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Abstract

We present a short, self-contained (and somewhat idiosyncratic) presentation of the
recent simplification to the proof of the L1(G) derivation problem: every derivation d :
L1(G)→ L1(G) is given by an inner-derivation at a point of M(G).

1 Introduction

Let A be a (Banach) algebra and E be an A-bimodule. A derivation d : A → E is a linear map
such that d(ab) = a · d(b) + d(a) · b for all a, b ∈ A. For x ∈ E, we define an inner derivation
by δx : A → E; a 7→ a · x− x · a.

Let G be a locally compact group, and consider the group algebra L1(G). Recall that L1(G)
is an ideal in M(G), the measure algebra of G. A problem going back to Williamson, asked
around 1965 (see the introduction to [8]), asks whether every derivation d : L1(G) → L1(G)
is of the form d = δµ for some µ ∈ M(G). We remark that the ideas of [7] shows that any
derivation L1(G) → L1(G) is automatically bounded. Indeed, if d : L1(G) → M(G) is a
derivation, then by Cohen factorisation, L1(G) = {ab : a, b ∈ L1(G)} and so d(L1(G)) ⊆
L1(G) ·M(G) +M(G) · L1(G) = L1(G), so we can also consider derivations L1(G)→M(G).

Work of Johnson, Sinclair and Ringrose showed that this conjecture is true for many classes
of groups; in particular, discrete, SIN, amenable and connected groups. Further results were
obtained by Ghahramani, Runde and Willis. Finally, in 2008, Losert solved the general case.
Recently, in 2010, Bader, Gelander and Monod provided a remarkably simple proof of the main
results of Losert’s paper. This note is to provide a short, self-contained proof of the derivation
problem, based upon this recent simplification.

2 Reformulation using G-spaces

We follow [5]. A G-space is a locally compact space X on which G acts by homeomorphisms.
That is, we have a continuous map G × X → X; (s, x) 7→ s · x, with s · (t · x) = st · x and
e · x = x, where e ∈ G is the unit. We have an associated action on M(X) given by

〈s · µ, f〉 =

∫
X

f(s · x) dµ(x) (s ∈ G, f ∈ C0(X), µ ∈M(X)).

A crossed homomorphism is a map Φ : G → M(X) which is continuous when M(X) has
the weak∗-topology, and with Φ(st) = Φ(s) + s · Φ(t) for s, t ∈ G. Notice that then Φ(e) =
Φ(t)−e ·Φ(t) = 0. We call Φ bounded if sups ‖Φ(s)‖ <∞. Finally, Φ is principal if there exists
µ ∈M(X) with Φ(s) = s · µ− µ for each s ∈ G.
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Consider the special case when X = G and G acts by s · x = sxs−1 for s, x ∈ G. Given a
derivation d : L1(G) → L1(G), there is a derivation D : M(G) → M(G) which extends d, and
which may be defined by setting

〈D(µ), a · f〉 = 〈d(µa), f〉 − 〈d(a), f · µ〉 (µ ∈M(G), a ∈ L1(G), f ∈ C0(G)).

See [6, Section 1.d] or [3, Theorem 5.6.34]. Here M(G) (and hence L1(G)) acts on C0(G) by
convolution. Then we define Φ : G → M(G) by Φ(s) = D(δs)δs−1 . When D is bounded, so is
Φ. Then, for s, t ∈ G,

Φ(st) = D(δs)δtt−1s−1 + δsD(δt)δt−1s−1 = Φ(s) + s · Φ(t),

so that Φ is a crossed homomorphism. If Φ is principal, then there exists µ ∈M(G) such that,
for s ∈ G,

D(δs)δs−1 = Φ(s) = δsµδs−1 − µ =⇒ D(δs) = δsµ− µδs.

Hence D is inner, and so also d is inner.

3 Crossed homomorphisms are principal

We now follow [1], where crossed homomorphisms are called cocycles. We continue to use our
terminology.

Let (E, d) be a metric space, and let A ⊆ E be a bounded subset. The circumradius of A
is the quantity

ρE(A) = inf
{
r ≥ 0 : ∃x ∈ E such that d(x, a) ≤ r (a ∈ A)

}
.

The Chebyshev centre of A is

CE(A) =
{
c ∈ E : d(c, a) ≤ ρE(A) (a ∈ A)

}
.

Note that CE(A) might be empty! However, if c ∈ CE(A), then by definition of CE(A), we see
that supa∈A d(c, a) ≤ ρE(A). But then by the definition of ρE(A), we must actually have that
supa∈A d(c, a) = ρE(A).

Notice that we can write

CE(A) =
⋂

r>ρE(A)

Cr
E(A) where Cr

E(A) =
⋂
a∈A

{x ∈ E : d(a, x) ≤ r}.

So, when E is a normed space and d is given by the norm, we have that each Cr
E(A) is the

intersection of closed balls, and so is closed and convex. As A is bounded, so is Cr
E(A). Hence

also Cr
E(A) is bounded, closed and convex. If E = F ∗ is a dual Banach space, then each

Cr
E(A) is the intersection of weak∗-compact sets, and so is weak∗-compact. Thus CE(A) is also

weak∗-compact. Furthermore, each Cr
E(A) is non-empty, and as Cr

E(A) ⊆ Cs
E(A) for r ≤ s, it

follows by compactness that CE(A) is also non-empty.
We say that E is an L-embedded Banach space if there is a closed subspace E0 ⊆ E∗∗ such

that E∗∗ = E⊕E0, and such that, for x ∈ E and c0 ∈ E0, we have that ‖x+x0‖ = ‖x‖+ ‖x0‖.
It is classical that any L1 space is L-embedded; in fact, this is true for the predual of any von
Neumann algebra, see [9, Chapter III, Theorem 2.14].

When dealing with fixed points, there is little point considering complex scalars; so we shall
restrict to real vector spaces for now. When K is a convex set, an affine map T : K → K
satisfies

T
(
λx+ (1− λ)y

)
= λT (x) + (1− λ)T (y) (x, y ∈ K, 0 ≤ λ ≤ 1).
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When E is a vector space, it is easy to see1 that an affine map T : E → E with T (0) = 0
is actually linear. Thus a general affine map on E is a combination of a linear map with
a translation. The Mazur-Ulam Theorem states that a surjective isometry between normed
spaces is automatically affine.

Theorem 3.1. Let E be an L-embedded Banach space, and let A ⊆ E be a non-empty bounded
subset. Let G be the collection of affine isometries2 of E which preserve A. There exists x ∈ E
such that T (x) = x for each T ∈ G. Furthermore, we have that supa∈A ‖x−a‖ ≤ supa∈A ‖y−a‖
for any y ∈ E.

Proof. Consider A as a subset of E∗∗. Then CE∗∗(A) is non-empty, weak∗-compact, and convex.
Let c ∈ CE∗∗(A), and write c = cE + c0 with cE ∈ E and c0 ∈ E0. For a ∈ A, as c − a =
(cE − a) + c0 ∈ E ⊕ E0, we see that ‖c− a‖ = ‖cE − a‖+ ‖c0‖. Thus

ρE∗∗(A) = sup
a∈A
‖c− a‖ = sup

a∈A
‖cE − a‖+ ‖c0‖ ≥ ρE(A) + ‖c0‖.

However, clearly ρE∗∗(A) ≤ ρE(A), so c0 = 0 and hence c ∈ E. We also see that ρE(A) =
ρE∗∗(A), from which it follows that CE∗∗(A) = CE(A), and so in particular, CE(A) is non-
empty, weakly compact, and convex.

As the definition of CE(A) only involves the metric space structure of E, we see that CE(A)
is invariant under G. By the Ryll-Nardzewski Theorem, there exists x ∈ CE(A) with T (x) = x
for each T ∈ G. Then by definition, supa∈A ‖x− a‖ = ρE(A) which is the minimum (attained!)
of supa∈A ‖y − a‖ as y varies over E.

To be precise, we use the following version of the Ryll-Nardzewski Theorem, see [2, The-
orem 10.8]: If E is a locally convex space, Q is a weakly compact convex subset of E and P
is a non-contracting family of weakly continuous affine maps of Q to Q, then P has a fixed
point in Q. That P is non-contracting means that for distinct points x, y ∈ Q, the closure of
{T (x)− T (y) : T ∈ P} does not contain 0.

For us, E is a Banach space with the norm topology, and P consists of affine isometries of
E. Thus, if x, y ∈ Q are distinct, then ‖T (x)− T (y)‖ = ‖x− y‖ for all T ∈ P , and so 0 is not
in the norm closure of {T (x)− T (y) : T ∈ P}.

Theorem 3.2. Let X be a G-space. Any bounded crossed homomorphism Φ : G → M(X) is
principal. Indeed, we can find µ ∈M(X) with ‖µ‖ ≤ sups∈G ‖Φ(s)‖ such that Φ(s) = s · µ− µ
for s ∈ G.

Proof. We have that M(X) = C0(X)∗ and so M(X) is L-embedded. For s ∈ G and µ ∈M(X),
define s◦µ = s ·µ+Φ(s). Here, as before, for f ∈ C0(X), we have 〈s · µ, f〉 =

∫
X
f(s ·x) dµ(x).

Then, for s, t ∈ G,

s ◦ (t ◦ µ) = s ◦ (t · µ+ Φ(t)) = st · µ+ s · Φ(t) + Φ(s) = st · µ+ Φ(st) = st ◦ µ.

So G ×M(G) → M(G); (s, µ) 7→ s ◦ µ is an action (actually, this is not central to the proof!)
Then, for s ∈ G, and µ, λ ∈M(X),

‖s ◦ µ− s ◦ λ‖ = ‖s · µ+ Φ(s)− s · λ− Φ(s)‖ = ‖s · (µ− λ)‖ = ‖µ− λ‖.

Hence M(X)→M(X);µ 7→ s ◦ µ is an isometry.

1If T (0) = 0 then T (λx) = λT (x) for x ∈ E, λ ∈ [0, 1]. For λ > 0, we have that T (x/λ) = T (x)/λ =⇒
λT (y) = T (λy) for y = x/λ ∈ E. So T is positive homogeneous. Then T (x + y) = T ((2x)/2 + (2y)/2) =
T (2x)/2 +T (2y)/2 = T (x) +T (y) so T is additive. Then 0 = T (x+ (−x)) = T (x) +T (−x) so T (−x) = −T (x);
thus T is (real) linear.

2By Mazur-Ulam, we could also consider general bijective isometries.
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Let A = {Φ(s) : s ∈ G}. For s, t ∈ G, we have that s ◦ Φ(t) = s · Φ(t) + Φ(s) = Φ(st) ∈ A.
So A is preserved under the action ◦, and so by the main theorem, there exists µ ∈M(X) with
s ◦ µ = µ for each s. That is, s · µ + Φ(s) = µ, or Φ(s) = s · (−µ) − (−µ). Finally, we have
that sups∈G ‖µ − Φ(s)‖ ≤ sups∈G ‖λ − Φ(s)‖ for any λ ∈ M(X). As Φ(e) = 0, we have that
‖ − µ‖ = ‖µ‖ ≤ sups∈G ‖µ− Φ(s)‖ ≤ sups∈G ‖Φ(s)‖ as claimed.

We finally come to our application. Let d : L1(G) → L1(G) be a (bounded) derivation,
let D : M(G) → M(G) be the extension, and let Φ : G → M(G) be the associated crossed
homomorphism, given by Φ(s) = D(δs)δs−1 . There exists µ ∈ M(G), with ‖µ‖ ≤ sups ‖Φ(s)‖,
and such that Φ(s) = s · µ− µ for s ∈ G. As before, it follows that

d(a) = a · µ− µ · a, (a ∈ L1(G)) ‖µ‖ ≤ sup
s∈G
‖D(δs)‖ ≤ ‖d‖.
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