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Abstract

We introduce real interpolation spaces and describe their properties. Our aim is to summarise,
in English, the standard results of Peetre, Lyons and Beauzamy which are most comprehensively
accessable in French only.
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1 Introduction

An interpolation space is, roughly speaking, a way of producing a Banach space which is
intermediate between two other Banach spaces. They have uses in, for example, classical
analysis, but my interest (and hence the theme of this note) is in applications of inter-
polation spaces to abstract functional analysis: for example, the celebrated result [2] of
Davis, Figiel, Johnson and Pe lczyński on factoring weakly compact operators. We shall
mainly follow the book [1], also using the useful reference [3, Section 2.g].

We now fix some notation and general concepts. Let E and F be normed spaces, and
suppose that E and F are subspaces of some Hausdorff topological vector space X. In
this case, we say that (E,F ) is a compatible couple. Then we have vector spaces

I = E ∩ F ⊆ X, S = {x ∈ X : ∃e ∈ E, f ∈ F, x = e+ f},

the intersection and sum spaces. We may clearly assume that X = S. Let E and F have
norms ‖ · ‖E and ‖ · ‖F respectively, and norm I and S by

‖x‖I = max(‖x‖E, ‖x‖F ) (x ∈ I),

‖x‖S = inf{‖e‖E + ‖f‖F : x = e+ f} (x ∈ S).
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Then, if E and F are Banach spaces, it is an easy check to show that (S, ‖ · ‖S) and
(I, ‖ · ‖I) are also Banach spaces; we shall henceforth assume that E and F are indeed
Banach spaces. In this case, we have a commuting diagram of norm-decreasing maps:

S

E
/�

??�������
F

O/

__???????

IO/

__???????? /�

??��������?�

OO

It is clear that the maps I → E and I → F are injections. Suppose that x ∈ E is such
that ‖x‖S = 0, so that there are sequences (en) ⊆ E and (fn) ⊆ F with en +fn = x for all
n, and ‖en‖E+‖fn‖F → 0. Then fn = x−en ∈ I for each n, en → 0 in E, fn → 0 in F , and
‖fn‖E = ‖x− en‖E → ‖x‖E. For n,m ∈ N, ‖fn − fm‖I = max(‖fn − fm‖F , ‖en − em‖E),
so (fn) is Cauchy in I, tending to a limit y ∈ I say. However, ‖fn−y‖F ≤ ‖fn−y‖I → 0,
so that y = 0, implying that 0 = limn ‖fn‖E = ‖x‖, so that x = 0. Hence the map E → S
is injective, and by symmetry, so is the map F → S.

Let B(E,F ) be a Banach space of bounded linear operators between E and F . Suppose
that G is a Banach space and that we have T ∈ B(E,G) and S ∈ B(F,G) such that T
and S agree on I. Then there exists R ∈ B(S, G) which extends T and S:

E
T

��@
@@

@@
@@

� �

��
I� _

��

?�

OO

// G SRoo

F
S

??~~~~~~~
� �

LL

Firstly, we define R(x) = T (e) + S(f) for x = e + f ∈ S. This is well-defined, for if
x = e1 + f1, then e − e1 = f1 − f ∈ I, so that T (e) − T (e1) = S(f1) − S(f), and hence
T (e) + S(f) = T (e1) + S(f1). Then, for x ∈ S, we see that

‖R(x)‖ = inf{‖T (e) + S(f)‖ : x = e+ f, e ∈ E, f ∈ F} ≤ max(‖T‖, ‖S‖)‖x‖S ,

so that R is bounded, as required.
These properties show that I and S are actually interpolation spaces: in some sense,

there are the biggest and smallest interpolation spaces between E and F , a fact we shall
make rigourous later. When necessary, we write I(E,F ) and S(E,F ).

For a Banach space E, let E ′ be its dual, and we write 〈µ, x〉 = µ(x) for µ ∈ E ′ and
x ∈ E. Then we have the canonical isometry κE : E → E ′′ defined by 〈κE(x), µ〉 = 〈µ, x〉
for x ∈ E and µ ∈ E ′.

2 Lions-Peetre interpolation method

We shall now introduce a class of interpolation spaces first studied by Lions and Peetre
in [4]. Fix real numbers ξ0 and ξ1, and let p ∈ [1,∞]. For normed spaces (E0, ‖ · ‖0) and
(E1, ‖ · ‖1) such that (E0, F0) forms a compatible couple, we consider the collection of
(mesaure classes of) functions f : R → I(E0, E1) such that

‖eξ0tf(t)‖p
Lp(E0) :=

∫
R
‖eξ0tf(t)‖p

0 dt <∞, ‖eξ1tf(t)‖p
Lp(E1) :=

∫
R
‖eξ1tf(t)‖p

1 dt <∞,
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where, of course, a further condition on f is that these functions are integrable. If p = ∞,
these conditions are implied to mean

ess-supt∈R ‖eξ0tf(t)‖0 <∞, ess-supt∈R ‖eξ1tf(t)‖1 <∞.

We now (and henceforth) suppose that ξ0 < 0 and ξ1 > 0. Suppose, further, that∫
R f(t) dt converges in I. Then∫

R
‖f(t)‖S dt ≤

∫ ∞

0

‖f(t)‖1 dt+

∫ 0

−∞
‖f(t)‖0 dt

≤
( ∫ ∞

0

e−ξ1tq dt
)1/q( ∫ ∞

0

‖eξ1tf(t)‖p
1 dt

)1/p

+
( ∫ 0

−∞
e−ξ0tq dt

)1/q( ∫ 0

−∞
‖eξ0tf(t)‖p

0 dt
)1/p

≤
( 1

ξ1q

)1/q

‖eξ1tf(t)‖Lp(E1) +
( 1

ξ0q

)1/q

‖eξ0tf(t)‖Lp(E0),

where q−1 + p−1 = 1. Thus
∫

R f(t) dt converges in S.
We let S = S(p; ξ0, E0; ξ1, E1) denote (for ξ0 < 0, ξ1 > 0) the collection{

x ∈ S : x =

∫
R
f(t) dt, ‖eξ0tf(t)‖Lp(E0), ‖eξ1tf(t)‖Lp(E1) <∞

}
.

We norm this space by setting

‖x‖S = inf
{

max
(
‖eξ0tf(t)‖Lp(E0), ‖eξ1tf(t)‖Lp(E1)

)
: x =

∫
R
f(t) dt

}
,

and we can check that S becomes a Banach space in this norm.
We claim that we have a factorisation of following form

I(E0, E1)
� � //

� v

((RRRRRRRRRRRRR
S(p; ξ0, E0; ξ1, E1)� _

��
S(E0, E1)

For x ∈ I(E0, E1) we let f : R → I(E0, E1) be defined by f(t) = x for 0 ≤ t ≤ 1, and
f(t) = 0 otherwise. Then clearly

∫
R f(t) dt = x. We also see that, if

α0 =
(eξ0p − 1

ξ0p

)1/p

, α1 =
(eξ1p − 1

ξ1p

)1/p

,

then
‖x‖S ≤ max

(
α0‖x‖0, α1‖x‖1

)
≤ max(α0, α1)‖x‖I .

Thus the map from I(E0, E1) to S(p; ξ0, E0; ξ1, E1) is bounded by max(α0, α1). Now
suppose that x =

∫
R f(t) dt for some representative f . Then

‖x‖S ≤
∫

R
‖f(t)‖S dt ≤

( 1

ξ1q

)1/q

‖eξ1tf(t)‖Lp(E1) +
( 1

ξ0q

)1/q

‖eξ0tf(t)‖Lp(E0),

so we see that

‖x‖S ≤
(( 1

ξ1q

)1/q

+
( 1

ξ0q

)1/q)
‖x‖S.

Thus the map from S(p; ξ0, E0; ξ1, E1) to S(E0, E1) is also bounded.
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Proposition 2.1. Let θ = ξ0(ξ0 − ξ1)
−1 ∈ (0, 1). Then

‖x‖S(p;ξ0,E0;ξ1,E1) = inf
{∥∥eξ0tf(t)

∥∥1−θ

Lp(E0)

∥∥eξ1tf(t)
∥∥θ

Lp(E1)
: x =

∫
R
f(t) dt

}
.

Proof. This is [1, Chapter 1, Section 2, Proposition 1]. Notice that as ξ0 < 0 and ξ1 > 0,
θ > 0, and that ξ0 > ξ0 − ξ1, so that θ < 1. We claim that it is obvious that

‖x‖S(p;ξ0,E0;ξ1,E1) ≥ inf
{∥∥eξ0tf(t)

∥∥1−θ

Lp(E0)

∥∥eξ1tf(t)
∥∥θ

Lp(E1)
: x =

∫
R
f(t) dt

}
.

This follows, as for a, b > 0 and θ ∈ (0, 1), we have that max(a, b) ≥ a1−θbθ.
Conversely, let x =

∫
R f(t) dt. By the translation invariance of lebesgue measure, for

τ ∈ R, we also have that x =
∫

R f(t+ τ) dt. Thus

‖x‖S ≤ inf
τ

max
(∥∥eξ0tf(t+ τ)

∥∥
Lp(E0)

,
∥∥eξ1tf(t+ τ)

∥∥
Lp(E1)

)
= inf

τ
max

(
e−ξ0τ

∥∥eξ0tf(t)
∥∥

Lp(E0)
, e−ξ1τ

∥∥eξ1tf(t)
∥∥

Lp(E1)

)
.

Then choose τ such that

α := e−ξ0τ
∥∥eξ0tf(t)

∥∥
Lp(E0)

= e−ξ1τ
∥∥eξ1tf(t)

∥∥
Lp(E1)

,

which we may do, as ξ0 < 0, ξ1 > 0. A calculation yields that

α =
∥∥eξ0tf(t)

∥∥1−θ

Lp(E0)

∥∥eξ1tf(t)
∥∥θ

Lp(E1)
,

completing the proof.

Corollary 2.2. There exists a constant C > 0 (depending only on ξ0, ξ1 and p) such that

‖x‖S(p;ξ0,E0;ξ1,E1) ≤ C‖x‖1−θ
0 ‖x‖θ

1 (x ∈ I(E0, E1)).

Proof. This is [1, Chapter 1, Section 2, Corollaire de la Proposition 1]. Let x ∈ I(E0, E1),
so that we can represent x by f(t) = φ(t)x, where φ : R → R is measurable, has compact
support, and has integral 1. Thus

‖x‖S ≤ ‖x‖1−θ
0 ‖x‖θ

1

( ∫
R
eξ0tp|φ(t)|p dt

) 1−θ
p

( ∫
R
eξ1tp|φ(t)|p dt

) θ
p
,

which completes the proof.

Suppose that we have another compatible (F0, F1), and that T : S(E0, E1) → S(F0, F1)
is a linear map. Suppose that T , restricted to E0, is a bounded linear operator to F0,
with norm ‖T‖0, and similarly for E1 to F1 with norm ‖T‖1.

Proposition 2.3. The operator T is a bounded linear operator from S(p; ξ0, E0; ξ1, E1)
to S(p; ξ0, F0; ξ1, F1) with norm less than or equal to ‖T‖1−θ

0 ‖T‖θ
1.

Proof. This is [1, Chapter 1, Section 2, Proposition 2]. Let x ∈ S(p; ξ0, E0; ξ1, E1) have
representation x =

∫
R f(t) dt, so that T (x) has representation

∫
R T (f(t)) dt. Thus, by

Proposition 2.1,

‖T (x)‖S ≤
∥∥eξ0tT (f(t))

∥∥1−θ

Lp(F0)

∥∥eξ1tT (f(t))
∥∥θ

Lp(F1)

≤ ‖T‖1−θ
0 ‖T‖θ

1

∥∥eξ0tf(t)
∥∥1−θ

Lp(E0)

∥∥eξ1tf(t)
∥∥θ

Lp(E1)
,

which completes the proof.
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As in the introduction, if we have an operator from T : I(E0, E1) → I(F0, F1) which
admits extensions to operators Ti : Ei → Fi, for i = 0, 1, then T extends uniquely to
an operator T̃ : S(E0, E1) → S(F0, F1), and the above proposition gives the estimate
‖T0‖1−θ‖T1‖θ for the norm of the operator T̃ : S(p; ξ0, E0; ξ1, E1) → S(p; ξ0, F0; ξ1, F1).

2.1 Varying the parameters

We shall now study how varying p, ξ0 and ξ1 affect the interpolation space S. Throughout,
(E0, E1) shall be a compatible couple, and θ = ξ0(ξ0 − ξ1)

−1 ∈ (0, 1).

Proposition 2.4. For λ 6= 0, the vector spaces S(p; ξ0, E0; ξ1, E1) and S(p;λξ0, E0;λξ1, E1)
are equal, and the norms satisfy

‖x‖S(p;ξ0,E0;ξ1,E1) = λ1−1/p‖x‖S(p;λξ0,E0;λξ1,E1) (x ∈ S(p; ξ0, E0; ξ1, E1)).

Proof. This is [1, Chapter 1, Section 3, Proposition 1]. Let x ∈ S(p; ξ0, E0; ξ1, E1) have
representation x =

∫
R f(t) dt, and define fλ by fλ(t) = λf(λt) for t ∈ R. By the

homogeneity of the Lebesgue integral, x =
∫

R fλ(t) dt, so that

‖x‖S(p;λξ0,E0;λξ1,E1) ≤
∥∥eλξ0tfλ(t)

∥∥1−θ

Lp(E0)

∥∥eλξ1tfλ(t)
∥∥θ

Lp(E1)

≤ λ
p−1

p

∥∥eξ0tf(t)
∥∥1−θ

Lp(E0)

∥∥eξ1tf(t)
∥∥θ

Lp(E1)
.

We complete the proof by replacing λ by λ−1.

Given ξ0 and ξ1, let λ = (ξ1 − ξ0)
−1 (note that ξ1 − ξ0 > 0) so that λξ0 = −θ and

λξ1 = 1 − θ. Hence the interpolation space S(p; ξ0, E0; ξ1, E1) is equivalent (by factor
(ξ1 − ξ0)

1/p−1) to the space S(p;−θ, E0; 1 − θ, E1). We denote the resulting family of
isomorphic interpolation spaces by (E0, E1)θ,p (that is, we consider all spaces of the form
S(p; ξ0, E0; ξ1, E1) where ξ0 < 0, ξ1 > 0 and θ(ξ0−ξ1) = ξ0). It is common to isometrically
associate (E0, E1)θ,p with S(p;−θ, E0; 1 − θ, E1) (is this true???)

Proposition 2.5. For θ ∈ (0, 1) and p ≤ q, the natural map

(E0, E1)θ,p → (E0, E1)θ,q

is a continuous injection.

Proof. This is [1, Chapter 1, Section 3, Proposition 2]. Pick ξ0 < 0 and ξ1 > 0 with
θ = ξ0(ξ0 − ξ1)

−1. For x ∈ S(p; ξ0, E0; ξ1, E1) with representation x =
∫

R f(t) dt, let
φ : R → R have compact support and integral 1, and consider the convolution g(t) =∫

R f(t−s)φ(s) ds. Again, we have that x =
∫

R g(t) dt, so if r satisfies r−1 = 1−(p−1−q−1),
then ∥∥eξ0tg(t)

∥∥
Lq(E0)

≤
∥∥eξ0tφ(t)

∥∥
Lr

∥∥eξ0tf(t)
∥∥

Lp(E0)
,∥∥eξ1tg(t)

∥∥
Lq(E1)

≤
∥∥eξ1tφ(t)

∥∥
Lr

∥∥eξ1tf(t)
∥∥

Lp(E1)
.

Consequently, the norm of the injection is bounded above by

inf
{∥∥eξ0tφ(t)

∥∥1−θ

Lr

∥∥eξ1tφ(t)
∥∥θ

Lr :

∫
φ(t) dt = 1, φ has compact support

}
.

We consequently have a family of spaces which lie between E0 and E1. We can verify
that, for x ∈ I(E0, E1),

lim
ξ0→0

‖x‖S(p;ξ0,E0;1,E1) = ‖x‖0, lim
ξ1→0

‖x‖S(p;−1,E0;ξ1,E1) = ‖x‖1.
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2.2 Discrete definitions

We can consider discrete analogues of the above definitions, which are often easier to
perform calculations with. We consider sequences (xn)n∈Z in I(E0, E1) such that∥∥(eξ0nxn)

∥∥
lp(E0)

:=
( ∑

n

∥∥eξ0nxn

∥∥p

0

)1/p

<∞,

∥∥(eξ1nxn)
∥∥

lp(E1)
:=

( ∑
n

∥∥eξ1nxn

∥∥p

1

)1/p

<∞,

where, as before, ξ0 < 0, ξ1 > 0, p ∈ [1,∞] and (E0, E1) is a compatible couple. Then
we denote by s1(p; ξ0, E0; ξ1, E1) the space of x ∈ S(E0, E1) such that for some (xn)n∈Z ⊆
I(E0, E1) satisfying the above, we have that x =

∑
n xn with convergence in S. We give

s1 the norm

‖x‖s1 = inf
{

max
(∥∥(eξ0nxn)

∥∥
lp(E0)

,
∥∥(eξ1nxn)

∥∥
lp(E1)

)
: x =

∑
n

xn

}
.

Notice that if (xn) ⊆ I is such that
∥∥(eξ0nxn)

∥∥
lp(E0)

< ∞ and
∥∥(eξ1nxn)

∥∥
lp(E1)

< ∞,

then ∑
n

‖xn‖S ≤
−1∑

n=−∞

e−ξ0n‖eξ0nxn‖0 +
∞∑

n=0

e−ξ1n‖eξ1nxn‖1

≤
( −1∑

n=−∞

e−ξ0nq
)1/q∥∥(eξ0nxn)

∥∥
lp(E0)

+
( ∞∑

n=0

e−ξ1nq
)1/q∥∥(eξ1nxn)

∥∥
lp(E1)

=
( eξ0q

1 − eξ0q

)1/q∥∥(eξ0nxn)
∥∥

lp(E0)
+

( 1

1 − e−ξ1q

)1/q∥∥(eξ1nxn)
∥∥

lp(E1)

where q−1 = 1 − p−1. Thus certainly
∑

n xn converges in S.

Proposition 2.6. The spaces S(p; ξ0, E0; ξ1, E1) and s1(p; ξ0, E0; ξ1, E1) are naturally iso-
morphic.

Proof. This is [1, Chapter 1, Section 4, Proposition 1]. Let x ∈ S(p; ξ0, E0; ξ1, E1) have

representation x =
∫

R f(t) dt, and let xn =
∫ n+1

n
f(t) dt for each n ∈ Z. Then x =

∑
n xn

in S, xn ∈ I for each n, and∥∥(eξ0nxn)
∥∥p

lp(E0)
=

∑
n

∥∥∥eξ0n

∫ n+1

n

f(t) dt
∥∥∥p

0
≤

∑
n

∫ n+1

n

∥∥eξ0nf(t)
∥∥p

0
dt

≤ e−ξ0p

∫
R

∥∥eξ0tf(t)
∥∥p

0
dt,

as ξ0 < 0. Similarly, ∥∥(eξ1nxn)
∥∥

lp(E1)
≤

∥∥eξ1tf(t)
∥∥

Lp(E1)
.

Consequently ‖x‖s1 ≤ e−ξ0‖x‖S.
Conversely, let x ∈ s1 with x =

∑
n xn. Define f : R → I be setting f(t) = xn for

n ≤ t < n+ 1. Then x =
∫

R f(t) and

∥∥eξ0tf(t)
∥∥p

Lp(E0)
=

∑
n

∫ n+1

n

∥∥eξ0txn

∥∥p

0
dt =

∑
n

‖xn‖p
0e

ξ0np e
ξ0p − 1

ξ0p
≤

∥∥(eξ0nxn)
∥∥p

lp(E0)
,
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and similarly, we can show that∥∥eξ1tf(t)
∥∥

Lp(E1)
=

(eξ1p − 1

ξ1p

)1/p∥∥(eξ1nxn)
∥∥

lp(E1)
≤ eξ1

∥∥(eξ1nxn)
∥∥

lp(E1)
.

Consequently,

‖x‖S ≤ exp
( ξ0ξ1
ξ0 − ξ1

)
‖x‖s1 .

Note: I am not sure where this last inequality comes from, but it is in [1].

Consider now sequences (x0
n)n∈Z ⊆ E0 and (x1

n)n∈Z ⊆ E1 such that∥∥(eξ0nx0
n)

∥∥
lp(E0)

<∞,
∥∥(eξ1nx1

n)
∥∥

lp(E1)
<∞.

Suppose also that x0
n + x1

n = x ∈ S for each n ∈ Z. We denote by s2(p; ξ0, E0; ξ1, E1) the
collection of such x with the norm

‖x‖s2 = inf
{

max
(∥∥(eξ0nx0

n)
∥∥

lp(E0)
,
∥∥(eξ1nx1

n)
∥∥

lp(E1)

)
: x = x0

n + x1
n (n ∈ Z)

}
.

Proposition 2.7. The spaces s1 and s2 are naturally isomorphic. To be precise, for
x ∈ s1,

(1 + eξ1)−1‖x‖s1 ≤ ‖x‖s2 ≤ max
( 1

1 − eξ0
,

1

1 − e−ξ1

)
‖x‖s1 .

Proof. This is [1, Chapter 1, Section 4, Proposition 2]. Let x ∈ s1 be such that x =
∑

n xn.
Then let

y0
n =

∑
k≥0

xn−k, y1
n =

∑
k<0

xn−k (n ∈ Z),

so that y0
n + y1

n =
∑

k xk = x for each n. Then, by the triangle inequality∥∥(eξ0ny0
n)

∥∥
lp(E0)

=
∥∥∥( ∑

k≥0

eξ0keξ0(n−k)xn−k

)∥∥∥
lp(E0)

≤
∑
k≥0

eξ0k
∥∥(eξ0(n−k)xn−k)

∥∥
lp(E0)

=
1

1 − eξ0

∥∥(eξ0nxn)
∥∥

lp(E0)
,

and similarly,∥∥(eξ1ny1
n)

∥∥
lp(E1)

=
∥∥∥( ∑

k<0

eξ1keξ1(n−k)xn−k

)∥∥∥
lp(E1)

≤
∑
k<0

eξ1k
∥∥(eξ1(n−k)xn−k)

∥∥
lp(E1)

=
1

1 − e−ξ1

∥∥(eξ1nxn)
∥∥

lp(E1)
,

Hence we conclude that

‖x‖s2 ≤ max
( 1

1 − eξ0
,

1

1 − e−ξ1

)
‖x‖s1 .

Conversely, if x ∈ s2 and ((y0
n), (y1

n)) represents x, then for each k ∈ Z, let

xk = y0
k − y0

k−1 = y1
k−1 − y1

k,

so that xk ∈ I for each k. Then
∑

n≤0 xn converges in S, as (eξ0ny0
n) ∈ lp(E0), so that for

n < 0, ‖y0
n‖S ≤ ‖y0

n‖0 ≤ eξn‖y0
n‖0 → 0 as n → −∞. Similarly,

∑
n>0 xn converges in S,

and hence we have ∑
n

xn =
∑
n≤0

xn +
∑
n>0

xn = y0
0 + y1

0 = x.
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We then see that∥∥(eξ0nxn)
∥∥

lp(E0)
=

( ∑
n

‖eξ0n(y0
n − y0

n−1)‖
p
0

)1/p

≤
∥∥(eξ0ny0

n)
∥∥

lp(E0)
+ eξ0

∥∥(eξ0(n−1)y0
n−1)

∥∥
lp(E0)

= (1 + eξ0)
∥∥(eξ0ny0

n)
∥∥

lp(E0)
,

and similarly, ∥∥(eξ1nxn)
∥∥

lp(E1)
≤ (1 + eξ1)

∥∥(eξ1ny1
n)

∥∥
lp(E1)

.

Thus we conclude that
‖x‖s1 ≤ (1 + eξ1)‖x‖s2 .

Proposition 2.8. For x ∈ s1, we have

inf
{∥∥(eξ0nxn)

∥∥1−θ

lp(E0)

∥∥(eξ1nxn)
∥∥θ

lp(E1)
:
∑

n

xn = x
}
≤ ‖x‖s1

≤ exp
( ξ0ξ1
ξ0 − ξ1

)
inf

{∥∥(eξ0nxn)
∥∥1−θ

lp(E0)

∥∥(eξ1nxn)
∥∥θ

lp(E1)
:
∑

n

xn = x
}
,

inf
{∥∥(eξ0ny0

n)
∥∥1−θ

lp(E0)

∥∥(eξ1ny1
n)

∥∥θ

lp(E1)
: y0

n + y1
n = x (n ∈ Z)

}
≤ ‖x‖s2

≤ exp
( ξ0ξ1
ξ0 − ξ1

)
inf

{∥∥(eξ0ny0
n)

∥∥1−θ

lp(E0)

∥∥(eξ1ny1
n)

∥∥θ

lp(E1)
: y0

n + y1
n = x (n ∈ Z)

}
Proof. This is [1, Chapter 1, Section 4, Proposition 3]. As in the proof of Proposition 2.1,
the first inequality is simple. For the second, we note that if x =

∑
n xn, then also

x =
∑

n xn+k for each k ∈ Z, so that

‖x‖s1 ≤ max
(
e−ξ0k

∥∥(eξ0nxn)
∥∥

lp(E0)
, e−ξ1k

∥∥(eξ1nxn)
∥∥

lp(E1)

)
= β(k),

say. As in the proof of Proposition 2.1, we can choose t ∈ R such that

α := e−ξ0t
∥∥(eξ0nxn)

∥∥
lp(E0)

= e−ξ1t
∥∥(eξ1nxn)

∥∥
lp(E1)

=
∥∥(eξ0nxn)

∥∥1−θ

lp(E0)

∥∥(eξ1nxn)
∥∥θ

lp(E1)
≥ 0.

Let btc , dte ∈ Z be such that btc ≤ t < 1 + btc and t ≤ dte < t+ 1. Then

eξ1(t−btc)α = e−ξ1btc
∥∥(eξ1nxn)

∥∥
lp(E1)

= β(btc),

eξ0(t−dte)α = e−ξ0dte
∥∥(eξ0nxn)

∥∥
lp(E0)

= β(dte).

Notice that

sup
s∈[0,1]

min(eξ1s, e−ξ0(1−s)) = max
(

sup
0≤s≤θ

eξ1s, sup
θ<s≤1

e−ξ0(1−s)
)

= eξ1θ = e−ξ0(1−θ),

so, as (t− btc) − (t− dte) = 1, we see that

‖x‖s1 ≤ inf
k
β(k) = min

(
β(btc), β(dte)

)
= min

(
eξ1(t−btc), eξ0(t−dte))α ≤ eξ1θα,

as required.
For proof for s2 proceeds in an analogous manner.
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For a compatible couple (E0, E1) let Bi be the canonical image of the closed unit ball
of Ei in S(E0, E1). Then let

Un = e−ξ0nB0 + e−ξ1nB1 ⊆ S (n ∈ Z),

so that Un is an absolutely convex subset of S. Then let ψn be the gauge of Un, that is,

ψn(x) = inf{t > 0 : x ∈ tUn} (x ∈ S).

It is simple to verify that ψn is an equivalent norm on S: indeed, ψn(x) ≤ max(eξ0n, eξ1n)‖x‖S
and ‖x‖S ≤ (e−ξ0n + e−ξ1n)ψn(x) for each x ∈ S. We then let s(p; ξ0, E0; ξ1, E1) be the
space of x ∈ S such that

‖x‖s :=
( ∑

n∈Z

ψn(x)p
)1/p

<∞.

Proposition 2.9. The spaces S and s are naturally isomorphic; more specifically,

2−1/p‖x‖s2 ≤ ‖x‖s ≤ 21/p‖x‖s2 (x ∈ s),

the result following as s2 and S are isomorphic.

Proof. This is [1, Chapter 1, Section 4, Proposition 4]. For x ∈ s2, we have that

‖x‖s2 ≤ inf
{( ∑

n∈Z

‖eξ0ny0
n‖

p
0 + ‖eξ1ny1

n‖
p
1

)1/p

: x = y0
n + y1

n (n ∈ Z)
}

=
( ∑

n∈Z

inf
{
‖eξ0ny0

n‖
p
0 + ‖eξ1ny1

n‖
p
1 : x = y0

n + y1
n

})1/p

≤ 21/p‖x‖s2 .

However, we also have that

ψn(x) = inf
{
t > 0 : ∃ y ∈ B0, z ∈ B1, x = t(e−ξ0ny + e−ξ1nz)

}
= inf

{
t > 0 : ∃ y ∈ E0, z ∈ E1, ‖y‖0 ≤ te−ξ0n, ‖z‖1 ≤ te−ξ1n, x = y + z

}
= inf

{
max

(
‖eξ0ny‖0, ‖eξ1nz‖1

)
: y ∈ E0, z ∈ E1, x = y + z

}
,

so that

‖x‖s ≤
( ∑

n∈Z

inf
{
‖eξ0ny0

n‖
p
0 + ‖eξ1ny1

n‖
p
1 : x = y0

n + y1
n

})1/p

≤ 21/p‖x‖s,

completing the proof.

2.3 Aside on notation

In modern literature, the following notation (see [3]) is more commonly used. For a, b > 0,
we define

k(x, a, b) = inf
{
a‖x0‖0 + b‖x1‖1 : x = x0 + x1

}
(x ∈ S(E0, E1)).

Then, for example, the norm on S is k(·, 1, 1), while the norm on s is seen to be equivalent
to the norm

‖x‖ =
( ∑

n∈Z

k(x, eξ0n, eξ1n)p
)1/p

(x ∈ s),

as ψn is clearly equivalent to k(·, eξ0n, eξ1n).
There are more complicated examples of interpolation spaces based on unconditional

bases in Banach spaces (for example, the base space for s1 and s2 is lp(Z)).
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2.4 When E0 embeds into E1

Suppose that (E0, E1) is a compatible couple, that E0 is actually a subspace of E1, and
that for some constant C, we have that ‖x‖1 ≤ C‖x‖0 for each x ∈ E0. We denote this
by E0 ↪→ E1. Then I(E0, E1) = E0 with equivalent norms: ‖x‖0 ≤ ‖x‖I ≤ C‖x‖0 for
x ∈ E0. Similarly, S(E0, E1) = E1 with equivalent norms: C−1‖x‖1 ≤ ‖x‖S ≤ ‖x‖1. We
hence see that each of the spaces (E0, E1)θ,p lie between E0 and E1, and the injection
E0 → E1 factors through (E0, E1)θ,p.

Proposition 2.10. We define the following norms on (E0, E1)θ,p:

‖x‖S+ = inf
{

max
(( ∫ ∞

0

∥∥eξ0tf(t)
∥∥p

0
dt

)1/p

,
( ∫ ∞

0

∥∥eξ1tf(t)
∥∥p

1
dt

)1/p)
: x =

∫ ∞

0

f(t) dt
}
,

‖x‖s+
1

= inf
{

max
(( ∞∑

n=0

∥∥eξ0nxn

∥∥p

0

)1/p

,
( ∞∑

n=0

∥∥eξ1nxn

∥∥p

1

)1/p)
: x =

∞∑
n=0

xn

}
,

‖x‖s+
2

= inf
{

max
(( ∞∑

n=0

∥∥eξ0nx0
n

∥∥p

0

)1/p

,
( ∞∑

n=0

∥∥eξ1nx1
n

∥∥p

1

)1/p)
: x = x0

n + x1
n (n ≥ 0)

}
,

‖x‖s+ =
( ∞∑

n=0

ψn(x)p
)1/p

.

All of these define equivalent norms on (E0, E1)θ,p.

Proof. See [1, Chapter 1, Section 5, Proposition 1].

Proposition 2.11. Let 0 < θ1 < θ2 < 1 and 1 ≤ p1, p2 ≤ ∞. Then (E0, E1)θ1,p1 is a
subspace of (E0, E1)θ2,p2 and the injection map is continuous.

Proof. See [1, Chapter 1, Section 5, Proposition 2].

2.5 Influence of the intersection I

Let (E0, E1) be a compatible couple, and denote by E0 the closure of the image of
I(E0, E1) in E0; similarly E1. Then (E0, E1) is a compatible couple, and clearly I(E0, E1) =
I(E0, E1), while S(E0, E1) → S(E0, E1) is a norm-decreasing map.

Proposition 2.12. Let ξ0 < 0, ξ1 > 0 and p ∈ [1,∞]. Then s1(p; ξ0, E0; ξ1, E1) is
isometrically isomorphic to s1(p; ξ0, E0; ξ1, E1). The same holds for S, s2 and s.

Proof. This is [1, Chapter 2, Section 1, Proposition 1]. As I(E0, E1) = I(E0, E1), the
result holds for s1 and S.

Clearly the map s2(p; ξ0, E0; ξ1, E1) → s2(p; ξ0, E0; ξ1, E1) is norm-decreasing. If x ∈
s2(p; ξ0, E0; ξ1, E1) has representation ((x0

n), (x1
n)), then for each n ∈ Z,

xn = x0
n − x0

n−1 = x1
n−1 − x1

n ∈ I(E0, E1).

Also, as ‖(eξ0nx0
n)‖lp(E0) <∞, we see that ‖x0

n‖0 → 0 as n→ −∞, and similarly ‖x1
n‖1 →

0 as n→∞. Thus, for N > 0 very large, we have that

x0
n = x0

−N +
n∑

k=1−N

xk (nZ),
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so that x0
n can be approximately arbitrarily well by a member of I, implying that x0

n ∈ E0,
for each n. Similarly, x1

n ∈ E1 for each n, which completes the proof for s2.
The argument for s follows in an entirely similar manner, using the same techniques

as in the proof of Proposition 2.9.

Consequently, we can always assume that I is dense in both E0 and E1 (loosely
speaking, this means that E0 is dense in E1 and E1 is dense in E0).

Corollary 2.13. Suppose that E0 ↪→ E1, and let F be the closure of E0 in E1. Then
S(p; ξ0, E0; ξ1, E1) = S(p; ξ0, E0; ξ1, F ), and similarly for s1, s2 and s.

Proof. This is [1, Chapter 2, Section 1, Corollaire 1]. This follows as, identifying E0

as a subspace of E1, clearly E0 ∩ E1 = E0 and so I(E0, E1) = E0 algebraically, and
I(E0, E1) = (E0, F ). Furthermore, E0 = E0 and E1 = F , completing the proof.

Proposition 2.14. For each θ ∈ (0, 1) and p ∈ [1,∞], we have that I is dense in
(E0, E1)θ,p with regards the norm ‖ · ‖S . If p 6= ∞, then I is dense in (E0, E1)θ,p with
respect to the norm on (E0, E1)θ,p.

Proof. This is [1, Chapter 2, Section 1, Proposition 2]. Notice that as density is invariant
under equivalent norms, we are free to work with, say, s1 for some ξ0, ξ1 giving θ. Let
x ∈ s1(p; ξ0, E0; ξ1, E1) have representation x =

∑
n∈Z xn, so that x =

∑
M→∞

∑
|n|≤M xn

in S, where the partial sums lie in I as required.
Now suppose that p 6= ∞. Then we see that∥∥∥ ∑

|n|≤M

xn

∥∥∥
s1

=
∥∥∥x− ∑

|n|>M

xn

∥∥∥
s1

≤ max
(( ∑

|n|>M

∥∥eξ0nxn

∥∥p

0

)1/p

,
( ∑
|n|>M

∥∥eξ1nxn

∥∥p

1

)1/p)
,

which tends to 0 as M →∞.

2.6 Properties of the injection s→ S

We shall work with the space s = s(p; ξ0, E0; ξ1, E1) for convenience; all the results in
this and the next section are isomorphic in natural, and so apply to any of the equivalent
norms on (E0, E1)θ,p. Let us recall some standard facts. For a sequence of Banach spaces
(En)n∈Z and p ∈ [1,∞), we let

lp
( ⊕

n∈Z

En

)
= lp(En) =

{
(xn)n∈Z : xn ∈ En (n ∈ Z), ‖(xn)‖ =

( ∑
n∈Z

‖xn‖p
)1/p

<∞
}
.

Then lp(En)′ = lq(E ′
n) where p−1 + q−1 = 1, and so if p 6= 1, lp(En)′′ = lp(E ′′

n). For a
Banach space E and a closed subspace F , there is a natural map E ′ → F ′ with kernel

F ◦ = {µ ∈ E ′ : 〈µ, x〉 = 0 (x ∈ F )},

and it is easily checked that the induced map E ′/F ◦ → F ′ is an isometric isomorphism.
For a compatible couple (E0, E1) (we assume, as we may, that I is dense in both)

we denote by j the map s(p; ξ0, E0; ξ1, E1) → S(E0, E1). Notice that s is isometrically a
subspace of Z = lp((S, ψn)), indeed, define φ : s → Z, φ(x) = (· · · , j(x), j(x), · · · ), so
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that φ is an isometry onto its range. For n ∈ Z, let πn : Z → S be the n-th coordinate
projection, so that πn is continuous. Then, for any n ∈ Z, πn ◦ φ = j,

s
j //

φ
��

S

Z = lp((S, ψn))

πn

88qqqqqqqqqqqq

From now on, we suppose that 1 < p <∞, so that lp((S, φ)n))′′ = lp((S, φ∗∗n )), where
φ∗n be the dual norm to φn, so that (S, φn)′ = (S ′, φ∗n), and φ∗∗n = (φ∗n)∗.

Lemma 2.15. For p ∈ (1,∞), the map φ′′ : s′′ → Z ′′ = lp((S, φ∗∗n )) is defined by
φ′′(Φ) = (· · · , j′′(Φ), j′′(Φ), · · · ) for Φ ∈ s′′. Thus j′′ = π′′n ◦ φ′′ for each n ∈ Z.

Proof. As φ is an isometry, it is standard that φ′ : lq((S ′, φ∗n)) → s′ factors to give an
isometric isomorphism

φ′ : lq((S ′, φ∗n))/φ(s)◦ → s′,

so that φ′′ : s′′ → φ(s)◦◦ ⊆ lp((S, φ∗∗n )) is also an isometric isomorphism. Now, for
µ = (µn) ∈ lq((S ′, φ∗n)), we see that

〈φ′(µ), x〉 =
∑
n∈Z

〈µn, j(x)〉 =
∑
n∈Z

〈j′(µn), x〉 (x ∈ s).

Thus, for Φ ∈ s′′, we have

〈φ′′(Φ), µ〉 =
∑
n∈Z

〈Φ, j′(µn)〉 = 〈(· · · , j′′(Φ), j′′(Φ), · · · ), (µn)〉 (µ ∈ lq((S ′, φ∗n))),

as required.

Proposition 2.16. When 1 < p < ∞, the map j′′ is an injection, and (j′′)−1(S) = s
(where we identify S with its image in S ′′, and the same for s).

Proof. This is [1, Chapter 2, Section 2, Proposition 1]. As noted in the Lemma, φ′′ is an
isometry onto its range, φ(s)◦◦, and so j′′ must be injective. We then see that

(φ′′)−1(κZ(φ(s))) =
{

Φ ∈ s′′ : ∃x ∈ s, φ′′(Φ) = κZ(φ(x))
}

=
{

Φ ∈ s′′ : ∃x ∈ s, (· · · , j′′(Φ), j′′(Φ), · · · ) = κZ(· · · , j(x), j(x), · · · )
}

=
{

Φ ∈ s′′ : ∃x ∈ s, j′′(Φ) = κS(j(x))
}
.

As j′′ is injective, we see that (φ′′)−1(κZ(φ(s))) = κs(s). We then see that

(j′′)−1(κS(S)) = {Φ ∈ s′′ : j′′(Φ) ∈ S} = {Φ ∈ s′′ : π′′0(φ′′(Φ)) ∈ S}
= {Φ ∈ s′′ : φ′′(Φ) ∈ κZ(Z)} = {Φ ∈ s′′ : φ′′(Φ) ∈ κZ(Z) ∩ φ(s)◦◦}
= {Φ ∈ s′′ : φ′′(Φ) ∈ φ(s)} = κs(s).

This follows, as for φ′′(Φ) = (j′′(Φ)), we see that π′′0(φ′′(Φ)) = j′′(Φ) ∈ S if and only
if φ′′(Φ) = (j′′(Φ)) ∈ Z; also κZ(Z) ∩ φ(s)◦◦ = φ(s), as φ(s) is closed in Z. Thus
(j′′)−1(S) = s, as required.

For a Banach space E, let BE be the closed unit ball of E.

Proposition 2.17. For p ∈ (1,∞), the map j′′ is a homeomorphism between Bs′′ with
weak∗-topology, and j′′(Bs′′) with the weak∗-topology on S ′′.
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Proof. This is [1, Chapter 2, Section 2, Proposition 2]. Notice that j′′ is an injection and
the adjoint of an operator (namely j′), so that it is weak∗-continuous. As Bs′′ is compact,
j′′(Bs′′) is compact, and hence closed, in S ′′. The result then follows from the standard
result in topology that a bijective continuous map from a compact space to a Hausdorff
space has a continuous inverse.

Corollary 2.18. For p ∈ (1,∞), the map j is a homeomorphism between Bs with the
weak-topology, and j(Bs) ⊆ S with the weak-topology.

Proof. This is [1, Chapter 2, Section 2, Corollaire 1]. The map κs takes Bs into a dense
subset of Bs′′ (this is Goldstein’s theorem), and is continuous with respect to the weak-
topology on Bs and the weak∗-topology on Bs′′ . Let K = j′′(Bs′′) with the weak∗-
topology, so that j′′ : Bs′′ → K is a homeomorphism. From above, we know that
(j′′)−1(κS(S)) = κs(s), so that (j′′)−1(K ∩ κS(S)) = κs(Bs) = Bs′′ ∩ κs(s). Hence j′′

is a homeomorphism between Bs′′ ∩ κs(s) and K ∩ κS(S), which implies that j is a
homeomorphism between Bs and j(Bs) with respect to the weak-topology (as j′′(Bs′′) ∩
κS(S) = j(Bs)).

Corollary 2.19. For p ∈ (1,∞), the weak∗-closure of j(Bs) in S ′′ is j′′(Bs′′).

Proof. This is [1, Chapter 2, Section 2, Corollaire 2]. As j′′(Bs′′)∩ S is dense in j′′(Bs′′),
this result follows from the fact that (j′′)−1(j′′(Bs′′) ∩ S) = Bs.

Proposition 2.20. For p ∈ (1,∞), the space s is reflexive if and only if j : s → S is
weakly-compact.

Proof. This is [1, Chapter 2, Section 2, Proposition 3]. If s is reflexive, then j is weakly-
compact. Conversely, if j is weakly-compact, then j(Bs) is relatively-weakly-compact and
weakly-homeomorphic to Bs, implying that Bs is weakly-compact, so that s is reflexive.

There are further interesting properties of s discussed in [1, Chapter 2, Section 2].

2.7 When E0 is a subspace of E1: factorisation theorems

Again, we shall consider the special case when E0 ↪→ E1.

Proposition 2.21. When E0 ↪→ E1, the space s (for 1 < p <∞) is reflexive and if only
if the inclusion E0 → E1 is weakly-compact.

Proof. This is [1, Chapter 2, Section 3, Proposition 1] (see also [2]). Recall that S = E1

with equivalent norm, and that the space s factors the inclusion i : E0 → E1. Hence, if
if s is reflexive, then i is weakly-compact. We shall now show the converse, so suppose
that i is weakly-compact. Let W be the image of BE0 in E1, and let C be the image
of Bs in S = E1. Then W is relatively weakly-compact in E1, and hence W is weakly-
compact, so that κE1(W ) is weak∗-closed in E ′′

1 (as κE1 is weakly-weak∗-continuous, and
the continuous image of a compact set is compact, and hence closed).

Notice that
C =

{
x ∈ E1 :

∑
n∈Z

ψn(x)p ≤ 1
}
,

so that as ψn(x) = inf
{
t > 0 : ∃ y ∈ W, z ∈ BE1 , x = t(e−ξ0ny + e−ξ1nz)

}
, we see that

C ⊆ 2
(
e−ξ0nW + e−ξ1nBE1

)
(n ∈ Z),
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so in particular,

κE1(C) ⊆ 2
(
e−ξ0nκE1(W ) + e−ξ1nBE′′

1

)
(n ∈ Z),

where the set on the right is weak∗-closed in E ′′
1 . From Corollary 2.19, we know that

j′′(Bs′′) ⊆ S ′′ = E ′′
1 is equal to the weak∗-closure of κE1(j(Bs)) = κE1(C). Thus we see

that, as ξ1 > 0,

j′′(Bs′′) ⊆ 2
⋂
n>0

(
e−ξ0nκE1(W ) + e−ξ1nBE′′

1

)
⊆

⋂
n>0

(
κE1(E1) + 2e−ξ1nBE′′

1

)
= κE1(E1).

From Proposition 2.16, (j′′)−1(κE1(E1)) = κs(s), so we see that Bs′′ ⊆ κs(s), that is, s is
reflexive.

Again, [1] contains futher interesting results, which we shall now summarise.

Proposition 2.22. When E0 ↪→ E1, the unit ball Bs is relatively weak∗-sequentially
compact in s′′ if and only if BE0 is relatively weak∗-sequentially compact in E ′′

1 .

Proof. This is [1, Chapter 2, Section 3, Proposition 2].

Proposition 2.23. When E0 ↪→ E1, the space s contains an isomorphic copy of l1 if and
only if E0 and E1 contain an isomorphic copy of l1.

Proof. This is [1, Chapter 2, Section 3, Proposition 3].

3 Dual spaces and reiteration

In [1, Chapter 4], the author concentrates on the interpolation functor S, which leads
naturally to a consideration of the dual of Lp(E0), and hence to technical issues like the
Radon-Nikodym property. Instead, we shall consider the functors s, s1 and s2, which are
easier to work with (as noted at the end of [1, Chapter 4, Section 1]).

Throughout this section, (E0, E1) shall be a compatible couple. We shall assume (as
we may, by Section 2.5) that I(E0, E1) is dense in E0 and E1, so that ιi : I(E0, E1) → Ei

has dense range, and hence ι′i : E ′
i → I(E0, E1)

′ is norm-decreasing and injective, for
i = 0, 1. As vector spaces, we can hence view E ′

i as a subspace of I(E0, E1)
′, for i = 0, 1,

showing that (E ′
0, E

′
1) is a compatible couple.

We hence see that

I(E ′
0, E

′
1) =

{
µ ∈ E ′

0 : ∃λ ∈ E ′
1, 〈µ, x〉 = 〈λ, x〉 (x ∈ E0 ∩ E1)

}
,

with norm ‖µ‖I = max(‖µ‖0, ‖λ‖1), which makes sense, as λ is necessarily unique, given
that E0 ∩ E1 is dense in both E0 and E1. Similarly, we see that

S(E ′
0, E

′
1) =

{
µ ∈ I(E0, E1)

′ : µ = µ0 + µ1, µ0 ∈ E ′
0, µ1 ∈ E ′

1

}
,

with the usual norm.
Define a map β : I(E ′

0, E
′
1) → S(E0, E1)

′ as follows. Let µ ∈ I(E ′
0, E

′
1), so that

µ is represented by a pair (µ0, µ1), where µ0 ∈ E ′
0, µ1 ∈ E ′

1, and µ0 and µ1 agree on
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E0 ∩E1. Then we let 〈β(µ), x0 + x1〉 = 〈µ0, x0〉+ 〈µ1, x1〉 for x0 ∈ E0 and x1 ∈ E1. This
is well-defined, as µ0 and µ1 agree on E0 ∩ E1, and clearly β is linear. Furthermore,

|〈β(µ), x0 + x1〉| ≤ ‖µ0‖0‖x0‖0 + ‖µ1‖1‖x1‖1 ≤ ‖µ‖I(‖x0‖0 + ‖x1‖1),

so that |〈β(µ), x0 + x1〉| ≤ ‖µ‖I‖x0 + x1‖S , and hence β is norm-decreasing. Conversely,
let µ ∈ S(E0, E1)

′, so that we can consider µ acting on E0 or E1 by restriction, and hence
consider µ as a member of E ′

0 or E ′
1. We then see that

‖µ‖ = sup{|〈µ, x+ y〉| : x ∈ E0, y ∈ E1, ‖x‖0 + ‖y‖1 ≤ 1}
= sup{|〈µ, x〉| + |〈µ, y〉| : x ∈ E0, y ∈ E1, ‖x‖0 + ‖y‖1 ≤ 1} = max

(
‖µ‖0, ‖µ‖1

)
.

We conclude that S(E0, E1)
′ = I(E ′

0, E
′
1) isometrically.

Similarly, we have a natural inclusion S(E ′
0, E

′
1) → I(E0, E1)

′. Let µi ∈ E ′
i for i = 0, 1,

so that

‖µ0 + µ1‖I(E0,E1)′ = sup
{
|〈µ0 + µ1, x〉| : x ∈ E0 ∩ E1, ‖x‖0 ≤ 1, ‖x‖1 ≤ 1

}
≤ sup

{
|〈µ0, x〉| + |〈µ1, y〉| : x, y ∈ E0 ∩ E1, ‖x‖0 ≤ 1, ‖y‖1 ≤ 1

}
≤ ‖µ0‖0 + ‖µ1‖1.

Thus the map S(E ′
0, E

′
1) → I(E0, E1)

′ is norm-decreasing.
The interested reader will find the above calculation much easier to perform in the

special case when E0 ↪→ E1.
We shall now work with s = s(p; ξ0, E0; ξ1, E1), where we shall assume that 1 ≤ p <∞.

As before, s embeds isometrically into the Banach space lp(S, ψn). Hence if ψ∗n denotes
the dual norm to ψn, then

s′ = lq
( ⊕

n∈Z

(S ′, ψ∗n)
)
/s◦,

where p−1 + q−1 = 1. That is, we have a natural map lq((S ′, ψ∗n)) → s′ given by

〈(µn), x〉 =
∑
n∈Z

〈µn, x〉 (x ∈ s, (µn) ∈ lq((S ′, ψ∗n))),

which is a surjection. We hence see that

‖µ‖s′ = inf
{( ∑

n∈Z

ψ∗n(µn)q
)1/q

: µ =
∑
n∈Z

µn

}
(µ ∈ s′),

where we may restrict to finite sums if one is worried about convergence. For n ∈ Z and
µ ∈ S(E0, E1)

′ = I(E ′
0, E

′
1), we have

ψ∗n(µ) = sup
{
|〈µ, x0 + x1〉| : ‖eξ0nx0‖0 ≤ 1, ‖eξ1nx1‖1 ≤ 1

}
= sup

{
|〈µ, x0〉| + |〈µ, x1〉| : ‖xi‖i ≤ e−ξin (i = 0, 1)

}
= e−ξ0n‖µ‖0 + e−ξ1n‖µ‖1.

Consequently,

‖µ‖s′ = inf
{( ∑

n∈Z

(
e−ξ0n‖µn‖0 + e−ξ1n‖µn‖1

)q
)1/q

: µ =
∑
n∈Z

µn

}
= inf

{( ∑
n∈Z

(
eξ0n‖µn‖0 + eξ1n‖µn‖1

)q
)1/q

: µ =
∑
n∈Z

µn

}
(µ ∈ s′),

which is clearly equivalent to the norm s1(q; ξ0, E
′
0; ξ1, E

′
1). We hence see that (E0, E1)θ,p =

(E ′
0, E

′
1)θ,q with equivalence of norms (this is [1, Chapter 4, Section 1, Proposition 2]).
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4 Appendix on integration in Banach spaces

We need very little on the theorem of integration in Banach spaces. Let E be a Banach
space, and let (Ω,B, µ) be a (σ-finite if we wish) measure space. That is, Ω is a set, B
is a σ-algebra of subsets of B, and µ is a positive measure. For A ∈ B, let χA be the
characteristic function of A. Let L̃p(E, µ) be the vector space of step-functions. We think
of this as formal sums of the form

n∑
j=1

xjχAj
,

where n ≥ 1, (xj) is a finite sequence in E, and (Aj) is a finite collection in B (we
can always arrange for the (Aj) to be pairwise-disjoint if we so wish). Technically, we
restrict to the case when each Aj has finite measure. Equivalently, this is the collection of
measurable functions f : Ω → E which take finitely-many values, and which are non-zero
on a set of finite measure. We norm L̃p(E, µ) in the standard way:

‖f‖L̃p(E,µ) =
( ∫

‖f(t)‖p
E dµ(t)

)1/p

=
( n∑

j=1

‖xj‖pµ(Aj)
)1/p (

f =
n∑

j=1

xjχAj

)
.

Then a standard check shows that L̃p(E, µ) is a normed vector space. We simply let
Lp(E, µ) be the Banach space completion of L̃p(E, µ). As in the main text, we denote by
Lp(E) the space Lp(E, µ) where µ is Lebesgue measure on R.

There is a natural map
∫

: L̃p(E, µ) → E given by integration:∫
f =

∫
f(t) dµ(t) =

n∑
j=1

xjµ(Aj)
(
f =

n∑
j=1

xjχAj

)
.

Then we see that ∥∥∥∫
f
∥∥∥ =

∥∥∥ n∑
j=1

xjµ(Aj)
∥∥∥ ≤

n∑
j=1

‖xj‖µ(Aj),

so if p = 1, this mapping is norm decreasing, and hence extends to L1(E, µ). If (Ω,B, µ)
is a finite measure space, then∥∥∥∫

f
∥∥∥ ≤

( n∑
j=1

‖xj‖p
)1/p( n∑

j=1

µ(Aj)
q
)1/q

≤ µ(Ω)‖f‖L̃p(E,µ),

so that, again, this map extends to a bounded map Lp(E, µ) → E. Finally, for general
(Ω,B, µ) there is no bounded map lp(E, µ) → E (simply consider E = C to see this).
Notice, however, that we do have a well-defined (but unbounded) operator

∫
: Lp(E, µ)∩

L1(E, µ) → E, which shall be sufficient for our purposes.
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