
1 Introduction

A compact quantum group is a unital C∗-algebra A together with a coassociative map ∆ : A→
A⊗A such that ∆(A)(A⊗ 1) and ∆(A)(1⊗A) are linearly dense in A⊗A. We get the Haar
measure ϕ which is the unique state on A with (ϕ ⊗ ι)∆(a) = (ι ⊗ ϕ)∆(a) = ϕ(a)1 for all
a ∈ A.

As argued in my PAMS paper, we can find a maximal family of irreducible unitary corep-
resentations {vα = (vαij)

nα
i,j=1 : α ∈ A} such that the associated “F -matrices” are all diagonal.

Firstly, if A is the linear span of {vαij}, then A is a Hopf-∗-algebra and is dense in A. We
have that

∆(vαij) =
∑
k

vαik ⊗ vαkj, S(vαij) = (vαji)
∗, ε(vαij) = δij, ϕ(vαij) = δα,α0 ,

where α0 is the unique member of A with vα0 = 1.
Then we have positive numbers (λαi )nαi=1 such that

∑
i λ

α
i =

∑
i(λ

α
i )−1 = Λα say. We have

that

ϕ
(
(vαij)

∗vβkl
)

= δα,βδi,kδj,l
1

Λαλαi
, ϕ

(
vαij(v

β
kl)
∗) = δα,βδi,kδj,l

λαj
Λα

.

We define characters fz, for z ∈ C, on A by

fz
(
vαij
)

= δi,j(λ
α
i )z,

where of course tz = exp(z log t) for t > 0. Then the modular automorphism group for ϕ,
restricted to A, is given by

σz : vαij 7→
∑
k,l

fiz(v
α
ik)v

α
klfiz(v

α
lj) = (λαi )iz(λαj )izvαij.

For example, we can show that ϕ(ba) = ϕ(aσ−i(b)) for all a, b ∈ A. Also, as JΛ(a) = Λ(σi/2(a)∗)
for a ∈ A, we see that

JΛ(vαij) = (λαi λ
α
j )−1/2Λ((vαij)

∗).

Similarly, the scaling group on A is given by

τz : vαij 7→ (λαi )iz(λαj )−izvαij.

Thus in particular,

S(vαij) = (vαji)
∗ = Rτ−i/2(vαij) = (λαi )1/2(λαj )−1/2R(vαij) =⇒ R(vαij) =

√
λαj
λαi

(vαji)
∗.

However, also R(x) = Ĵx∗Ĵ , and so

ĴvαijĴ =

√
λαj
λαi
vαji.

2 Reduced case and duality

Now suppose that ϕ is faithful. Let (H,Λ) be the GNS construction for ϕ.
For each α ∈ A, let Hα be the finite-dimensional subspace of H spanned by {Λ((vαij)

∗) : 1 ≤
i, j ≤ nα}. Notice that Hα is orthogonal to Hβ for α 6= β. As A is dense in H, it follows that
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H is isomorphic to the Hilbert space direct sum of {Hα : α ∈ A}. There is a bijective linear
map Uα : Hα → `2

nα ⊗ `
2
nα given by

Uα : Λ((vαij)
∗) 7→

√
λαj
Λα

δi ⊗ δj.

We have that Uα is unitary, because(
Uα((vαij)

∗)
∣∣Uα((vαkl)

∗)
)

=
λαj
Λα

(
δi ⊗ δj

∣∣δk ⊗ δl) = ϕ
(
vαkl(v

α
ij)
∗) =

(
Λ((vαij)

∗)
∣∣Λ((vαkl)

∗)
)
.

From the general LCQG theory, we form the unitary operator W ∗ on H ⊗H by

W ∗(Λ(a)⊗ Λ(b)
)

= (Λ⊗ Λ)(∆(b)(a⊗ 1)) (a, b ∈ A).

Notice that it is very easy to show that W ∗ is unitary in the compact case. It follows that

W ∗(ξ ⊗ Λ((vαij)
∗)
)

=
∑
k

(vαik)
∗(ξ)⊗ Λ((vαkj)

∗).

Now we calculate(
W (ξ ⊗ Λ((vαij)

∗))
∣∣η ⊗ Λ((vβkl)

∗)
)

=
∑
p

(
ξ ⊗ Λ((vαij)

∗)
∣∣(vβkp)∗(η)⊗ Λ((vβpl)

∗)
)

= (vαki(ξ)|η)δα,βδj,l
λαj
Λα

=
∑
p

(
vαpi(ξ)⊗ Λ((vαpj)

∗)
∣∣η ⊗ Λ((vβkl)

∗)
)
.

It follows that for each α ∈ A, the unitary W restricts to H ⊗Hα and is the map

W (ξ ⊗ Λ((vαij)
∗)) =

∑
p

vαpi(ξ)⊗ Λ((vαpj)
∗).

In particular, (1⊗ Uα)W (1⊗ U∗α) makes sense on H ⊗ `2
nα ⊗ `

2
nα and is

wα = (1⊗ Uα)W (1⊗ U∗α) : ξ ⊗ δi ⊗ δj 7→
∑
p

vαpi(ξ)⊗ δp ⊗ δj.

Thus actually

wα =
∑
ij

vαij ⊗ eij ⊗ 1,

where eij is the usual matrix unit in Mnα
∼= B(`2

nα).

2.0.1 Positive cone

The positive cone of L2(G)+ is by definition the closure of {xJxJΛ(1) : x ∈ L∞(G)}. If
x ∈ L∞(G) then there is a norm-bounded net (aα) in A converging to x strongly. In particular
Λ(x) = xΛ(1) = limα aαΛ(1) = limα Λ(aα) where the limits are in the norm of L2(G). Then

xJxJΛ(1) = xJΛ(x) = lim
α
aαJΛ(x) = lim

α
aαJΛ(aα),

as ‖aαJΛ(x)−aαJΛ(aα)‖ ≤ ‖aα‖‖JΛ(x)−JΛ(aα)‖ → 0. Thus the positive cone is the closure
of the set {aJΛ(a) : a ∈ A}. Recall that aJΛ(a) = aΛ(σi/2(a)∗) = Λ(aσi/2(a)∗). In particular,

P itΛ(aσi/2(a)∗) = Λ
(
τt(aσi/2(a)∗

)
= Λ

(
τt(a)σi/2(τt(a))∗

)
,

which is in the positive cone (as τtσs = σsτt for all s, t ∈ R).
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2.1 Further facts about the irreducible corepresentations

We refer to later results; from our choices (compare Proposition
prop:fmatrices
A.21) we have that Fα is

diagonal, with entries (Λαλ
α
i )−1. By (the comment after) Corollary

cor:fmatrixkappa
A.27, it follows that∑

k

uαk,i
λαk
λαi

(uαk,j)
∗ = δi,j,

∑
k

(uαi,k)
∗λ

α
i

λαk
uαj,k = δi,j.

We could also prove these by writing down what it means for uα to be unitary, and then
applying the map R, given the form for this which we have established above (though is A is
not reduced, we then have to argue a little about the uniqueness of the Hopf algebra.)

Below, we’ll see that for each α, the contragradient representation uα is also irreducible
(Lemma

lem:contra_irrep
A.18) and is equivalent to a unitary corepresentation (Proposition

prop:conjunitary
A.19). So there is an

invertible scalar matrix T (which is unique, up to a scalar, by Schur’s Lemma, Proposition
prop:schur
A.15)

and some β, with (1 ⊗ T−1)uα(1 ⊗ T ) = uβ. In Lemma
lem:fmatrixkappa
A.26 it’s shown that TT ∗ is a scalar

multiple of Fα; by considering the traces of these positive definite matrices, this scalar multiple
is a postive number. It follows that, by rescaling T , we may suppose that T = (Fα)1/2U for
some scalar unitary matrix U .

Thus we find that (1⊗ U∗(Fα)−1/2)uα(1⊗ (Fα)1/2U) = uβ, and so

uβ = (1⊗ UT (Fα)−1/2)uα(1⊗ (Fα)1/2U) =⇒ (1⊗ (Fα)1/2U)uβ(1⊗ UT (Fα)−1/2) = uα.

However, by the same reasoning, there is a scalar unitary V with (1 ⊗ V ∗(F β)−1/2)uβ(1 ⊗
(F β)1/2V ) = uα. By Schur, V ∗(F β)−1/2 = µ(Fα)1/2U for some µ ∈ C. Thus µ(Fα)1/2U(F β)1/2

is unitary, that is,

|µ|2(F β)1/2U∗FαU(F β)1/2 = I ⇔ |µ|2FαU = U(F β)−1.

As U(F β)−1U∗ = |µ|2Fα, taking the trace of both sides shows that Λ2
β = |µ|2. Thus FαU =

UΛ−2
β (F β)−1. Notice that both the matrices Fα and Λ−2

β (F β)−1 are diagonal, with strictly
positive diagonal entries, and with unit trace.

Lemma 2.1. Let U be a unitary matrix, and let A,B be diagonal matrices with non-zero
diagonal entries (ai) and (bi). For each diagonal entry a of A, let EA

a be the eigenspace of
a, which is lin{ei : ai = a}. Similarly define EB

b . Suppose that AU = UB. Then, counting
multiplicies, the sequences {ai} and {bi} are the same, and U restricts to a unitary between EA

ai

and EB
ai

.

Proof. For each i, notice that A(Uei) = UBei = biUei, so bi is an eigenvalue of A, and hence
there exists j with aj = bi. Similarly, for each j there is i with bi = aj, so the sets {ai} and
{bj} agree.

Now observe that U maps EB
bi

into EA
bi

, so as U is invertible, the dimensions of these
eigenspaces agree. Thus, counting multiplicities, the sequences {ai} and {bj} agree, and the
proof is complete.

So in our case {(Λαλ
α
i )−1} and {λβj /Λβ} agree counting multiplicity, and U has the stated

simple form. Then Λ2
α =

∑
i Λαλ

α
i =

∑
i Λβ/λ

β
i = Λ2

β, so Λα = Λβ. Hence {λαi } and {1/λβj }
biject according to multiplicity.

2.2 Duality

2.2.1 The involution on L1(A)

From general LCQG theory we have the homomorphism λ : L1(A) → Â given by ω 7→ (ω ⊗
ι)(W ). Recall the involution ] defined on L1

] (A) which satisfies

〈a, ω]〉 = 〈S(a)∗, ω〉 (a ∈ A, ω ∈ L1(A)]).
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Then λ is a ∗-homomorphism when restricted to L1
] (A).

For a, b ∈ A we define ω(a, b) = ωΛ(a),Λ(b) ∈ L1(A). Then for c ∈ A,

〈S(c)∗, ω(a, b)〉 = ϕ(b∗S(c)∗a) = ϕ(S(b∗S(c)∗a)) = ϕ(S(a)c∗S(b∗)) = ϕ(S(b∗)∗cS(a)∗)

= 〈c, ω(S(a)∗, S(b∗))〉.

That ϕ is S-invariant follows immediately from the action of ϕ and S on the elements vαij. Thus
ω(a, b) ∈ L1

] (A) with ω(a, b)] = ω(S(a)∗, S(b∗)).

2.2.2 Identifying the dual

Define the linear functional on A by

ωαij : vβkl 7→ δα,βδi,kδj,l.

Notice that (
vβklΛ((vαij)

∗)
∣∣Λ(1)

)Λα

λαj
= δα,βδi,kδj,l = 〈vβkl, ω

α
ij〉,

from which it follows that

ωαij =
Λα

λαj
ωΛ((vαij)

∗),Λ(1).

From the discussion above, ωαij ∈ L1
] (A).

We now compute

λ(ωαij)Λ((vβkl)
∗) =

Λα

λαj
(ωΛ((vαij)

∗),Λ(1) ⊗ ι)(W )Λ((vβkl)
∗)

=
Λα

λαj

∑
p

(
vβpkΛ((vαij)

∗)
∣∣Λ(1)

)
Λ((vβpl)

∗) = δα,βδj,kΛ((vβil)
∗).

Thus each Hβ is an invariant subspace for λ(ωαij), and λ(ωαij) = 0 on Hβ for α 6= β. Furthermore,

Uαλ(ωαij)U
∗
α(δk ⊗ δl) = δj,kδi ⊗ δl.

Hence Uαλ(ωαij)U
∗
α = eij the (i, j)th matrix entry of Mnα , which acts on the 1st component of

`2
nα ⊗ `

2
nα in the canonical way.

Lemma 2.2. The linear span of {ωαij : α ∈ A, 1 ≤ i, j ≤ nα} is dense in L1(A).

Proof. As A is dense in A, it follows that {ωΛ(a),Λ(b) : a, b ∈ A} is linearly dense in L1(A). For
a, b, c ∈ A,

〈c, ωΛ(a),Λ(b)〉 = ϕ(b∗ca) = ϕ(σi(a)b∗c) = 〈c, ωΛ(σi(a)b∗),Λ(1)〉.
By continuity, this also holds when c ∈ A, and so we see that {ωΛ(a),Λ(1) : a ∈ A} is linearly
dense in L1(A), from which the result follows.

We hence conclude that
Â =

⊕
α

Mnα .

Here, for each α ∈ A, the copy of Mnα acts on the first factor of `2
nα ⊗ `

2
nα
∼= Hα and acts as 0

on Hβ for β 6= α, all this happening on H ∼=
⊕

αHα.

We know that W ∈ M⊗M̂ and thus we can identify W as a member of M⊗
∏

α Mnα =∏
αM⊗Mnα . The calculation in the previous section immediately shows that W = (vαij) ∈

Mnα(M) ∼= M⊗Mnα .
Henceforth, write eαij ∈ Mnα for the standard matrix units, acting on the α part of H ∼=⊕
Hα.
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2.2.3 Scaling group

We know that λ(ω ◦ τ−t) = τ̂tλ(ω). Firstly, we calculate that

〈vβkl, ω
α
ij ◦ τ−t〉 = (λβk)−it(λβl )it〈vβkl, ω

α
ij〉 = (λαi )−it(λαj )it〈vβkl, ω

α
ij〉.

Thus
τ̂t
(
eαij
)

= λ
(
ωαij ◦ τ−t

)
= (λαi )−it(λαj )itλ

(
ωαij
)

= (λαi )−it(λαj )iteαij.

2.2.4 The weight on M̂

From LCQG theory, we have a GNS construction for M̂ given by(
Λ̂(λ(ω))

∣∣Λ(a)
)

= 〈a∗, ω〉 (a ∈ A),

for a suitable, dense collection of ω ∈ L1(A). Thus(
Λ̂(eαij)

∣∣Λ((vβkl)
∗)
)

= 〈vβkl, ω
α
ij〉 = δα,βδi,kδj,l =

Λα

λαj
ϕ
(
vβkl(v

α
ij)
∗) =

Λα

λαj

(
Λ((vαij)

∗)
∣∣Λ((vβkl)

∗)
)
.

Thus

Λ̂(eαij) =
Λα

λαj
Λ((vαij)

∗) ∈ Hα =⇒ UαΛ̂(eαij) =

√
Λα

λαj
δi ⊗ δj.

We now see that

ϕ̂
(
(eβkl)

∗eαij
)

=
(
Λ̂(eαij)

∣∣Λ̂(eβkl)
)

=
Λ2
α

λαj λ
α
l

(
Λ((vαij)

∗)
∣∣Λ((vβkl)

∗)
)

= δα,βδi,kδj,l
Λα

λαl
.

In particular,

ϕ̂
(
eαij
)

= δi,j
Λα

λαi
.

Let T̂ be the Tomita map, T̂ Λ̂(a) = Λ̂(a∗) for a ∈ M̂ ; notice that this will respect the
decomposition M̂ =

∏
α Mnα . Then, on Mnα ,(

∇̂Λ̂(eαij)
∣∣Λ̂(eαkl)

)
=
(
T̂ Λ̂(eαkl)

∣∣T̂ Λ̂(eαij)
)

=
(
Λ̂(eαlk)

∣∣Λ̂(eαji)
)

= ϕ̂
(
eαije

α
lk

)
= δj,lϕ̂

(
eαik
)

= δj,lδi,kΛαλ
α
i =

λαi
λαj
ϕ̂(eαlke

α
ij) =

λαi
λαj

(
Λ̂(eαij)

∣∣Λ̂(eαkl)
)
,

and so

∇̂Λ̂(eαij) =
λαi
λαj

Λ̂(eαij) =⇒ Uα∇̂U∗α(δi ⊗ δj) =
λαi
λαj
δi ⊗ δj.

By uniqueness of positive square-roots, it follows that

ĴΛ̂(eαji) = Ĵ T̂ Λ̂(eαij) = ∇̂1/2Λ̂(eαij) =

√
λαi
λαj

Λ̂(eαij).

This also shows that

ĴΛ((vαij)
∗) =

√
λαj
λαi

Λ((vαji)
∗) = λαj JΛ(vαji) =⇒ JĴΛ((vαij)

∗) = λαj Λ(vαji).

Finally, we also see that

UαĴU
∗
α(δi ⊗ δj) =

√
Λα

λαj
UαĴΛ((vαij)

∗) =

√
Λα

λαj

√
λαj
λαi
UαΛ((vαji)

∗) =

√
Λα

λαi
UαΛ((vαji)

∗) = δj ⊗ δi.
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2.2.5 The antipode

We calculate that

R̂(eαij)Λ̂(eβkl) =
Λβ

λβl
JeαjiJΛ((uβkl)

∗) =
Λβ

√
λβkλ

β
l

λβl
JeαjiΛ(uβkl).

From above, there is some γ and a scalar unitary matrix U with (1 ⊗ U∗(F β)−1/2)uβ(1 ⊗
(F β)1/2U) = uγ and Λ2

γF
βU = U(F γ)−1. So (1⊗ (F β)1/2U)uγ(1⊗ U∗(F β)−1/2) = uβ and thus

(1⊗ (F β)1/2U)uγ(1⊗ UT (F β)−1/2) = uβ. It follows that

R̂(eαij)Λ̂(eβkl) =
Λβ

√
λβkλ

β
l

λβl

∑
p,q

Jeαji((F
β)1/2U)k,p(U

T (F β)−1/2)q,lΛ((uγpq)
∗)

=
Λβ

√
λβkλ

β
l

λβl

∑
p,q

√
λβl√
λβk

Uk,pUl,qJe
α
jiΛ((uγpq)

∗)

= Λβ

∑
p,q

Uk,pUl,q
λγq
Λγ

JeαjiΛ(eγpq) = δα,γΛβ

∑
q

Uk,iUl,q
λγq
Λγ

JΛ̂(eγjq)

= δα,γΛβ

∑
q

Uk,iUl,qJΛ((uγjq)
∗) = δα,γΛβ

∑
q

Uk,iUl,q

√
λγjλ

γ
qΛ(uγjq)

= δα,γΛβ

∑
q

Uk,iUl,q

√
λγjλ

γ
q

∑
s,t

(U∗(F β)−1/2)j,s((F
β)1/2U)t,qΛ((uβst)

∗)

= δα,γΛβ

∑
q

Uk,iUl,q

√
λγjλ

γ
q

∑
s,t

Us,jUt,q

√
λβs√
λβt

Λ((uβst)
∗)

Now, we know that ΛγUi,j = Ui,jΛβλ
γ
jλ

β
i , for each i, j. Similarly, as Λ2

γU
∗F βU = (F γ)−1,

by the uniqueness of positive square-roots, also ΛγU
∗(F β)1/2U = (F γ)−1/2, so

√
ΛγUi,j =√

Λβλ
γ
jλ

β
i Ui,j. So we get

R̂(eαij)Λ̂(eβkl) = δα,γ
√

Λβ

∑
q,s,t

Uk,iUl,q

√
λγjUs,j

√
ΛγUt,q

√
λβs

λβt
Λ((uβst)

∗)

= δα,γ
√

ΛβΛγ

∑
s

Uk,i

√
λγjUs,j

√
λβs

λβl
Λ((uβsl)

∗)

= δα,γ
√

ΛβΛγ

∑
s

Uk,i

√
λγjUs,j

√
λβs

λβl

λβl
Λβ

Λ̂(eβsl)

= δα,γ

√
Λγ

Λβ

Uk,i

√
λγj
∑
s

Us,j

√
λβs Λ̂(eβsl) = δα,γ

Λγ

Λβ

Uk,i
∑
s

Us,jΛ̂(eβsl).

It follows that, with β being the unique index such that uα is equivalent to uβ, and recalling
that Λα = Λβ, we have that

R̂(eαij) =
∑
p,k

Λα

Λβ

Uk,iUp,je
β
p,k = (U∗eβU)j,i.
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Hence indeed R̂ is an isometry etc.
Next we calculate

τ̂−i/2(eαij)Λ̂(eβkl) = ∇1/2eαij∇−1/2Λ̂(eβkl) =
Λβ

λβl
∇1/2eαij∇−1/2Λ((uβkl)

∗)

=
Λβ

λβl
∇1/2eαijΛ(σi/2((uβkl)

∗)) =
Λβ

λβl
∇1/2eαij

√
λβkλ

β
l Λ((uβkl)

∗)

= ∇1/2eαij

√
λβkλ

β
l Λ̂(eβkl) = δj,kδα,β∇1/2

√
λβkλ

β
l Λ̂(eβil)

= δj,kδα,β

√
λβkλ

β
l

Λβ

λβl
Λ(σ−i/2((uβil)

∗)) = δj,kδα,β

√
λβkλ

β
l

Λβ

λβl
(λβi λ

β
l )−1/2Λ((uβil)

∗)

= δj,kδα,β

√
λβj

λβi
Λ̂(eβil) =

√
λβj

λβi
eαijΛ̂(eβkl)

So in conclusion, with α, β linked as before,

Ŝ(eαij) =

√
λβj

λβi
(U∗eβU)j,i.

2.2.6 The coproduct

For ω ∈ L1(G), we find that

∆̂(λ(ωξ,η)) = ∆̂
(
(ωξ,η ⊗ ι)(W )

)
= (ωξ,η ⊗ ι⊗ ι)(W13W12)

=
∑
i

(ωξ,ei ⊗ ι)(W )⊗ (ωei,η ⊗ ι)(W ) =
∑
i

λ(ωξ,ei)⊗ λ(ωei,η),

where (ei) is an orthonormal basis for H.
We’ll use the orthonormal basis {U∗α(δi ⊗ δj) : α ∈ A, 1 ≤ i, j ≤ nα}. Now,

(ωΛ((vαij)
∗),U∗β (δk⊗δl) ⊗ ι)(W ) =

∑
γ,s,t

eγst〈v
γ
st, ωΛ((vαij)

∗),U∗β (δk⊗δl)〉 =
∑
γ,s,t

eγst

√
Λβ

λβl
ϕ(vβklv

γ
st(v

α
ij)
∗),

and also

(ωU∗β (δk⊗δl),Λ(1) ⊗ ι)(W ) =
∑
γ,s,t

√
Λβ

λβl
eγstϕ(vγst(v

β
kl)
∗) =

√
λβl
Λβ

eβkl.

Thus

∆̂(eαij) =
Λα

λαj

∑
β,k,l

∑
γ,s,t

ϕ(vβklv
γ
st(v

α
ij)
∗) eγst ⊗ e

β
kl.

Then

ϕ̂
(
(e∗γst ⊗ ι)∆̂(eαij)

)
=

Λα

λαj

∑
β,k,l

ϕ(vβklv
γ
st(v

α
ij)
∗)ϕ̂(eβkl) =

Λα

λαj

∑
β,k

ϕ(vβkkv
γ
st(v

α
ij)
∗)

Λβ

λβk

2.3 Aspects of the locally compact setting

Recall the operator P defined by P itΛ(a) = Λ(τt(a)) (the scaling constant is trivial). Thus

UαP
itU∗α(δi ⊗ δj) = Uα

√
Λα

λαj
P itΛ((vαij)

∗) = Uα

√
Λα

λαj
Λ(τt(v

α
ij)
∗)

= Uα

√
Λα

λαj
(λαi )−it(λαj )itΛ(τt(v

α
ij)
∗) = (λαi )−it(λαj )itδi ⊗ δj.
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3 Using the right regular representation

It is more common to use the right regular representation, which we shall denote by V . This
satisfies

V (Λ(a)⊗ Λ(b)) = (Λ⊗ Λ)(∆(a)(1⊗ b)),

where of course in generality Λ is using the right Haar weight; in the compact case, this agrees
with the left Haar weight, of course. Thus we see that

V (Λ(vαij)⊗ ξ) =
∑
k

Λ(vαik)⊗ vαkj(ξ).

For each α ∈ A, let H ′α be the subspace of H spanned by {Λ(vαij) : 1 ≤ i, j ≤ nα}. As A is
dense in H, it follows that H is isomorphic to the Hilbert space direct sum of {H ′α : α ∈ A}.
We can construct a unitary U ′α : Hα → `2

nα ⊗ `
2
nα given by

U ′α : Λ(vαij) 7→ (Λαλ
α
i )−1/2δi ⊗ δj.

This is clearly a linear bijection, and it is unitary because

(
U ′α(vαij)

∣∣U ′α(vαkl)
)

=
1

Λα

√
λαi λ

α
k

(
δi ⊗ δj

∣∣δk ⊗ δl) = δi,kδj,l
1

Λαλαi
=
(
Λ(vαij)

∣∣Λ(vαkl)
)
.

So again V restricts to an operator on Hα ⊗H, and

(U ′α ⊗ 1)V (U ′α
∗ ⊗ 1) : δi ⊗ δj ⊗ ξ 7→

∑
k

δi ⊗ δk ⊗ vαkj(ξ).

Setting

ωαij = Λαλ
α
i ωΛ(1),Λ(vαij)

,

we see that

〈vβkl, ω
α
ij〉 = Λαλ

α
i ϕ((vαij)

∗vβkl) = δα,βδi,kδj,l.

Then

ρ(ωαij)Λ(vβkl) = (ι⊗ ωαij)(V )Λ(vβkl) = Λαλ
α
i (ι⊗ ωΛ(1),Λ(vαij)

)(V )Λ(vβkl)

= Λαλ
α
i

∑
p

Λ(vβkp)
(
Λ(vβpl)

∣∣Λ(vαij)
)

= δα,βδj,lΛ(vαki).

Thus ρ(ωαij) restricts to the zero map on each Hβ with β 6= α, and

U ′αρ(ωαij)U
′
α
∗

: δk ⊗ δl 7→ δj,lδk ⊗ δi =⇒ U ′αρ(ωαij)U
′
α
∗

= 1⊗ eij.

A Finding the unitary corepresentations

A.1 The left regular representation
sec:leftregcorep

Definition A.1. A (unitary) corepresentation of (A,∆) is a (unitary) element U of M(A ⊗
B0(H)) such that (∆⊗ ι)U = U13U23.
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Let H have an orthonormal basis (en), and let Un,m be the matrix elements of U ; this means
that Un,m = (ι⊗ ωem,en)U ∈M(A). Then U is a corepresentation if and only if

∆(Un,m) = (ι⊗ ι⊗ ωem,en)(U13U23) =
∑
k

(ι⊗ ι⊗ ωek,en)(U13)(ι⊗ ι⊗ ωem,ek)(U23)

=
∑
k

Un,k ⊗ Uk,m.

Let ϕ be the Haar state on A and let L2(ϕ) be the GNS space, with cyclic vector ξ0. Let K
be some auxiliary Hilbert space upon which A acts non-degenerately, say with ∗-homomorphism
π : A→ B(K). At this stage, we shall not assume that π is injective.

Proposition A.2. There is a (unique) unitary operator U on K ⊗ L2(ϕ) with U∗(ξ ⊗ aξ0) =
(π ⊗ ι)∆(a)(ξ ⊗ ξ0) for a ∈ A and ξ ∈ K.

Proof. For (ai) ⊆ A and (ξi) ⊆ K, we have that∥∥∥∑
i

(π ⊗ ι)∆(ai)(ξi ⊗ ξ0)
∥∥∥2

=
∑
i,j

(
(π ⊗ ι)∆(a∗jai)ξi ⊗ ξ0

∣∣ξj ⊗ ξ0

)
=
∑
i,j

(
π((ι⊗ ϕ)∆(a∗jai))ξi

∣∣ξj)
=
∑
i,j

ϕ(a∗jai)(ξi|ξj) =
∥∥∥∑

i

ξi ⊗ aiξ0

∥∥∥2

.

This shows that U∗ is an isometry; clearly U∗ is densely defined, and so U∗ extends to an
isometry on all of K⊗L2(ϕ). As ∆(A)(A⊗1) is linearly dense in A⊗A, we see that the image
of U∗ contains the closed linear span of{

π(a)ξ ⊗ bξ0 : a, b ∈ A, ξ ∈ K
}
.

As A acts non-degenerately on K, this shows that U∗ is a surjection, so U is unitary as
required.

prop:corepgivescomult Proposition A.3. The operator U is a member of M(π(A) ⊗ B0(L2(ϕ))), and for a ∈ A, we
have that (π ⊗ ι)∆(a) = U∗(1⊗ a)U in B(K ⊗ L2(ϕ)).

Proof. For a, b ∈ A and ξ ∈ K, we have that U∗(1 ⊗ a)(ξ ⊗ bξ0) = (π ⊗ ι)∆(ab)(ξ ⊗ ξ0) =
(π ⊗ ι)∆(a)U∗(ξ ⊗ bξ0) and so U∗(1⊗ a)U = (π ⊗ ι)∆(a).

Let a, b ∈ A, ξ1, ξ2 ∈ L2(ϕ) and ξ ∈ K. For ε > 0 we can find
∑

i ai ⊗ bi ∈ A ⊗ A with
‖
∑

i ai ⊗ bi −∆(a)(b⊗ 1)‖ < ε. Then

U∗(π(b)⊗ θaξ0,ξ1)(ξ ⊗ ξ2) = (ξ2|ξ1)U∗(π(b)ξ ⊗ aξ0) = (ξ2|ξ1)(π ⊗ ι)(∆(a)(b⊗ 1))(ξ ⊗ ξ0).

It follows that∥∥∥(U∗(π(b)⊗ θaξ0,ξ1)−
∑
i

π(ai)⊗ θbiξ0,ξ1
)

(ξ ⊗ ξ2)
∥∥∥

=
∥∥∥(ξ2|ξ1)(π ⊗ ι)(∆(a)(b⊗ 1))(ξ ⊗ ξ0)−

∑
i

π(ai)ξ ⊗ biξ0(ξ2|ξ1)
∥∥∥

≤ ε‖ξ2‖‖ξ1‖‖ξ‖‖ξ0‖.

As ε > 0 was arbitrary, this shows that U∗(π(b)⊗ θaξ0,ξ1) ∈ π(A)⊗B0(L2(ϕ)). By linearity and
continuity, U∗(π(A)⊗ B0(L2(ϕ))) ⊆ π(A)⊗ B0(L2(ϕ)).
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Now consider
U(1⊗ θaξ0,ξ1)(ξ ⊗ ξ2) = (ξ2|ξ1)U(ξ ⊗ aξ0).

For ε > 0 we can find (ai), (bi) ⊆ A with ‖
∑

i ∆(ai)(bi ⊗ 1)− 1⊗ a‖ < ε. Then∥∥∥∑
i

(π(bi)ξ ⊗ aiξ0)− U(ξ ⊗ aξ0)
∥∥∥ =

∥∥∥∑
i

U∗(π(bi)ξ ⊗ aiξ0)− ξ ⊗ aξ0

∥∥∥
=
∥∥∥∑

i

(π ⊗ ι)(∆(ai)(bi ⊗ 1))(ξ ⊗ ξ0)− ξ ⊗ aξ0

∥∥∥ < ε‖ξ ⊗ ξ0‖.

Thus we can approximate U(1 ⊗ θaξ0,ξ1) by
∑

i π(bi) ⊗ θaiξ0,ξ1 . We conclude that U(π(A) ⊗
B0(L2(ϕ))) ⊆ π(A)⊗ B0(L2(ϕ)). Hence U ∈M(π(A)⊗ B0(L2(ϕ))).

lem:dense Lemma A.4. We have that for a, b ∈ A,

(ι⊗ ωaξ0,bξ0)(U) = π(ι⊗ ϕ)(∆(b∗)(1⊗ a)), (ι⊗ ωaξ0,bξ0)(U∗) = π(ι⊗ ϕ)((1⊗ b∗)∆(a)).

Consequently, the collections {(ι⊗ ω)(U) : ω ∈ B(L2(ϕ))∗} and {(ι⊗ ω)(U∗) : ω ∈ B(L2(ϕ))∗}
are dense in π(A).

Proof. For a, b ∈ A and ξ1, ξ2 ∈ K, we have that(
(ι⊗ ωaξ0,bξ0)(U)ξ1

∣∣ξ2

)
=
(
ξ1 ⊗ aξ0

∣∣U∗(ξ2 ⊗ bξ0)
)

=
(
(π ⊗ ι)∆(b∗)ξ1 ⊗ aξ0

∣∣ξ2 ⊗ ξ0

)
=
(
π(ι⊗ ϕ)(∆(b∗)(1⊗ a))ξ1

∣∣ξ2

)
,

which gives the first result. Similarly,(
(ι⊗ ωaξ0,bξ0)(U∗)ξ1

∣∣ξ2

)
=
(
(π ⊗ ι)((1⊗ b∗)∆(a))(ξ1 ⊗ ξ0)

∣∣ξ2 ⊗ ξ0

)
,

which gives the second result. As ∆(A)(1 ⊗ A) is linearly dense in A ⊗ A, the density result
follows.

Suppose now that π is faithful, so we can identify A with π(A), and so U is a member of
M(A⊗ B0(L2(ϕ))).

prop:regcorep Proposition A.5. Suppose there is a ∗-homomorphism Φ : π(A)→ B(K⊗K) with Φπ = (π⊗
π)∆. Then U13U23 = (Φ⊗ι)U . In particular, when π is faithful, U is a unitary corepresentation.

Proof. We shall instead equivalently show that (Φ ⊗ ι)(U∗) = U∗23U
∗
13. For a, b ∈ A and

ξ1, ξ2 ∈ K, we have that

U∗13(π(a)ξ1 ⊗ ξ2 ⊗ bξ0) =
(
(π ⊗ ι)((∆(b)(a⊗ 1))

)
13

(ξ1 ⊗ ξ2 ⊗ ξ0).

Similarly,

U∗23(π(a1)ξ1⊗ξ2⊗a2ξ0) = π(a1)ξ1(π⊗ι)∆(a2)(ξ2⊗ξ0) = (π⊗π⊗ι)((ι⊗∆)(a1⊗a2))(ξ1⊗ξ2⊗ξ0).

As ∆(b)(a⊗ 1) ∈ A⊗ A, it follows by continuity that

U∗23U
∗
13(π(a)ξ1 ⊗ ξ2 ⊗ bξ0) = (π ⊗ π ⊗ ι)((ι⊗∆)(∆(b)(a⊗ 1))(ξ1 ⊗ ξ2 ⊗ ξ0)

= (π ⊗ π ⊗ ι)(∆2(b))(π(a)ξ1 ⊗ ξ2 ⊗ ξ0).

By hypothesis, this is equal to

(Φπ ⊗ ι)∆(b)(π(a)ξ1 ⊗ ξ2 ⊗ ξ0).

It hence follows that for a, b ∈ A,

(ι⊗ ι⊗ ωaξ0,bξ0)(U∗23U
∗
13) = Φπ

(
(ι⊗ ϕ)(1⊗ b∗)∆(a)

)
.

By the previous lemma, this is equal to

Φ((ι⊗ ωaξ0,bξ0)(U∗)),

and the result follows.
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A.2 Irreducible representations

Definition A.6. Let U ∈ M(A ⊗ B0(H)) be a corepresentation of (A,∆). A closed subspace
H1 of H is invariant for U if (1⊗ e)U(1⊗ e) = U(1⊗ e) where e is the orthogonal projection
onto H1.

U is said to be irreducible if the only invariant subspaces are {0} and H.

Lemma A.7. Let H1 be an invariant subspace for a corepresentation U . Let e be the orthogonal
projection onto H1, and let Ue = (1⊗ e)U(1⊗ e). Then Ue is a corepresentation on H1, unitary
if U is.

Proof. We have that

(∆⊗ι)(Ue) = (1⊗1⊗e)U13U23(1⊗1⊗e) = (1⊗1⊗e)U13(1⊗1⊗e)U23(1⊗1⊗e) = (Ue)13(Ue)23.

Thus Ue is a corepresentation. If U is unitary then

U∗eUe = (1⊗ e)U∗(1⊗ e)U(1⊗ e) = (1⊗ e)U∗U(1⊗ e) = 1⊗ e.

So Ue is unitary, as a member of M(A⊗ B0(H1)).

Definition A.8. A corepresentation of the form Ue is a sub-corepresentation of U .

prop:cstar_corep Proposition A.9. Let U be a unitary corepresentation of (A,∆). Let B be the norm closure
of {(ϕ ⊗ ι)(U(a ⊗ 1)) : a ∈ A}. Then B is a non-degenerate C∗-subalgebra of B(H), and
U ∈M(A⊗B).

Proof. Let a ∈ A and set x = (ϕ⊗ ι)(U(a⊗ 1)) ∈ B(H). Then

U(ι⊗ ϕ⊗ ι)
(
U23(∆(a)⊗ 1)

)
= (ι⊗ ϕ⊗ ι)

(
U13U23(∆(a)⊗ 1)

)
= (ι⊗ ϕ⊗ ι)

(
(∆⊗ ι)(U(a⊗ 1))

)
= 1⊗ (ϕ⊗ ι)(U(a⊗ 1)) = 1⊗ x.

Thus U∗(1⊗ x) = (ι⊗ ϕ⊗ ι)(U23(∆(a)⊗ 1)).
So if also y = (ϕ⊗ ι)(U(b⊗ 1)) for some b ∈ A, then

y∗x = (ϕ⊗ ι)
(
(b∗ ⊗ 1)U∗(1⊗ x)

)
= (ϕ⊗ ι)

(
(b∗ ⊗ 1)U∗(1⊗ x)

)
= (ϕ⊗ ϕ⊗ ι)((b∗ ⊗ U)(∆(a)⊗ 1))

= (ϕ⊗ ι)(U(c⊗ 1)),

where c = (ϕ ⊗ ι)((b∗ ⊗ 1)∆(a)) ∈ A. So we have shown that B∗B ⊆ B. As (A ⊗ 1)∆(A) is
dense in A ⊗ A, as a and b carry, c varies over a dense subset of A. Thus B∗B is dense in B.
In particular, B is self-adjoint. Thus also BB ⊆ B, and we conclude that B is a C∗-algebra.

Now let θ ∈ B0(H) and a ∈ A, so that (ϕ ⊗ ι)(U(a ⊗ θ)) ∈ BB0(H). As U is a unitary
multiplier of M(A ⊗ B0(H)), the set {U(a ⊗ θ) : a ∈ A, θ ∈ B0(H)} is linearly dense in
A ⊗ B0(H). It follows that BB0(H) is linearly dense in B0(H), which is enough to show that
B acts non-degenerately on H.

Finally, we show that U ∈M(A⊗B). For b ∈ A and x as above,

U∗(b⊗ x) = (ι⊗ ϕ⊗ ι)(U23(∆(a)(b⊗ 1)⊗ 1)).

As ∆(a)(b⊗1) ∈ A⊗A, we see immediately that U∗(b⊗x) ∈ A⊗B. Moreover, as ∆(A)(A⊗1)
is dense in A ⊗ A, we set {U∗(b ⊗ x) : b ∈ A, x ∈ B} is linearly dense in A ⊗ B. So also
U(A⊗B) ⊆ A⊗B, and U ∈M(A⊗B) as required.
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Proposition A.10. Let U be a unitary corepresentation of (A,∆), and let H1 be an invariant
subspace of H for U . Then H⊥1 is also invariant.

Proof. Let e be the orthogonal projection of H onto H1. Let x = (ϕ⊗ ι)(U(a⊗ 1)) ∈ B, so as
U(1⊗ e) = (1⊗ e)U(1⊗ e), it follows that

xe = (ϕ⊗ ι)(U(a⊗ e)) = (ϕ⊗ ι)((1⊗ e)U(a⊗ e)) = exe.

As B = B∗, also ex = (x∗e)∗ = (ex∗e)∗ = exe, and so ex = xe. Thus H1 is an invariant subspace
for B, and as B acts non-degenerately on H, it follows that ex = xe for all x ∈ M(B).1 As
U ∈M(A⊗B), it follows that (1⊗ e)U = U(1⊗ e), and then a short calculation shows that

(1⊗ e⊥)U(1⊗ e⊥) = U(1⊗ e⊥),

where e⊥ = 1− e, as required.

Definition A.11. Let U1 and U2 be unitary corepresentations of (A,∆) on H1 and H2 respec-
tively. The direct sum of U1 and U2 is U1 ⊕ U2 ∈M(A⊗ B0(H1 ⊕H2)) is

U1 ⊕ U2 =

(
U1 0
0 U2

)
,

where here we make the identification

B0(H1 ⊕H2) =

(
B0(H1) B0(H2, H1)
B0(H1, H2) B0(H2)

)
.

The tensor product of U1 and U2 is U1
��������>U2 = (U1)12(U2)13 ∈ M(A ⊗ B0(H1 ⊗ H2)) ∼=

M(A⊗ B0(H1)⊗ B0(H2)).
An intertwiner between U1 and U2 is a bounded operator T : H1 → H2 with (1 ⊗ T )U1 =

U2(1 ⊗ T ). We denote the collection of intertwiners by Mor(U1, U2). Two corepresentations
are equivalent if there is an invertible intertwiner, and unitarily equivalent if there is a unitary
intertwiner.

lem:one Lemma A.12. Let U and V be corepresentations of (A,∆) on H1 and H2 respectively. Let
x ∈ B(H1, H2), and set

y = (ϕ⊗ ι)(V ∗(1⊗ x)U).

Then y ∈ B(H1, H2), and V ∗(1⊗ y)U = 1⊗ y.

Proof. We identify B(H1, H2) with a “corner” of B(H1⊕H2) in the obvious way. Then U and V
are both (on diagonal) corners of M(A⊗B0(H1⊕H2)); thus V ∗(1⊗x)U ∈M(A⊗B0(H1⊕H2))
and so y makes sense as a member of M(B0(H1 ⊕ H2)) = B(H1 ⊕ H2). A simple calculation
shows that y only has non-zero component in the B(H1, H2) corner; thus y is well-defined.

Notice that
(∆⊗ ι)(V ∗(1⊗ x)U) = V ∗23V

∗
13(1⊗ 1⊗ x)U13U23.

Then observe that

(ϕ⊗ ι⊗ ι)(∆⊗ ι)(V ∗(1⊗ x)U) = 1⊗ (ϕ⊗ ι)(V ∗(1⊗ x)U) = 1⊗ y,

while
(ϕ⊗ ι⊗ ι)V ∗23V

∗
13(1⊗ 1⊗ x)U13U23 = V ∗(1⊗ y)U,

and the result follows.

1Indeed, let x ∈ M(B) so for y ∈ B, ξ ∈ H, we have that xe(yξ) = (xy)eξ = e(xy)ξ = ex(yξ). By
non-degeneracy, it follows that xe = ex.
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The obvious use of this lemma is that if V is unitary, then (1 ⊗ y)U = V (1 ⊗ y), and so
y ∈ Mor(U, V ). Notice that an obvious modification of the proof shows that if x is compact,
then also y will be compact.

prop:invsimuni Proposition A.13. Let U be an invertible2 corepresentation of (A,∆). Then U is equivalent
to a unitary corepresentation.

Proof. Let U act on H, and set

y = (ϕ⊗ ι)(U∗U).

By the previous lemma, U∗(1 ⊗ y)U = 1 ⊗ y. Clearly y ≥ 0 and as U is invertible, U∗U ≥ ε1
for some ε > 0; thus also y ≥ ε1, so y is invertible. Now set

V = (1⊗ y1/2)U(1⊗ y−1/2).

Then (∆⊗ ι)V = (1⊗ 1⊗ y1/2)U13U23(1⊗ 1⊗ y−1/2) = V13V23 and so V is a corepresentation.
Then

V ∗V = (1⊗ y−1/2)U∗(1⊗ y)U(1⊗ y−1/2) = (1⊗ y−1/2)(1⊗ y)(1⊗ y−1/2) = 1,

and as V is clearly invertible, it follows that V is unitary. By definition, y1/2 intertwines U and
V , and so U is equivalent to a unitary corepresentation, as required.

thm:corepdec Theorem A.14. Let U be a unitary corepresentation of (A,∆) on a Hilbert space H. Then
there is a family of mutually orthogonal, finite-dimensional projections {eα : α ∈ I} with sum
1, with U(1 ⊗ eα) = (1 ⊗ eα)U for each α, and with U(1 ⊗ eα), considered as an element of
A⊗ B(eαH), being a finite-dimensional unitary corepresentation.

Proof. Let B be the collection of operators x ∈ B(H) with (1 ⊗ x)U = U(1 ⊗ x). Then B is
clearly a norm-closed subalgebra, and as U is unitary, it is easy to see that B is self-adjoint.
So B is a C∗-algebra.

By Lemma
lem:one
A.12, if x ∈ B0(H) then y = (ϕ ⊗ ι)(U∗(1 ⊗ x)U) will be in B, and will be

compact. Let (xi) be an increasing net in B0(H) with supremum 1. Then the associated family
(yi) is an increasing net in B with supremum 1. As each yi is compact, we see that B will
contain sufficiently many finite-rank projections to form the required family (eα).

The following is then a quantum Schur’s Lemma.

prop:schur Proposition A.15. Let U, V be corepresentations of (A,∆). For each T ∈ Mor(U, V ), the
space kerT is invariant for U , and the closure of the image of T is invariant for V . Suppose
that one of the following conditions holds:

1. U and V are irreducible;

2. U or V are finite-dimensional of the same dimension, and one of U or V is irreducible.

If U and V are not equivalent, then Mor(U, V ) = {0}; otherwise Mor(U, V ) = Cx for some
invertible x ∈ B(HU , HV ). Furthermore, if U and V are unitary, then x can be chosen to be
unitary.

2This simply means that there is some operator U−1 ∈M(A⊗ B0(H)) with U−1U = UU−1 = 1.
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Proof. Let U act on HU , and V act on HV . Let T ∈ Mor(U, V ). We first show that kerT and
T (HU) are invariant for U and V respectively. Let e be the orthogonal projection onto kerT .
Then 0 = V (1⊗Te) = (1⊗T )U(1⊗e), and it follows that (1⊗e)U(1⊗e) = U(1⊗e). Similarly, if
e is the orthogonal projection onto T (HU), then we wish to show that (1⊗e)V (1⊗e) = V (1⊗e).
Equivalently, as e(HV ) = T (HU), we wish to show that (1⊗ e)V (1⊗ T ) = V (1⊗ T ). However,

(1⊗ e)V (1⊗ T ) = (1⊗ e)(1⊗ T )U = (1⊗ T )U = V (1⊗ T ),

as required.
Then, if U and V are both irreducible, we immediately see that any T ∈ Mor(U, V ) is an

isomorphism, or is 0. If U is both finite-dimensional and irreducible, then any T ∈ Mor(U, V )
is 0 or injective, but as dim(HU) = dim(HV ) <∞, then T injective means that T is an isomor-
phism. Similarly, if V is irreducible then T is either 0 or surjective (and so an isomorphism).

So in either case, if U and V are not equivalent, then Mor(U, V ) = {0}. If T ∈ Mor(U, V )
is non-zero, then U and V are equivalent. If now S ∈ Mor(U, V ) is also non-zero, then for any
λ ∈ C, the operator λT − S is in Mor(U, V ) and so is an isomorphism HU → HV , or is 0. So
choosing λ with det(λT − S) = 0, we see that actually λT = S as required.

Finally, suppose that U and V are unitary, so as U = (1⊗ T−1)V (1⊗ T ),

1 = U∗U = (1⊗T ∗)V ∗(1⊗(TT ∗)−1)V (1⊗T ), 1 = UU∗ = (1⊗T−1)V ∗(1⊗TT ∗)V (1⊗(T ∗)−1).

Thus
1⊗ TT ∗ = V ∗(1⊗ TT ∗)V,

so as V is unitary, we see that TT ∗ ∈ Mor(V, V ). Thus the previous work shows that TT ∗ is a
(necessarily positive) scalar multiple of the identity. We may suppose then that TT ∗ = I, so
as T is invertible, T is unitary, as required.

Now let π : A→ B(K) be a faithful, non-degenerate ∗-homomorphism and form the regular
corepresentation U as in Proposition

prop:regcorep
A.5.

thm:lrcontains Theorem A.16. Let U be the regular corepresentation, acting on the GNS space H. Let V
be an irreducible unitary corepresentation, acting on HV say. Then V is equivalent to a sub-
corepresentation of (that is, contained in) U .

Proof. Let x ∈ B0(H,HV ) and set y = (ϕ ⊗ ι)(V ∗(1 ⊗ x)U) ∈ B0(H,HV ) so that (1 ⊗ y)U =
V (1⊗ y), by Lemma

lem:one
A.12. By Proposition

prop:schur
A.15, if y is non-zero, then y is surjective. As U, V

are unitary,
V ∗(1⊗ y) = (1⊗ y)U∗ =⇒ (1⊗ y∗)V = U(1⊗ y∗)

so y∗ : HV → H is an intertwiner, and hence y∗ is injective, and the image of y∗ is invariant
for U . So, if y is non-zero, y∗ implements the required equivalence between V and a sub-
corepresentation of U .

Alternatively, y = 0 for all choices of x. So for any ξ ∈ H and η ∈ HV , if x(γ) = (γ|ξ)η,
then

0 =
(
(ϕ⊗ ι)(V ∗(1⊗ x)U)ξ1

∣∣η1

)
= 〈ϕ, (ι⊗ ωη,η1)(V ∗)(ι⊗ ωξ1,ξ)(U)〉 (ξ1 ∈ H, η1 ∈ HV ).

By Lemma
lem:dense
A.4, this means that

〈ϕ, (ι⊗ ω)(V ∗)a〉 = 0 (a ∈ A, ω ∈ B(HV )∗).

This implies that (ϕ⊗ ι)(V ∗(a⊗1)) = 0 for all a ∈ A, and so also (ϕ⊗ ι)(V ∗(a⊗x)) = 0 for all
a ∈ A and x ∈ B(HV ). As V is irreducible, HV is finite-dimensional, and so V ∈ A ⊗ B(HV ).
Thus (ϕ⊗ ι)(V ∗V ) = 0, which contradicts that V is unitary.
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A.3 Contragradient representations

Let U be a finite-dimensional corepresentation of (A,∆) on H. Given an orthonormal basis
(ei)

n
i=1 for H we can let (eij) be the matrix units of Mn

∼= B(H). Then we can write

U =
n∑

i,j=1

uij ⊗ eij

for some uij ∈ A. Recall from before that U being a corepresentation is equivalent to ∆(uij) =∑
k uik ⊗ ukj.
Let K be another finite-dimensional Hilbert space with orthonormal basis (fj)

m
j=1. Then

S ∈ B(H,K) can be represented by a matrix in Mm,n, say (sij). Then

(1⊗ S)U =
∑
i,j,p,q

uij ⊗ spqepqeij =
∑
i,j,p

spiuij ⊗ epj.

Similarly, if V =
∑m

i,j=1 vij ⊗ eij is a corepresentation on K, then

V (1⊗ S) =
∑
i,j,p,q

vij ⊗ eijspqepq =
∑
i,j,q

vijsjq ⊗ eiq.

Thus S ∈ Mor(U, V ) if and only if, using matrix multiplication, (sij)(upq) = (vpq)(sij).

Definition A.17. Given U and (en) as above, the contragradient corepresentation is U =∑
i,j u

∗
ij ⊗ eij.

The definition of U does depend upon (en). Indeed, picking a new orthonormal basis for
H is equivalent to finding a unitary matrix S and setting V = (1 ⊗ S∗)U(1 ⊗ S). So V is a
corepresentation (unitarily) equivalent to U . Then V = (1⊗S∗)U(1⊗S), and so V is equivalent
to U , but the equivalence is given by the matrix S, which in general is not equal to S.

lem:contra_irrep Lemma A.18. Let U be a corepresentation. Then U is also a corepresentation. If U is irre-
ducible, then so is U .

Proof. We see that as ∆ is a ∗-homomorphism,

∆(u∗ij) = ∆(uij)
∗ =

(∑
k

uik ⊗ ukj
)∗

=
∑
k

u∗ik ⊗ u∗kj.

So U is a corepresentation.
Let γ : Mn → Mn be the transpose map, which is an anti-homomorphism. Notice that

U = (ι⊗γ)(U∗). Suppose that e is an orthogonal projection onH with U(1⊗e) = (1⊗e)U(1⊗e).
Then applying γ gives that

(1⊗ γ(e))U∗ = (1⊗ γ(e))U∗(1⊗ γ(e)) =⇒ U(1⊗ e′) = (1⊗ e′)U(1⊗ e′),

where e′ = γ(e)∗ is still an orthogonal projection. As U is irreducible, e′ = 0 or 1, and hence
also e = 0 or 1, showing that U is irreducible.

Notice that ι⊗ γ is not an anti-homomorphism on all of Mn(A), unless A is commutative.
Thus we have to work hard(er) to prove the next result.

prop:conjunitary Proposition A.19. Let V be a finite-dimensional irreducible unitary corepresentation. Then
V is equivalent to a unitary corepresentation.
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Proof. We again use Lemma
lem:one
A.12, with U being the left regular representation, acting on the

GNS space H. Let V act on the finite-dimensional Hilbert space HV . Pick x ∈ B0(H,HV ) and
set

y = (ϕ⊗ ι)(V ∗(1⊗ x)U).

So y ∈ B0(H,HV ) with V
∗
(1⊗ y)U = 1⊗ y. Then U∗(1⊗ y∗)V = 1⊗ y∗ and thus (1⊗ y∗)V =

U(1⊗ y∗). So y∗ ∈ Mor(V , U). By Proposition
prop:schur
A.15, as V is irreducible, y∗ has zero kernel, or

y∗ = 0. As in the proof of Theorem
thm:lrcontains
A.16, the image of y∗ is an invariant subspace of U , and so

either y = 0, or y∗ implements an isomorphism between V and a sub-co-representation of U .
Thus, towards a contradiction, suppose that y = 0 for any choice of x. Again, this implies

that

〈ϕ, (ι⊗ ω)(V
∗
)a〉 = 0 (a ∈ A, ω ∈ B(HV )∗).

Let ω ∈ B(HV )∗ be the functional which sends eij to 1, and epq to 0 for all other (p, q). Thus

(ι⊗ ω)(V
∗
) = vji. We hence see that

〈ϕ, (ι⊗ ω)(V )a〉 = 0 (a ∈ A, ω ∈ B(HV )∗).

Thus (ϕ⊗ ι)(V (a⊗ x)) = 0 for a ∈ A, x ∈ B(HV ). This again implies that (ϕ⊗ ι)(V V ∗) = 0,
contradicting V being unitary.

In particular, if V is merely an invertible corepresentation, then V is equivalent to the direct
sum of finite-dimensional unitary corepresentations; the same is then true of V , and thus in
particular V is invertible.

A.4 The Hopf ∗-algebra of matrix elements

Let A0 be the linear span of the matrix elements3 of unitary irreducible corepresentations.
By the previous work, A0 is also the linear span of the matrix elements of finite-dimensional
invertible corepresentations.

Proposition A.20. The space A0 is a dense unital ∗-subalgebra of A.

Proof. Let U and V be corepresentations, and let ωU ∈ B(HU)∗ and ωV ∈ B(HV )∗. Then

(ι⊗ ωU ⊗ ωV )(U ��������>V ) = (ι⊗ ωU ⊗ ωV )(U12V13) = (ι⊗ ωU)(U)(ι⊗ ωV )(V ).

If U and V are finite-dimensional and unitary, then U ��������>V is also finite-dimensional and unitary.
We conclude that A0 is an algebra. Notice that 1 ∈ A = M(A⊗C) is a unitary corepresentation;
thus 1 ∈ A0.

Similarly, as U is equivalent to a unitary corepresentation whenever U is finite-dimensional
and unitary, it follows easily that A0 is closed under the ∗ operation.

It remains to show that A0 is dense in A. Choose a faithful, non-degenerate ∗-representation
π : A → B(K) and form the left regular representation U as in Proposition

prop:regcorep
A.5. By Theo-

rem
thm:corepdec
A.14, U decomposes as a direct sum of finite-dimensional, irreducible unitary corepre-

sentations. By Theorem
thm:lrcontains
A.16 every finite-dimensional, irreducible unitary corepresentation is

equivalent to a sub-corepresentation of U . Hence A0 is the span of the matrix elements of
finite-dimensional sub-corepresentations of U .

By Lemma
lem:dense
A.4, the space {(ι ⊗ ω)(U) : ω ∈ B(H)∗} is dense in A. Given ξ, η ∈ H,

we claim that we can approximate (ι ⊗ ωξ,η)(U) by elements of A0; this will show that A0 is
dense in A. Let (eα) be a family of mutually orthogonal projections with sum 1, as given by

3That is, elements of the form (ι⊗ ω)(V ) where V is a unitary corepresentation, and ω ∈ B(HV )∗.
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Theorem
thm:corepdec
A.14 when applied to U . Let Uα = U(1⊗eα) = (1⊗eα)U , a finite-dimensional unitary

corepresentation. Then

(ι⊗ ωξ,η)(U) =
∑
α

(ι⊗ ωeα(ξ),η)(U) =
∑
α

(ι⊗ ωeα(ξ),η)(U(1⊗ eα))

=
∑
α

(ι⊗ ωeα(ξ),eα(η))((1⊗ eα)U(1⊗ eα)) =
∑
α

(ι⊗ ωeα(ξ),eα(η))(Uα).

Thus (ι⊗ ωξ,η)(U) is in the closure of A0, as required.

Let {uα : α ∈ I} be a maximal family of non-equivalent unitary corepresentations. For each
α, let uα ∈ A⊗Mnα with uα =

∑nα
i,j=1 u

α
ij ⊗ eij. We shall prove that {uαij : α ∈ I, 1 ≤ i, j ≤ nα}

is a (linear) basis for A0.
We first take a small diversion. Let σ : A ⊗ A → A ⊗ A be the swap map, which is a ∗-

homomorphism. It is easy to see that σ∆ is co-associative if and only if ∆ is, and so (A, σ∆) is
a C∗-bialgebra (called the “opposite” or, less commonly but more accurately, the “co-opposite”
quantum group). We see that (A,∆) satisfies the density conditions to be a compact quantum
group if and only if (A, σ∆) does. In this case, ϕ remains the Haar measure for (A, σ∆).
Notice however that U is a corepresentation for (A,∆) if and only if U∗ is a corepresentation
for (A, σ∆).

prop:fmatrices Proposition A.21. For each α ∈ I, there is a positive invertible matrix Fα such that

〈ϕ, (uβip)∗uαjq〉 = δα,βδp,qF
α
j,i (β ∈ I, 1 ≤ i, p ≤ nβ, 1 ≤ j, q ≤ nα).

The trace of each matrix Fα is 1.

Proof. Consider the operator θei,ej ∈ B0(`2
nα , `

2
nβ

). Then by Lemma
lem:one
A.12,

y = (ϕ⊗ ι)(u∗β(1⊗ x)uα) =
∑
p,b,c,q

〈ϕ, (uβbp)
∗uαcq〉epbxecq =

∑
p,q

〈ϕ, (uβip)∗uαjq〉epq

is an operator in B0(`2
nα , `

2
nβ

) with (1 ⊗ y)uα = uβ(1 ⊗ y). As uα and uβ are irreducible, by
Proposition

prop:schur
A.15, we see that y = 0 if α 6= β.

When α = β, by Proposition
prop:schur
A.15, we see that y must be a scalar multiple of the identity.

Thus we obtain numbers Fα
j,i with 〈ϕ, (uβip)∗uαjq〉 = δα,βδp,qF

α
j,i. That uα is unitary means that∑

k

(uαk,i)
∗uαk,j = δi,j1 =⇒ δi,j =

∑
k

〈ϕ, (uαk,i)∗uαk,j〉 = δi,j
∑
k

Fα
k,k.

Now consider y = (ϕ ⊗ ι)(uα(uα)∗). By Lemma
lem:one
A.12, applied to (A, σ∆), we have that

1⊗ y = uα(1⊗ y)(uα)∗. Now,

y =
∑
i,j,k

〈ϕ, (uα)ik((uα)∗)kj〉eij =
∑
i,j,k

〈ϕ, (uαik)∗uαjk〉eij = nα
∑
i,j

Fα
j,ieij.

Thus y = nα(Fα)t. However, clearly y is a positive matrix, and so Fα is positive. Now, as uα

is equivalent to a unitary corepresentation, and is hence invertible, we see that y intertwines
the corepresentations (uα)∗ and (uα)−1, again working with (A, σ∆). Taking adjoints shows
that uα(1⊗ y∗) = (1⊗ y∗)(uα)∗−1. As uα is irreducible and has the same dimension as (uα)∗−1,
Proposition

prop:schur
A.15 shows that y∗ = 0 or y∗ is an isomorphism. As the trace of y is nα, we

conclude that y, and hence also Fα are invertible.

prop:basis_of_hopf Proposition A.22. The collection {uαi,j} is linearly independent, and hence forms a basis for
A0.
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Proof. Suppose that the finite linear combination
∑

α,i,j λ
α
i,ju

α
i,j is zero. Then, for any β, p, q

0 =
∑
α,i,j

λαi,j〈ϕ, (uβp,q)∗uαi,j〉 =
∑
i

F β
i,pλ

β
i,q.

As F β is invertible, λβ = 0, for any β, as required.

Let m : A0 �A0 → A0 be the multiplication map on the algebraic tensor product A0 �A0.
We define linear maps κ : A0 → A0 and ε : A0 → C by

ε(uαi,j) = δi,j, κ(uαi,j) = (uαj,i)
∗ (α ∈ I, 1 ≤ i, j ≤ nα).

Notice that then, for any finite-dimensional unitary corepresentation U , we have that

(κ⊗ ι)(U) = U∗, (ε⊗ ι)(U) = 1.

In particular, κ and ε are well-defined, independent of our choice of maximal family {uα}. If
ai = (ι⊗ ωi)(Ui) for i = 1, 2 then

ε(a1a2) = (ε⊗ ω1 ⊗ ω2)(U1
��������>U2) = (ω1 ⊗ ω2)(1) = 〈1, ω1〉〈1, ω2〉 = ε(a1)ε(a2),

and so ε is a character.

thm:ishopf Theorem A.23. The maps κ and ε turn (A0,∆) into a Hopf ∗-algebra. To be more precise,

(ε⊗ ι)∆(a) = (ι⊗ ε)∆(a) = a, m(κ⊗ ι)∆(a) = m(ι⊗ κ)∆(a) = ε(a)1 (a ∈ A0).

Automatically, κ is an anti-homomorphism, and ∆κ = σ(κ⊗ κ)∆. Furthermore, κ ∗ κ∗ = ι.

Proof. As ∆(uαi,j) =
∑

k u
α
i,k ⊗ uαk,j, it follows that ∆ restricts to a map A0 → A0 � A0. Then

(ε⊗ ι)∆(uαi,j) =
∑
k

ε(uαi,k)u
α
k,j = uαi,j,

showing that (ε⊗ ι)∆ = ι on A0; similarly (ι⊗ ε)∆ = ι.
Also

m(κ⊗ ι)∆(uαi,j) =
∑
k

m((uαk,i)
∗ ⊗ uαk,j) =

∑
k

(uαk,i)
∗uαk,j = δi,j1 = ε(uαi,j)1,

using that uα is unitary. Similarly m(ι⊗ κ)∆ = ε(·)1.
That κ is an anti-homomorphism and an anti-co-homomorphism follows from the theory of

Hopf algebras, see
timm
[4, Section 1.3.3] for example. That ∗κ ∗ κ = ι follows from our definition of

κ.

prop:when_corep_units_in_hopf Proposition A.24. Let
∑

i,j aij ⊗ eij be a finite-dimensional corepresentation of (A,∆) with
aij ∈ A0 for all i, j. Then the following are equivalent:

prop:when_corep_units_in_hopf:one 1. The matrix (aij) is invertible;

prop:when_corep_units_in_hopf:two 2. If (ξj)
n
j=1 ⊆ C satisfies that

∑
j aijξj = 0 for all i, then ξ = 0.

prop:when_corep_units_in_hopf:twoa 3. If (ξj)
n
j=1 ⊆ C satisfies that

∑
j aijξi = 0 for all j, then ξ = 0.

prop:when_corep_units_in_hopf:three 4. ε(aij) = δi,j for all i, j;

prop:when_corep_units_in_hopf:four 5. The matrix (aij) is invertible with inverse (κ(aij)).
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Proof. Clearly (
prop:when_corep_units_in_hopf:one
1) =⇒ (

prop:when_corep_units_in_hopf:two
2) and (

prop:when_corep_units_in_hopf:one
1) =⇒ (

prop:when_corep_units_in_hopf:twoa
3), and (

prop:when_corep_units_in_hopf:four
5) =⇒ (

prop:when_corep_units_in_hopf:one
1). If (

prop:when_corep_units_in_hopf:two
2) then consider the map

π : A′0 → Mn;µ 7→ (〈µ, aij〉); here we write A′0 for the vector space of linear (not necessarily
bounded) functionals A0 → C. This is a homomorphism, and so π(ε) is a (not necessarily
orthogonal) projection. If π(ε)ξ = 0 then π(µ)ξ = π(µε)ξ = 0 for all µ. So

∑
j〈µ, aij〉ξj = 0 for

all i and µ, that is,
∑

j aijξj = 0. As (
prop:when_corep_units_in_hopf:two
2) holds, ξ = 0 and so π(ε) = I which shows (

prop:when_corep_units_in_hopf:three
4).

Similar, if (
prop:when_corep_units_in_hopf:twoa
3) then, if for all µ ∈ A′0 and (ηj)

n
j=1 ⊆ Cn we have that

∑
i,j ηjξi〈µ, aij〉 = 0,

then ξ = 0. Hence the linear span of{∑
j

〈µ, aij〉ηj : µ ∈ A′0, η ∈ Cn
}

is all of Cn. Again, this implies that π(ε) = I, showing (
prop:when_corep_units_in_hopf:three
4).

By the previous theorem, if (
prop:when_corep_units_in_hopf:three
4) holds then∑

k

κ(aik)akj = m(κ⊗ ι)∆(aij) = ε(aij)1 = δi,j1.

Similarly,
∑

k aikκ(akj) = δi,j1 and so (
prop:when_corep_units_in_hopf:four
5) holds.

Notice that the proof shows that condition (
prop:when_corep_units_in_hopf:twoa
3) is equivalent to the homomorphism A′0 →Mn

being non-degenerate. Equivalent conditions are that the induced homomorphisms A∗ → Mn

or L1(A) → Mn are non-degenerate. Theorem
thm:when_in_poly
A.32 below shows that if the Haar state is

faithful on A, then any non-degenerate homomorphism L1(A) → Mn arises from an invertible
U in this way (that is, the hypothesis that each aij ∈ A0 can be removed).

A.5 Automorphisms

We now study the “F -matrices” Fα more closely.

prop:haarotherway Proposition A.25. For α, β ∈ I, we have that

〈ϕ, uαip(u
β
jq)
∗〉 = δα,βδi,j

(Fα)−1
q,p

Tr((Fα)−1)
.

Proof. Consider the compact quantum group (A, σ∆). Then {(uα)∗ : α ∈ I} forms a complete
set of unitary corepresentations for (A, σ∆). Thus we can apply Proposition

prop:fmatrices
A.21 to find

positive, invertible, trace 1 matrices Gα with

〈ϕ, ((uα)∗pi)
∗(uβ)∗qj〉 = 〈ϕ, uαip(u

β
jq)
∗〉 = δα,βδi,jG

α
q,p.

The proof of Proposition
prop:fmatrices
A.21 shows that 1 ⊗ (Fα)t = uα(1 ⊗ (Fα)t)(uα)∗ and thus also that

1 ⊗ (Gα)t = (uα)∗(1 ⊗ (Gα)t)uα. Thus both (Fα)t and ((Gα)−1)t intertwine uα (which is
irreducible) and ((uα)∗)−1 (which is of the same dimension). Thus Proposition

prop:schur
A.15 shows that

Gα = λ(Fα)−1 for some λ ∈ C, which may be determined by the condition that Gα has trace
1.

lem:fmatrixkappa Lemma A.26. Let T ∈ Mn be such that (1 ⊗ T−1)uα(1 ⊗ T ) is unitary. Then Fα is a scalar
multiple of TT t, and (Fα)−1 intertwines uα and the corepresentation (κ2(uαij)).

Proof. By Proposition
prop:conjunitary
A.19 there is an invertible T ∈Mn with v = (1⊗T−1)uα(1⊗T ) unitary.

Thus
1 = vv∗ = (1⊗ T−1)uα(1⊗ T )(1⊗ T ∗)uα∗(1⊗ (T−1)∗),

and so (1⊗ TT ∗) = uα(1⊗ TT ∗)uα∗. Hence by the proof of Proposition
prop:fmatrices
A.21, (Fα)t is a scalar

multiple of TT ∗, or equivalently, Fα is a scalar multiple of TT
∗

= TT t.
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Now, as v is unitary, v∗ = κ(v), where κ(v) is the matrix (κ(vij))
n
i,j=1. So

κ(v)t = v = (1⊗ T−1
)uα(1⊗ T ).

However, also

κ(v)t =
(
(1⊗ T−1)κ(uα)(1⊗ T )

)t
= (1⊗ T t)κ2(uα)(1⊗ (T−1)t),

here using that (κ(uα)t)i,j = κ((uαji)
∗) = κ2(uαij). Thus

(1⊗ (T−1)tT
−1

)uα = κ2(uα)(1⊗ (T−1)tT
−1

).

So conclude that (Fα)−1 intertwines uα and κ2(uα).

Notice that a corollary of this result is that T is determined up to a unitary matrix, and a
scalar. Indeed, by rescaling, we may assume that TT ∗ = F

α
. As F

α
is positive and invertible,

there is a unique unitary4 matrix U with T = (F
α
)1/2U .

cor:fmatrixkappa Corollary A.27. The matrix (Fα)−1 intertwines the corepresentations uα and ((uα)t)−1, where
of course (uα)t has matrix (uαj,i).

Proof. Using the properties of κ established in Theorem
thm:ishopf
A.23 we see that as uα is unitary, for

any i, j∑
k

uαi,k(u
α
j,k)
∗ = δi,j1 =

∑
k

(uαk,i)
∗uαk,j =⇒

∑
k

uαi,kκ(uαk,j) = δi,j1 =
∑
k

κ(uαi,k)u
α
k,j

=⇒
∑
k

uαk,jκ
−1(uαi,k) = δi,j1 =

∑
k

κ−1(uαk,j)u
α
i,k.

This implies that ((uα)t)−1 is the matrix (κ−1(uαj,i)) = (κ((uαj,i)
∗)∗) = (κ2(uαi,j)

∗). By the
previous result, for all i, j,∑

k

(Fα)−1
i,ku

α
k,j =

∑
k

κ2(uαi,k)(F
α)−1
k,j =⇒

∑
k

(Fα)−1
i,k (uαk,j)

∗ =
∑
k

κ2(uαi,k)
∗(Fα)−1

k,j,

that is, (Fα)−1 intertwines uα and ((uα)t)−1 as required.

In particular, this result shows that

(uα)t(Fα)−1uα = (Fα)−1, uαFα(uα)t = Fα.

Let us think about how the “F -matrices” are effected by unitary equivalence. Let v be a
unitary corepresentation equivalent to uα, so by Proposition

prop:schur
A.15, there is a unitary intertwiner,

X say. Thus v = (1⊗X∗)uα(1⊗X). Then

〈ϕ, v∗ipvjq〉 =
∑
〈ϕ,
(
Xaiu

α
abXbp

)∗
Xcju

α
cdXdq〉 =

∑
XaiXbpXcjXdq〈ϕ, (uαab)∗uαcd〉

=
∑

XaiXbpXbqXcjF
α
c,a = δp,q

(
X∗FαX

)
j,i
.

Thus the “F -matrix” associated with v is X∗FαX.

4For any vector x we have that ‖T ∗x‖2 = (TT ∗x|x) = (F
α
x|x) = ‖(Fα)1/2x‖2. So there is a well-defined

isometry U with UT ∗ = (F
α

)1/2. As (F
α

)1/2 is invertible, U is everywhere defined and invertible, so a unitary.
Then TU∗ = (F

α
)1/2 so T = (F

α
)1/2U as required.
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For each α, set tα = Tr((Fα)−1). As Fα is a positive invertible matrix, tα > 0. For each
z ∈ C, define a linear map by

fz : A0 → C; uαi,j 7→ ((Fα)−z)i,jt
−z/2
α .

Here we use the functional calculus to define F z = exp(z logF ) for a positive matrix F .
Because (T ∗FT )z = T ∗F zT for any positive invertible F , unitary T and z ∈ C, we see that

fz is well-defined, independent of the choice of irreducibles {uα} (of course, tα is well-defined).
As is standard, we turn A∗ into a Banach algebra, with the product denoted by ∗, by

〈µ ∗ λ, a〉 = 〈µ⊗ λ,∆(a)〉 (a ∈ A, µ, λ ∈ A∗).

Notice that ∗ is also well-defined on the algebraic dual of A0, because of Theorem
thm:ishopf
A.23. Define

σ : A0 → A0 by
σ(a) = f1 ∗ a ∗ f1 = (f1 ⊗ ι⊗ f1)∆2(a) (a ∈ A).

prop:firstpropsfz Proposition A.28. The maps fz have the following properties:

1. For a ∈ A0, the map C → C; z 7→ fz(a) is entire and of exponential growth in the
right half-plane (meaning that there are C > 0 and d ∈ R with |fz(a)| ≤ CedRe(z) when
Re(z) > 0);

2. f0 = ε the counit, and fz ∗ fw = fz+w for all z, w ∈ C;

3. for a, b ∈ A0, we have that 〈ϕ, ab〉 = 〈ϕ, bσ(a)〉.

Proof. (1) follows almost immediately. To see this easily, suppose that Fα is diagonal (as we
may, as Fα is positive, so diagonalisable). Then, if t > 0, the function z 7→ t−z = e−z log t is of
exponential growth in the right half-plane, as |e−zs| = e−sRe(z) for s ∈ R. As any a ∈ A0 is a
finite linear combination of elements of the form uαi,j the result follows.

For (ii), first notice that F 0 = exp(0) = I for any positive matrix F , and so f0(uαij) = δi,j
as required to show that f0 = ε. Now notice that

〈fz ∗ fw, uαij〉 =
∑
k

〈fz, uαik〉〈fw, uαkj〉 =
∑
k

(Fα)−zik (Fα)−wkj t
−z/2
α t−w/2α

=
(
(Fα)−z(Fα)−w

)
ij
t−(z+w)/2
α = (t1/2α Fα)

−(z+w)
ij = 〈fz+w, uαij〉.

For (iii), notice that

σ(uαij) =
∑
k,l

〈f1, u
α
il〉uαlk〈f1, u

α
kj〉 = t−1

α

∑
k,l

(Fα)−1
il (Fα)−1

kj u
α
lk.

Thus, if a = uαip and b = (uβjq)
∗, then

〈ϕ, bσ(a)〉 = t−1
α

∑
k,l

(Fα)−1
il (Fα)−1

kp 〈ϕ, (u
β
jq)
∗uαlk〉 = t−1

α δα,β
∑
l

(Fα)−1
il (Fα)−1

qp F
α
lj

= t−1
α δα,βδi,j(F

α)−1
qp = 〈ϕ, ab〉,

where the final equality uses Proposition
prop:haarotherway
A.25. Then (iii) follows by linearity.

Theorem A.29. Each fz is a character on A0. Furthermore:

1. fz(1) = 1, fz(κ(a)) = f−z(a) and fz(a
∗) = f−z(a) for all a ∈ A, z ∈ C;

2. κ2(a) = (f1 ⊗ ι⊗ f−1)∆2(a) for each a ∈ A.
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The characters fz are uniquely determined by the properties shown in the previous proposition.

Proof. We first claim that σ is a character. For a, b, c ∈ A0,

〈ϕ, abc〉 = 〈ϕ, cσ(ab)〉 = 〈ϕ, bcσ(a)〉 = 〈ϕ, cσ(a)σ(b)〉.

As this holds for all c, we conclude that σ(ab) = σ(a)σ(b) as required. Then, for a ∈ A0,

〈f2, a〉 = 〈f1 ∗ f0 ∗ f1, a〉 = 〈ε, σ(a)〉,

and so f2 = ε ◦ σ is a character. Then f4 = f2 ∗ f2 = (f2 ⊗ f2) ◦ ∆ is a character, as ∆ is a
homomorphism. Similarly, f2k is a character for all k ∈ N. Thus, for a, b ∈ A0, the functions

z 7→ fz(ab), and z 7→ fz(a)fz(b)

are both entire and of exponential growth in the right-half plane, and are equal on {2k : k ∈ N}.
Thus they agree everywhere (see

woro1
[5]Page 228). So fz is a character for all z.

In this argument, we have only used the properties of the family (fz) established by the
previous proposition. Then σ is uniquely determined by condition (3) (of the previous propo-
sition), and so f2 = ε ◦ σ is uniquely determined. Thus also f2k is uniquely determined, given
condition (2). But then (fz) is uniquely determined by the same complex analysis argument.

Clearly fz(1) = 1 for all z. Then

fzκ = (fzκ⊗ ε)∆ = (fzκ⊗ f0)∆ = (fzκ⊗ fz ⊗ f−z)∆2 = (fz ⊗ fz ⊗ f−z)
(
(κ⊗ ι)∆⊗ ι

)
∆.

That fz is a character means that fzm = fz ⊗ fz, and so

fzκ = (fz ⊗ f−z)
(
m(κ⊗ ι)∆⊗ ι

)
∆ = fz(1)(ε⊗ f−z)∆ = f−z,

as required. Notice now that if t > 0 then tz = exp(z log t) = exp(z log t) = tz. Being careful,
this shows that (F z)∗ = F z for a positive invertible matrix F . Thus

fz((u
α
ij)
∗) = fz(κ(uαji)) = f−z(u

α
ji) = (Fα)zj,it

z/2
α = (Fα)zi,jt

z/2
α = fz(uαij),

which completes showing (1).
By Lemma

lem:fmatrixkappa
A.26, (1⊗ (Fα)−1)uα(1⊗ Fα) = κ2(uα), and so

κ2(uαij) =
∑
k,l

(Fα)−1
i,ku

α
k,lF

α
l,jt
−1/2
α t1/2α = (f1 ⊗ ι⊗ f−1)∆2(uαij),

which shows (2).

Proposition A.30. For z, z′ ∈ C, define a map ρz,z′ : A0 → A0 by

ρz,z′ = (fz′ ⊗ ι⊗ fz)∆2.

Then ρz,z′ is an algebra homomorphism, and for any w,w′ ∈ C,

ρ0,0 = ι, ρz,z′ ◦ ρw,w′ = ρz+w,z′+w′ ,

ϕ ◦ ρz,z′ = ϕ, ρz,z′ ◦ ∗ = ∗ ◦ ρ−z,−z′
ρz,z′ ◦ κ = κ ◦ ρ−z′,−z, ∆ ◦ ρz,z′ = (ρw,z′ ⊗ ρz,−w) ◦∆,

κ−1 = ρ1,−1 ◦ κ.

Proof. These are all immediate from the previous proposition.

In particular, define two one-parameter families of ∗-homomorphisms of A0 by

σt = ρit,it, τt = ρ−it,it (t ∈ R).

These have analytic extensions to all of C, and we see that σ = ρ1,1 = σ−i while κ2 = ρ−1,1 = τ−i.
Also ∆τt = (τt⊗ τt)∆ and ∆σt = (τt⊗ σt)∆. It follows that (σt) is the modular automorphism
group of ϕ, while (τt) is the scaling group of (A,∆). Notice that ρz,z′ = σ−i(z+z′)/2τ−i(z′−z)/2.
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A.6 Slicing against coreps

We take a slight diversion, and follow
woro2
[6, Section 4].

prop:slices Proposition A.31. Let U ∈M(A⊗B0(H)) be a unitary corepresentation, and let ω ∈ B0(H)∗.
Then:

slice:one 1. Set a = (ι⊗ ω)(U) ∈ A. If ϕ(aa∗) = 0 then a = 0.

slice:two 2. (ι⊗ ω)(U) = 0 if and only if (ι⊗ ω)(U∗) = 0.

For any a, b ∈ A fixed, we have that (ι⊗ϕ)(∆(b∗)(1⊗a)) = 0 if and only if (ι⊗ϕ)((1⊗b∗)∆(a)) =
0.

Proof. By Proposition
prop:cstar_corep
A.9, if B is the norm closure of {(cϕ ⊗ ι)(U) : c ∈ A}, then B is

a non-degenerate C∗-algebra acting on H, and U ∈ M(A ⊗ B). In particular, we can find
b0 ∈ B,ω0 ∈ B0(H)∗ with ω = b0ω0.

For (
slice:one
1), for any c ∈ A, we have by Cauchy-Schwarz that |ϕ(ac)|2 ≤ ϕ(aa∗)ϕ(c∗b) = 0, and

so 〈(cϕ⊗ ι)(U), ω〉 = 〈cϕ, a〉 = 0. Thus 〈b, ω〉 = 0 for all b ∈ B. As U ∈M(A⊗B) we can find
a bounded net (ui) in A⊗B with ui → U strictly. Then

a = (ι⊗ ω)(U) = (ι⊗ ω0)(U(1⊗ b0)) = lim
i

(ι⊗ ω0)(ui(1⊗ b0)) = lim
i

(ι⊗ ω)(ui) = 0,

as ui ∈ A⊗B.
For (

slice:two
2), suppose that (ι⊗ω)(U) = 0. As just argued, this certainly implies that (ι⊗ω)(V ) =

0 for any V ∈ M(A⊗ B). In particular, (ι⊗ ω)(U∗) = 0. Conversely, if (ι⊗ ω)(U∗) = 0 then
(ι⊗ ω)(U∗)∗ = (ι⊗ ω∗)(U) = 0, and so 0 = (ι⊗ ω∗)(U∗) = (ι⊗ ω)(U)∗ as required.

Finally, follow Section
sec:leftregcorep
A.1, as applied to some faithful representation of A, to form the left

regular corepresentation U . Then Lemma
lem:dense
A.4 combined with (

slice:two
2) gives immediately the final

claim.

thm:when_in_poly Theorem A.32. Suppose that ϕ is faithful. If a ∈ A with ∆(a) in the algebraic tensor product
of A with itself, then a ∈ A0.

Proof. Let ∆(a) =
∑n

i=1 ai ⊗ bi. For b ∈ A, notice that

(ι⊗ ϕ)((1⊗ b∗)∆(a)) =
n∑
i=1

ϕ(b∗bi)ai =
n∑
i=1

〈biϕ, b∗〉ai.

Thus (ι ⊗ ϕ)((1 ⊗ b∗)∆(a)) = 0 if and only if b∗ ∈ ker(b1ϕ) ∩ · · · ∩ ker(bnϕ). By the previous
proposition, this is equivalent to (ι ⊗ ϕ)(∆(b∗)(1 ⊗ a)) = 0. In particular, we conclude that
{(ι⊗ ϕ)(∆(b∗)(1⊗ a)) : b ∈ A} is a finite-dimensional subspace of A.

Now let b = uαi,j to see that{∑
k

(uαi,k)
∗ϕ((uαk,j)

∗a) : α ∈ I, 1 ≤ i, j ≤ nα

}
is also a finite-dimensional subspace of A (actually, of A0). As the set {uαi,j} is a basis for A0,
it follows that there is a finite subset F ⊆ I such that

ϕ((uαk,j)
∗a) = 0 (α 6∈ F, 1 ≤ j, k ≤ nα).

Using Proposition
prop:fmatrices
A.21, if we set Hα = lin{uαi,jξ0 : 1 ≤ i, j ≤ nα} ⊆ L2(ϕ), then L2(ϕ) is the

orthogonal direct sum of the finite-dimensional subspaces {Hα : α ∈ I}. We have just shown
that aξ0 ∈ lin{Hα : α ∈ F}. As ϕ is faithful, the GNS map A → L2(ϕ); b 7→ bξ0 is injective,
and so a ∈ lin{uαi,j : α ∈ F} ⊆ A0 as required.

An example given in
ks
[2] shows that this result may fail if ϕ is not faithful.
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A.7 Faithfulness of the Haar state
sec:faith_haar

prop:haarfaithhopf Proposition A.33. The restriction of ϕ to A0 is a faithful state.

Proof. Let a ∈ A0 with 〈ϕ, a∗a〉 = 0. By Cauchy-Schwarz, 〈ϕ, a∗b〉 = 0 for all b ∈ A0. Thus, if
a =

∑
α,i,j λ

α
i,ju

α
i,j a finite linear combination, then taking b = uβp,q shows that

0 =
∑
i,j

λβi,jδj,qF
β
p,i =

∑
i

λβi,qF
β
p,i.

Again, as F β is invertible, this shows that λβ = 0 for all β, as required.

Proposition A.34. For any a ∈ A, we have that 〈ϕ, a∗a〉 = 0 if and only if 〈ϕ, aa∗〉 = 0. In
particular:

1. Nϕ = {a ∈ A : 〈ϕ, a∗a〉 = 0} is a two-sided closed ideal of A;

2. Let (L2(ϕ), π,Λ) be the GNS construction for ϕ. Then ker Λ = kerπ = Nϕ.

Proof. Suppose 〈ϕ, a∗a〉 = 0. By Cauchy-Schwarz, 〈ϕ, a∗b〉 = 0 for all b ∈ A, in particular, for
all b ∈ A0. As A0 is dense in A, we can find a sequence (an) in A0 with a∗n → a∗ in norm. So

0 = 〈ϕ, a∗σ(b)〉 = lim
n
〈ϕ, a∗nσ(b)〉 = lim

n
〈ϕ, ba∗n〉 = 〈ϕ, ba∗〉

where here we use Proposition
prop:firstpropsfz
A.28. As this holds for all b ∈ A0, again by density, we conclude

that 〈ϕ, aa∗〉 = 0, as required.
That Nϕ is a left ideal follows from the inequality a∗x∗xa ≤ ‖x‖2a∗a; clearly Nϕ is closed.

However, we have just shown that Nϕ is self-adjoint, and hence is a right ideal as well, showing
(1).

By definition, ker Λ = Nϕ. Suppose that π(a) = 0, so 0 = π(a)Λ(1) = Λ(a), so a ∈ Nϕ.
Conversely, if a ∈ Nϕ then for b ∈ A, as abb∗a∗ ≤ ‖b‖2aa∗ and 〈ϕ, aa∗〉 = 0, also 〈ϕ, abb∗a∗〉 = 0,
so also 〈ϕ, b∗a∗ab〉 = 0, showing that π(a)Λ(b) = 0. As b was arbitrary, π(a)ξ = 0 for all ξ ∈ H,
showing that π(a) = 0. Thus (2) holds.

So we can form the quotient algebra Ar = A/Nϕ, and let ϕr be the functional induced by
ϕ on Ar; it follows that ϕr is a faithful state on Ar. Let (L2(ϕ), π,Λ) be the GNS construction
for ϕ on A, and let (Hr, πr,Λr) be the GNS construction for ϕr on Ar. Let q : A→ Ar be the
quotient map. By Proposition

prop:haarfaithhopf
A.33, we see that q restricts to an injection on A0, and hence

we can identify A0 as a dense subalgebra of Ar.

Theorem A.35. The map Λ(a) 7→ Λr(q(a)) extends to an isometric isomorphism θ from L2(ϕ)
to Hr. Then πr(q(a))θ = θπ(a) for all a ∈ A, and so π(A), π(Ar) and Ar are all isometrically
isomorphic.

There is a unital ∗-homomorphism ∆r : Ar → Ar ⊗Ar with (q ⊗ q)∆ = ∆rq, and such that
(Ar,∆r) becomes a compact quantum group. ∆r restricts to ∆ on A0. The corepresentation
theory of (Ar,∆r) agrees with that of (A,∆).

Proof. As ker q = Nϕ = ker Λ, the map θ is well-defined on Λ(A). Then ‖θΛ(a)‖2 = 〈ϕr, q(a∗a)〉 =
〈ϕ, a∗a〉 = ‖Λ(a)‖2, and so θ is an isometry with dense range, and hence extends to an isometric
isomorphism. Clearly θ intertwines πrq and π, and so we can identify π(A) with πr(Ar) ∼= Ar.

We now use Proposition
prop:corepgivescomult
A.3. Use π : A → B(L2(ϕ)) to form U , a unitary in M(π(A) ⊗

B0(L2(ϕ))) ⊆ B(L2(ϕ) ⊗ L2(ϕ)) with (π ⊗ π)∆(a) = U∗(1 ⊗ π(a))U for a ∈ A. Using the
isomorphism with Hr, we obtain a unitary W ∈ M(Ar ⊗ B0(Hr)) with W ∗(1 ⊗ q(a))W =
(πrq⊗πrq)∆(a) for a ∈ A. Thus, if a ∈ ker q, then (q⊗q)∆(a) = 0 (as πr⊗πr injects on Ar⊗Ar).
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Then we can set ∆r(a) = W ∗(1⊗ a)W for a ∈ Ar, and we see that ∆r(q(a)) = (q ⊗ q)∆(a), as
required.

It is clear that ∆r agrees with ∆ on A0. The statement about corepresentations follows as
we can phrase everything in terms of A0.[5]

As an aside, from LCQG theorem, we define

W ∗(Λ(a)⊗ Λ(b)) = (Λ⊗ Λ)(∆(b)(a⊗ 1)).

This is the same definition as given by Proposition
prop:corepgivescomult
A.3.

We can now also construct the von Neumann algebraic version ofAr, asM = A′′r in B(L2(ϕ)).
It is easy to see that we can extend ∆ to a M by defining ∆(x) = W ∗(1 ⊗ x)W for x ∈ M
(σ-weak continuity shows that ∆ does map into M⊗M , and that ∆ is coassociative). We
extend ϕ to M by identifying it with normal state ωΛ(1).

Lemma A.36. The extension of ϕ to M is a faithful normal state on M .

Proof. We argue above. If x ∈ M with ϕ(x∗x) = 0, then xΛ(1) = 0. We can find a net (ai) in
A0 which converges strongly on x (by Kaplansky Density). Then, for b, c ∈ A0,(

xΛ(σ(b))
∣∣Λ(c)

)
= lim

n
ϕ(c∗anσ(b)) = lim

n
ϕ(bc∗an) = lim

n

(
anΛ(1)

∣∣∣Λ(cb∗)
)

=
(
xΛ(1)

∣∣∣Λ(cb∗)
)

= 0.

By density, (xξ|η) = 0 for all ξ, η ∈ L2(ϕ), so x = 0.

Theorem A.37. Let x ∈M with ∆(x) in the algebraic tensor product of M with itself. Then
x ∈ A0.

Proof. We copy the proof of Theorem
thm:when_in_poly
A.32. To do so, we need to use a version of Proposi-

tion
prop:slices
A.31, where a ∈ M in the final claim. In turn, this follows from a version of Lemma

lem:dense
A.4,

which in turn follows from the construction of W ∈ B(L2(ϕ) ⊗ L2(ϕ)) as W ∗(ξ ⊗ Λ(a)) =
∆(a)(ξ ⊗Λ(1)) for a ∈ A, ξ ∈ L2(ϕ). For x ∈M , if (an) is a net in A converging strongly to x,
then ∆(x) will be the strong limit of ∆(an), and ∆(x) = x∆(1) = limn an∆(1) = limn ∆(an) in
norm. Thus W ∗(ξ ⊗ Λ(x)) = ∆(x)(ξ ⊗ Λ(1)) for all x ∈M , and the proof is complete.

B Character theory

Much of this theory comes from
woro3
[7, Section 5].

Definition B.1. Let U = (Uij) ∈ A⊗Mn be a (finite-dimensional, unitary) corepresentation.
Then the character of U is the element χ(U) = χU =

∑n
i=1 Uii ∈ A.

If Tr denotes the (non-normalised) trace, then χU = (ι⊗Tr)U , showing χU to be coordinate
independent.

Lemma B.2. Let U, V be corepresentations of A. Then χ(U ⊕ V ) = χ(U) +χ(V ), χ(U ��������>V ) =
χ(U)χ(V ), χ(U) = χ(U)∗ = κ(χ(U)). If U and V are equivalent of dimension n, then χ(U) =
χ(V ) and ε(χ(U)) = n.

5Should probably be more precise here– a target would be to prove: For V ∈ M(A ⊗ B0(H)) a unitary
corepresentation of A, clearly (q ⊗ ι)V is a unitary corepresentation of Ar; we claim that this establishes a
bijection between unitary corepresentations of A and of Ar.
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Proof. We only prove the non-obvious claims. We may suppose that U is unitary, so then
χ(U) =

∑
i U
∗
ii =

∑
i κ(Uii) and so χ(U) = χ(U)∗ = κ(χ(U)). Similarly, ε(χ(U)) =

∑
i ε(Uii) =

n.

prop:char_are_on Proposition B.3. If U, V are irreducible (unitary) corepresentations, then ϕ(χ∗UχV ) = ϕ(χUχ
∗
V ) =

1 if U is equivalent to V , and equals 0 otherwise.

Proof. This follows immediately from Proposition
prop:fmatrices
A.21 and Proposition

prop:haarotherway
A.25.

Then, as for classical compact groups, knowing χU allows us to find how U is decomposed
as irreducibles. To be precise, if we set nα = ϕ(χ∗uαχU), then

U ∼=
⊕
α

(uα)⊕nα , χU =
∑
α

nαχ(uα).

Furthermore, the space of intertwiners between U and itself has dimension
∑

α n
2
α = ϕ(χ∗UχU).

Lemma B.4. Assume diagonalised F-matrices.6 Then f1(χU) = f−1(χU) = Λα.

Proof. Simply note that fz(χU) =
∑

i(λ
α
i )z and so f1(χU) = f−1(χU) = Λα.

Notice that
∆(χU) =

∑
i

∆(Uii) =
∑
i,j

Uij ⊗ Uji,

and so ∆(χU) = σ∆(χU). Woronowicz says that this corresponds to the classical situation
where characters are always invariant under inner-automorphisms.7

B.1 Woronowicz’s question

Let Acen = {a ∈ A : ∆(a) = σ∆(a)} and A0
cen = A0 ∩ Acen.

Lemma B.5. Let a ∈ A0
cen. Then a is a finite linear combination of characters.

Proof. As a ∈ A0, we can write a =
∑
aα,i,ju

α
ij. Then

∆(a) =
∑

aα,i,ju
α
ik ⊗ uαkj = σ∆(a) =

∑
aα,i,ju

α
kj ⊗ uαik.

Then for all β, p, q, ∑
i

aβ,i,qu
β
ip =

∑
j

aβ,p,ju
β
qj.

But then looking at the uγr,s component shows that for all γ, p, q, r, s we have that

aγ,r,qδs,p = aγ,p,sδr,q.

So if s 6= p then aγ,p,s = 0, while taking r = q and s = p shows that aγ,r,r = aγ,s,s for all r, s. So
there are scalars bα such that aα,i,j = δi,jbα. Hence

a =
∑
α

bα
∑
i

uαii =
∑
α

bαχ(uα),

as required.

Woronowicz asked:

• Is A0
cen dense in Acen?

• Equivalently, is the span of characters dense in Acen.

Again, if we believe that when A = C(G) then Acen is the space of functions invariant under
inner-automorphisms (i.e. the space of “class functions”) then this is true in the classical group
case.

6Maybe we don’t need to do this– but then we need to define the “quantum-dimension” somewhere!
7Can we expand?
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C Diagonalisation
sec:diag

Recall (from Proposition
prop:fmatrices
A.21) that the F-matrices satisfy

〈ϕ, (uβip)∗uαjq〉 = δα,βδp,qF
α
j,i (α, β ∈ I, 1 ≤ i, p ≤ nβ, 1 ≤ j, q ≤ nα),

where Fα is a positive invertible matrix with trace 1.
Then we can find a unitary matrix Xα such that (Xα)∗FαXα is diagonal, say with diagonal

entries (µ
(α)
i ) ⊆ (0, 1], with

∑
i µ

(α)
i = 1.

Set vα = (Xα)∗uαXα, a unitary corepresentation (unitarily) equivalent to uα. Then

〈ϕ, (vβi,p)∗vαj,q〉 =
∑
a,b,c,d

〈ϕ, ((Xβ)∗i,au
β
a,bX

β
b,p)
∗(Xα

j,c)
∗uαc,dX

α
d,q〉

= δα,β
∑
a,b,c,d

Xα
a,iX

α
b,pX

α
c,jX

α
d,q〈ϕ, (uαa,b)∗uαc,d〉 = δα,β

∑
a,b,c,d

Xα
a,iX

α
b,pX

α
c,jX

α
d,qδb,dF

α
c,a

= δα,β
∑
a,c

Xα
a,iX

α
c,j((X

α)∗Xα)p,qF
α
c,a = δα,βδp,q((X

α)∗FαXα)j,i

= δα,βδp,qδi,jµ
(α)
i .

We now use Proposition
prop:haarotherway
A.25. First note that (Xα)∗(Fα)−1Xα is diagonal with entries

(µ−1
i ). As before, set tα = Tr((Fα)−1) =

∑
i µ
−1
i . So we see that

〈ϕ, vβi,p(vαj,q)∗〉 =
∑
a,b,c,d

〈ϕ, (Xβ)∗i,au
β
a,bX

β
b,p((X

α
j,c)
∗uαc,dX

α
d,q)
∗〉

= δα,β
∑
a,b,c,d

(Xα)∗i,aX
α
b,pX

α
c,jX

α
d,qδa,c

(Fα)−1
d,b

tα

= δα,βδi,j
∑
b,d

Xα
b,p(X

α)∗q,d
(Fα)−1

d,b

tα

= δα,βδi,j
((Xα)∗(Fα)−1Xα)q,p

tα
= δα,βδi,jδp,q(µ

α
p )−1t−1

α .

Let λαi = (µαi )−1t
−1/2
α , so that∑

i

(λαi )−1 = (tα)1/2,
∑
i

λαi = (tα)−1/2tα = (tα)1/2.

So with Λα = (tα)1/2, we see that

〈ϕ, (vβi,p)∗vαj,q〉 = δα,βδp,qδi,j
1

λαi Λα

, 〈ϕ, vβi,p(vαj,q)∗〉 = δα,βδi,jδp,q
λαp
Λα

.

Thus, to recap, for the new family of unitary corepresentations (vα), the associated “F -

matrices” are diagonal, with entries (µ
(α)
i ) or equivalently, with entries ((λαi )−1Λ−1

α ).
Thus this does agree with my PAMS paper.
Notice that Lemma

lem:fmatrixkappa
A.26 shows that

δi,j
λαi Λα

=
∑
k,l

(vα)i,k
δk,l
λαkΛα

(vα)∗l,j =
∑
k

(vαi,k)
∗vαj,k

1

λαkΛα

.
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C.1 Decomposing the left-regular corepresentation

[8]
Form the left-regular corepresentation U as in Proposition

prop:regcorep
A.5, so that U ∈ M(A ⊗

B0(L2(ϕ)). Recall that L2(ϕ) is the GNS space for ϕ, with cyclic vector ξ0. As at the start,
L2(ϕ) decomposes as the orthogonal direct sum L2(ϕ) =

⊕
αHα where Hα is the span of the

vectors (vαij)
∗ξ0. There is then a unitary

Uα : Hα → `2
nα ⊗ `

2
nα ; (vαij)

∗ξ0 7→

√
λαj
Λα

δi ⊗ δj.

Let X =
⊕

α Uα : L2(ϕ)→
⊕

α `
2
nα ⊗ `

2
nα . Then as before,

(1⊗X)U∗(1⊗X∗)
(
ξ ⊗ δαi ⊗ δαj

)
=

√
Λα

λαj
(1⊗X)U∗(ξ ⊗ (vαij)

∗ξ0)

=

√
Λα

λαj

∑
k

(1⊗X)
(
(vαik)

∗ξ ⊗ (vαkj)
∗ξ0

)
=
∑
k

(vαik)
∗ξ ⊗ δαk ⊗ δαj .

It follows that
(1⊗X)U∗(1⊗X∗) =

∑
α,i,k

(vαik)
∗ ⊗ eαki ⊗ 1,

and so
(1⊗X)U(1⊗X∗) =

∑
α,i,k

vαik ⊗ eαik ⊗ 1.

Hence (1 ⊗X)U(1 ⊗X∗) decomposes as (vα) where each vα ∈ Mn(A) = A ⊗Mn acts on the
first component of `2

nα ⊗ `
2
nα .

C.2 The right regular representation

Again, let (A, σ∆) be the opposite quantum group. Then ϕ remains the Haar weight for
(A, σ∆), and so we can form the regular representation Uop for (A, σ∆), acting on L2(ϕ). It
is easy to see that Y is a (unitary) corepresentation of (A,∆) if and only if Y ∗ is a (unitary)
corepresentation of (A, σ∆). Set V = (Uop)∗, the right regular representation of (A,∆). By
definition,

V (ξ ⊗ aξ0) = σ∆(a)(ξ ⊗ ξ0).

Thus we find that

(1⊗X)V (1⊗X∗)(ξ ⊗ δαi ⊗ δαj ) =

√
Λα

λαj
(1⊗X)V (ξ ⊗ (vαij)

∗ξ0)

=

√
Λα

λαj
(1⊗X)

∑
k

(vαkj)
∗ξ ⊗ (vαik)

∗ξ0 =
∑
k

(vαkj)
∗ξ ⊗ δαi ⊗

√
λαk
λαj
δαk .

Hence we see that

(1⊗X)V (1⊗X∗) =
∑
α,j,k

(vαkj)
∗ ⊗ 1⊗

√
λαk
λαj
eαkj =

∑
α,j,k

(τ−i/2(vαkj))
∗ ⊗ 1⊗ eαkj

=
∑
α,j,k

R(vαjk)⊗ 1⊗ eαkj.

8This is just a variant of the construction at the start, but where now we don’t work with the reduced version
of A.
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C.3 Products of compact quantum groups

Let (A,∆A) and (B,∆B) be compact quantum groups, with Haar states ϕA and ϕB. We form
a coproduct ∆ on A ⊗ B by ∆ = (1 ⊗ σ ⊗ 1)(∆A ⊗ ∆B). This is clearly a map A ⊗ B →
(A⊗B)⊗ (A⊗B). A tedious but easy calculation shows that this is cocommutative. We call
(A⊗B,∆) the product of A and B.

Let U be a corepresentation of A, and V be a corepresentation of B, both acting on the
same space H. We shall say that U and V commute if U13V23 = V23U13. Under this assumption,
if we set X = U13V23 = U × V ∈M(A⊗B ⊗ B0(H)), then

(∆⊗ ι)X = (ι⊗ σ ⊗ ι⊗ ι)
(
(∆A ⊗ ι)(U)125(∆B ⊗ ι)(V )345

)
= (ι⊗ σ ⊗ ι⊗ ι)

(
U15U25V35V45

)
= U15U35V25V45 = U15V25U35V45 = X13X23.

Hence X is a corepresentation of A⊗B.
In particular, set B = A and let U, V be the left (respectively, right) regular representations.

Thanks to the previous calculations, we see that U and V commute. Furthermore, by taking
suitable µ ∈ A∗ � A∗ ⊆ (A⊗ A)∗, we have

(µ⊗ ι)(U13V23) = eαik ⊗ eαjl

for any α, i, j, k, l. Hence U13V23 is irreducible. This is in some sense the analogue of the classical
Peter-Weyl theorem.

• Can we show that every irrep of A× A occurs in this way?

C.4 “Central” elements

In a similar manner, we can show that UV (or V U) is a unitary corepresentation of (A,∆);
indeed

(∆⊗ ι)(UV ) = U13U23V13V23 = U13V13U23V23 = (UV )13(UV )23.

We shall say that η ∈ L2(ϕ) is central or invariant if (UV )(ξ ⊗ η) = ξ ⊗ η for all ξ. It is easy
to see that this is equivalent to

(µ⊗ ι)(UV )η = µ(1)η (µ ∈ A∗),

which also shows that the original definition is independent of the chosen faithful representation
of A.

Lemma C.1. The operator p = (ϕ ⊗ ι)(UV ) is a projection, and η ∈ L2(ϕ) is central if and
only if pη = η.

Proof. Let X be any (unitary) corepresentation of A, and for now, let p = (ϕ⊗ ι)X. Applying
ϕ⊗ ι⊗ ι to the relation (∆⊗ ι)(X) = X13X23 shows that (1⊗ p)X = 1⊗ p. Similarly, applying
ι⊗ ϕ⊗ ι yields that X(1⊗ p) = 1⊗ p. Then, applying ϕ⊗ ι gives that p2 = p. Finally, as ϕ is
a state and ‖X‖ ≤ 1, it follows that ‖p‖ ≤ 1, and so p must be an orthogonal projection.

Now say that η is invariant forX if (µ⊗ι)(X)η = µ(1)η for all µ ∈ A∗. It follows immediately
that if η is invariant, then pη = η. Conversely, if pη = η then

ξ ⊗ η = (1⊗ p)(ξ ⊗ η) = X(1⊗ p)(ξ ⊗ η) = X(ξ ⊗ η),

and so η is invariant.
The lemma now follows from the special case X = UV .
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• What happens if we instead use V U?

Dropping now the isomorphism X, we see that

p = (ϕ⊗ ι)(UV ) =
∑

ϕ(vαik(v
α
lj)
∗)eαik ⊗ eαlj

√
λαl
λαj

=
∑
α,i,j

√
λαi λ

α
j

Λα

eαij ⊗ eαij

=
∑
α

∑
i,j

√
λαi
Λα

√
λαj
Λα

θδαi ⊗δαi ,δαj ⊗δαj =
∑
α

θeα,eα ,

say, where eα =
∑

i

√
λαi
Λα
δαi ⊗ δαi . Here we use the obvious isomorphism Mnα ⊗Mnα

∼= Mnα×nα .

Notice that actually eα = X(χ∗αξ0) where χα is the character of vα. It immediately follows that
p(eα) = eα for each α. Less obvious in this picture is that X(χαξ0) is also invariant. We can
prove this by observing that

V (ξ ⊗ χαξ0) =
∑
i

σ∆(vαii)(ξ ⊗ ξ0) =
∑
ij

vαjiξ ⊗ vαijξ0 =
∑
j

∆(vαjj)(ξ ⊗ ξ0) = U∗(ξ ⊗ χαξ0).

Hence UV (ξ ⊗ ξ0) = ξ ⊗ ξ0, which is true for any ξ, showing that ξ0 is invariant.

Corollary C.2. The family (eα) is an orthonormal basis for the subspace of central vectors in
L2(ϕ).

Proof. From Proposition
prop:char_are_on
B.3 we know that ϕ(χαχ

∗
β) = δα,β, showing that (χ∗αξ0) = (eα) is an

orthonormal set. The result now follows given the form of p established above.

C.4.1 Actions

In the commutative case, we can consider the action of G on itself given by s · t = sts−1. This
gives a coaction α : C(G)→ C(G×G) given by α(f)(s, t) = f(sts−1). This is a left coaction,
as

(ι⊗ α)α(f)(s, t, r) = α(f)(s, trt−1) = f(strt−1s−1) = (∆⊗ ι)α(f)(s, t, r).

First observe that V ξ(s, t) = ξ(s, ts) for ξ ∈ L2(G×G). Hence

V ∗U∗(1⊗ f)UV ξ(s, t) = V ∗∆(f)V ξ(s, t) = ∆(f)V ξ(s, ts−1) = f(sts−1)V ξ(s, ts−1) = α(f)(s, t)ξ(s, t),

and so V ∗U∗(1⊗ f)UV = α(f).
However, in the compact quantum group case, this doesn’t work, because in general V ∗∆(vαij)V ∈

M(A⊗ B0(L2(ϕ))) is not in A⊗ A. How to show this? Is it true in the Kac case?

C.5 Convolution product

We identify a dense subspace of L1(A) with a (dense) subspace of A by saying that ω ∈ L1(A)
corresponds to a ∈ A when Λ̂(λ(ω)) = aξ0 in L2(ϕ). This is equivalent to(

aξ0

∣∣bξ0

)
= ϕ(b∗a) = 〈ϕ, b∗a〉 = 〈b∗, aϕ〉 =

(
Λ̂(λ(ω))

∣∣bξ0

)
= 〈b∗, ω〉 (b ∈ A).

That is, if and only if aϕ = ω. Then, given a, b ∈ A we define the convolution product a ∗ b
to be (if it exists) the element c of A which corresponds to (aϕ) ∗ (bϕ) ∈ L1(A), that is,
cϕ = (aϕ) ∗ (bϕ).

Let a = vαij and b = vβkl. Then to find c, it is enough that

〈(vγst)∗, cϕ〉 = 〈(vγst)∗, (aϕ) ∗ (bϕ)〉
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for all γ, s, t. However,

〈(vγst)∗, (aϕ) ∗ (bϕ)〉 =
∑
r

ϕ((vγsr)
∗vαij)ϕ((vγrt)

∗vβkl) = δα,βδα,γδs,iδt,lδj,k
1

Λ2
αλ

α
i λ

α
j

= δα,βδj,k
1

Λαλαj
ϕ((vγst)

∗vαil),

from which it follows that

vαij ∗ v
β
kl = δα,βδj,k

1

Λαλαj
vαil.

In particular,

χα ∗ χβ = δα,β
∑
i

1

Λαλαi
vαi,i.

We could instead consider “twisted” convolution:

a ? ω = λ̂
(
ω̂[aξ0, Λ̂(λ(ω)∗)]).

Note quite sure where this goes– to copy the Dixmier idea, we’d need to find a “central bai” of
such ω, and it’s not clear when we can do this– at the very best, we’d need G coamenable!

(So, maybe, spend some time thinking about what happens when for A(G) with G dis-
crete??)

C.6 Todo

• We do know that WV (and/or VW ) is a corep of G, and so can talk about “central” L2(G)
vectors. However, should show that this does not (in non-Kac case?) give a coaction of
A (unfortunately).

• Then think about Dixmier’s proof:

– Does “convolution” of central elements of L2(G) make sense?

– I think want something like central η such that there is a bounded operator T with
Λ(λ̂(ω̂ξ,η)) = (ξ ∗ η∗) = T (ξ)? Then want these to give a bai. . .

D Commutative case

Suppose now that (A,∆) is a compact quantum group with A commutative. We shall show
that A = C(G) for some compact group G, and that ∆ is the canonical comultiplication.

As A is commutative, A = C(G) for some compact Hausdorff space G. Then ∆ : C(G) →
C(G × G) is a ∗-homomorphism, and so corresponds to some map G × G → G. That ∆ is
coassociative means that G becomes a compact semigroup. At this stage, we remark that it is
possible to use some compact semigroup theory to show directly that the cancellation conditions
imply that G must be a compact group. Instead, we shall use some general theory.

Let U ∈ Mn(C(G)) be a finite-dimensional corepresentation, and let π : G → Mn be the
associated continuous map, given by the isomorphism Mn(C(G)) = C(G;Mn). Then U being
a corepresentation corresponds to π being a homomorphism. We now adapt an argument
from

woro3
[7]. For any finite-dimensional unitary representation π : G → U(n) (where U(n) is

the n-dimensional unitary group) we note that π(G) is a compact sub-semigroup of U(n). If
A ∈ π(G) then by compactness, we can find a sequence n(i) of naturals with n(i+1) > n(i)+1,
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and with An(i) → B as i→∞. Notice that B ∈ π(G). Then set m(i) = n(i+1)−(n(i)+1) > 0,
so that

Am(i) = An(i+1)(A−1)n(i)+1 → BB−1A−1.

Hence A−1 ∈ π(G), and so π(G) is a compact subgroup of U(n).
By following the general theory, we find a dense Hopf ∗-algebra P (G) inside C(G); we see

that P (G) is precisely the collection of coefficients of finite-dimensional unitary representations
of G.

Proposition D.1. We have that G is a compact group, and the counit ε and antipode κ extend
to C(G) with the usual definitions coming from the group structure of G.

Proof. That P (G) is dense in C(G) means that P (G) separates the points of G; that is, for
s, t ∈ G distinct, there is a unitary representation π : G→ U(n) with π(s) 6= π(t).

Consider the collection N of all subsets Nπ = {s ∈ G : π(s) = 1} where π is a finite-
dimensional unitary representation. Then each Nπ is a non-empty compact set, as π(G) is a
compact group. Then N has the finite-intersection property, and Nπ1 ∩ · · · ∩Nπn = Nπ where
π = π1 ⊕ · · · ⊕ πn. So

⋂
N is non-empty, and thus there is some eG ∈ G with eG ∈ Nπ for

all π. As such π separate points, eG is unique. Then, for any π and t ∈ G, we find that
π(teG) = π(t) = π(eGt), so by the separation of points property, eG is the identity of G.

Now fix t0 ∈ G. For each π there is at least one t ∈ G with π(t) = π(t0)−1 so that
π(tt0) = π(t0t) = π(eG). Again by a finite-intersection property argument, we can show that
there is at least one such t that works for all π. Then separation of points shows that t is
unique, and that t = t−1

0 . So G is a group.
The defining properties of ε and κ now easily show that, for f ∈ P (G), we have ε(f) = f(eG),

and κ(f)(s) = f(s−1) for s ∈ G. These maps obviously extend by continuity to C(G).

The Haar state ϕ corresponds to a Borel probability measure, ds, on G. That ϕ is left and
right invariant means that∫

G

f(st) ds =

∫
G

f(ts) ds =

∫
G

f(s) ds (t ∈ G, f ∈ C(G)).

Then by uniqueness, ds must be the Haar measure on G. We quickly remind the reader why
ds has full support (equivalently, why ϕ is faithful). Towards a contradiction, suppose that
ϕ(f) = 0 for some non-zero positive f ∈ C(G). Then there is a non-empty open set U with
|U | = 0. Then all (left) translates of U have zero measure; but as G is a group, these cover G,
so by compactness, there is a finite subcover, and hence |G| = 0, contradiction. So ϕ is faithful.
Hence A is already reduced, and we can identify L2(G) with the GNS space for ϕ.

Let U be a (unitary) corepresentation, and consider the contragradient corepresentation U ,
corresponding to π. Then

π(s) =
n∑

i,j=1

u∗ij(s)eij =
n∑

i,j=1

uij(s)eij = π(s),

where for x ∈ Mn, we again denote by x = (x∗)t = (xt)∗ the matrix obtained by pointwise
conjugation of complex numbers. As A is commutative, it is clear that U unitary (respectively,
invertible) implies also that U is unitary (respectively, invertible), and so Proposition

prop:conjunitary
A.19

becomes a triviality in this case.
From Lemma

lem:fmatrixkappa
A.26 we see that each “F -matrix” is a scalar multiple of the identity, and so

in particular diagonal. Taking the normalisation that Tr(Fα) = Tr((Fα)−1), we must have that
Fα = Inα , and so Λα = nα, for all α. Then each character fz is equal to the counit, and the
scaling group (and of course the modular group) is trivial. Hence κ = R the unitary antipode.

32



D.1 Some formulae

The GNS construction for ϕ has the concrete form that H = L2(G), the map Λ : C(G)→ L2(G)
is formal identification of functions, and π : C(G)→ B(L2(G)) is such that π(f) is the operator
given by multiplication by f . Then Jf(s) = f(s) for s ∈ G, f ∈ L2(G) and Ĵ(f)(s) = f(s−1).
Also

W ∈ B(L2(G×G)); Wξ(s, t) = ξ(s, s−1t) (ξ ∈ L2(G×G), s, t ∈ G).

Let (vα) be a complete family of pairwise non-equivalent irreducible unitary corepresenta-
tions, with associated unitary representations (πα). Then we identify `2

nα⊗ `
2
nα with a subspace

of L2(G) via
δαi ⊗ δαj 7→

√
nαvαij.

Then identifying L2(G) with
⊕

`2
nα ⊗ `

2
nα we again find that

W =
(
wα
)

=
(∑

i,j

vαij ⊗ eij ⊗ 1
)
∈ B

(
L2(G)⊗

⊕
`2
nα ⊗ `

2
nα

)
.

The left-regular representation is λ : L1(G)→ B(L2(G)) given by

λ(ω) = (ω ⊗ ι)(W ); λ(ω)(f) = ω ∗ f (ω ∈ L1(G), f ∈ L2(G)),

that is, λ(ω) is the operator of left convolution by ω. In the above picture,

λ(ω) =
(
(ω ⊗ ι)wα

)
∈
⊕
α

Mnα ⊗Mnα ,

where for each α,

(ω ⊗ ι)wα =
∑
ij

〈vαij, ω〉eij ⊗ 1 =

∫
G

ω(s)πα(s)ds⊗ 1.

So as usual, as a C∗-algebra, C∗r (G) is isomorphic to
⊕

n Mnα , but when concretely acting
on L2(G), we have to remember that each factor Mnα acts with multiplicity nα; here I have
chosen to write this as eij ⊗ 1, whereas classical sources usually add an “nα” term to indicate
multiplicity.

Let’s just check this:

λ(ω)(δαi ⊗ δαj )↔ n1/2
α λ(ω)(vαij) = n1/2

α

∫
G

ω(s)vαij(s
−1t) ds

= n1/2
α

∫
G

ω(s)
∑
k

vαik(s
−1)vαkj(t) ds = n1/2

α

∫
G

ω(s)
∑
k

vαki(s)v
α
kj(t) ds

↔
∑
k

∫
G

ω(s)vαki(s) ds δ
α
k ⊗ δαj =

∫
G

ω(s)πα(s)δαi ⊗ δαj .

From general LCQG theory, it’s easy9 to see that Λ̂(λ(ω)) = ω for ω ∈ L1(G) ∩ L2(G).
From above, we find that the weight on C∗r (G) ∼=

⊕
α Mnα is

ϕ̂
(
(xα)

)
=
∑
α

nα Tr(xα),

9We have (Λ̂(λ(ω))|Λ(a)) = 〈a∗, ω〉 =
∫
G
ω(s)a(s) ds and as Λ(a) = a under formal identification of functions

C(G) ⊆ L2(G) the result follows.

33



where Tr : Mnα → C is the usual trace Tr(x) =
∑nα

i=1 xii. Then(
Λ̂((xα))

∣∣Λ̂((yα))
)

=
∑
α

nα Tr(y∗αxα) =
∑
α

nα
∑
ij

yαijx
α
ij

=
∑
α

(∑
ij

√
nαx

α
ijδ

α
i ⊗ δαj

∣∣∣∑
kl

√
nαx

α
klδ

α
k ⊗ δαl

)
.

Hence there is an isomorphism Hϕ̂ →
⊕

α `
2
nα ⊗ `

2
nα ,

Λ̂((xα)) 7→
(∑

ij

√
nαx

α
ijδ

α
i ⊗ δαj

)
.

Under this, for ω ∈ L1(G) ∩ L2(G),

ω = Λ̂(λ(ω)) 7→
(∑

ij

√
nα〈vαij, ω〉δαi ⊗ δαj

)
.

If we identify `2
nα⊗`

2
nα with the space of Hilbert-Schmidt operators on `2

nα , then the α-component

of Λ̂(λ(ω)) is precisely
√
nα
∫
G
ω(s)πα(s) ds. We need to be a little careful: here

`2
nα ⊗ `

2
nα 3 δi ⊗ δj 7→ eij ∈ HS(`2

nα),

where eij : δk 7→ δj,kδi and so eij = θδi,δj .

D.2 The Fourier algebra

As usual, L1(Â) is the Fourier algebra A(G). Let ξ, η ∈ L2(G) and let ω̂ξ,η ∈ A(G) be the
functional

V N(G) 7→ C; x 7→ (xξ|η).

Now, as V N(G) ∼=
∏

Mnα it follows that A(G) ∼= `1 −
⊕

Tnα , an `1-direct sum of trace-class
spaces.

Let us introduce some notation. For a Hilbert space H, let ωξ,η ∈ B(H)∗ be x 7→ (xξ|η).
Then let θξ,η be the (rank-one) operator γ 7→ (γ|η)ξ. Then the map ωξ,η 7→ θξ,η extends
to the identification of B(H)∗ with the trace-class operators T (H). For x ∈ B(H) we have
Tr(xθξ,η) = Tr(θξ,ηx) = (xξ|η) = 〈x, ωξ,η〉.

When H = `2
n, as usual we have eij = θδi,δj and so ωij = ωδi,δj = eij as a trace-class operator.

Then
〈eij, ωkl〉 = Tr(eijekl) = δjkδil.

So ωkl sends elk to 1, and all the other matrix units to 0. (This is sometimes called “trace-
duality” to distinguish it from “parallel-duality”).

Suppose ξ, η ∈ L1(G) ∩ L2(G) so that ξ = Λ̂(λ(ξ)) and the same for η. Then

〈eαij, ω̂ξ,η〉 =
(
eαijΛ̂(λ(ξ))

∣∣Λ̂(λ(η))
)

= ϕ̂
(
λ(η)∗eαijλ(ξ)

)
= nα Tr

(
πα(η)∗eαijπα(ξ)

)
= nα Tr

(
eαijπα(ξ)πα(η)∗

)
.

Hence, using that the integrated form of πα is a ∗-homomorphism L1(G)→Mnα ,

ω̂ξ,η = (ωα) ∈ `1 −
⊕
α

Tnα ωα = nα

∫
G

(ξ ∗ η∗)(s)πα(s) ds.

Here η∗(s) = η(s−1) and ξ ∗ η∗ is the convolution product (again, this reflects the use of the
Takesaki–Tatsumma, aka quantum-group, embedding of A(G) into C0(G), not the Eymard
embedding).
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D.3 Contragradient representations

For each α consider the contragradient vα. We have that

(vα)ij(s) = vαij(s) = πα(s)ij = πα(s−1)ji.

Let πα be the induced representation, which in this (commutative) situation is unitary. We can
have two situations: either πα is equivalent to πα, or it is not.

Example D.2. If G = SU(2) then it’s well-known that for each n there is exactly one equiv-
alence class of irreducible representations of dimension n. Hence here πα is always equivalent
to πα.

Example D.3. If G is abelian, then every irreducible representation is one-dimensional, and
so is a continuous character α : G→ T. Then α is just α(s) = α(s). Then observe equivalence
of one-dimensional representations corresponds exactly to genuine equality of functions G→ T.
Then α = α if and only if α(s) ∈ {1,−1} for all s.

D.4 Todo

Maybe try to write-down the coproduct (and/or product on A(G)) using the “Fusion-rules”??
Try to write down the antipode on V N(G)??

E Completions of the Hopf algebra

It somewhat folklore that the Hopf ∗-algebra A can be completed to give back C(G) or Cu(G).
We justified this (at the reduced level) in Section

sec:faith_haar
A.7.

However, there are some subtle points here, going back to Woronowicz and especially high-
lighted by Dijkhuizen and Koornwinder. The issues is that in general a (unital) ∗-algebra
A need not have any interesting C∗-algebra completion. Let A+ be the positive cone gen-
erated by elements of the form {a∗a : a ∈ A}. Then a linear map φ : A → C is positive
if φ(A+) ⊆ [0,∞) and is a state if additionally φ(1) = 1. If φ is a state on A then we can
form the pre-GNS space (H, ξ0). Indeed, the Cauchy-Schwarz inequality is enough to show that
Nφ = {a ∈ A : φ(a∗a) = 0} is a left ideal in A (compare

tak1
[3, Chapter I, Lemma 9.6] for example),

and so we define H = A/Nφ, let ξ0 be the equivalence class of 1, so that we can identify the
equivalence class of a with aξ0, and then equip H with the inner-product (aξ0|bξ0) = φ(b∗a).
Note that we have not completed H and so H is only a pre-Hilbert space.

Then for a ∈ A define π(a) : H → H by π(a)(bξ0) = (ab)ξ0. That Nφ is a left ideal shows
that π(a) is well-defined; clearly π(a) is linear and adjointable, in the sense that(

π(a)bξ0

∣∣cξ0)
)

=
(
bξ0

∣∣π(a∗)cξ0)
)

(a, b, c ∈ A).

So the only missing piece of the usual GNS construction is whether π(a) is bounded, and hence
extends to the completion of H. For a C∗-algebra this is a subtle point going back to the early
days of the axiomatisation of the subject.

The following can be found in Dijkhuizen and Koornwinder.

Proposition E.1. Let A be the Hopf ∗-algebra associated to a CQG (A,∆). Then if π : A →
L(H0) is a ∗-map into the adjointable linear maps on an inner-product space H0, then π is
bounded, and so extends to a ∗-homomorphism A→ B(H) where H is the completion of H0.
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Proof. Let (uij) be a finite-dimensional unitary corepresentation of A, so each uij ∈ A. As∑
k u
∗
kiukj = δij1, for ξ ∈ H0, and any i, j,

‖ξ‖2 = (ξ|ξ) =
∑
k

(π(u∗kiuki)ξ|ξ) =
∑
k

(π(uki)ξ|π(uki)ξ) ≥ ‖π(uji)ξ‖2.

It follows that ‖π(uij)‖ ≤ 1 for all i, j. As A is spanned by such elements, we have shown that
π(a) is bounded for all a ∈ A.

As such, for any state φ on A we can find a Hilbert space H, a ∗-homomorphism π : A →
B(H) and ξ ∈ H such that φ(a) = (π(a)ξ|ξ) for all a ∈ A. So states on A biject with states on
the universal C∗-algebra completion of A, namely Cu(G).

F Do we need to be so careful?

In the section on von Neumann algebras, we seemingly used the Hopf ∗-algebra quite a bit–
this is equivalent to using that the Haar state is KMS. Here we present some examples to show
that some sort of condition is needed.

F.1 Counter-example

We find a C∗-algebra A which admits a faithful state, but such that in the GNS representation,
the state is not faithful on A′′.

The following was suggested to us by Narutaka Ozawa10

Let A = C([0, 1],M2). Let C ⊆ [0, 1] be a closed set with empty interior but positive
(Lebesgue) measure. For example, let (εn) be a sequence in (0, 1) with

∑
n εn < 1/2, let (qn)

be an enumeration of the rationals in [0, 1], and let C = [0, 1] \
⋃
n(qn − εn, qn + εn).

Define a state φ on A by

φ(a) =

∫
C

a(x)11 dx+
1

2

∫
[0,1]\C

a(x)11 + a(x)22 dx.

Here a is a continuous function [0, 1]→M2, and a(x)ij is the (i, j)th entry of the matrix a(x).
Now, a ≥ 0 if and only if a(x) ≥ 0 for all x, which implies that a(x)11, a(x)22 ≥ 0. So φ is

positive, and faithful because [0, 1] \ C is dense and open. Clearly φ(1) = 1, so φ is a state.
For a, b ∈ A the pre-inner-product induced by φ is

(a|b) = φ(b∗a) =

∫
C

a(x)11b(x)11 + a(x)21b(x)21 dx+
1

2

∫
[0,1]\C

∑
i,j

a(x)ijb(x)ij dx.

Let µ1 be the measure of [0, 1] given by∫
f dµ1 =

∫
C

f +
1

2

∫
[0,1]\C

f.

Let µ2 be 1/2 of Lebesgue measure, restricted to [0, 1] \ C. As Lebesgue measure dominates
both µ1 and µ2, it’s easy to see that µ1, µ2 are regular measures. Then the GNS space for φ
can thus be identified with

M2,1(L2(µ1))⊕M2,1(L2(µ2)),

thought of as column vectors, with A acting by matrix multiplication, and then C([0, 1]) acting

by pointwise multiplication, in the obvious way. The cyclic vector is

(
1
0

)
⊕
(

0
1

)
. To ease

notation, let the GNS space be H1⊕H2, and let πi : A→ B(Hi) be the resulting representations.

10See http://mathoverflow.net/questions/93295/separating-vectors-for-c-algebras/93383]93383
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Lemma F.1. Let A be a C∗-algebra, π1 : A → B(H1) a non-degenerate representation, let
H2 ⊆ H1 be an invariant subspace, and let π2 : A → B(H2) be the restriction of π1. Let
π : A→ B(H1 ⊕H2) be the direct sum of π1 with π2. Then π(A)′′ = {(T, S) : T ∈ π1(A)′′, S =
T |H2} acting diagonally on H1 ⊕H2, a von Neumann algebra which is isomorphic to π1(A)′′.

Proof. As π1 is non-degenerate, so is π2, and hence so is π. So we need to compute the σ-weak
closure of π(A). On bounded sets this agrees with the strong closure, and from this is it obvious
that π(A)′′ has the stated form.

Notice that in our case L2(µ2) is a subspace of L2(µ1) if we identify ξ ∈ L2(µ2) with
ξχ[0,1]\C ∈ L2(µ1).

Let A be the commutant of C([0, 1]) in B(L2(µ1)). Then π1(A)′ consists of matrices

(
T 0
0 T

)
with T ∈ A. Thus π1(A)′′ = M2(A′). So we need to compute the bicommutant of C([0, 1])
in B(L2(µ1)). By duality arguments, and (for example) Lusin’s theorem, this is L∞(µ1) ∼=
L∞([0, 1]).

Thus π(A)′′ ∼= L∞([0, 1]). However, the cyclic vector for the GNS construction yields the
state

φ̃(a) =

∫
a11 dµ1 +

∫
a22 dµ2,

which is not faithful (there are measurable, non-continuous functions supported on C which
are not zero almost everywhere).
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