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Abstract

We present a short, self-contained (and somewhat idiosyncratic) presentation of the
recent simplification to the proof of the L!(G) derivation problem: every derivation d :
LY(G) — LY(Q) is given by an inner-derivation at a point of M(G).

1 Introduction

Let A be a (Banach) algebra and E be an A-bimodule. A derivation d : A — FE is a linear map
such that d(ab) = a - d(b) + d(a) - b for all a,b € A. For z € E, we define an inner derivation
by d,: A— E;a—a-x—1x-a.

Let G be a locally compact group, and consider the group algebra L'(G). Recall that L!(G)
is an ideal in M(G), the measure algebra of G. A problem going back to Williamson, asked
around 1965 (see the introduction to [8]), asks whether every derivation d : L'(G) — LY(G)
is of the form d = 0, for some p € M(G). We remark that the ideas of [7] shows that any
derivation L'(G) — L'(G) is automatically bounded. Indeed, if d : L'(G) — M(G) is a
derivation, then by Cohen factorisation, L'(G) = {ab : a,b € L*(G)} and so d(L'(G)) C
LYG) M(G)+ M(G) - L"(G) = L'(G), so we can also consider derivations L'(G) — M(G).

Work of Johnson, Sinclair and Ringrose showed that this conjecture is true for many classes
of groups; in particular, discrete, SIN, amenable and connected groups. Further results were
obtained by Ghahramani, Runde and Willis. Finally, in 2008, Losert solved the general case.
Recently, in 2010, Bader, Gelander and Monod provided a remarkably simple proof of the main
results of Losert’s paper. This note is to provide a short, self-contained proof of the derivation
problem, based upon this recent simplification.

2 Reformulation using G-spaces

We follow [5]. A G-space is a locally compact space X on which G acts by homeomorphisms.
That is, we have a continuous map G x X — X;(s,z) + s-z, with s- (¢t -z) = st -z and
e-x =z, where e € GG is the unit. We have an associated action on M (X) given by

(somd) = [ fs-a) dula) (s € G € Co(X), € M(X))

A crossed homomorphism is a map ® : G — M(X) which is continuous when M (X) has
the weak*-topology, and with ®(st) = ®(s) 4+ s - ®(¢) for s,t € G. Notice that then ®(e) =
O(t)—e-P(t) = 0. We call & bounded if sup, ||P(s)| < oco. Finally, ® is principal if there exists
€ M(X) with ®(s) = s- u— p for each s € G.



Consider the special case when X = G and G acts by s -2 = sxs™! for s,2 € G. Given a
derivation d : L'(G) — L'(G), there is a derivation D : M(G) — M(G) which extends d, and
which may be defined by setting

(D(u),a- f) = (d(pa), f) = (d(a),f-p) (1€ M(G),a € LYG), [ € Co(G)).

See [6, Section 1.d] or [3, Theorem 5.6.34]. Here M(G) (and hence L'(G)) acts on Cy(G) by
convolution. Then we define ® : G — M(G) by ®(s) = D(d5)ds-1. When D is bounded, so is
®. Then, for s,t € G,

@(St) - D(58)5tt_13_1 + 58D(5t)5t—1s—1 - @(5) + S - @(t),

so that @ is a crossed homomorphism. If ® is principal, then there exists u € M(G) such that,
for s € G,
D(d5)05-1 = D(s) = dspid5—1 — pp = D(d5) = 05t — p40s.

Hence D is inner, and so also d is inner.

3 Crossed homomorphisms are principal

We now follow [1], where crossed homomorphisms are called cocycles. We continue to use our
terminology.

Let (E,d) be a metric space, and let A C E be a bounded subset. The circumradius of A
is the quantity

pe(A) =inf {r > 0: 3z € F such that d(z,a) <r (a € A)}.
The Chebyshev centre of A is
Cp(A) ={ce E:d(c,a) < pgp(A) (a € A)}.

Note that Cg(A) might be empty! However, if ¢ € Cg(A), then by definition of Cg(A), we see
that sup,ec4 d(c,a) < pg(A). But then by the definition of pg(A), we must actually have that
SUP,e4 d(c, a) = pp(A).

Notice that we can write

(| Cu(A) where Cp(A)=(\{z € E:d(a,z) <r}.

r>pg(A) acA

So, when F is a normed space and d is given by the norm, we have that each C},(A) is the
intersection of closed balls, and so is closed and convex. As A is bounded, so is C},(A). Hence
also C(A) is bounded, closed and convex. If E = F* is a dual Banach space, then each
C3(A) is the intersection of weak*-compact sets, and so is weak*-compact. Thus Cg(A) is also
weak*-compact. Furthermore, each C};(A) is non-empty, and as C(A) C C5(A) for r < s, it
follows by compactness that Cr(A) is also non-empty.

We say that F is an L-embedded Banach space if there is a closed subspace Ey C E** such
that £ = E® Ey, and such that, for x € E and ¢y € Ey, we have that ||z + x| = ||z|| + ||zo]|-
It is classical that any L' space is L-embedded; in fact, this is true for the predual of any von
Neumann algebra, see [9, Chapter 111, Theorem 2.14].

When dealing with fixed points, there is little point considering complex scalars; so we shall
restrict to real vector spaces for now. When K is a convex set, an affine map T : K — K
satisfies

TAz+(1—=Ny) =AT(z)+ (1-NT(y) (z,ye K,0<A<1).
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When E is a vector space, it is easy to see! that an affine map T : F — FE with T(0) = 0
is actually linear. Thus a general affine map on E is a combination of a linear map with
a translation. The Mazur-Ulam Theorem states that a surjective isometry between normed
spaces is automatically affine.

Theorem 3.1. Let E be an L-embedded Banach space, and let A C E be a non-empty bounded
subset. Let G be the collection of affine isometries® of E which preserve A. There exists v € E
such that T'(x) = x for each T € G. Furthermore, we have that sup,c 4 ||z —al| < supgeq ||y —al|
foranyy € E.

Proof. Consider A as a subset of E**. Then Cg+(A) is non-empty, weak*-compact, and convex.
Let ¢ € Cp(A), and write ¢ = ¢cg + ¢o with cg € E and ¢y € Ey. For a € A, as ¢ —a =
(cg —a)+co € E® Ey, we see that ||c —al| = ||cg — a|| + [|co||. Thus

pe=-(A) = sup [[¢ — al| = sup [lcg — al| + [lcoll = pe(A) + [|col-
acA acA
However, clearly pg«(A) < pgr(A), so ¢g = 0 and hence ¢ € E. We also see that pg(A4) =
pe=(A), from which it follows that Cgw(A) = Cg(A), and so in particular, Cr(A) is non-
empty, weakly compact, and convex.

As the definition of Cr(A) only involves the metric space structure of E, we see that Cg(A)
is invariant under G. By the Ryll-Nardzewski Theorem, there exists © € Cg(A) with T'(z) =
for each T' € G. Then by definition, sup,¢ 4 ||z — a|| = pr(A) which is the minimum (attained!)
of sup,eca |ly — a|| as y varies over E. O

To be precise, we use the following version of the Ryll-Nardzewski Theorem, see [2, The-
orem 10.8]: If E is a locally convex space, @ is a weakly compact convex subset of £ and P
is a non-contracting family of weakly continuous affine maps of ) to ), then P has a fixed
point in (). That P is non-contracting means that for distinct points z,y € @, the closure of
{T'(z) = T(y) : T € P} does not contain 0.

For us, F is a Banach space with the norm topology, and P consists of affine isometries of
E. Thus, if 2,y € @ are distinct, then ||T'(z) — T(y)|| = ||z — y|| for all T" € P, and so 0 is not
in the norm closure of {T'(z) — T(y) : T € P}.

Theorem 3.2. Let X be a G-space. Any bounded crossed homomorphism ® : G — M(X) is
principal. Indeed, we can find p € M(X) with ||| < sup,eq ||P(s)|| such that (s) =s-p— p
for s € G.

Proof. We have that M (X) = Cy(X)* and so M (X) is L-embedded. For s € G and W e M(X)
define sop = s- ju+®(s). Here, as before, for f € Co(X), we have (s -, f) = [ f(s-x) du(z).
Then, for s,t € G,

so(top)=so(t-p+@(t)=st-p+s-0(t)+ P(s) =st-pu+ d(st) =stop.

So G x M(G) — M(G); (s, ) — s o p is an action (actually, this is not central to the proof!)
Then, for s € G, and pu, A € M(X),

[sop—sod=ls-pu+®(s)—s- A=)l = lls- (=) = [l = Al

Hence M(X) — M(X); u — sou is an isometry.

f T(0) = 0 then T(\z) = MT'(z) for x € E,\ € [0,1]. For A > 0, we have that T(z/\) = T(z)/\ =
AT(y) = T(\y) for y = /XA € E. So T is positive homogeneous. Then T'(z + y) = T((2x)/2 + (2y)/2) =
T(2z)/2+T(2y)/2 =T(x)+T(y) so T is additive. Then 0 =T(z+ (—z)) =T (z)+T(—=x) so T(—z) = —T(z);

thus T is (real) linear.
2By Mazur-Ulam, we could also consider general bijective isometries.
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Let A= {P(s):s € G}. For s,t € G, we have that s o ®(t) = s- P(t) + D(s) = P(st) € A.
So A is preserved under the action o, and so by the main theorem, there exists p € M (X) with
sop = u for each s. That is, s - p+ ®(s) = p, or ®(s) = s- (—p) — (—u). Finally, we have
that sup,cq || — @(9)]| < sup,e |A — ®(s)]| for any A € M(X). As ®(e) = 0, we have that
I = pll = llpll < supyeq [l — @(s)|| < supye [P (s)]] as claimed. O

We finally come to our application. Let d : L*(G) — L'(G) be a (bounded) derivation,
let D : M(G) — M(G) be the extension, and let ® : G — M(G) be the associated crossed
homomorphism, given by ®(s) = D(ds)ds—1. There exists p € M(G), with ||u|| < sup, [|®(s)]],
and such that ®(s) = s-pu — p for s € G. As before, it follows that

dla)=a-p—p-a, (a€LG) |pl < Sup D) < Il
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