T +Kκ(E)‖ = inf{‖T + S‖ : S ∈ Kκ(E)} (T ∈ B(E)).
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Proposition 5·1. Let E be a Banach space with an unconditional basis (ei)i∈I . Let
κ be an infinite cardinal and let T ∈ B(E). Then we have

‖T +Kκ(E)‖ = inf{‖PI\AT‖ : A ⊆ I, |A| < κ}
= inf{‖PI\ATPI\B‖ : A,B ⊆ I, |A| < κ, |B| < κ}.

Further, if cf(κ) > ℵ0, then we can find A ⊆ I with |A| < κ and ‖T +Kκ(E)‖ = ‖PI\AT‖.
Now suppose that T ∈ Kκ(E). Then we have:
(i) if κ is a cardinal with cf(κ) > ℵ0, then there exists A ⊆ I with |A| < κ and

PAT = T ;
(ii) if cf(κ) = ℵ0, then, for each ε > 0, there exists A ⊆ I with |A| < κ and ‖PAT −

T‖ < ε.

Proof. The second part of the proposition clearly follows from the first, as T ∈ Kκ(E)
if and only if ‖T +Kκ(E)‖ = 0.

For the first part of the proposition, for any κ, if A ⊆ I with |A| < κ then PA ∈ Kκ(E),
so that

‖PI\AT‖ = ‖T − PAT‖ ≥ ‖T +Kκ(E)‖.

Suppose we have ε > 0 and S ∈ Kκ(E) such that ‖T + S‖ + ε ≤ ‖T − PAT‖ for each
A ⊆ I with |A| < κ. We can find Y ⊆ S(E[1]) with |Y | < κ and such that

inf{‖S(x)− y‖ : y ∈ Y } < ε/4 (x ∈ E[1]).

Let A =
⋃

y∈Y supp y, so that |A| ≤ ℵ0 × |Y | < κ. Then PA(y) = y for each y ∈ Y , so
that, for each x ∈ E[1], we have

‖S(x)− PAS(x)‖ ≤ inf{‖S(x)− y‖+ ‖PA(y − S(x))‖ : y ∈ Y }
≤ inf{‖S(x)− y‖+ ‖y − S(x)‖ : y ∈ Y } < ε/2.

Thus ‖S − PAS‖ ≤ ε/2, and so

‖PI\AT‖ = ‖PI\A(T + PAS)‖ ≤ ‖T + PAS‖ ≤ ‖T + S‖+ ‖PAS − S‖
≤ ‖PI\AT‖ − ε + ε/2,

a contradiction showing that ‖T +Kκ(E)‖ = inf{‖PI\AT‖ : A ⊆ I, |A| < κ}.
For B ⊆ I with |B| < κ, we have that PB ∈ Kκ(E), so that T + Kκ(E) = TPI\B +

Kκ(E), and thus immediately

inf{‖PI\ATPI\B‖ : A,B ⊆ I, |A| < κ, |B| < κ} = ‖TPI\B +Kκ(E)‖ = ‖T +Kκ(E)‖,

as required.
If cf(κ) > ℵ0, then, for each n ∈ N, choose An ⊆ I with |An| < κ and

‖PI\An
T‖ < ‖T +Kκ(E)‖+ n−1.

Let A =
⋃

n An, so that |A| < κ and, for each n ∈ N,

‖T +Kκ(E)‖ ≤ ‖PI\AT‖ = ‖PI\API\An
T‖ ≤ ‖PI\An

T‖ < ‖T +Kκ(E)‖+ n−1.

Thus we must have ‖T +Kκ(E)‖ = ‖PI\AT‖.

We can now prove a converse to Proposition 3·5, at least when E has a shrinking,
unconditional basis.
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Proposition 5·2. Let E have a shrinking, unconditional basis (ei)i∈I , let κ be an
infinite cardinal, and let T ∈ Kκ(E). Then T ′ ∈ Kκ(E′).

Proof. As (e∗i )i∈I is a basis for E′, let QA ∈ B(E′) be the analogue of PA ∈ B(E).
Then a quick calculation shows that QA = P ′

A. Pick ε > 0, and let T ∈ Kκ(E). By
Proposition 5·1, for some A ⊆ I with |A| < κ, we have ‖T − PAT‖ < ε. Thus ‖T ′ −
T ′QA‖ = ‖(T − PAT )′‖ < ε, so as QA ∈ Kκ(E′), we have ‖T ′ + Kκ(E′)‖ < ε. As ε > 0
was arbitrary, we conclude that T ′ ∈ Kκ(E′), as required.

For T ∈ B(E), let ideal(T ) be the algebraic ideal generated by T in B(E), and ideal(T )
be its closure.

Lemma 5·3. Let E be a Banach space with an unconditional basis (ei)i∈I . Suppose
that for each cardinal κ ≥ ℵ0 and each T ∈ B(E) \ Kκ(E), we have Kκ+(E) ⊆ ideal(T ).
Then B(E) has compact ideal structure.

Proof. Let J be a non-trivial closed ideal in B(E). If J ⊆ K(E), then J = K(E). Thus
we may suppose that K(E) = Kℵ0(E) ( J . Let

X = {σ : J \ Kσ(E) 6= ∅}

so that, by our assumption, if σ ∈ X, then Kσ+(E) ⊆ J . Suppose that X contains a
maximal element κ, so that κ > ℵ0. Then, as κ ∈ X, we have Kκ+(E) ⊆ J , and as κ

is maximal in X, we have J \ Kκ+(E) = ∅, so that J ⊆ Kκ+(E). Thus J = Kκ+(E) as
required.

If X does not contain a maximum element, then, for some limit cardinal κ, X = {σ :
σ < κ}, and so κ 6∈ X, meaning that J ⊆ Kκ(E). Choose T ∈ Kκ(E) and ε > 0. Then, by
Proposition 5·1, we can find A ⊆ I with |A| < κ and ‖PAT −T‖ < ε. As PA ∈ K|A|+(E),
PAT ∈ J . As ε > 0 was arbitrary and J is closed, T ∈ J . Thus J = Kκ(E).

At this point we restrict ourselves to considering E = lp(I), for 1 ≤ p < ∞, or
E = c0(I). Then, by the structure of E, if A,B ⊆ I with |A| = |B|, then PB ∈ ideal(PA).

Lemma 5·4. Let E = lp(I), for 1 ≤ p < ∞, or E = c0(I), let κ ≥ ℵ0 be a cardinal,
and let T ∈ B(E) \ Kκ(E). Then Kκ+(E) ⊆ ideal(T ) if and only if, for some A ⊆ I with
|A| = κ, PA ∈ ideal(T ).

Proof. If PA ∈ ideal(T ) for some A ⊆ I with |A| = κ, then PB ∈ ideal(T ) for every
B ⊆ I with |B| ≤ |A|. For S ∈ Kκ+(E), by Proposition 5·1, there exists B ⊆ I with
|B| ≤ κ and PBS = S. Thus S ∈ ideal(PB) ⊆ ideal(T ), so we see that Kκ+(E) ⊆ ideal(T ).

Conversely, if Kκ+(E) ⊆ ideal(T ), then for A ⊆ I with |A| = κ, we have PA ∈ Kκ+(E),
so that PA ∈ ideal(T ).

Proposition 5·5. Let E = lp(I), for 1 ≤ p < ∞, or E = c0(I). Suppose that for
each cardinal κ ≥ ℵ0 and each T ∈ B(E) \ Kκ(E), there exists A ⊆ I with |A| = κ and
PA ∈ ideal(T ). Then B(E) has perfect compact ideal structure.

Proof. Use Proposition 3·7, and Lemma 5·4 applied with Lemma 5·3.

6. When E has a shrinking basis

For the moment, we shall assume only that E has a shrinking basis (eα)α∈I .



10 Matthew Daws

Proposition 6·1. Let E have a shrinking basis (eα)α∈I , let κ > ℵ0 be a cardinal, and
let T ∈ B(E) \ Kκ(E). Then we can find a family (xi)i∈κ of vectors in E such that for
some δ > 0 we have:

(i) for i ∈ κ, we have ‖xi‖ = 1 and ‖T (xi)‖ ≥ δ;
(ii) for each i, j ∈ κ with i 6= j, we have supp T (xi) ∩ supp T (xj) = supp(xi) ∩

supp(xj) = ∅.

Proof. As T 6∈ Kκ(E), let 2δ = ‖T + Kκ(E)‖ > 0. For A ⊆ I with |A| < κ, as
PA ∈ Kκ(E), we have that 2δ = ‖T +Kκ(E)‖ ≤ ‖T − TPA‖ = ‖TPI\A‖.

A simple Zorn’s Lemma argument shows that we can find a maximal family of vectors
X in E such that conditions (i) and (ii) hold.

If |X| ≥ κ, then we are done. Suppose, towards a contradiction, that |X| < κ, so
that if we set A =

⋃
x∈X supp(x) and B =

⋃
x∈X supp T (x), then |A| ≤ |X| × ℵ0 =

max(|X|,ℵ0) < κ and, similarly, |B| < κ. As E has a shrinking basis, we may set

C =
⋃
i∈B

supp T ′(e∗i ),

so that, again, |C| < κ. For y ∈ E, we have that B∩supp T (y) 6= ∅ if and only if, for some
i ∈ B, we have 0 6= 〈e∗i , T (y)〉 = 〈T ′(e∗i ), y〉, which implies that C ∩ supp(y) 6= ∅. Thus,
for each y ∈ E, we have supp TPI\C(y) ⊆ I \B. Finally, let D = A∪C, so that |D| < κ,
and if y ∈ E with PI\D(y) = y, then supp T (y) ⊆ I \B, so that by the maximality of X,
we must have ‖T (y)‖ < δ‖y‖. This implies that ‖TPI\D‖ ≤ δ, which is a contradiction
by our choice of δ.

We can then certainly apply this proposition to E = c0(I) or E = lp(I), for 1 < p < ∞.

Theorem 6·2. If E = c0(I) or E = lp(I) for 1 < p < ∞, then for a closed ideal J in
B(E), we have J = Kκ(E) for some cardinal κ.

Proof. We use Proposition 5·5, so let κ ≥ ℵ0 be a cardinal and T ∈ B(E) \ Kκ(E). If
κ = ℵ0, we need to show that, if T is not compact, then PA ∈ ideal(T ) for some countable
A ⊆ I. This follows directly from Proposition 4·3. Thus we may suppose that κ > ℵ0.
We can then apply Proposition 6·1 to find a family (xi)i∈κ and δ > 0 with properties as
in the proposition.

As (T (xi))i∈κ is a family of vectors with pairwise-disjoint support, we can find a
family (µi)i∈κ ⊆ E′ with pairwise-disjoint support (recall that E has a shrinking basis)
and such that 〈µi, T (xj)〉 = δij , the Kronecker delta. As ‖T (xi)‖ ≥ δ for each i ∈ κ, we
may suppose that ‖µi‖ ≤ δ−1 for each i ∈ κ. Let K ⊆ I be some subset with |K| = κ,
and let φ : K → κ be a bijection. We can then define Q, S ∈ B(E) by

Q(x) =
∑
j∈K

T (xφ(j))〈µφ(j), x〉 S(x) =
∑
j∈K

xφ(j)〈µφ(j), Q(x)〉 (x ∈ E).

A calculation shows that, in all cases for E, ‖Q‖ ≤ δ−1‖T‖ and ‖S‖ ≤ δ−1‖Q‖ ≤ δ−2‖T‖.
For i ∈ κ, we then have Q(T (xi)) = T (xi), and so ST (xi) = xi.

Similarly, we can find a family (λi)i∈K ⊆ E′ with pairwise-disjoint support and such
that 〈λi, xφ(j)〉 = δij , and ‖λi‖ = 1 for each i ∈ K. Then we may define R,U ∈ B(E) by

U
(∑

i∈I

aiei

)
=
∑
i∈K

aixφ(i) R(x) =
∑
j∈K

ej〈λj , x〉 (x ∈ E),
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and again a calculation yields that ‖R‖ = 1 and that U is an isometry onto its range.
Then, for each j ∈ K, we have R(xφ(j)) = ej , so that RSTU(ej) = RST (xφ(j)) =
R(xφ(j)) = ej . Thus RSTU = PK , and as |K| = κ, we are done.

7. When E = l1(I)

We use a different argument to that applied in Proposition 6·1, as l1(I) does not have
a shrinking basis.

Lemma 7·1. For an index set I, T ∈ B(l1(I)) and A ⊆ I, we have

‖TPA‖ = sup{‖T (ei)‖ : i ∈ A}.

Proof. Just note that, for x =
∑

i∈A aiei ∈ PA(l1(I)), we have

‖T (x)‖ =
∥∥∥∑

i∈A

aiT (ei)
∥∥∥ ≤∑

i∈A

|ai|‖T (ei)‖ ≤ ‖x‖ sup{‖T (ei)‖ : i ∈ A}.

Proposition 7·2. Let E = l1(I) for some index set I. Let κ > ℵ0 be a cardinal, let
ε ∈ (0, 1), and let T ∈ B(E) \ Kκ(E) be such that

1 ≥ ‖T‖ ≥ ‖T +Kκ(E)‖ ≥ 1− ε.

Then there exists K ⊆ I with |K| ≥ κ, and a family (Ai)i∈K of subsets of I, such that:
(i) for i ∈ K, Ai is countable and ‖PAiT (ei)‖ ≥ 1− 2ε;
(ii) for i, j ∈ K with i 6= j, Ai ∩Aj = ∅.

Proof. For L ⊆ I and B = (Bi)i∈L a family of subsets of I, we say that (L,B) is
admissible if conditions (1) and (2) are satisfied. Let X be the collection of admissible
pairs; since ‖T‖ ≥ 1− ε > 0, the set X is not empty by Lemma 7·1. Partially order X be
setting (L, (BL

i )i∈L) ≤ (J, (BJ
i )i∈J) if and only if L ⊆ J and, for each i ∈ L, BJ

i = BL
i .

Let Y ⊆ X be a chain, and let L0 =
⋃

(L,BL)∈Y L ⊆ I. Then, for i ∈ L0, we have
i ∈ L for some (L,BL) ∈ Y . Set Bi = BL

i . This is well-defined, for if i ∈ J for some
(J,BJ) ∈ Y , then either (L,BL) ≤ (J,BJ), so that BL

i = BJ
i , or (J,BJ) ≤ (L,BL) and

BJ
i = BL

i . Let B = (Bi)i∈L0 , so, if i ∈ L0, Bi is countable, and ‖PBi
T (ei)‖ ≥ 1 − 2ε.

Similarly, we can show that (L0, B) ∈ X and that (L0, B) is an upper bound for Y . We
can thus apply Zorn’s Lemma to find a maximal admissible pair (K, (Ai)i∈K).

If |K| ≥ κ then we are done. Otherwise, let B =
⋃

i∈K Ai so that |B| ≤ ℵ0 × |K| < κ.
As (K, A) is maximal, suppose that for some i ∈ I \K we have ‖PI\BT (ei)‖ ≥ 1 − 2ε.
Then set C = (I \B)∩ supp T (ei), so that C is countable and ‖PCT (ei)‖ ≥ 1− 2ε. This
contradicts the maximality of (K, A). Hence we see that

‖PI\BT (ei)‖ < 1− 2ε (i ∈ I \K).

By Lemma 7·1, we conclude that ‖PI\BTPI\K‖ ≤ 1 − 2ε. By Lemma 3·6, PB and PK

are κ-compact, so that

1− 2ε ≥ ‖PI\BTPI\K‖ = ‖T − TPK − PBTPI\K‖ ≥ ‖T +Kκ(E)‖ ≥ 1− ε.

This contradiction shows that |K| ≥ κ, as required.

Theorem 7·3. Let E = l1(I), and let J be a closed ideal in B(E). Then J = Kκ(E)
for some cardinal κ.
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Proof. We use Proposition 5·5, so let κ ≥ ℵ0 be a cardinal and T ∈ B(E) \ Kκ(E). As
in the proof of Theorem 6·2, we may suppose that κ > ℵ0. Fix ε > 0. By Proposition 5·1,
we can find A ⊆ I with |A| < κ and ‖PI\AT‖ ≥ ‖T +Kκ(E)‖ ≥ ‖PI\AT‖(1−ε/4). Then,
since PA ∈ Kκ(E), we have

‖PI\AT +Kκ(E)‖ = ‖T +Kκ(E)‖ ≥ (1− ε/4)‖PI\AT‖.

Let T0 = PI\AT‖PI\AT‖−1, so that

1 = ‖T0‖ ≥ ‖T0 +Kκ(E)‖ = ‖PI\AT +Kκ(E)‖‖PI\AT‖−1 ≥ 1− ε/4.

Apply Proposition 7·2 to T0 to find K ⊆ I with |K| = κ, and a family (Ak)k∈K of
subsets of I, such that:

(i) for k ∈ K, Ak is countable, and ‖PAk
T0(ek)‖ ≥ 1− ε/2;

(ii) for j, k ∈ K with j 6= k, Aj ∩Ak = ∅.
For k ∈ K let vk = PAk

T0(ek)‖PAk
T0(ek)‖−1, so that ‖vk‖ = 1 and, recalling that

‖T0‖ = 1, we also have

‖T0(ek)− vk‖ =
∥∥∥PI\Ak

T0(ek) + PAk
T0(ek)

(
1− ‖PAk

T0(ek)‖−1
)∥∥∥

= ‖PI\Ak
T0(ek)‖+

∣∣∣‖PAk
T0(ek)‖ − 1

∣∣∣
= ‖PI\Ak

T0(ek)‖+ 1− ‖PAk
T0(ek)‖

= ‖T0(ek)‖+ 1− 2‖PAk
T0(ek)‖ ≤ 1 + 1− 2(1− ε/2) = ε.

Let F = lin(vk)k∈K , and define U : F → lin(T0(ek))k∈K by U(vk) = T0(ek). Then, for
x =

∑
k∈K akvk, we have, noting that (vk) has pairwise-disjoint support,

‖U(x)‖ =
∥∥∥∑

k∈K

akT0(ek)
∥∥∥ ≤ ‖T0‖

∥∥∥∑
k∈K

akek

∥∥∥ = ‖T0‖‖x‖,

so that U is bounded. As (vk) has pairwise disjoint support, we can find a projection
P : E → F with ‖P‖ = 1. Then, with x =

∑
k∈K akvk ∈ F , we have

‖x− PU(x)‖ = ‖P (x− U(x))‖ ≤ ‖x− U(x)‖ =
∥∥∥∑

k∈K

ak(vk − T0(ek))
∥∥∥

≤
(

sup
k∈K

‖vk − T0(ek)‖
)∑

k∈K

|ak| ≤ ε‖x‖.

Thus, if ε < 1, noting that idF −PU ∈ B(F ), we have ‖ idF −PU‖ < 1 so that PU is
invertible in B(F ).

Then we have, for k ∈ K, PU(vk) = PT0(ek), so that vk = (PU)−1PT0(ek). Define
V : F → PK(E) by, for k ∈ K, V (vk) = ek, so that V is an isometry. Thus, letting
S = V (PU)−1P , we have ST0PK = PK . Thus

PK = ST0PK = ‖PI\AT‖−1SPI\ATPK ,

so that PK ∈ ideal(T ), as required.

This proof is the correct analogue of Theorem 6·2, for above we showed that supk ‖T (ek)−
vk‖ < 1, whereas for the lp and c0 cases we would need to show that∑

k∈K

‖T (ek)− vk‖q < 1,
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where q−1 + p−1 = 1 (or q = 1 in the c0 case). However, if K is uncountable, then such
a sum must contain all but countably many terms which are actually zero. As we are
free to remove such terms (and still have K being of the same cardinality) we arrive at
the conclusions of Proposition 6·1 (at least with (ei) replaced by a family of disjointly
supported unit vectors (xi)).

To sum up, we have shown the following generalisation of the Gohberg, Markus and
Feldman theorem.

Theorem 7·4. Let I be an infinite set, and let E = lp(I) for 1 ≤ p < ∞, or E = c0(I).
Then B(E) has perfect compact ideal structure. That is, the closed ideals in B(E) form
an ordered chain

{0} ( K(E) ( Kℵ1(E) ( · · · ( K|I|(E) ( K|I|+(E) = B(E).

8. Generalisation

An immediate question is whether there are any other Banach spaces E such that
B(E) has (perfect) compact ideal structure. However, even for non-separable spaces, we
are hampered by our lack of knowledge in the separable case.

Proposition 8·1. Let E be a Banach space such that B(E) has compact ideal struc-
ture. Suppose that F is a complemented subspace of E. Then B(F ) has compact ideal
structure.

Proof. Let F be complemented in E with projection P : E → F . Let J be a closed
ideal in B(F ), and define

J0 = lin{RST : S ∈ J, T ∈ B(E,F ), R ∈ B(F,E)} ⊆ B(E).

Clearly J0 is a closed ideal in B(E), so that J0 = Kκ(E) for some cardinal κ.
If S ∈ J , T ∈ B(E,F ) and R ∈ B(F,E), then PR ∈ B(F ) and T |F ∈ B(F ) so that

PRST |F ∈ J , as J is an ideal. Thus if U ∈ J0 then PU |F ∈ J . Let ι : F → E be the
inclusion map. Clearly, if V ∈ J , then ιV P ∈ J0.

We thus claim that J = Kκ(F ), for if V ∈ J then ιV P ∈ J0 so ιV P is κ-compact,
and thus V is κ-compact. Conversely, if W ∈ Kκ(F ) then ιWP is κ-compact, so that
ιWP ∈ J0, and thus PιWP |F = W ∈ J .

Hence, in practical terms, if we exhibit a Banach space E with B(E) having compact
ideal structure, we need separable complemented subspaces of E to be isomorphic to lp

or c0. If we look at spaces with an unconditional basis, then such spaces have a plethora
of separable complemented subspaces. Indeed, in some special cases, we can show that
such spaces are trivial.

Proposition 8·2. Let E be a Banach space with an unconditional basis (ei)i∈I such
that every subspace PA(E), for countably infinite A ⊆ I, is isomorphic to some lp space
(1 ≤ p < ∞), or to c0. Then each separable, complemented subspace of E is isomorphic to
a fixed lp space, or c0. Furthermore, if this fixed space is c0, l1 or l2, then E is isomorphic
to c0(I), l1(I) or l2(I), respectively.

Proof. Throughout this proof, we shall write l∞ for c0. Then suppose that for countably
infinite Ai ⊆ I, PAi

(E) is isomorphic to lpi , for i = 1, 2. Then let A = A1 ∪ A2 so that
PA(E) is isomorphic to lp say. Then PAi(E) is isomorphic to a complemented subspace
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of lp, and thus must be isomorphic to lp by [8, Theorem 2.a.3], as every complemented,
infinite dimensional subspace of lp is isomorphic to lp. Thus lpi is isomorphic to lp, and
so pi = p, for i = 1, 2.

Now let F ⊆ E be a complemented, separable subspace. We can then find a countable
A ⊆ I with F ⊆ PA(E), so that F is isomorphic to a complemented subspace of lp, and
thus isomorphic to lp.

Now suppose that p = 1, 2 or ∞ (the c0 case). Then, by [8, Theorem 2.b.10], we
know that each such space has exactly one unconditional basis, up to equivalence. For
each countably infinite A ⊆ I, let TA : PA(E) → lp be an isomorphism, chosen such
that ‖TA‖‖T−1

A ‖ ≤ 2d(PA(E), lp), the Banach-Mazur distance. Then it is clear that, if
we take an enumeration of A, A = {aA

n : n ∈ N}, then the sequence (TA(eaA
n
)) is an

unconditional basis for lp, and thus there exists KA ≥ 1 such that

K−1
A

( ∞∑
n=1

|bn|p
)1/p

≤

∥∥∥∥∥
∞∑

n=1

bnTA(eaA
n
)

∥∥∥∥∥ ≤ KA

( ∞∑
n=1

|bn|p
)1/p

for each sequence of scalars (bn). Then we have that, for a sequence of scalars (bn),

K−1
A ‖TA‖−1

( ∞∑
n=1

|bn|p
)1/p

≤

∥∥∥∥∥
∞∑

n=1

bneaA
n

∥∥∥∥∥ ≤ KA‖T−1
A ‖

( ∞∑
n=1

|bn|p
)1/p

.

Given an injection f : N → I, let Bf ≥ 1 be the minimal constant such that

B−1
f

( ∞∑
n=1

|bn|p
)1/p

≤

∥∥∥∥∥
∞∑

n=1

bnef(n)

∥∥∥∥∥ ≤ Bf

( ∞∑
n=1

|bn|p
)1/p

holds for all sequences of scalars (bn). We claim that the family (Bf ) is bounded. For
if not, let fn : N → I be such that Bfn

≥ n, for each n ∈ N. Then let g : N → I be
an injective function chosen so that g(N) =

⋃
n∈N fn(N). Now pick N ∈ N, and given a

sequence of scalars (bn), let (cn) be a sequence of scalars such that

cn =

{
bm : g(n) = fN (m),

0 : otherwise.

Then, as FN and g are injective, and the image of g contains that image of FN , we see
that ( ∞∑

n=1

|bn|p
)1/p

=

( ∞∑
n=1

|cn|p
)1/p

≤ Bg

∥∥∥∥∥
∞∑

n=1

cneg(n)

∥∥∥∥∥ = Bg

∥∥∥∥∥
∞∑

m=1

bmefN (m)

∥∥∥∥∥ ,

and similarly∥∥∥∥∥
∞∑

m=1

bmefN (m)

∥∥∥∥∥ =

∥∥∥∥∥
∞∑

n=1

cneg(n)

∥∥∥∥∥ ≤ Bg

( ∞∑
n=1

|cn|p
)1/p

= Bg

( ∞∑
n=1

|bn|p
)1/p

.

As BfN
is minimal, we must have Bg ≥ BfN

, which contradicts (BfN
)∞N=1 being un-

bounded.
Hence let M = supf Bf < ∞. Define T : E → lp(I) by T (ei) = di, (di)i∈I being the

standard basis for lp(I). Then, if x ∈ E, we have x =
∑∞

n=1 anef(n) for some injection
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f : N → I and some sequence of scalars (an), so that

‖T (x)‖ =

( ∞∑
n=1

|an|p
)1/p

≤ M

∥∥∥∥∥
∞∑

n=1

anefn

∥∥∥∥∥ = M‖x‖.

We can similarly show that T has an inverse, so that E is isomorphic to lp(I) as required.

We note that the case where 1 < p < ∞, p 6= 2, seems to be a good deal harder.
If E is an arbitrary non-separable Banach space, suppose that we only know that every

closed ideal J of B(E) with Kℵ1(E) ⊆ J has J = Kκ(E) for some κ. Then by examining
the proof of Proposition 8·1, we see that, if F is separable, we gain no information on the
ideal structure of B(F ) because then J0 ⊆ Kℵ1(E). So we could ask an easier question:
namely, are there more Banach spaces E such that, beyond the operators with separable
range, every closed ideal is an ideal of κ-compact operators? However, this is too easy,
for consider

E = l1(N)⊕ l2(I)

for some uncountable I. A moments thought shows that this rather simple example does
satisfy our conditions.

We hence conclude that the interesting questions, with regards to compact ideal struc-
ture, lie in studying the ideal structure of B(E) for separable Banach spaces E.
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