1 Introduction

A compact quantum group is a unital C*-algebra A together with a coassociative map A : A —
A ® A such that A(A)(A® 1) and A(A)(1 ® A) are linearly dense in A ® A. We get the Haar
measure ¢ which is the unique state on A with (¢ ® 1)A(a) = (¢t ® ¢)A(a) = p(a)l for all
a € A.

As argued in my PAMS paper, we can find a maximal family of irreducible unitary corep-
resentations {v* = (vf})’%_; : @ € A} such that the associated “F-matrices” are all diagonal.

Firstly, if A is the linear span of {vf;}, then A is a Hopf-*-algebra and is dense in A. We
have that

Awg) =) vh vy, S =), €@l) =0 %) = aa
k

where ay is the unique member of A with vff = 1.
Then we have positive numbers (A¥)I2, such that Y, A = >°.(A\*)~t = A, say. We have

that 1 )\a
p((vs) ) = 0a, 6011071 3o (v (vg)?) = 5a,ﬁ5i,k5j,lA—]-

«

We define characters f,, for z € C, on A by
fo(03) = 6, (AF)7,

where of course t* = exp(zlogt) for ¢ > 0. Then the modular automorphism group for ¢,
restricted to A, is given by

U — Zfzz Uklfzz vl]) ()\?)lz()‘?)w“g

For example, we can show that ¢(ba) = p(ac_;(b)) for all a,b € A. Also, as JA(a) = A(0;/2(a)”)
for a € A, we see that
TA(u) = AFXF)2A((v)").

Similarly, the scaling group on A is given by

= O8)F ) 0

Uij-

Thus in particular,
@ a\1/2/ya\—1/2 oY e )\? ) *
S(Uz'j) = (v ]z) RT—@/Z( ) (AF) (/\ )~ R(Uij) = R(”ij) = F(U‘jl) .

However, also R(z) = Jz*.J, and so

2 Reduced case and duality

Now suppose that ¢ is faithful. Let (H,A) be the GNS construction for .
For each a € A, let H,, be the finite-dimensional subspace of H spanned by {A((vf;)*) : 1 <
i,j < ng}. Notice that H, is orthogonal to Hg for @ # 3. As A is dense in H, it follows that
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H is isomorphic to the Hilbert space direct sum of {H, : & € A}. There is a bijective linear
map Uy, : Hy, — (2 ® (2 given by

[ e
Ua : A((viy)") = A—J& ® 6;.

We have that U, is unitary, because

@
(Ua((Wi))|Ual(vi)")) = A—Ja(@- ® 8;|0k © &) = (v (vi)") = (A(v)*)|A((v)Y)).

From the general LCQG theory, we form the unitary operator W* on H ® H by
w (A(a) ® A(b)) = (A AN)(A(D)(a®1)) (a,b € A).

Notice that it is very easy to show that W* is unitary in the compact case. It follows that
W (€@ A((v)") = D_(v5)7(€) @ A((vg)").
k
Now we calculate

(W(E® AW @ A(wg)) = (€@ A((g)")

p

(vp)" (1) @ A((0)))

. x
= (Uki (€) |77)5a,,85j,z A

(e}

=37 (65(6) ® A(vg) )| @ A((v])")).-

It follows that for each o € A, the unitary W restricts to H ® H, and is the map
W(E @ A((v5)) =D vpi(€) @ A(v)").
p
In particular, (1 ® U,)W (1 ® U}) makes sense on H @ (2 ® (2 and is
we = (1QUIWIRUL) : £@6;@5; — Y u(§) ®3,® ;.
p

Thus actually
Wo = ZU?j@eij@ L,
4]
where e;; is the usual matrix unit in M, = B(¢2 ).
2.0.1 Positive cone

The positive cone of L*(G)* is by definition the closure of {zJxJA(1) : z € L>*(G)}. If
x € L®(G) then there is a norm-bounded net (a,) in A converging to = strongly. In particular
A(z) = zA(1) = lim, a,A(1) = lim, A(a,) where the limits are in the norm of L?*(G). Then

rJrJA(1) = zJA(z) = lima, JA(z) = lima,JA(a,),

as ||aa JA(x) —an JA(an)|| < |laallllJA(x) — JA(aq)|| — 0. Thus the positive cone is the closure
of the set {aJA(a) : a € A}. Recall that aJA(a) = al(0;2(a)*) = A(ao;jz(a)*). In particular,

P"A(aoijz(a)*) = A(r(aoia(a)) = A(r(a)oija(i(a)”),

which is in the positive cone (as 105 = 0,7 for all s,t € R).
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2.1 Further facts about the irreducible corepresentations
prop:fmatrices

We refer to later results; from our choices (compare Proposition @d%-li)mgyc% A Xgpghat Fe is

diagonal, with entries (A,A¢) ™. By (the comment after) Corollary [A27, 1t follows that
)\a * *)\za «
Z ngrz(ugg) = i, Z(U?k) Fuj,k = 0; ;.
k i k k

We could also prove these by writing down what it means for u® to be unitary, and then
applying the map R, given the form for this which we have established above (though is A is
not reduced, we then have to argue a little about the uniqueness of the Hopf algebra.)

Beloxy, we’ll see that for each «, the contragradient representation f is also. irr%ducible

Tem:contra_irrep : . o prop:conjunitary
(Lemma [AI8) and is equivalent to a unitary corepresentation (Proposmon A.19). do ther lsan o
invertible scalar matrix 7" (which is unique, up to a scalar, EX Sghur’s Ikemma, Proposition % I>5i
K _ m: fmatrixkappa .

and some 3, with (1 ® T-)u®(1® T) = u”. In Lemma [A.26 1t’s shown that TT* is a scalar
multiple of F'*; by considering the traces of these positive definite matrices, this scalar multiple
is a postive number. It follows that, by rescaling 7', we may suppose that T = (F@)'/2U for
some scalar unitary matrix U.

Thus we find that (1 ® U*(F*)~Y2)u*(1 @ (F*)Y2U) = v”, and so
W=(1UT(F) Pl (F*)PT) = (1o (F)' U1 U(F*) %) = v

However, by the same reasoning, there is a scalar unitary V' with (1® V*(F%)~Y 2)%(1 ®
(FP)Y2V) = u®. By Schur, V*(F9)~1/2 = (F*)Y/2U for some p € C. Thus p(F*)Y2U(FP)1/?
is unitary, that is,

REE) U U2 =T & |uPFU = U(FP)
As U(FP)~'U* = |u?F*, taking the trace of both sides shows that A} = [u|*. Thus FOU =
UA52(Fﬁ)*1. Notice that both the matrices F'* and Agg(Fﬁ)*1 are diagonal, with strictly
positive diagonal entries, and with unit trace.

Lemma 2.1. Let U be a unitary matriz, and let A, B be diagonal matrices with non-zero
diagonal entries (a;) and (b;). For each diagonal entry a of A, let E2 be the eigenspace of
a, which is lin{e; : a; = a}. Similarly define EE. Suppose that AU = UB. Then, counting
multiplicies, the sequences {a;} and {b;} are the same, and U restricts to a unitary between Ej:
and EJ.
Proof. For each i, notice that A(Ue;) = UBe; = b;Ue;, so b; is an eigenvalue of A, and hence
there exists j with a; = b;. Similarly, for each j there is ¢ with b, = a;, so the sets {a;} and
{b;} agree.

Now observe that U maps Elf into El;‘j, so as U is invertible, the dimensions of these
eigenspaces agree. Thus, counting multiplicities, the sequences {a;} and {b;} agree, and the
proof is complete. O

So in our case {(A,A\¢)"'} and {)\f /Ag} agree counting multiplicity, and U has the stated
simple form. Then A2 = 3, Ao\ = 37, Ag/A] = A%, s0 Aq = As. Hence {A¢?} and {1/\]}
biject according to multiplicity.

2.2  Duality
2.2.1 The involution on L'(A)

From general LCQG theory we have the homomorphism X : L'(A) — A given by w — (v ®
t)(W). Recall the involution 4 defined on L}(A) which satisfies

{a,w") = (S(a)*,w) (a € A,w € L'(A)y).



Then X is a *-homomorphism when restricted to Ly(A).
For a,b € A we define w(a, b) = waa).ap) € L'(A). Then for ¢ € A,

(S(c),wla, b)) = p(b*S(c)*a) = p(S(b*S(c)*a)) = p(S(a)cS(b*)) = p(S(b7)"cS(a)")
= (e, w(5(a)", 5(67)))-

That ¢ is S-invariant follows immediately from the action of ¢ and S on the elements vf;. Thus

w(a,b) € L}(A) with w(a,b) = w(S(a)*, S(b")).

2.2.2 Identifying the dual

Define the linear functional on A by

a. B
wlj ° Uk’l = 60&,,85'i,k6j,l'

Notice that
(Vg A((v5)")

from which it follows that

A, N
A(l»ﬁ = 00,p0i k071 = <Ulfl7wij>7
J

Wij = )\—?WA((v?j)*LA(l)-

From the discussion above, wi} € L(A).
We now compute

MNEHAR)) = 32 @ man @ DOVAR))

= 203 (5A))

p

ML) A((u)) = a0 A(v7)7).

Thus each Hp is an invariant subspace for A(wy};), and A(wf;) = 0 on Hg for v # 3. Furthermore,
UM(W%)UZZ(% ® 0;) = ,k0; @ 0.

Hence U, A(wi;)U; = ej; the (i, j)th matrix entry of M, , which acts on the 1st component of
(2 ® (2 in the canonical way.

Lemma 2.2. The linear span of {wf; : o € A, 1 < 0,5 < ny} is dense in L'(A).
Proof. As A is dense in A, it follows that {wa(a)a@p) : @, b € A} is linearly dense in L*(A). For
a,b,c e A,

(¢, wa@)am) = (b ca) = p(oi(a)b"c) = (¢, Wa(i(ap),a (1) -

By continuity, this also holds when ¢ € A, and so we see that {WA(a),A(l) :a € A} is linearly
dense in L'(A), from which the result follows. O

A=Pm,,.

Here, for each o € A, the copy of M, acts on the first factor of £ ® (2 = H, and acts as 0
on Hp for 3 # «, all this happening on H = @ H,.

We know that W € M&M and thus we can identify W as a member of M® [[, M, =
[[, M®M,,. The calculation in the previous section immediately shows that W = (vf;) €
M, (M) = MRM,,,.

Henceforth, write ef; € M, for the standard matrix units, acting on the a part of H &

@ H..

We hence conclude that



2.2.3 Scaling group

We know that AM(w o7_;) = ;A(w). Firstly, we calculate that

(Vs w5 © 7o) = (A7) (o, wif) = (AF) T (X§) " {vja, ).

Thus . .
%t(e‘”‘) = )\(w?j o T_t> = (/\f‘)_“()\?)“)\(w?j) = (A\$)” “(X")“ e

ij

2.2.4 The weight on M
From LCQG theory, we have a GNS construction for M given by
AA@)[A(@) = (a"w)  (a€A),

for a suitable, dense collection of w € L'(A). Thus

A/« * « Aa ) * AOZ ) * *
(A<€ij)}A<(U/fz) )) = <Ulfl7wij> = 00,50 k051 = ng(vlljl(vij) ) = F(A((Uzﬂ )‘A((Ulfl) ))
j J
Thus
A w A, A,
A(eij) = FA« ZJ) ye H, = U A( ) )\aé ® 0;.
) J
We now see that
A2 . A,
A((v5))) = 6a50: k050 e

P((e)ess) = (Aeg)|A
In particular,

Let T be the Tomita map, TA(a) = A(a*) for a € M; notice that this will respect the

decomposition M = [[,M,,. Then, on M,,_,
(VA@E)IA(eR) = (TA(R)TA(eG)) = (Aei)|AleR) = G(efen) = 08(eh)

)\? ~ «a )\? a\| A/ .o
= 0,10, kAN = )\asﬁ( KC) = E(A(%) AleRy)),
J J
and so e
VA(ef) = A;A( ¢) = U, VUL ® ;) = Alé ®6;.

By uniqueness of positive square-roots, it follows that
JA(es) = JTA(S) = V2A(e) = || 20 Afes
(e jz) (e ) (eij) A/ e <€ij)‘

J

This also shows that
. )\a .
JA((v;)") = AQA(( i) = AFIA(v;) = JJA((vf;)7) = AFA(0f;).

Finally, we also see that

TT 7% / Aa T ) * / AOé / A7 ) * / AOé o\ *
J J 7 7



2.2.5 The antipode

We calculate that

A/ XN
A JeSTA((uf)") = —LETL Jea p (),

Reeg)Alel) = 35

From above, there is some v and a scalar unitary matrix U with (1 ® U*(Fﬁ)*_l/Q)m(l ®
(FA)Y2U) = u” and NFPU =U(F")™ So (1® (FAY20)u (1 @ U*(FP)~Y/2) = uf and thus
(1@ (FHY20)u (1 @ UT(FP)~Y2) = uP. Tt follows that

. ,/AﬁA
R(eg)Alepy) = ZJ% (P20 ) (UT(FP)2) A (u,)")

Aﬂm
R

UkpUque (( ) )
Pq \/
Mo N
=N UkpUrg+> A JeSA(e),) = 5a77AﬁZUk7iUl7qA—7JA(ejq)
p.q q

= 0arDg Y Ukilg JA(u)))") = arhp Y UrilUigy /AN A(u],)
q q

= Oars > Uilligy/ XIS Y (U (FP)772), (FP)2U0), g A((u)")
q s,t
_ N .
= OayAg Z Uk,iUl,q\/ )\}/\Z Z Us,jth—A((uft) )
q st \/ )\tﬁ

Now, we know that AU, ; = UMAB)\})\?, for each 7, 7. Similarly, as AE/U*FﬁU = (F)~1
by the uniqueness of positive square-roots, also A, U*(FP)Y2U = (F")~Y2 so /A U;; =

\/Ag)\ )\ Ui ;. So we get
A e
R(ej; ekzl —5aw\/_ZUklUlq\/>Usy\/_th st)*)

q,s,t t
- 5aw\/ AgA, ZUkZ\/7U8J sl)*>
\/_)\

= Gun/AsA, ZU;” MUSJ 1, A(e?)
N “ A A
— Gy /A—;Ukvi\/)\i] > U, \/;EA(efl) = 6MA—;U;€,Z- > U A(ED).

It follows that, with 3 being the unique index such that u® is equivalent to u”, and recalling
that A, = Ag, we have that

Z As Uil e,y = (U*e"U)y,



Hence indeed R is an isometry etc.
Next we calculate
A
7A-—i/2<€i )A(@kl) Ve GV 1/2A( ) = )\ﬁvlﬂ eV I/QA((“M) )
!
Ve A

A o *
= —gvl/%ij/\(am((ufz) ) =
l

l
= V28 NNTA(€]) = 6;100,6V /> NN ALe])

A ) s A .
= Disdass\ NS5 A2 ()) = 8300 XN S5 XN IA(w)”)
l

= ak‘saﬁ\/ e) — /g ] Alefy)
So in conclusion, with «, 3 hnked as before,
2.2.6 The coproduct

. A7
S(e) = A_Jﬁ(U%ﬂU)j,i.
For w € L'(G), we find that

A wen)) = A((wen @ )W) = (wep @ 0 @ 1) (Wr3Whs)
= Z(wﬁ,ei ® L)(W> ® (weiﬂ? ® L)(W) = Z A(wszei) ® /\<w€im>’

where (e;) is an orthonormal basis for H.
We'll use the orthonormal basis {U%(d; ® 0;) : v € A1 <1i,5 < na}. Now,

§ / § o\ x
est vst7w/\((vo‘) U (5k®51 st Uklvst(vij) )7

(Wa(g))ussres) ® (W

7,85t 7,85t
and also
Ag A
(wU*(5k®5l) Zt )\g eap(v] Ufl) ) = A_;efz-
vY,8
Thus
(e7;) e Z Z ¥ Ukl“st eq ® efl.
T Bkl v,s,t
Then
A~ AOé O\ * A/B
80(( = Z ® Ukl“st (6§l) o Z QD(ngUzt(Uz‘j) )F
J B.k,l J Bk k

2.3 Aspects of the locally compact setting

Recall the operator P defined by P*A(a) = A(7;(a)) (the scaling constant is trivial). Thus

. A, Aq
Ua PUL(S; ® 6;) = Us */Aa PEA((v)7) = Uay [ 3o Am(05)7)
J

= Uy [S200 108 A5)) = 00)705), @8

SR
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3 Using the right regular representation

It is more common to use the right regular representation, which we shall denote by V. This
satisfies

V(Aa) © A()) = (A @ A)(Aa)(1 ® D)),

where of course in generality A is using the right Haar weight; in the compact case, this agrees
with the left Haar weight, of course. Thus we see that

V(AW @& = Aus) ® vg(9).

For each @ € A, let H], be the subspace of H spanned by {A(v;) : 1 <i,j <nq}. As Alis
dense in H, it follows that H is isomorphic to the Hilbert space direct sum of {H) : a € A}.
We can construct a unitary U}, : H, — {2 ® (2 given by

U/

FAUE) > (AaAY) V26 ® 65
This is clearly a linear bijection, and it is unitary because

! [e% « 1 1 « (03
(Vs )| Ua(R) = s (5 © 5100 © &) = dundius—sz = (AWG)[AGR)):

Aar/A0NE

So again V restricts to an operator on H, ® H, and

U, @DV(U, @1):16,@8,0E— > 6@ 0 ®ug(S).
k

Setting
wi; = A AT wrm)aeg),
we see that
(0 055) = Mo AT @ ((05) v5) = o 60iadia:
Then

PORA ) = (L ® W) (V)A(v) = AaAd (6 ® waa)awe) (V)A(v)

A
= AaX? D M) (M) [A(5)) = Gas8uA(vfy).
p
Thus p(wg;) restricts to the zero map on each Hg with 8 # «a, and

ULp(wiUy™ : 0, @ 8 — 05,0, ® 0, = Uy, p(wii)Us” =1 ® ey

A Finding the unitary corepresentations

A.1 The left regular representation

Definition A.1. A (unitary) corepresentation of (A, A) is a (unitary) element U of M(A ®
Bo(H>> such that (A X L)U = U13U23.



sscomult

Let H have an orthonormal basis (e,,), and let U, ,, be the matrix elements of U; this means
that Upm = (L @ we,, ¢, )U € M(A). Then U is a corepresentation if and only if

A(Unm) = (L @ L ® Weyp e, ) (Ur3U23) = Z(L ® L@ Wey e, )(Ur3) (L @ L @ we,p, e) (Uas)
k

= Z Un,k & Uk,m-
k

Let ¢ be the Haar state on A and let L?*(¢) be the GNS space, with cyclic vector &,. Let K
be some auxiliary Hilbert space upon which A acts non-degenerately, say with x-homomorphism
m: A — B(K). At this stage, we shall not assume that 7 is injective.

Proposition A.2. There is a (unique) unitary operator U on K @ L*(p) with U* (£ ® a&y) =
(m®)A(a)(E®&) forae A and € € K.

Proof. For (a;) C A and (&) C K, we have that
| > (m @ )A€ 9 ) I'= 3 (v o 0a@a)s @ 6l @ )
= Z INCBNAI)
- Zga(a;ai)(msj) DR

This shows that U* is an isometry; clearly U* is densely defined, and so U* extends to an
isometry on all of K ® L*(p). As A(A)(A®1) is linearly dense in A® A, we see that the image
of U* contains the closed linear span of

{m(a)§ @b :a,be AL € K}.

As A acts non-degenerately on K, this shows that U* is a surjection, so U is unitary as
required. O

Proposition A.3. The operator U is a member of M(w(A) ® By(L?*(p))), and for a € A, we
have that (1 @ 1)A(a) = U*(1 ® a)U in B(K @ L?*(p)).

Proof. For a,b € A and £ € K, we have that U*(1 ® a)(§ ® b&) = (m ® t)A(ab)(§ @ &) =
(7 @ ) A(a)U*(§ ® bEp) and so U*(1 ® a)U = (7 @ ¢)A(a).

Let a,b € A,&,& € L*(p) and £ € K. For € > 0 we can find Y ,a; ® b; € A® A with
1>°,ai®@b; —A(a)(b® 1)|| <e. Then

U (m(b) ® bago.e)(§ @ &2) = (&20€) U (w(D)€ @ ago) = (&2/€1) (7 @ ¢)(A(a)(b @ 1))(€ ® &o).

It follows that
H (U*(W(b) @ fagoer) = Z m(a;) © 9biso,§1) (E®&)

- @l e n@a@e e )E e L) - > ma @bkl

i

< ell&lllIE NNl

As € > 0 was arbitrary, this shows that U*(7(b) ® Ou¢,¢,) € 7(A) @ Bo(L?*(¢)). By linearity and
continuity, U (w(A) @ By(L?*(p))) € 7(A) @ Bo(L*(¢)).
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Now consider

U<1 ® 96150,51)(5 ® 62) = (52'51)[](5 X afﬂ)-
For € > 0 we can find (@;), (b;) € A with || >, Aa;)(b; ® 1) — 1 ® al| < €. Then

HZ b)E ® ai&o) — U(E ® aky)|| = HZU b)E ® aily) — € @ ay

_HZ Afa;) (b ® 1))(€ @ &) — §®a§0H<e||§®gO||

Thus we can approximate U(l ® Ougye,) by D, (bi) ® bae0c,- We conclude that U(m(A) ®
Bo(L3(9))) € w(A) @ By(L?()). Hence U € M(n(A) @ By(L%(¢))). O

Lemma A.4. We have that for a,b € A,

(6 @ Wago ) (U) = 7(1 @ 0)(AD")(1 @ a)), (¢ ® Wago bo ) (U™) = (e @ 0)((1 ® 0%)A(a)).

C’on;equen.tly, (tjlz; collections {(t @ w)(U) : w € B(L*(¢))+} and {(t @ w)(U*) : w € B(L*(¢))+}

Proof. For a,b € A and &1,& € K, we have that
(¢ ® wago ey (U)&1|&2) = (& ® a&o|U* (& ® b))
= ((mr @ A& ® alo|& ® &) = (7(L @ ) (ADB*)(1 @ a)& &),
which gives the first result. Similarly,
(6 ® Wago 460 (UM)E1|€2) = ((m @ )((1 @ D7) A(a)) (& ® &o)|€2 © &),

which gives the second result. As A(A)(1 ® A) is linearly dense in A ® A, the density result
follows. O

Suppose now that 7 is faithful, so we can identify A with 7(A), and so U is a member of

M(A® By(L*()))-

Proposition A.5. Suppose there is a x-homomorphism ® : 7(A) — B(K ® K) with o7 = (7®
m)A. Then Uij3Usz = (P@0)U. In particular, when m is faithful, U is a unitary corepresentation.

Proof. We shall instead equivalently show that (& ® ¢)(U*) = UjU;;. For a,b € A and
&1,& € K, we have that

Uis(m(a)6 @ & ® bSo) = ((m ® 1)((A(b)(a @ 1)) 4(& ® & ® &)

Similarly,
Uss(m(a1)§1 @& ®as8) = m(a1)&1(m®e)Alaz)(§®&) = (r@7@1)((1@A)(a1®a2)) (6 @& @)
As A(b)(a® 1) € A® A, it follows by continuity that

UssUrz(m(a)61 @ §, @ b6p) = (m@ 7 @ ¢)((t @ A)(A(D)(a ® 1))(§1 @ & @ &)
= (1@ 7@ )(A%(b)(7(a)b @ & ® &).

By hypothesis, this is equal to
(P @ )A(D)(m(a)é @ & @ &p).
It hence follows that for a,b € A,
(0 © 1 © Wagouer)(UssUss) = B (1 9)(1® ) A(a).
By the previous lemma, this is equal to

(¢ @ wagy 60 (U™)),
and the result follows. O
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A.2 Irreducible representations

Definition A.6. Let U € M (A ® By(H)) be a corepresentation of (A, A). A closed subspace
H, of H is invariant for U if (1® e)U(1 ® e) = U(1 ® e) where e is the orthogonal projection
onto Hj.

U is said to be irreducible if the only invariant subspaces are {0} and H.

Lemma A.7. Let Hy be an invariant subspace for a corepresentation U. Let e be the orthogonal
projection onto Hy, and let U, = (1®@e)U(1®e). Then U, is a corepresentation on Hy, unitary
if U is.

Proof. We have that
(A®)(Ue) = (11®e)U13Up(1o1e) = (1@1®e)Ui3(101®e)Us(1®1®e) = (Ue)13(Ue)23-
Thus U, is a corepresentation. If U is unitary then

UU.=1e)U(1e)l(l®e) =(10e)U'U(1®e) =1Re.
So U, is unitary, as a member of M(A ® By(H,)). O
Definition A.8. A corepresentation of the form U, is a sub-corepresentation of U.

Proposition A.9. Let U be a unitary corepresentation of (A,A). Let B be the norm closure
of {(lp @ 1)(Ula® 1)) : a € A}. Then B is a non-degenerate C*-subalgebra of B(H), and
Ue M(A® B).

Proof. Let a € Aand set x = (p®1)(U(a® 1)) € B(H). Then

U(t® o @1)(Usz(Ala) 1)) = (1 ® ¢ @ ) (U13Uzs(Aa) @ 1))

= (1®p@)((A®)(U(a 1))
=1 () (Ul®l)=1x .

Thus U (1@ x) = (1 ® ¢ @ t)(Uss(A(a) @ 1)).
So if also y = (¢ ® ¢)(U(b® 1)) for some b € A, then

vr=(p@)(t* @ NU* (1)) = (p@)((b* @YU (1@ z))
=(peee)((b"®@U)(Ale) ®@1))
=(p®)(U(cx 1)),

where ¢ = (¢ ® ¢)((b* ® 1)A(a)) € A. So we have shown that B*B C B. As (A® 1)A(A) is
dense in A ® A, as a and b carry, ¢ varies over a dense subset of A. Thus B*B is dense in B.
In particular, B is self-adjoint. Thus also BB C B, and we conclude that B is a C*-algebra.

Now let 6 € By(H) and a € A, so that (¢ ® t)(U(a ® 0)) € BBy(H). As U is a unitary
multiplier of M(A ® By(H)), the set {U(a ® 0) : a € A,0 € By(H)} is linearly dense in
A® By(H). It follows that BBy(H) is linearly dense in By(H ), which is enough to show that
B acts non-degenerately on H.

Finally, we show that U € M(A ® B). For b € A and x as above,

Ub@z) = (1® @@ ) (Us(Ala)(b® 1) @ 1)).

As A(a)(b®1) € A® A, we see immediately that U*(b®z) € A® B. Moreover, as A(A)(A®1)
is dense in A ® A, we set {U*(b® z) : b € A,z € B} is linearly dense in A ® B. So also
UA® B) CA® B, and U € M(A ® B) as required. O

11
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Proposition A.10. Let U be a unitary corepresentation of (A, A), and let Hy be an invariant
subspace of H for U. Then Hi- is also invariant.

Proof. Let e be the orthogonal projection of H onto Hy. Let z = (¢ ® ¢)(U(a® 1)) € B, so as
U(l®e)=(1®e)U(l®e), it follows that

re=(p®@)(U(a®e)) =(p@)(1®e)U(a®e)) = exe.

As B = B* also ex = (z*e)* = (ex*e)* = exe, and so ex = xe. Thus H; is an invariant subspace
for B, and as B acts non-degenerately on H, it follows that ex = we for all x € M(B).! As
Ue M(A® B), it follows that (1 ® e)U = U(1 ® e), and then a short calculation shows that

(IeeU(leet)=U(l®eh),
where et = 1 — e, as required. O

Definition A.11. Let U; and U, be unitary corepresentations of (A, A) on H; and H, respec-
tively. The direct sum of Uy and U, is Uy @ Uy € M(A ® By(H; & Hy)) is

U, 0
Ul@UQZ(Ol U2>,

where here we make the identification

Bo(H, & Hy) = ( By(H,) BO(HQ,Hl))‘

BO(H17H2) BO(HQ)

The tensor product of Uy and Uy is Uy®Us = (Uy)12(Us)13 € M(A ® By(Hy ® Hs)) =
M(A® By(Hy) @ By(H>)).

An intertwiner between U; and U, is a bounded operator T : Hy — Hy with (1@ T)U; =
Us(1 ® T'). We denote the collection of intertwiners by Mor(U;, Us). Two corepresentations
are equivalent if there is an invertible intertwiner, and unitarily equivalent if there is a unitary
intertwiner.

Lemma A.12. Let U and V' be corepresentations of (A, A) on Hy and Hs respectively. Let
x € B(Hy, Hy), and set

y=(p0)(V:1ex)U).
Then y € B(Hy, Hy), and V(1@ y)U =1®y.

Proof. We identify B(H;, Hy) with a “corner” of B(H, & Hs) in the obvious way. Then U and V/
are both (on diagonal) corners of M(A® By(H; @ H»)); thus V*(1®z)U € M(A®By(H, & Hs))
and so y makes sense as a member of M (By(H; & Hy)) = B(H; & Hy). A simple calculation
shows that y only has non-zero component in the B(H;, Hy) corner; thus y is well-defined.
Notice that
(A )(V(A®z)U)=VaV5(1®1Q x)UzUss.

Then observe that
(PR @)(AR)V* (1) U)=12 (pe)(V(1ez)U)=1®y,
while
(@@ )V Vi5(1®1®2)Ui3Ux = V(1 ®@y)U,
and the result follows. O

Indeed, let € M(B) so for y € B,¢ € H, we have that we(yé) = (ry)eé = e(ry)é = ex(yf). By
non-degeneracy, it follows that xe = ex.

12
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The obvious use of this lemma is that if V' is unitary, then (1 ® y)U = V(1 ® y), and so
y € Mor(U, V). Notice that an obvious modification of the proof shows that if z is compact,
then also y will be compact.

Proposition A.13. Let U be an invertible® corepresentation of (A,A). Then U is equivalent
to a unitary corepresentation.

Proof. Let U act on H, and set
y=(p®){U).

By the previous lemma, U*(1 ® y)U = 1 ®y. Clearly y > 0 and as U is invertible, U*U > €l
for some € > 0; thus also y > €1, so y is invertible. Now set

V=>0ey"HUl ey ?).

Then (A® 1)V = (1 ®1®yY?)Ui3Uxs(1 ® 1 ® y~'/2) = V13Va3 and so V is a corepresentation.
Then

VV =1y U leylley ) =1y )1y (ley /?) =1,

and as V is clearly invertible, it follows that V is unitary. By definition, 3'/? intertwines U and
V', and so U is equivalent to a unitary corepresentation, as required. O

Theorem A.14. Let U be a unitary corepresentation of (A, A) on a Hilbert space H. Then
there is a family of mutually orthogonal, finite-dimensional projections {e, : a € I} with sum
1, with U(1 ® e,) = (1 ® eq)U for each o, and with U(1 ® e,), considered as an element of
A® B(e,H), being a finite-dimensional unitary corepresentation.

Proof. Let B be the collection of operators z € B(H) with (1 ® 2)U = U(1 ® x). Then B is
clearly a norm-closed subalgebra, and as U is unitary, it is easy to see that B is self-adjoint.

So Bis a C*—al%egg%ﬁ%

By Lemma A2 1f x € By(H) then y = (¢ ® )(U*(1 ® )U) will be in B, and will be
compact. Let (z;) be an increasing net in By(H) with supremum 1. Then the associated family
(y;) is an increasing net in B with supremum 1. As each y; is compact, we see that B will
contain sufficiently many finite-rank projections to form the required family (e, ). m

The following is then a quantum Schur’s Lemma.

Proposition A.15. Let U,V be corepresentations of (A,A). For each T € Mor(U,V), the
space ker T' is invariant for U, and the closure of the image of T is invariant for V. Suppose
that one of the following conditions holds:

1. U and V' are irreducible;
2. U orV are finite-dimensional of the same dimension, and one of U or V is irreducible.
If U and V' are not equivalent, then Mor(U,V') = {0}, otherwise Mor(U,V) = Cax for some

invertible x € B(Hy, Hy). Furthermore, if U and V' are unitary, then x can be chosen to be
unitary.

2This simply means that there is some operator U~ € M(A ® By(H)) with U='U = UU ! = 1.

13
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Proof. Let U act on Hy, and V act on Hy. Let T € Mor(U, V). We first show that ker T and
T(Hy) are invariant for U and V respectively. Let e be the orthogonal projection onto ker T'.
Then 0 = V(1®Te) = (10T)U(1®e), and it follows that (1®e)U(1®e) = U(1®e). Similarly, if
e is the orthogonal projection onto T'(Hy ), then we wish to show that (1®e)V(1®e) = V(1®e).
Equivalently, as e(Hy) = T'(Hy ), we wish to show that (1®e)V(1®7T)=V(1®T). However,

1a)VAeT)=1e)(1TVU=1TU=V(1aT),

as required.

Then, if U and V are both irreducible, we immediately see that any 7" € Mor(U, V) is an
isomorphism, or is 0. If U is both finite-dimensional and irreducible, then any 7' € Mor(U, V)
is 0 or injective, but as dim(Hy) = dim(Hy ) < oo, then T injective means that 7" is an isomor-
phism. Similarly, if V' is irreducible then 7" is either 0 or surjective (and so an isomorphism).

So in either case, if U and V' are not equivalent, then Mor(U, V') = {0}. If T' € Mor(U, V)
is non-zero, then U and V' are equivalent. If now S € Mor(U, V) is also non-zero, then for any
A € C, the operator AT — S is in Mor(U, V') and so is an isomorphism Hy — Hy, or is 0. So
choosing A with det(A\T" — S) = 0, we see that actually A\T' = S as required.

Finally, suppose that U and V are unitary, so as U = (1@ T "HV (1 ®T),

1=UU= 1T V*(1e(TT) HYWAT), 1=UU"= (1T HV*ATT*V(1x(T*)™").

Thus
1@TT =V*(1TT)V,
so as V' is unitary, we see that TT* € Mor(V, V). Thus the previous work shows that 77* is a

(necessarily positive) scalar multiple of the identity. We may suppose then that TT* = I, so
as T is invertible, T is unitary, as required. O

Now let m: A — B(K) be a faithful, non-degenerate *-homomorphism and form the regular
corepresentation U as in Proposition '

Theorem A.16. Let U be the reqular corepresentation, acting on the GNS space H. Let V
be an irreducible unitary corepresentation, acting on Hy say. Then V is equivalent to a sub-
corepresentation of (that is, contained in) U.

Proof. Let x € By(H, Hy ) and set y = %Q!Vs*cgng@ x)U) € By(H, Hy) so that (1 ® y)U =
V(1®y), by Lemmam Proposition [A 15, if 3 is non-zero, then y is surjective. As U,V
are unitary,
V(igy) =1yl = 1ey)V=U1xy")

so y* : Hy — H is an intertwiner, and hence y* is injective, and the image of y* is invariant
for U. So, if y is non-zero, y* implements the required equivalence between V and a sub-
corepresentation of U.

Alternatively, y = 0 for all choices of z. So for any £ € H and n € Hy, if x(y) = (v[&)n,
then

0= ((p@)(V' A @2)U)s|m) = (@, (1 @ Wy ) (V) @we )(U)) (& € Hom € Hy).
By Lemma %%nl%ltgl%means that
(p,t@w)(V*)a) =0 (a € A,w € B(Hy)).

This implies that (¢ ®¢)(V*(a®1)) =0 forall a € A, and so also (¢®¢)(V*(a®x)) = 0 for all
a € Aand z € B(Hy). As V is irreducible, Hy is finite-dimensional, and so V € A ® B(Hy).
Thus (¢ ® ¢)(V*V) =0, which contradicts that V' is unitary. O

14
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A.3 Contragradient representations

Let U be a finite-dimensional corepresentation of (A, A) on H. Given an orthonormal basis
(€;), for H we can let (e;;) be the matrix units of M, = B(H). Then we can write

U: ZUZ’]‘@)&Z‘]‘

1,7=1

for some u;; € A. Recall from before that U being a corepresentation is equivalent to A(w;;) =

Dk Uik ® Upj.-
Let K be another finite-dimensional Hilbert space with orthonormal basis (f;)7L;. Then
S € B(H, K) can be represented by a matrix in M,, ,,, say (s;;). Then

(19U = E , Uij @ SpgCpqCij = E :spiuij e
,J,p,q 4,J,p

Similarly, if V' = Z?}:l v;; ® €;; is a corepresentation on K, then

Vl®s) = Z Vij @ €ijSpq€pq = Z VijSjq & €ig-
4.J:p,q 3.4
Thus S € Mor(U, V) if and only if, using matrix multiplication, (s;;)(tpg) = (Vpg)(Sij)-

Definition A.17. Given U and (e,) as above, the contragradient corepresentation is U =
> i Ui ® €.

The definition of U does depend upon (e,). Indeed, picking a new orthonormal basis for
H is equivalent to finding a unitary matrix S and setting V = (1 ®@ S )U(1 ® S). So V is a
corepresentation (unitarily) equivalent to U. Then V = (1&5 )U(1®5), and so V is equivalent
to U, but the equivalence is given by the matrix S, which in general is not equal to S.

Lemma A.18. Let U be a corepresentation. Then U is also a corepresentation. If U is irre-
ducible, then so is U.

Proof. We see that as A is a *-homomorphism,
A(Ufj) = A(uy;)" = (Z Ui, @ Ukj) = Z g, ® g
k k

So U is a corepresentation.

Let v : M,, — M,, be the transpose map, which is an anti-homomorphism. Notice that
U = (1®7)(U*). Suppose that e is an orthogonal projection on H with U(1®e) = (1®e)U(1®e).
Then applying ~ gives that

1)U =17 U (1) = U(led)=(1eU(1lxed),

where ¢’ = 7y(e)* is still an orthogonal projection. As U is irreducible, ¢’ = 0 or 1, and hence
also e = 0 or 1, showing that U is irreducible. O]

Notice that ¢ ® « is not an anti-homomorphism on all of M,,(A), unless A is commutative.
Thus we have to work hard(er) to prove the next result.

Proposition A.19. Let V' be a finite-dimensional irreducible unitary corepresentation. Then
V' 1s equivalent to a unitary corepresentation.

15
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Proof. We again use Lemma [A 12, with U being the left regular representation, acting on the
GNS space H. Let V act on the finite-dimensional Hilbert space Hy . Pick = € By(H, Hy) and
set
y= (e )V (1ez)l).

So y € By(H, Hy) with V_*(l YU =1®y. The?OU’;(:]fl@y*)V = 1®y* and thus (1®y*)V =
U(l®y*). Soy* € Mor(V,U). By ]%ﬁgﬁ%gglam:s . as V is irreducible, y* has zero kernel, or
y* = 0. As in the proof of Theorem [A 16, the image of y* " is an invariant subspace of U, and so
either y = 0, or y* implements an isomorphism between V' and a sub-co-representation of U.

Thus, towards a contradiction, suppose that y = 0 for any choice of z. Again, this implies
that

(0, (t@w)(V)a) =0  (a€ Awe B(Hy),).

Let w € B(Hy). be the functional which sends e;; to 1, and e,, to 0 for all other (p,q). Thus
(t®@w)(V") = v;;. We hence see that

(p,t®@w)(V)a)y =0 (a € A,w € B(Hy).).

Thus (¢ ®¢)(V(e® x)) =0 for a € A,x € B(Hy). This again implies that (¢ ® ¢)(VV*) = 0,
contradicting V' being unitary. O]

In particular, if V' is merely an invertible corepresentation, then V' is equivalent to the direct
sum of finite-dimensional unitary corepresentations; the same is then true of V', and thus in
particular V' is invertible.

A.4 The Hopf *-algebra of matrix elements

Let Ay be the linear span of the matrix elements® of unitary irreducible corepresentations.
By the previous work, Aj is also the linear span of the matrix elements of finite-dimensional
invertible corepresentations.

Proposition A.20. The space Ay is a dense unital x-subalgebra of A.

Proof. Let U and V be corepresentations, and let wy € B(Hy). and wy € B(Hy).. Then
(t@wy @wy)(UOV) = (1t ®@wy ®@wy)(U12Vis) = (¢t @ wy)(U)(t @ wy ) (V).

If U and V are finite-dimensional and unitary, then U®V is also finite-dimensional and unitary.
We conclude that Ay is an algebra. Notice that 1 € A = M(A®C) is a unitary corepresentation;
thus 1 € Ag.
Similarly, as U is equivalent to a unitary corepresentation whenever U is finite-dimensional
and unitary, it follows easily that A is closed under the % operation.
It remains to show that Ag is dense in A. Choose a faithful, non-degenerate *-re ¥ggercl‘germgion
A ‘J By The

T v C?&nggnd form the left regular representation U as in Proposition A.5. By o-
rem A T4, U aecomposeﬁtﬁ_ £ C%il%"gacfngum of finite-dimensional, irreducible unitary corepre-

sentations. By Theorem [ATT6 every finite-dimensional, irreducible unitary corepresentation is
equivalent to a sub-corepresentation of U. Hence A is the span of the matrix elements of
finite-dimensio ?l s%b—corepresentations of U.
em.daense . . .
By Lemma A4, the space {(t @ w)(U) : w € B(H).} is dense in A. Given &,n € H,
we claim that we can approximate (¢ ® we,)(U) by elements of Ay; this will show that Ay is
dense in A. Let (e,) be a family of mutually orthogonal projections with sum 1, as given by

3That is, elements of the form (: ® w)(V) where V is a unitary corepresentation, and w € B(Hy )..
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thm: d
Theorem A lzicggheene;pplied toU. Let U, = U(1®e,) = (1®e,)U, a finite-dimensional unitary
corepresentation. Then

(t @wen)(U) =Y (t @ weu())(U) = Y (t © wer () (U(1 ® €a))

(07

= (1@ Wep(©ea) (1@ €a)U(1 @ €a)) = Y (4 @ Wen(©),eatn)(Ua).

67

Thus (¢ ® we,,)(U) is in the closure of Ay, as required. O

Let {u, : o € I'} be a maximal family of non-equivalent unitary corepresentations. For each
a, let u, € A@M,,, with u, = Zf; L ug; @ ey We shall prove that {uf; 1 a € 1,1 <4, j <n,}
is a (linear) basis for Ap.

We first take a small diversion. Let 0 : A® A — A ® A be the swap map, which is a *-
homomorphism. It is easy to see that oA is co-associative if and only if A is, and so (A, 0A) is
a C*-bialgebra (called the “opposite” or, less commonly but more accurately, the “co-opposite”
quantum group). We see that (A, A) satisfies the density conditions to be a compact quantum
group if and only if (A,0A) does. In this case, ¢ remains the Haar measure for (A,cA).
Notice however that U is a corepresentation for (A, A) if and only if U* is a corepresentation
for (A, 0A).

Proposition A.21. For each o € I, there is a positive invertible matrix F* such that
(o, (Up) ul) = bapdpoFes  (B€1,1<i,p<ngl<jq<ng).
The trace of each matriz F'* is 1.

lem:
Proof. Consider the operator 6, .; € Bo((;, (% ). Then by Lemma 1T

y=(p@0)(us(1@x)us) = Y (i, (up) ulemreeg = Y (o, () S, )epg
p,b,c,q D,q

is an operator in BﬂgQ , nﬁ) with (1 ® y)u, = ug(l ® y). As u, and ug are irreducible, by
Proposition Evftmee that y = 0 if aﬁérﬁ.

When o = 3, by Proposition %ee that y must be a scalar multiple of the identity.
Thus we obtain numbers F7; with (o, (u Zp)"‘u‘?‘ ) = 0a,30p ¢ I That u® is unitary means that

jq
Z(ng)*ugg =0l = 0;; = Z(%( Uk:g = 0i,j ZFkk
k k
(p ® 0)(u*(u®)*). By Lemma %Yeml 20 gpphed to (A,0A), we have that

Now consider y
1@y =u"(1®y)(u*

y =2l @) (@) g)eis = D, () wii)ess = na Z

i7j7k

@)*. Now,

Thus y = n.(F)". However, clearly y is a positive matrix, and so F' is positive. Now, as u®
is equivalent to a unitary corepresentation, and is hence invertible, we see that y intertwines
the corepresentations (u®)* and (u®)~!, again working with (A,oA). Taking adjoints shows
that u*(1®@y") = s(gh@ry*)(m)**l. As u?® is irreducible and has the same dimension as (u®)*~!,
Proposition ,%I% shows that y* = 0 or y* is an isomorphism. As the trace of y is n,, we
conclude that y, and hence also F'“ are invertible. O]

Proposition A.22. The collection {ug;} is linearly independent, and hence forms a basis for
Agp.
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A*ué . is zero. Then, for any 3, p, q

a,i,j 7,5 g

o « * oo\ __ B \0
0= Z )‘i,j<90a (U}iq) uzg) = Z Fi,p)\i,q'

a7l7‘]

Proof. Suppose that the finite linear combination

As F? is invertible, A’ = 0, for any 3, as required. m

Let m : Ag ® Ag — Ap be the multiplication map on the algebraic tensor product Ay ® Ap.
We define linear maps k : Ag — Ag and € : A9 — C by

G(Uzaj) = 0;j, ’f(ufg) = (U]az)* (e l,1<14,j < ng).

Notice that then, for any finite-dimensional unitary corepresentation U, we have that
(k@)U)=U",  (e®)(U)=1

In particular, £ and € are well-defined, independent of our choice of maximal family {u®}. If
a; = (L @w;)(U;) for i = 1,2 then

€(a1a2) = (e @ w1 @ w2)(U1@U2) = (w1 @ wa)(1) = (1, wi)(1,ws) = e(ar)e(az),
and so € is a character.

:ishopf | Theorem A.23. The maps k and € turn (Ag, A) into a Hopf x-algebra. To be more precise,

i

(e®1)Aa) = (t ®€)A(a) = a, m(k ® 1)A(a) =m(t ® k)A(a) = €(a)l (a € Ayp).
Automatically, k is an anti-homomorphism, and Ak = o(k ® kK)A. Furthermore, k * kx = (.
Proof. As A(ug;) = > uiy @ uj ;, it follows that A restricts to a map Ag — Ag © Ag. Then

(€@ 0)A(ufy) =Y e(ufyui; = ug,
k

showing that (e ® t)A =1 on Ayp; similarly (: ® €)A = ¢.
Also

m(k @ ) A(uf;) = Zm((ugl)* ® up ;) = Z(ng)*“g] = 0151 = e(ug;)1,
k k

using that u® is unitary. Similarly m(: ® k)A = €(+)1.

That s is an anti-homomorphism and an anti-co-homomorphism follows from the theory of
Hopf algebras, see ;ZI, Section 1.3.3] for example. That xxk % £ = ¢ follows from our definition of
K. [

in_hopf| Proposition A.24. Let Zw a;; @ e;; be a finite-dimensional corepresentation of (A, A) with
a;j € Ao for alli,j. Then the following are equivalent:

10pf : one 1. The matriz (a;;) is invertible;

10pf : two - 1f (§5)7=1 € C satisfies that ) ; ;65 = 0 for all i, then § = 0.

opf : twoa f (&)1 € C satisfies that 3 a;;& =0 for all j, then § = 0.

lglilal

2
3

f :three 4. €(ag;) = 6;; for all i, j;
5

pf : four . The matriz (a;;) is invertible with inverse (k(a;j)).

18
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[prop : whepromragh enidg dunprfrertaipeaiio X :
Proof. Clearly (I = (£) and [ . n consider the map
7o Ay — My; o — ({1, aij)); here we write Aj for the vector space of linear (not necessarily
bounded) functionals Ay — C. This is a homomorphism, and so 7(¢) is a (not necessarily
orthogonal) prOchtlon. If W(e)f =0 tl}g&g%%é :cogégfgéit:spigoﬁc%l% HEWOSO Zi <M’ Qij %éé"op:: vglg(r)llicorep_units
all 7 and p, tha{c is, 25036 =0 As (2) holds ¢ = Uand so w(e) = I which shows (4.
o . lprop: ntdhrep_units_1 _hopt :{woa ”

Similar, if (3] then, 1f for all © € Aj and (1;);—; € C" we have that >, ;n;&(u, ai;) = 0,

then & = 0. Hence the linear span of

{D (waiz)n; - p € Ay, € C"}
J

n
]:

prop:when_corep_units_in_hopf:three
%ﬁ?ﬁopf:three

is all of C™. Again, this implies ‘ﬁhat re) = I. showing
)  jpbrop:when_corep_units?
By the previous theorem, if (1) holds then

Z K(aig)ag; = m(k ® 1) A(a;;) = €(a;)1 = 6; ;1.
k
rop:when_corep_units_in_hopf:four

Similarly, >, aixk(ar;) = 0; ;1 and so (}g) holds. O

. . prop:when_corep_units_in_hopf:twoa ;
Notice that the proof shows that condition (3)1s equivalent to the homomorphism Ay — M,

being non-degenerate. Equivalent conditions are “gc}ill%‘gw‘%}é% ilr%ld%g?gi homomorphisms A* — M,
or L'(A) — M,, are non-degenerate. Theorem [A.32 below shows that if the Haar state is
faithful on A, then any non-degenerate homomorphism L!'(A) — M, arises from an invertible
U in this way (that is, the hypothesis that each a;; € Ay can be removed).

A.5 Automorphisms
We now study the “F-matrices” F'“ more closely.

therway | Proposition A.25. For o, 3 € I, we have that

(F*)s

a (B V) — .
<§0a U’z‘p(“jq) > - 5&,551J Tr((Fa)_l) '

Proof. Consider the compact quantum group (A,cA). Then {(u®)*: o € I} forrqgr%pc'(%glagélreitges
set of unitary corepresentations for (A,cA). Thus we can apply Proposition A2 to find

positive, invertible, trace 1 matrices G* with

(o, (W) ()2 = (0, uly(u,)7) = Gap0i ;G5
fprop:fmatrices

The proof of Proposition [A-2T shows that 1 ® (F*)" = u*(1 ® (F*)")(u®)* and thus also that
1 ® (GY) = (u*)*(1 ® (G*)Y)u®. Thus both (F*)! and ((G*)7!)! intertwiAE%ou_?sc(ﬁlrlich is

irreducible) and ((u®)*)~! (which is of the same dimension). Thus Proposition A"15 shows that
G = A\(F*)~! for some A\ € C, which may be determined by the condition that G has trace
1. [l

-ixkappa| Lemma A.26. Let T € M, be such that (1@ T Hu*(1 ®T) is unitary. Then F* is a scalar

multiple of TT*, and (F*)™" intertwines u® and the corepresentation (K*(ug)).
fprop:conjunitary

Proof. By Proposition [A-19 there 1s an invertible 7' € M, with v = (1@ T~")u®(1®T) unitary.
Thus

l=w'=1T Hu (1 T)(1eTHu"" (1 (T,
__ I . prop:fmatrices
and so (1@ TT*) = u*(1 @ TT*)u®". Hence by the proof of Proposition [A-2T, (F™)"1s a scalar

multiple of TT™, or equivalently, F'“ is a scalar multiple of TT =TT
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~ixkappa

Now, as v is unitary, v* = k(v), where x(v) is the matrix (x(v;;))? So

ij=1'

kW) =1=(01&T Hu*(1aT).
However, also
F) = (1o T e eT)) = (1o TR u)1e (T,
here using that (x(u®)"),; = r((u%)*) = #2(u$). Thus

1

1@ (THT Hu® = k2(u) (1@ (T-HT ).
So conclude that (F*)~! intertwines u® and k?(u®). O

Notice that a corollary of this result is that T" is determined up to a unitary matrix, and a
scalar. Indeed, by rescaling, we may assume that 77 = F*. As F* is positive and invertible,
there is a unique unitary* matrix U with 7' = (F")"/2U.

Corollary A.27. The matriz (F)~ intertwines the corepresentations u® and ((u®)")~!, where
of course (u®)" has matriz (us;).

thm:ishopf
Proof. Using the properties of x established in Theorem [A-23 we see that as u® is unitary, for
any i, j

S uf(ugy) =00 = (up)up; = > ulk(ug) =0 1 =Y m(ufy)up
k

k k

k
E: a - E: 1
= uk’JH lk‘ —5 1— K U’k] Zk
k

This implies that ((u®)")~" is the matrix (v~ '(u$;)) = (s((u$;)*)*) = (£*(uf;)*). By the
previous result, for all 7, 7,

ST =Y /) (FOrh = Y (Fo)tug ) =D k2 ug) (Fo); L,

k k k k

that is, (F*)~! intertwines u® and ((u®)")~" as required. O

In particular, this result shows that

(u®)(Fo)~1y® = (Fo)-1, ueFe(u™)t = Fe,
Let us think about how the “F-matrices” are effected lﬁ% dmitary equivalence. Let v be a

unitary corepresentation equivalent to u®, so by Proposition A T5, There is a unitary intertwiner,
X say. Thus v = (1 ® X*)u*(1 ® X). Then

(@, 05 via) = D (02 (Kaitigy Xop) Xejuly Xag) = Y Xai XopXej Xag(p, (ugh) ully)
= XaiXipXpgXojFly = 0pg (XTFX) .

Thus the “F-matrix” associated with v is X*F*X.

4For any vector x we have that ||T*:n||2 = (ITT*z|z) = (F z|z) = ||[(F")/22||2. So there is a well-defined
isometry U with U T = (F )1/ 2 As (F )1/ 2 is invertible, U is everywhere defined and invertible, so a unitary.
Then TU* = (F*)Y/2 so T = (F*)Y/2U as required.
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For each «, set t, = Tr((F*)™'). As F'* is a positive invertible matrix, t, > 0. For each
z € C, define a linear map by

fo1 A — G ug ((Fa> )U aZ/Q'

z?]

Here we use the functional calculus to define F* = exp(zlog F') for a positive matrix F.
Because (T*FT)* = T*F*T for any positive invertible F’, unitary 7" and z € C, we see that

[ is well-defined, independent of the choice of irreducibles {u®} (of course, t, is well-defined).
As is standard, we turn A* into a Banach algebra, with the product denoted by *, by

(px X a)=(n®A\Aa) (a € A u,\e A).

hm: ishopf
Notice that * is also well-defined on the algebraic dual of Ay, because of Theorem %%ne
o: Ay — Ay by
ola) = fixax fi = (fi ®.® fi)A*(a) (a € A).

propsfz| Proposition A.28. The maps f, have the following properties:

1. For a € Ay, the map C — C;z — f.(a) is entire and of exponential growth in the
right half-plane (meaning that there are C > 0 and d € R with |f.(a)| < Ce?RE) when
Re(z) > 0);

2. fo = € the counit, and f, * fu, = f.yw for all z,w € C;
3. for a,b € Ay, we have that (p,ab) = (p,bo(a)).

Proof. (1) follows almost immediately. To see this easily, suppose that F* is diagonal (as we
may, as F'® is positive, so diagonalisable). Then, if ¢ > 0, the function z +— t=% = e8¢ is of
exponential growth in the right half-plane, as |[e™**| = e7*R() for s € R. As any a € Ay is a
finite linear combination of elements of the form ug; the result follows.

For (ii), first notice that F” = exp(0) = I for any positive matrix F', and so fo(ugj) = d;
as required to show that fy = €. Now notice that

(fo furufs) = Y (Forufi) (s uily) = D (F)l (FO) ot 728,00

k k
= ((FO‘) (Fa) w)zj a(z+w)/2 (t1/2FOé) (z+w) <f2+w7 z]>

For (iii), notice that

o(ufh) =Y (froug)ug(froug) ="y (F) (F) ufh.

k.l k.l

3 —_ [e% —_ ﬁ *
Thus, if @ = ug, and b = (u},)*, then

(p,bo(a)) =t Y (F) (F)ig (o, (why) uii) = 15005 ) (F)3! (F) 0 i

el
=1, 00,60 ;(F%),, = (p,ab),

prop: haarotherwa

where the final equality uses Proposition [A725. Then (111) Follows by linearity. [

Theorem A.29. Fach f, is a character on Ay. Furthermore:
1. f.(1) =1, f.(k(a)) = f-.(a) and f.(a*) = f_z(a) for alla € A,z € C;
2. K¥(a) = (fi®t® f_1)A%(a) for each a € A.
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The characters f. are uniquely determined by the properties shown in the previous proposition.
Proof. We first claim that o is a character. For a,b,c € A,

(i, abe) = (i, co(ab)) = (i, bea(a)) = {p, cola)o(B)).
As this holds for all ¢, we conclude that o(ab) = o(a)o(b) as required. Then, for a € Ay,

(f2,a) = (f1* fo* f1,a) = (¢,0(a)),

and so fo = € oo is a character. Then f; = fo* fo = (fo ® f2) o A is a character, as A is a
homomorphism. Similarly, for is a character for all & € N. Thus, for a,b € A, the functions

2 fu(ab), and 2 fo(a)f(0)

are both entire and of exponentlal row th in the right-half plane, and are equal on {2k : k € N}.
Thus they agree everywhere (see H‘%’Pﬁge 228). So f. is a character for all z.

In this argument, we have only used the properties of the family (f,) established by the
previous proposition. Then ¢ is uniquely determined by condition (3) (of the previous propo-
sition), and so fs = € o ¢ is uniquely determined. Thus also fo; is uniquely determined, given
condition (2). But then (f,) is uniquely determined by the same complex analysis argument.

Clearly f,(1) =1 for all z. Then

foh=([hQ)A = (foh® fo) A= (fih® f. @ f) A = (. @ L. @ [-.) (k@ )A® ) A.
That f, is a character means that f,m = f, ® f,, and so
fz’% = (fz ® f_z)(TTL(FL ® L)A ® [/)A = fz(l)(€ ® f—z)A = f—za

as required. Notice now that if ¢ > 0 then t7 = exp(Zlogt) = exp(zlogt) = t*. Being careful,
this shows that (F#)* = F* for a positive invertible matrix F. Thus

L)) = f(m(u) = f(uf) = (FO); el = (F)7;te* = Fo(ugy),

which completeg showing }glg
By Lemmaﬁ?\_m%g%’ Du*(1 ® F*) = k*(u®), and so

w2 () = 3 (FO)ui ity P H = (L@@ fa) A%(ufy),
k,l

which shows (2). O
Proposition A.30. For z,2' € C, define a map p, . : Ag — Aoy by

Pz = (fz’ L& fZ)AQ-

Then p,. is an algebra homomorphism, and for any w,w" € C,

Po,0 = ¢, Pz,2' © Pww = Pztw,z/+w'
pop. =, pa 0% =%0p_z =
Pzt OK=KOP_p _2, Ao Pz = (pw,z’ ® pz,—w) o A)

k1= P1,—1 O K.
Proof. These are all immediate from the previous proposition. O
In particular, define two one-parameter families of *-homomorphisms of A, by
O = Pit,it Tt = P—itit (t € R).

These have analytic extensions to all of C, and we see that o = p;; = o_; while K2 = P-11 = T—;.
Also A1y = (1, @ 1) A and Aoy = (1, ® 0y) A. Tt follows that (o) is the modular automorphism
group of ¢, while (7;) is the scaling group of (A, A). Notice that p, . = 0_i.q2r)/2T—i(z—2)/2-
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b:slices

|ice:one

lice:two

1

in_poly

A.6 Slicing against coreps
. . . oro2 .
We take a slight diversion, and follow %, Section 4].

Proposition A.31. Let U € M(A®By(H)) be a unitary corepresentation, and let w € By(H)*.
Then:

1. Seta=(@w)(U) € A. If p(aa*) =0 then a = 0.
2. L@w)(U) =0 if and only if (L @ w)(U*) = 0.

For any a,b € A fized, we have that (tQp)(A(b*)(1®a)) = 0 if and only if (1R¢)((180*)A(a)) =
0.

. prop:cgtar_corep .
Proof. By Proposition A79, 1t B 1s the norm closure of {(cp ® ¢)(U) : ¢ € A}, then B is

a non-degenerate C*-algebra acting on H, and U € M(A ® B). In particular, we can find

by € B, lecg%%[)* with w = bywy.

For L(‘%,_Wy ¢ € A, we have by Cauchy-Schwarz that |p(ac)|? < ¢(aa*)e(c*b) = 0, and
50 ((cp @ 1)(U),w) = (cp,a) = 0. Thus (byw) =0forallbe B. AsU € M(A® B) we can find
a bounded net (u;) in A ® B with u; — U strictly. Then

a=(Rw)(U)=(®w)(Ul®b)) = liZm(L ® wo)(ui(1 ®bg)) = liZm(L ®w)(u;) =0,

as u; € A® B.

For (E %f%ﬁﬁggse that (t®@w)(U) = 0. As just argued, this certainly implies that (tQw)(V) =
0 for any V € M(A ® B). In particular, (¢ ® w)(U*) = 0. Conversely, if (+ ® w)(U*) = 0 then
W)U =01® w*)(U%e:c:Q’e?%lrde s00=(®w)(U") =(®w)(U)" as required.

gcorep

Finally, follow Section [A T, as applied t gg;ggng%ithful represe ltéiéci%%oof A, to form the left
regular corepresentation U. Then Lemma ;X.ZI' combined with (H gives immediately the final
claim. O

Theorem A.32. Suppose that ¢ is faithful. If a € A with A(a) in the algebraic tensor product
of A with itself, then a € Ay.

Proof. Let A(a) = "1, a; ®b;. For b € A, notice that
@) ((1@b)A@) =) e bi)a; =) (bip,b)as.
i=1 i=1
Thus (¢ ® ¢)((1 ® b*)A(a)) = 0 if and only if b* € ker(bjp) N --- N ker(b,p). By the previous
proposition, this is equivalent to (+ ® ¢)(A(b*)(1 ® a)) = 0. In particular, we conclude that
{t®@p)(A(b*)(1®a)) : be A} is a finite-dimensional subspace of A.
Now let b = ug; to see that

{ Xty o acii<ij<n.
k

is also a finite-dimensional subspace of A (actually, of Ag). As the set {u,} is a basis for Ay,
it follows that there is a finite subset F' C I such that

A,y a)=0  (agF1<jk<n,).

. .. [prop:fmatrices . .o 2 2 :
Using Proposition IA2T; ifwe set H, = lin{u;&o : 1 < i,j <na} C L*(¢p), then L*(yp) is the

orthogonal direct sum of the finite-dimensional subspaces {H,, : @ € I}. We have just shown
that a&, € lin{H, : o € F}. As ¢ is faithful, the GNS map A — L%(p);b — b, is injective,
and so a € lin{ug; : @ € F'} C Ay as required. O

An example given in FFZS'] shows that this result may fail if ¢ is not faithful.
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— A.7 Faithfulness of the Haar state
i th_haar
ithhopf | Proposition A.33. The restriction of ¢ to Ag is a faithful state.

Proof. Let a € Ay with (p,a*a) = 0. By Cauchy-Schwarz, (¢, a*b) = 0 for all b € Ay. Thus, if
a=> 0 j Aijui; a finite linear combination, then taking b = uﬂyq shows that

0= Z;B,jéjquﬁ Z )‘lﬁquﬁz

2%
Again, as F? is invertible, this shows that A’ = 0 for all /3, as required. O

Proposition A.34. For any a € A, we have that {p,a*a) = 0 if and only if (p,aa*)y = 0. In
particular:

1. Ny={a€ A:{p,a*a) =0} is a two-sided closed ideal of A;
2. Let (L*(p),m, A) be the GNS construction for p. Then ker A = kerm = N,,.

Proof. Suppose (p,a*a) = 0. By Cauchy-Schwarz, (p,a*b) = 0 for all b € A, in particular, for
all b € Ay. As Ap is dense in A, we can find a sequence (a,,) in Ag with ¢} — a* in norm. So

0= (p,a’o(b)) = lim(p, a,o (b)) = lim(p, ba,) = (p,ba")
prop:firstpropsfz
where here we use Proposition [A.28." As this holds for all b € Ag, again by density, we conclude
that (p,aa*) = 0, as required.

That N, is a left ideal follows from the inequality a*z*za < ||z|*a*a; clearly N, is closed.
However, we have just shown that N, is self-adjoint, and hence is a right ideal as well, showing
(1).

By definition, ker A = N,. Suppose that 7(a) = 0, so 0 = 7(a)A(1) = A(a), so a € N,.
Conversely, if a € N,, then for be A, asabb*a* < Hb||2aa and (p, aa*) = 0, also (¢, abb*a*) =0,
so also (p, b*a*ab) = 0, showing that m(a)A(b) = 0. As b was arbitrary, w(a)§ =0 for all £ € H,
showing that m(a) = 0. Thus (2) holds. O

So we can form the quotient algebra A, = A/N,, and let ¢, be the functional induced by
¢ on A,; it follows that ¢, is a faithful state on A,. Let (L?*(¢), 7, A) be the GNS construction
for ¢ on A, and let (H,,m, A be thhaary %nsgruc’mon for ¢, on A,. Let ¢: A — A, be the
quotient map. By Proposmon LA dd we see that q restricts to an injection on Ap, and hence
we can identify Ay as a dense subalgebra of A,.

Theorem A.35. The map A(a) — A,.(q(a)) extends to an isometric isomorphism 6 from L?()
to H,. Then m,.(q(a))d = 0n(a) for alla € A, and so 7(A),7(A,) and A, are all isometrically
1somorphic.

There is a unital x-homomorphism A, : A, — A, ® A, with (¢ ® q)A = A,q, and such that
(Ar, A,) becomes a compact quantum group. A, restricts to A on Ag. The corepresentation

theory of (A, A,) agrees with that of (A, A).

Proof. Askerq = N, = ker A, the map 6 is well-defined on A(A). Then ||0A(a)|]* = (¢, q(a*a)) =
(p,a*a) = ||A(a)||?, and so 6 is an isometry with dense range, and hence extends to an isometric
isomorphism. Clearly ¢ intertwines m, A and so we can identify m(A) with 7,(4,) = A,.
o [prop:core glvescdmu . .

We now use Proposition A3 Use 7 : A — B(L*(p)) to form U, a unitary in M(7(A) ®
Bo(L3(9))) C B(L*(¢) @ L*(p)) with (7 ® m)A(a) = U*(1 @ 7(a))U for a € A. Using the
isomorphism with H,, we obtain a unitary W € M(A, ® By(H,)) with W*(1 ® ¢(a))W =
(mrq@7.q)A(a) for a € A. Thus, if a € ker ¢, then (¢q®q)A(a) = 0 (as 7, @7, injects on A, ®@A,.).
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Then we can set A,.(a) = W*(1 ® a)W for a € A,, and we see that A,(q(a)) = (¢ ® q)A(a), as
required.

It is clear that A, agrees with A on Ay. The statement about corepresentations follows as
we can phrase everything in terms of Ag.[?] O

As an aside, from LCQG theorem, we define

W*(Ala) @ A(b)) = (A @A) (A(D)(a®1)).
brop:corepgivescomult
This is the same definition as given by Proposition A3
We can now also construct the von Neumann algebraic version of A,, as M = A” in B(L*(p)).
It is easy to see that we can extend A to a M by defining A(z) = W*(1 ® )W for x € M
(o-weak continuity shows that A does map into M®M, and that A is coassociative). We
extend ¢ to M by identifying it with normal state wa).

Lemma A.36. The extension of p to M is a faithful normal state on M.

Proof. We argue above. If x € M with ¢(z*x) = 0, then zA(1) = 0. We can find a net (a;) in
Ap which converges strongly on x (by Kaplansky Density). Then, for b, ¢ € Ay,

(zA((b)|A(c)) = lim o(c*ano(b)) = hm o(bc*ay,) = hm (anA ‘A (cb*))

= xA ‘Acb* —O

By density, (z€|n) =0 for all £, € L*(p), so x = 0. O

Theorem A.37. Let x € M with A(x) in the algebraic tensor product of M with itself. Then
x € Ao.
fthm:when_in_poly

Proog We . £ODY. the proof of Theorem [A.32. To do so, we need to use a version of Pro OSl— - dense
tion , where a € M in the final claim. In turn, this follows from a version of Lemma %Y 4
which in turn follows from the construction of W € B(L?(p) ® L?*(¢)) as W*(£ ® A(a)) =
Afa)(E @ A(1)) for a € A, € € L*(p). For x € M, if (a,) is a net in A converging strongly to z,
then A(z) will be the strong limit of A(a,), and A(z) = zA(1) = lim,, a,A(1) = lim,, A(a,) in
norm. Thus W*({ @ A(x)) = A(x)(§ ® A(1)) for all € M, and the proof is complete. O

B Character theory
3
Much of this theory comes from 7o,roSection 5].

Definition B.1. Let U = (U;;) € A® M,, be a (finite-dimensional, unitary) corepresentation.
Then the character of U is the element x(U) = xp =Y., Ui € A.

If Tr denotes the (non-normalised) trace, then xy = (¢® Tr)U, showing x to be coordinate
independent.

Lemma B.2. Let U,V be corepresentations of A. Then x(U& V) = x(U)+x(V),x(UDV) =
(@) x(V), x(U) = x(U)* = k(x(U)). If U and V are equivalent of dimension n, then x(U) =
X(V) and e(x(U)) = n.

Should probably be more precise here— a target would be to prove: For V € M(A ® By(H)) a unitary
corepresentation of A, clearly (¢ ® ¢t)V is a unitary corepresentation of A,; we claim that this establishes a
bijection between unitary corepresentations of A and of A,.
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Proof. We only prove the non-obvious claims. We may suppose that U is unitary, so then

X(U) = 32Uy = 32 K(Uis) and so x(U) = x(U)* = £(x(V)). Similarly, e(x(U)) = 3, e(Us) E

-_are_on| Proposition B.3. IfU,V are irreducible (unitary) corepresentations, then p(xixv) = ¢(xvxi) =

1 if U is equivalent to V', and equals 0 otherwise.
. . . L. fprop:fmatrices | | fprop:haarotherway
Proof. This follows immediately from Proposition [A"2T and Proposition [A-25.

Then, as for classical compact groups, knowing yy allows us to find how U is decomposed
as irreducibles. To be precise, if we set n, = ¢(x;_xwv), then

U= @(ua)@”“, XU = Znax(uo‘).

Furthermore, the space of intertwiners between U and itself has dimension Y n2 = ¢(xixv).

Lemma B.4. Assume diagonalised F-matrices.® Then fi(xv) = f-1(xv) = Aa-

Proof. Simply note that f.(xv) = >_,(Af)* and so fi(xv) = f-1(xv) = Aa- O
Notice that

Alx) =Y _AUx) = > Uy @ Uy,
i .5

and so A(xy) = 0A(xv). Woronowicz says that this corresponds to the classical situation
where characters are always invariant under inner-automorphisms.”

B.1 Woronowicz’s question
Let Acen ={a € A: A(a) =cA(a)} and A% = Ay N Acen.
Lemma B.5. Let a € A°

cen’

Then a is a finite linear combination of characters.

Proof. As a € Ay, we can write a = ) aqjuf;. Then

Aa) = Z Ao i jUiy @ up; = 0A(a) = Z Ao i j U @ Ug,.

B _ B
E A,iqUip = E :aﬂ,p,jqu-
¢ J
But then looking at the u), component shows that for all 7, p, g, 7, s we have that

Then for all 3, p, q,

Ay,1,q0s,p = oy p,sOr,q-

So if s # p then a,, s = 0, while taking r = ¢ and s = p shows that a.,, = a,, for all 7, s. So
there are scalars b, such that a,;; = 9; jb,. Hence

a= ZbaZug = Zbax(uo‘),

as required. N

Woronowicz asked:
o [s A

cen dense in Acen?

e Equivalently, is the span of characters dense in Agy,.

Again, if we believe that when A = C(G) then A, is the space of functions invariant under
inner-automorphisms (i.e. the space of “class functions”) then this is true in the classical group
case.

5Maybe we don’t need to do this— but then we need to define the “quantum-dimension” somewhere!
"Can we expand?
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C Diagonalisation

%§§E§E§§] fprop:fmatrices

Recall (from Proposition [A-2T) that the F-matrices satisfy

<§07 ( zp>*u_?q> = 60&,55p,qchfi (Oé,ﬂ € ‘[7 1 S Zap S n,@71 S jv q S na)7

where ['“ is a positive invertible matrix with trace 1.

Then we can find a unitary matrix X* such that (X*)*F* X is diagonal, say with diagonal
entries (%)) C (0,1], with 3, u{® = 1.

Set v® = (X*)*u*X*, a unitary corepresentation (unitarily) equivalent to u®. Then

<(107( ,p>*vjo'jq> = Z <907 ((Xﬁ)za ngﬁ ) (X]ac)* a ng>
a,b,c,d
=b0p > X0 Xp X X5 (0, (ul))us ) = 0ap Y Xo Xg XeXG 0,aF2,

a,b,c,d a,b,c,d

= Oa,p Z X X (X XNy Fly = 00,5054 (X)) FOX)5

= 5a,ﬁ(5p,q5i,jﬂi

fprop:haarotherway

We now use Proposition [A:25. First note that (X*)*(F*)~1X“ is diagonal with entries
(1;7"). As before, set t, = Tr((F*)~1) =", u;'. So we see that

(P, vy (05)7) = Y (s (X)X (X5 ug g X))
a,b,c,d
(F*)as

—_= Ocﬁ Z XO( 2aXpra Xdaq(sact—’

a,b,c,d «

F
=9 ,gd,jZX (X):

Xa Fo 1Xa o1,
(( ) ( t) )%P — 6a,ﬂ6i,j5p,q(ﬂp> 1ta1'

= 00,50,

Let A% = (u®)~1a"2, so that

Z(}\?) ta 1/2 Z)\a _ 1/2t (toz)l/Q'

So with A, = (t%)'/2, we see that

«

(o, (Ufp)*vjo'jq> = 00,80p,40i,j )\O‘A (p,v 2p( ) ) = 0a,30; ,Jéqu

Thus, to recap, for the new family of unitary corepresentations (v*), the associated “F-
matrices” are diagonal, with entries (,uga)) or equivalently, with entries ((A%)"1AZ1).

Thus this does agree, Wlthat¥1£)I{AMS paper.

appa

Notice that Lemma [A.26 shows that

Oij _ N“(gwy, , Okl e o yea L
)\ZaAa _%:( )lkAoéA ( ) _%:(Ui,k) Uj,k)\%Aa'
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C.1 Decomposing the left-regular corepresentation

[8] . ) L Top:regcore

Form the left-regular corepresentation U as in Proposition ECSET)g't‘h_at%2 U e MA®
Bo(L?*(¢)). Recall that L?*(p) is the GNS space for ¢, with cyclic vector &. As at the start,
L*(p) decomposes as the orthogonal direct sum L?*(¢) = @, H, where H, is the span of the
vectors (vg;)*§p. There is then a unitary

[e
Uo:Ho — 0 Q0 5 (v5) & — A_ja(;i ® 0;.

Let X =@, Uy : L () — D, 05, ® (2 . Then as before,

(1 X)U (1R X") (i @) = \/g(l ® X)U* (& @ (viy) &)

J

X Z (1 X)((v5)"€® (v5,)"6) = D (V)€ @ & @ 55

k

It follows that
1eX)U(1eX) =) () e ol,

a,i,k

and so
1eX)UI®X) =) vjee el

a,ik
Hence (1 ® X)U(1 ® X*) decomposes as (v*) where each v* € M, (A) = A® M, acts on the
first component of (2 ® (2 .

C.2 The right regular representation

Again, let (A,0A) be the opposite quantum group. Then ¢ remains the Haar weight for
(A,0A), and so we can form the regular representation U°P for (A, oA), acting on L?*(p). It
is easy to see that Y is a (unitary) corepresentation of (A, A) if and only if Y* is a (unitary)
corepresentation of (A4,0A). Set V' = (U°P)*, the right reqular representation of (A, A). By
definition,

V(€ ®a&y) = oA(a)(€ @ &).
Thus we find that

(10 X)V(1 o X")(E @5 © ) = \/%1 ® X)V(E® (v3)°6)
Ay o vig o sa A%
:\/)\:?(1@)()2(%) £ ® (vjy,) & = Z(Uk:j) § ®9; ®\/;5k

1eX)VIeX) =) (1) ®1e A—’; =) (ripp) @ 1o e
J

a,jk

Hence we see that

a7j7k

=Y R(u}) @ 1@ e

a,j,k

8This is just a variant of the construction at the start, but where now we don’t work with the reduced version
of A.
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C.3 Products of compact quantum groups

Let (A,A4) and (B, Ag) be compact quantum groups, with Haar states ¢4 and ¢p. We form
a coproduct A on A® Bby A = (1®0c®1)(As ® Ap). This is clearly a map A ® B —
(A® B) ® (A® B). A tedious but easy calculation shows that this is cocommutative. We call
(A® B,A) the product of A and B.

Let U be a corepresentation of A, and V be a corepresentation of B, both acting on the
same space H. We shall say that U and V' commute if Uy3Va3 = Vo3U;3. Under this assumption,
if we set X = U3Vo3 =U xV € M(A® B® By(H)), then

(A & L)X = (L RoRXLRY L)((AA & L)(U)125(AB & L)(V)345> = (L RoRLR L) <U15U25‘/35‘/45)
- U15U35‘/25‘/45 - U15‘/25U35‘/45 - X13X23~

Hence X is a corepresentation of A ® B.

In particular, set B = A and let U, V' be the left (respectively, right) regular representations.
Thanks to the previous calculations, we see that U and V' commute. Furthermore, by taking
suitable € A*® A* C (A® A)*, we have

(1 ® ) (UrsVa3) = €, @ €

for any «, 1, j, k,l. Hence Uy3Va3 is irreducible. This is in some sense the analogue of the classical
Peter-Weyl theorem.

e Can we show that every irrep of A x A occurs in this way?

C.4 “Central” elements

In a similar manner, we can show that UV (or VU) is a unitary corepresentation of (A, A);
indeed
(A®)(UV) = Ur3UzsVizVaz = Ur3Vi3Us3Vaz = (UV )13(UV )a3.

We shall say that n € L?(p) is central or invariant if (UV)(£ @ n) = £ @ n for all €. Tt is easy
to see that this is equivalent to

(p@)UV)n=pul)n  (neA"),

which also shows that the original definition is independent of the chosen faithful representation
of A.

Lemma C.1. The operator p = (p @ 1)(UV) is a projection, and n € L*(p) is central if and
only if pn =n.

Proof. Let X be any (unitary) corepresentation of A, and for now, let p = (p ® ¢)X. Applying
@ ®1® ¢ to the relation (A ®¢)(X) = Xi13Xs3 shows that (1®p)X = 1®p. Similarly, applying
L ® ¢ ® ¢ yields that X (1 ® p) = 1® p. Then, applying ¢ ® ¢ gives that p? = p. Finally, as ¢ is
a state and || X || < 1, it follows that ||p|| < 1, and so p must be an orthogonal projection.

Now say that 7 is invariant for X if (u®:¢)(X)n = p(1)n for all p € A*. It follows immediately
that if 7 is invariant, then pn = 7. Conversely, if pn = 1 then

fon=>01p)(en =X1ep)(en =X({Exn),

and so 7 is invariant.
The lemma now follows from the special case X = UV. O
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e What happens if we instead use VU?

Dropping now the isomorphism X, we see that

o /NENE
p=(¢p® ZSO K (Ul) I /\_Z_Z —ef

J zk’ ® elj A -
J

a [\
=22 i—l\/ - lsase syony = D Beceas
& Z'vj @ @ (03

say, where e, =Y .

Ao . . .
i/ 3-05 ® 0. Here we use the obvious isomorphism M,,, @ M,,, = M, xn, -
«

Notice that actually e, = X (x%:&) where x, is the character of v®. It immediately follows that
p(ea) = e, for each . Less obvious in this picture is that X (x.&o) is also invariant. We can
prove this by observing that

V(E® xab) = D> oAWD)(E® &) = sz®v ZA V) (€ ® &) = U (€ @ Xabo)-

7

Hence UV (£ ® &) = £ ® &, which is true for any &, showing that £, is invariant.

Corollary C.2. The family (e,) is an orthonormal basis for the subspace of central vectors in

L*(¢p).
prop:char_are_on .
Proof. From Proposition B.3"we know that ¢(XaX}j) = da,s, showing that (x;60) = (eq) is an

orthonormal set. The result now follows given the form of p established above. O]

C.4.1 Actions

In the commutative case, we can consider the action of G on itself given by s -t = sts~!. This
gives a coaction a : C(G) — C(G x G) given by a(f)(s,t) = f(sts™!). This is a left coaction,
as

(t®@a)a(f)(s,t,r) = a(f)(s, trt™!) = f(strt 's™) = (A @ )alf)(s,t,7).
First observe that VE(s,t) = £(s, ts) for € € L*(G x G). Hence
V*U*<1 ® f)UV€<Svt) = V*A(f)V§(S,t) = A(f)Vf(S,tS_l) = f(StS_l)vf(Svts_l) = oz(f)(s,t)g(s,t),

and so V*U*(1® f)UV = a(f).
However, in the compact quantum group case, this doesn’t work, because in general V*A(U%)V €
M(A® By(L*(¢))) is not in A ® A. How to show this? Is it true in the Kac case?

C.5 Convolution product

We identify a dense subspace of L'(A) with a (dense) subspace of A by saying that w € L'(A)
corresponds to a € A when A(A(w)) = a&y in L?*(¢). This is equivalent to

(abo[béo) = p(b*a) = (p,0%a) = (b*,ap) = (AQW))[b&) = (0",w) (b€ A).

That is, if and only if ap = w. Then, given a,b € A we define the convolution product a * b
to be (if it exists) the element ¢ of A which corresponds to (ayp) * (bp) € L'(A), that is,

cp = (ap) * (bp).
Let a = v and b = v,fl. Then to find ¢, it is enough that

((03)", o) = (V)" (ap) x (b))
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for all v, s,t. However,

* * * 1
(02)", (@) = (00)) = D P02 0 (0 1) = G300 Bsibribin s
r a7

1 ‘o
= 504,,65]‘,1@@90((“;) vy),

from which it follows that .
vy ¥ ”lfl = 00,805k~ Vil-

AN

In particular,

1 (0%
Xa * X3 = 0a,p Z A e Vi

We could instead consider “twisted” convolution:
a*w = \[a&o, AA(w)")]).

Note quite sure where this goes— to copy the Dixmier idea, we’d need to find a “central bai” of
such w, and it’s not clear when we can do this— at the very best, we’d need G coamenable!

(So, maybe, spend some time thinking about what happens when for A(G) with G dis-
crete??)

C.6 Todo
e We do know that WV (and/or VW) is a corep of G, and so can talk about “central” L?*(G)

vectors. However, should show that this does not (in non-Kac case?) give a coaction of
A (unfortunately).

e Then think about Dixmier’s proof:

— Does “convolution” of central elements of L?(G) make sense?

— I think want something like central n such that there is a bounded operator 1" with

~

A& y)) = (€ xn*) =T(€)?7 Then want these to give a bai. ..

D Commutative case

Suppose now that (A, A) is a compact quantum group with A commutative. We shall show
that A = C(G) for some compact group G, and that A is the canonical comultiplication.

As A is commutative, A = C(G) for some compact Hausdorff space G. Then A : C(G) —
C(G x @) is a *-homomorphism, and so corresponds to some map G x G — G. That A is
coassociative means that G becomes a compact semigroup. At this stage, we remark that it is
possible to use some compact semigroup theory to show directly that the cancellation conditions
imply that G must be a compact group. Instead, we shall use some general theory.

Let U € M,(C(G)) be a finite-dimensional corepresentation, and let 7 : G — M, be the
associated continuous map, given by the isomorphism M, (C(G)) = C(G; M,,). Then U being
a cor g%%entation corresponds to m being a homomorphism. We now adapt an argument
from [7].” For any finite-dimensional unitary representation 7 : G — U(n) (where U(n) is
the n-dimensional unitary group) we note that 7(G) is a compact sub-semigroup of U(n). If
A € 7(QG) then by compactness, we can find a sequence n(i) of naturals with n(i+1) > n(i)+1,
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and with A"®) — B asi — oco. Notice that B € 7(G). Then set m(i) = n(i+1)—(n(i)+1) > 0,
so that
Am(z) _ An(i+1)(A71)n(i)+l — BB 'A'

Hence A™! € 7(G), and so 7(G) is a compact subgroup of U(n).

By following the general theory, we find a dense Hopf x-algebra P(G) inside C'(G); we see
that P(G) is precisely the collection of coefficients of finite-dimensional unitary representations
of G.

Proposition D.1. We have that G is a compact group, and the counit € and antipode Kk extend
to C(G) with the usual definitions coming from the group structure of G.

Proof. That P(G) is dense in C(G) means that P(G) separates the points of G; that is, for
s,t € G distinct, there is a unitary representation 7 : G — U(n) with n(s) # 7(¢).

Consider the collection N of all subsets N, = {s € G : 7(s) = 1} where 7 is a finite-
dimensional unitary representation. Then each N is a non-empty compact set, as 7(G) is a
compact group. Then N has the finite-intersection property, and N, N---N N, = N, where
T=m @& - ®m,. So (N is non-empty, and thus there is some eg € G with eg € N, for
all 7. As such 7 separate points, eg is unique. Then, for any 7 and ¢ € G, we find that
m(teg) = m(t) = w(eqgt), so by the separation of points property, eq is the identity of G.

Now fix ty € G. For each m there is at least one t € G with 7(t) = m(ty)~' so that
w(ttg) = m(tot) = m(eg). Again by a finite-intersection property argument, we can show that
there is at least one such ¢ that works for all 7. Then separation of points shows that t is
unique, and that t = ¢;'. So G is a group.

The defining properties of € and k now easily show that, for f € P(G), we have e(f) = f(eq),
and k(f)(s) = f(s7!) for s € G. These maps obviously extend by continuity to C(G). O

The Haar state ¢ corresponds to a Borel probability measure, ds, on GG. That ¢ is left and
right invariant means that

/Gf(st) ds:/Gf(ts) ds:/Gf(s) ds  (te G, fel(@)

Then by uniqueness, ds must be the Haar measure on G. We quickly remind the reader why
ds has full support (equivalently, why ¢ is faithful). Towards a contradiction, suppose that
©(f) = 0 for some non-zero positive f € C(G). Then there is a non-empty open set U with
|U| = 0. Then all (left) translates of U have zero measure; but as G is a group, these cover G,
so by compactness, there is a finite subcover, and hence |G| = 0, contradiction. So ¢ is faithful.
Hence A is already reduced, and we can identify L?(G) with the GNS space for .

Let U be a (unitary) corepresentation, and consider the contragradient corepresentation U,
corresponding to 7. Then

T(s) = > u(s)ei; = Y uij(s)es; = w(s),

4,j=1 ,j=1

where for z € M,, we again denote by T = (z*)" = (2')* the matrix obtained by pointwise

conjugation of complex numbers. As A is commutative, it is clear that U unitary (:respectih\)flg(l)%7

:conjunitar

invertible) implies also that U is unitary (respectively, invertible), and so Proposition [A-19
becomes a trivialiﬁz ir% this.case.
n: fmatrixkappa R . ) .
From Lemma [A.26 we see that each “F-matrix” is a scalar multiple of the identity, and so
in particular diagonal. Taking the normalisation that Tr(F*) = Tr((F*)~!), we must have that
F* =1, , and so A, = ng,, for all a. Then each character f, is equal to the counit, and the

scaling group (and of course the modular group) is trivial. Hence k = R the unitary antipode.
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D.1 Some formulae

The GNS construction for ¢ has the concrete form that H = L?(G), the map A : C(G) — L*(G)
is formal identification of functions, and 7 : C(G) — B(L*(G)) is such that 7(f) is the operator
given by multiplication by f. Then Jf(s) = f(s) for s € G, f € L*(G) and J(f)(s) = f(s71).
Also

W e B(ILAG x G)); We(s,t) =E(s,57) (€€ LXG x G), s,t € G).

Let (v*) be a complete family of pairwise non-equivalent irreducible unitary corepresenta-
tions, with associated unitary representations (7,). Then we identify (2 ® (2 with a subspace
of L*(G) via

0f ® 07 = \/naug;.

Then identifying L*(G) with @ 2 ® (2 we again find that
W= (w,) = (ng ® ey ® 1) e B(L?(G) s@Pe, @gia)
1]

The left-regular representation is A : L'(G) — B(L?*(G)) given by
AMw)=(we)(W); Mw)(f)=wxf (weLl(G),feL*q)),

that is, A(w) is the operator of left convolution by w. In the above picture,

)\(W) = ((W ® @Mna & Mnaa
where for each «,

(W® )w, = Z(U”, wye; ®1 = /Gw(s)wa(s)ds ® 1.

i

So as usual, as a C*-algebra, C(G) is isomorphic to €, M,,,, but when concretely acting
on L*(G), we have to remember that each factor M, acts with multiplicity n,; here I have
chosen to write this as e;; ® 1, whereas classical sources usually add an “n,” term to indicate
multiplicity.

Let’s just check this:

AMw)(6 @ 05) « nl/2\(w) 1/2/ w ) ds
G

/2 / o) vl e 0) ds =i / w(s) S usi(s)op (D) ds

From general LCQG theory, it’s easy® to see that A(A(w)) = w for w € LY(G) N L2(G).
From above, we find that the weight on C}(G) = M, is

= Z ne Tr(z,),

9We have (A(A(w))|A(a)) = = [qw a(s) ds and as A(a) = a under formal identification of functions
C(G) C L*(G) the result follows
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where Tr : ML, — C is the usual trace Tr(z) = > % x;;. Then
(A((xa))‘A<(ya Zna TI' yaxa - Znazym z]
- (Z Maa 0% @ 67 Z N 5;").
« 7] kl
Hence there is an isomorphism Hy — @, 2 @ (2 |

— <%: NaTi;0; & 6‘“)

Under this, for w € L'(G) N L*(G),

— A(x (Z\/n_av”,wcso‘@éo‘)

If we identify (2 ®¢2 with the space of Hilbert-Schmidt operators on £2 | then the a-component
of A(A(w)) is precisely \/na Jow(s)ma(s) ds. We need to be a little careful: here

gia & gia ) (52 X 5]' = e € HS(K?LQ),

where e;; : 0p, — 0;10; and so e;; = 05,5,

D.2 The Fourier algebra
As usual, L'(A) is the Fourier algebra A(G). Let &, € L*(G) and let &, € A(G) be the

functional

VN(G) = C;  x— (x€]n).

Now, as VN(G) = [[M,,, it follows that A(G) = ¢ — P T,,, an (*-direct sum of trace-class
spaces.

Let us introduce some notation. For a Hilbert space H, let we, € B(H). be x — (x|n).
Then let ¢, be the (rank-one) operator v +— (v|n). Then the map we, — 0, extends
to the identification of B(H),. with the trace-class operators 7 (H). For x € B(H) we have

Tr(2bey) = Tr(0c ) = (€n) = (z, wep)-
When H = Kfl, as usual we have e;; = (952.75], and so wjj = ws, 5, = €;; as a trace-class operator.
Then
(€ij, wir) = Tr(eijen) = 0u0i.
So wy; sends ey, to 1, and all the other matrix units to 0. (This is sometimes called “trace-

duality” to distinguish it from “parallel-duality”).
Suppose &,n € LY(G) N L*(G) so that £ = A(A(€)) and the same for 5. Then

(€5 Den) = (5 ANED[ANM))) = 2(AM)"eAE)
=n,Tr (ﬁa(n)*e%%(f)) =n,Tr (e%wa(f)ﬂa(n)*).

Hence, using that the integrated form of 7, is a *-homomorphism L'(G) — M,,_,
Gen = (wa) €0 =T, wa=na [ (€47)mals) ds.
- G

Here n*(s) = n(s~!) and & * n* is the convolution product (again, this reflects the use of the
Takesaki-Tatsumma, aka quantum-group, embedding of A(G) into Cy(G), not the Eymard
embedding).

34



D.3 Contragradient representations

For each a consider the contragradient v,. We have that

(Va)ij(8) = v5s(s) = mal(s)yy = Ta(s™)ji-

Let 7, be the induced representation, which in this (commutative) situation is unitary. We can
have two situations: either 7, is equivalent to m,, or it is not.

Example D.2. If G = SU(2) then it’s well-known that for each n there is exactly one equiv-
alence class of irreducible representations of dimension n. Hence here 7, is always equivalent
to m,.

Example D.3. If G is abelian, then every irreducible representation is one-dimensional, and
so is a continuous character a : G — T. Then @ is just @(s) = a(s). Then observe equivalence
of one-dimensional representations corresponds exactly to genuine equality of functions G — T.

Then oo = @ if and only if a(s) € {1, —1} for all s.

D.4 Todo

Maybe try to write-down the coproduct (and/or product on A(G)) using the “Fusion-rules”??
Try to write down the antipode on VN (G)??

E Completions of the Hopf algebra

It somewhat folklore that the Hopf *-algebra A Ca%el?:(? f%olrg}lp]fgglgl to give back C(G) or C*(G).
We justified this (at the reduced level) in Section A7. B

However, there are some subtle points here, going back to Woronowicz and especially high-
lighted by Dijkhuizen and Koornwinder. The issues is that in general a (unital) x-algebra
A need not have any interesting C*-algebra completion. Let A" be the positive cone gen-
erated by elements of the form {a*a : a € A}. Then a linear map ¢ : A — C is positive
if #(A") C [0,00) and is a state if additionally ¢(1) = 1. If ¢ is a state on A then we can
form the pre-GNS space (H, ). Indeed, the Cauchy-Sc warz inequality is enough to show that
Ny ={a € A: ¢(a*a) =0} is a left ideal in A (compare [3; Chapter I, Lemma 9.6] for example),
and so we define H = A/Ny, let & be the equivalence class of 1, so that we can identify the
equivalence class of a with ay, and then equip H with the inner-product (a&y|b&y) = ¢(b*a).
Note that we have not completed H and so H is only a pre-Hilbert space.

Then for a € A define w(a) : H — H by m(a)(by) = (ab)&y. That Ny is a left ideal shows
that 7(a) is well-defined; clearly 7(a) is linear and adjointable, in the sense that

(W(a)bfo‘cfo)) = (b§0|7r(a*)c§0)) (a,b,c € A).

So the only missing piece of the usual GNS construction is whether 7(a) is bounded, and hence
extends to the completion of H. For a C*-algebra this is a subtle point going back to the early
days of the axiomatisation of the subject.

The following can be found in Dijkhuizen and Koornwinder.

Proposition E.1. Let A be the Hopf x-algebra associated to a CQG (A, A). Then if 7 : A —
L(Hy) is a *-map into the adjointable linear maps on an inner-product space Hy, then 7 is
bounded, and so extends to a x-homomorphism A — B(H) where H is the completion of Hy.
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Proof. Let (u;;) be a finite-dimensional unitary corepresentation of A, so each u;; € A. As
> ok Uik = 651, for £ € Hy, and any 1, j,

€17 = (€16) =D (m(upui)€l€) =D (m(upi)Elm(ue)€) > [l (g€

k k

It follows that ||m(u;;)|| <1 for all 4,j. As A is spanned by such elements, we have shown that
7(a) is bounded for all a € A. O

As such, for any state ¢ on A we can find a Hilbert space H, a x-homomorphism 7 : A —
B(H) and £ € H such that ¢(a) = (w(a)é|¢) for all @ € A. So states on A biject with states on
the universal C*-algebra completion of .4, namely C*(G).

F Do we need to be so careful?

In the section on von Neumann algebras, we seemingly used the Hopf x-algebra quite a bit—
this is equivalent to using that the Haar state is KMS. Here we present some examples to show
that some sort of condition is needed.

F.1 Counter-example

We find a C*-algebra A which admits a faithful state, but such that in the GNS representation,
the state is not faithful on A”.

The following was suggested to us by Narutaka Ozawa'

Let A = C([0,1],My). Let C' C [0,1] be a closed set with empty interior but positive
(Lebesgue) measure. For example, let (e,) be a sequence in (0,1) with Y €, < 1/2, let (¢»)
be an enumeration of the rationals in [0, 1], and let C'=[0,1] \ U, (¢n — €n, Gn + €n)-

Define a state ¢ on A by

¢(a) = /Ca(:v)n dx + %/[()1]\Ca($)11 + a(x)g9 dx.

0

Here a is a continuous function [0, 1] — My, and a(x);; is the (4, j)th entry of the matrix a(x).
Now, a > 0 if and only if a(z) > 0 for all x, which implies that a(x)11,a(x)a > 0. So ¢ is

positive, and faithful because [0, 1] \ C is dense and open. Clearly ¢(1) = 1, so ¢ is a state.
For a,b € A the pre-inner-product induced by ¢ is

(alb) = ¢(b*a) = /Ca(x)nb(x)n + a(z)1b()a; dz + % /[0 e Za(m)ijb(x)ij dz.

Let p1 be the measure of [0, 1] given by

/f@nzlf+%4wpf

Let us be 1/2 of Lebesgue measure, restricted to [0,1] \ C. As Lebesgue measure dominates
both p; and po, it’s easy to see that py, o are regular measures. Then the GNS space for ¢
can thus be identified with

M1 (L (1)) © Mgy (L*(p12)),

thought of as column vectors, with A acting by matrix multiplication, and then C(]0, 1]) acting

0
1) . To ease

notation, let the GNS space be H; @ Hs, and let m; : A — B(H;) be the resulting representations.

by pointwise multiplication, in the obvious way. The cyclic vector is (O) S) <

10See http://mathoverflow.net/questions/93295/separating-vectors-for-c-algebras/93383¢93383
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Lemma F.1. Let A be a C*-algebra, m : A — B(Hy) a non-degenerate representation, let
Hy C Hy be an invariant subspace, and let mo : A — B(Hz) be the restriction of m. Let
7w A— B(Hy ® Hs) be the direct sum of my with wo. Then w(A)" = {(T,5) : T € m(A)",S =

T|u,} acting diagonally on Hy & Ha, a von Neumann algebra which is isomorphic to m (A)".

Proof. As m; is non-degenerate, so is 7, and hence so is 7. So we need to compute the o-weak
closure of m(A). On bounded sets this agrees with the strong closure, and from this is it obvious
that w(A)” has the stated form. O

Notice that in our case L?*(us) is a subspace of L*(py) if we identify & € L*(us) with
EXpe € L2 ().

Let 2 be the commutant of C([0, 1]) in B(L?(1)). Then 7 (A)’ consists of matrices

0 T
with T € . Thus m(A)” = My(20). So we need to compute the bicommutant of C([0, 1]
in B(L*(p11)). By duality arguments, and (for example) Lusin’s theorem, this is L>(u;) =2
12((0, 1)),
Thus 7(A)" = L*(]0,1]). However, the cyclic vector for the GNS construction yields the
state

é(a) = /all dp +/CL22 dz,

which is not faithful (there are measurable, non-continuous functions supported on C' which
are not zero almost everywhere).
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