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Abstract
We

1 Notation

The original paper assumed throughout that Hilbert spaces are separable. We shall try hard
not to use this assumption. Exceptions are: Proposition

prop:4
2.13.

We shall follow the convention that inner products are linear on the right. We write ⊗ for
various completed tensor products, which should be clear by context (either Hilbert space, or
the minimal C∗-algebraic, tensor products).

Given H a Hilbert space and ξ ∈ H, define

θξ, θ
′
ξ ∈ B(H,H ⊗H); θξ(η) = ξ ⊗ η, θ′ξ(η) = η ⊗ ξ (η ∈ H).

Similarly, for i = 1, 2, 3, define θi,ξ ∈ B(H ⊗ H,H ⊗ H ⊗ H) by θ1,ξ(η ⊗ ζ) = ξ ⊗ η ⊗ ζ,
θ2,ξ(η ⊗ ζ) = η ⊗ ξ ⊗ ζ and θ3,ξ(η ⊗ ζ) = η ⊗ ζ ⊗ ξ.

For T ∈ B(H ⊗H), we define T12, T13, T23 ∈ B(H ⊗H ⊗H) using the usual leg-numbering
notation. Notice that T12θ3,ξ = θ3,ξT , T13θ2,ξ = θ2,ξT and T23θ1,ξ = θ1,ξT . Similarly, if Σ ∈
B(H ⊗H) denotes the “swap map”, then T21 = ΣT12Σ, and so forth.

We shall also sometimes work with Hilbert C∗-modules (see, for example,
lance
[lan]. For a Hilbert

C∗-module E over A, we shall write (in a non-standard way) B(E) for the adjointable maps on
E.

Given T ∈ B(H ⊗H) and ω ∈ B(H)∗, we define the slice maps (ω ⊗ ι)(T ) and (ι ⊗ ω)(T )
as usual. Notice that(

ξ
∣∣(ι⊗ ω)(T )η

)
= 〈θ∗ξTθη, ω〉,

(
ξ
∣∣(ω ⊗ ι)(T )η

)
= 〈θ′ξ

∗
Tθ′η, ω〉.

Given a C∗-algebra A, we denote by Ã the C∗-algebra given by adjoining a unit, and we
denote by M(A) the multiplier algebra of A (see

r33
[10, 3.12]). If J is a closed two-sided ideal in

A, let M(A; J) = {m ∈M(A) : mA+Am ⊆ J}. Clearly M(A; J) is a sub-C∗-algebra of M(A).
Restricting each element of M(A) to J defines a member of M(J); indeed, for m ∈M(A) and
a ∈ J , if (ei) is an approximate identity for A, then ma = limi(eim)a ∈ J , and similarly am ∈ J .
Thus we get a ∗-homomorphism M(A)→M(J), and so a ∗-homomorphism M(A; J)→M(J).
This latter map is injective, as if m ∈M(A; J) with mJ = {0} = Jm, then for a ∈ A, and (fi)
an approximate identity for J , then am = lim a(mfi) = 0, as am ∈ J ; similarly ma = 0 and so
m = 0. Thus we can also regard M(A; J) as a sub-C∗-algebra of M(J).

Recall that a ∗-homomorphism π : A → M(B) is non-degenerate if π(ei) → 1 strictly
(meaning that limi π(ei)b = limi bπ(ei) = b for b ∈ B) for a (or equivalently, any) approximate
identity (ei) for A. This is equivalent to asking that π extends to a strictly-continuous, unital
∗-homomorphism π : M(A)→M(B). (This notion is termed “spécial” in

r50
[12]).
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Definition 1.1 (Définition 0.1). A Hopf-C∗-algebra is a pair (A, δ) where A is a C∗-algebra and
δ : A→M(Ã⊗A+A⊗Ã;A⊗A) is a non-degenerate ∗-homomorphism (notice that this means
that δ is a non-degenerate ∗-homomorphism A→M(A⊗A) such that δ(a)(1⊗ b), δ(a)(b⊗1) ∈
A⊗ A) with

A
δ //

δ
��

M(A⊗ A)

ι⊗δ
��

M(A⊗ A)
δ⊗ι // M(A⊗ A⊗ A).

We call δ the coproduct of A. We say that A is right simplifiable (or left simplifiable) if
δ(A)(1⊗A) is linearly dense in A⊗A (respectively δ(A)(A⊗1)). We say that A is bisimplifiable
if A is left and right simplifiable.

Be aware that this clashes with
r2
[2, 1.1]. Given a Hilbert space H, we can form the interior

tensor product (see
lance
[lan, Chapter 4]) (H ⊗ A) ⊗δ (A ⊗ A). Recall that this is the completion

of (H ⊗A)⊗alg (A⊗A)/X where X is the linear span of elements of the form (ξ ⊗ ab)⊗ (c⊗
d) − (ξ ⊗ a) ⊗ δ(b)(c ⊗ d). A little bit of work shows that we can identify, as A ⊗ A-modules,
the spaces (H ⊗A)⊗δ (A⊗A) and H ⊗A⊗A by the map (ξ⊗ a)⊗ (c⊗ d) 7→ ξ⊗ δ(a)(c⊗ d).

Definition 1.2 (Définition 0.2). A coaction of a Hopf-C∗-algebra on a C∗-algebra B is a non-
degenerate ∗-homomorphism δB : B → M(B̃ ⊗ A;B ⊗ A) such that the following diagram
commutes:

B
δB //

δB
��

M(B ⊗ A)

ι⊗δ
��

M(B ⊗ A)
δB⊗ι // M(B ⊗ A⊗ A).

(Again, this means that δB(b)(1⊗ a) ∈ B ⊗ A). A C∗-algebra B with a coaction δB of a Hopf-
C∗-algebra (A, δ) is an A-algebra if additionally δB is injective, and δB(B)(1 ⊗ A) is linearly
dense in B ⊗ A.

Definition 1.3 (Définition 0.3). Let A be a Hopf-C∗-algebra. A unitary corepresentation of A
on a Hilbert space (or Hilbert C∗-module) H is a unitary u ∈ B(H ⊗A) such that (ι⊗ δ)(u) =
u12u13; alternatively, in

(H ⊗ A)⊗δ (A⊗ A) ∼= H ⊗ A⊗ A we have u⊗δ 1 = u12u13.

Let B be a C∗-algebra with a coaction δB of (A, δ). A covariant representation of (B, δB) is a
pair (π, u) where π : B → B(H) is a ∗-representation, and u is a unitary corepresentation of
A, such that (π ⊗ ι)δB(b) = u(π(b)⊗ 1)u∗ for each b ∈ B.

Remember that B(H ⊗ A) ∼= M(B0(H)⊗ A), so if H is a Hilbert space, we can phrase the
above without reference to Hilbert C∗-modules.

Definition 1.4 (Définition 0.4). Let B be a C∗-algebra with a coaction δB of (A, δ). A unitary
u ∈M(B ⊗ A) is a cocycle for δB if

u12(δB ⊗ ι)(u) = (ι⊗ δ)(u).

If u is a cocycle for δB, the map δB,u : B →M(B ⊗A);x 7→ uδB(x)u∗ satisfies (δB,u⊗ ι)δB,u =
(ι⊗ δ)δB,u, and hence is a coaction.

Finally, we recall the notion of morphism for the category of Hopf-C∗-algebras.

Definition 1.5 (Définition 0.5). Let (S, δ) and (S ′, δ′) be Hopf-C∗-algebras. A morphism
(S, δ)→ (S ′, δ′) is a non-degenerate ∗-homomorphism φ : S →M(S ′) with (φ⊗ φ)δ = δ′φ.
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2 Definitions

Consult
r30
[9] for motivations on studying the Pentagonal equation.

Definition 2.1 (Définition 1.1). A unitary V ∈ B(H ⊗H) is multiplicative if it satisfies the
pentagonal equation:

V12V13V23 = V23V12.

eg:1 Examples 2.2 (Exemples 1.2). 1. • The identity 1 ∈ B(H ⊗H) is a multiplicative uni-
tary.

eg:1.2 • If V is a multiplicative unitary and U ∈ B(H,H ′) is a unitary, then W = (U ⊗
U)V (U∗⊗U∗) is a multiplicative unitary on H ′. We say that V and W are equivalent.

• If V is a multiplicative unitary and Σ ∈ B(H ⊗H) is the swap map, then ΣV ∗Σ is
also a multiplicative unitary. We say that V and W are opposite if V and ΣW ∗Σ
are equivalent.

• If V and W are two multiplicative unitaries on H and K, respectively, then V13W24 ∈
B(H ⊗K ⊗H ⊗K) is a multiplicative unitary on H ⊗K. We call this the tensor
product of V and W , sometimes denoted (abusively) by V ⊗W . Notice that V ⊗W
and W ⊗ V are equivalent.

2. If G is a locally compact group with right Haar measure dg, then VG(ξ)(s, t) = ξ(st, t) is
a multiplicative unitary on L2(G, dg).

3. If W is the fundamental unitary of a Kac algebra (see
r6
[3],

r13
[6] and

r17
[7]) then V = W ∗ is a

multiplicative unitary.

eg:1.4 4. If (A, δ) is a Hopf-C∗-algebra, and φ is a right Haar measure on A (so φ ∈ A∗ is a state
with (φ ⊗ µ)δ(a) = φ(a)µ(1) for a ∈ A, µ ∈ A∗), then let (H, π, ξ) be the cyclic GNS
construction for φ. If we define Vφ by Vφ(π(x)ξ ⊗ η) = (π ⊗ π)(δ(x))(ξ ⊗ η) for η ∈ H,
then Vφ is an isometry which satisfies the pentagonal equation. If Vφ surjects, then it
is a multiplicative unitary; this is the case of a compact quantum group in the sense of
Woronowicz,

r54
[13].

5. Let (A, δ) be a Hopf-C∗-algebra. The coproduct δ is a coaction of A on itself. If also
(π, u) is a covariant representation of (A, δ) on a Hilbert space H. So (ι⊗ δ)(u) = u12u13

and (π ⊗ ι)δ(a) = u(π(a) ⊗ 1)u∗ for a ∈ A. Setting V = (ι ⊗ π)(u), we see that V is a
multiplicative unitary.

6. Another interpretation of the pentagonal equation is the following:

If A is a finite-dimensional Hopf algebra, and let E be the algebra of linear maps A →
A. We identify E with A∗ ⊗ A, and let v ∈ A∗ ⊗ A be the identity map. Define a
homomorphism L : A → E by L(a)(b) = ab. Recall that A∗ becomes an algebra for the
product

〈xy, a〉 = 〈x⊗ y, δ(a)〉 (x, y ∈ A∗, a ∈ A).

For x ∈ A∗ and a ∈ A, we let ρ(x)(a) = (ι⊗ x)δ(a), so ρ is a homomorphism A∗ → E.

prop:1.1 Proposition 2.3 (Page 431). (a) For a ∈ A, x ∈ A∗, write δ(a) =
∑

i ai ⊗ bi; then
ρ(x)L(a) =

∑
i L(ai)ρ(xbi).

prop:1.2 (b) For a ∈ A, we have that (ρ⊗ ι)(v)(L(a)⊗ 1) = (L⊗ ι)(δ(a))(ρ⊗ ι)(v) in E ⊗ A.

prop:1.3 (c) We have that (ι⊗ δ)(v) = v12v13.
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prop:1.4 (d) In A∗ ⊗ E ⊗ A, we have that

((ι⊗ L)(v))12v13((ρ⊗ ι)(v))23 = ((ρ⊗ ι)(v))23((ι⊗ L)(v))12.

Proof. For (
prop:1.1
6a), given b ∈ A, we have that ρ(x)L(a)b = ρ(x)(ab) = (ι ⊗ x)δ(ab) =∑

i ai(ι⊗ xbi)δ(b) =
∑

i L(ai)ρ(xbi)b, as claimed.

For (
prop:1.2
6b), given x ∈ A∗, we have that (ι ⊗ x)(v) = x, and so (ι ⊗ x)((ρ ⊗ ι)(v)) = ρ(x).

Thus, using part (
prop:1.1
6a),

(ι⊗ x)((ρ⊗ ι)(v)(L(a)⊗ 1)) = ρ(x)L(a) =
∑
i

L(ai)ρ(xbi)

= (ι⊗ x)
∑
i

(L(ai)⊗ bi)(ρ⊗ ι)(v)

= (ι⊗ x)((L⊗ ι)(δ(a))(ρ⊗ ι)(v)).

As x was arbitrary, this shows (
prop:1.2
6b).

Now let x, y ∈ A∗ and a ∈ A = A∗∗. Then (a⊗ι)(v) = a, (ι⊗x)(v) = x and (ι⊗y)(v) = y.
Thus

〈a⊗ x⊗ y, (ι⊗ δ)(v)〉 = 〈x⊗ y, δ(a)〉 = 〈xy, a〉.
However, also

〈a⊗ x⊗ y, v12v13〉 = 〈(ι⊗ x)(v)(ι⊗ y)(v), a〉 = 〈xy, a〉.

Thus we have shown (
prop:1.3
6c).

Finally, by (
prop:1.2
6b), we see that

((ρ⊗ ι)(v))23((ι⊗ L)(v))12 = (ι⊗ L⊗ ι)(ι⊗ δ)(v)((ρ⊗ ι)(v))23.

By (
prop:1.3
6c), this is equal to ((ι⊗ L)(v))12v13((ρ⊗ ι)(v))23, as required to show (

prop:1.4
6d).

Corollary 2.4 (Page 431). The operator V = (ρ⊗L(v) satisfies the pentagonal equation.

If A is both unital and counital, then L and ρ inject, and we have the following.

Proposition 2.5 (Page 431). Let 1 ∈ A be the unit of A, and ε ∈ A∗ be the unit of A∗.

prop:2.1 (a) If V , and so v, are invertible, then the map κ : A → A; a 7→ (a ⊗ ι)(v−1) is the
antipode of A. That is, for a ∈ A,

m(ι⊗ κ)δ(a) = m(κ⊗ ι)δ(a) = ε(a)1.

Here m : A⊗ A→ A is the multiplication map.

prop:2.2 (b) Conversely, if A has an antipode, then v is invertible.

Proof. For (
prop:2.1
6a), as above, we have that δ(a) = (a ⊗ ι ⊗ ι)(v12v13) and (ι ⊗ κ)δ(a) =

(a⊗ ι⊗ ι)(v12v
−1
13 ). Thus

m(ι⊗ κ)δ(a) = (a⊗m)(v12v
−1
13 ) = (a⊗ ι)(vv−1) = (a⊗ ι)(ε⊗ 1) = ε(a)1.

Similarly, m(κ⊗ ι)δ(a) = (a⊗m)(v−1
12 v13) = ε(a)1. This shows (

prop:2.1
6a).

For (
prop:2.2
6b), compare with

r1
[1]. Indeed, set u = (ι⊗ κ)(v),

vu = (ι⊗m)(v12u13) = (ι⊗m(ι⊗ κ))(v12v13) = (ι⊗m(ι⊗ κ)δ)(v)

= (ι⊗ ε)(v)⊗ 1 = ε⊗ 1.

So u = v−1.

4



We continue studying general multiplicative unitaries. Let H be a Hilbert space and V ∈
B(H ⊗H) a multiplicative unitary.

Definition 2.6 (Définition 1.3). Let ω ∈ B(H)∗, and define L(ω), ρ(ω) ∈ B(H) by L(ω) =
(ω ⊗ ι)(V ) and ρ(ω) = (ι⊗ ω)(V ). Let

A(V ) = {L(ω) : ω ∈ B(H)∗} Â(V ) = {ρ(ω) : ω ∈ B(H)∗}.

Then A(V ) and Â(V ) form a dual pairing:

〈L(ω), ρ(ω′)〉 = (ω ⊗ ω′)(V ) = 〈ρ(ω′), ω〉 = 〈L(ω), ω′〉.

prop:3 Proposition 2.7 (Proposition 1.4). The spaces A(V ) and Â(V ) are subalgebras of B(H), and
the spaces A(V )H and Â(V )H are linearly dense in H.

Proof. Let ω, ω′ ∈ B(H)∗, and define ψ ∈ B(H)∗ by define 〈T, ψ〉 = 〈V ∗(1⊗ T )V , ω ⊗ ω′〉 for
T ∈ B(H). Then, using the pentagonal equation,

L(ω)L(ω′) = (ω ⊗ ι)(V )(ω′ ⊗ ι)(V ) = (ω ⊗⊗′ ⊗ ι)(V13V23)

= (ω ⊗⊗′ ⊗ ι)(V ∗12V23V12) = (ψ ⊗ ι)(V ) = L(ψ).

Similarly, ρ(ω)ρ(ω′) = ρ(ψ′) where 〈T, ψ′〉 = (ω ⊗ ω′)(V (T ⊗ 1)V ∗).
Given non-zero ξ, η ∈ H, we have that V ∗(ξ ⊗ η) 6= 0, and so there are α, β ∈ H with

〈ξ ⊗ η, V (α⊗ β)〉 6= 0. Thus L(ωξ,α)β is not orthogonal to η, and ρ(ωη,β)α is not orthogonal to

ξ, showing linear density of the spaces A(V )H and Â(V )H.

Definition 2.8 (Définition 1.5). Let V be a multiplicative unitary. We write S for the norm
closure of the algebra A(V ), and similarly denote by Ŝ the norm closure of Â(V ).

We remark that the functionals ψ which appear in the proof above are dense in B(H)∗. It
follows that {xy : x, y ∈ A(V )} is dense in S, and similarly {xy : x, y ∈ Â(V )} is dense in Ŝ.

Proposition 2.9 (Proposition 1.6). Let C∗(S) be the C∗-algebra (in B(H)) generated by S,
and similarly for C∗(Ŝ). Then V is in the von Neumann algebra generated by C∗(Ŝ)⊗ C∗(S).

Proof. Let T ∈ B(H ⊗H). For ω ∈ B(H)∗,

(ι⊗ ω ⊗ ι)(T13V23 − V23T13) = T (1⊗ L(ω))− (1⊗ L(ω))T.

So T commutes with 1 ⊗ S if and only if T13 commutes with V23. A similar calculation shows
that Ŝ ⊗ 1 commutes with T if and only if T13 commutes with V12.

So if T ∈ (Ŝ ⊗ S)′ then T13 commutes with both V23 V12. As V13 = V ∗12V23V12V
∗
23, it follows

that T13 commutes with V13. So V ∈ (Ŝ ⊗ S)′′ and hence certainly V ∈ (C∗(Ŝ)⊗ C∗(S))′′.

Definition 2.10 (Définition 1.7). Let V be a multiplicative unitary. We say that V is of
compact type if S is unital. We say that V is of discrete type if Ŝ is unital.

defn:2 Definition 2.11 (Définition 1.8). Let V be a multiplicative unitary. A vector e ∈ H is fixed
if V θe = θe (that is, V (e ⊗ ξ) = e ⊗ ξ for all ξ ∈ H), and is cofixed if V θ′e = θ′e (that is,
V (ξ ⊗ e) = ξ ⊗ e for all ξ ∈ H).

Proposition 2.12 (Proposition 1.9). Let e be a fixed (respectively cofixed) unit vector. Then
L(ωe) = 1 and ρ(ωe) is the projection onto the subspace of all fixed vectors (respectively, ρ(ωe) =
1 and L(ωe) is the projection onto the subspace of all cofixed vectors).
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Proof. Clearly L(ωe) = (ωe ⊗ ι)(V ) = 1. Define ψ′ ∈ B(H)∗ by ψ′(T ) = (e ⊗ e|V (T ⊗
1)V ∗(e ⊗ e)) = 〈T, ωe〉, as V ∗(e ⊗ e) = e ⊗ e. By (the proof of) Proposition

prop:3
2.7, ρ(ωe) is an

idempotent, and as ‖ρ(ωe)‖ ≤ 1, it follows that ρ(ωe) is a projection. Now, ρ(ωe)ξ = xi if
and only if (ξ|ρ(ωe)ξ) = ‖ξ‖2, that is, (ξ ⊗ e|V (ξ ⊗ e) = ‖ξ ⊗ e‖2. Thus the image of ρ(ωe) is
{ξ ∈ H : V (ξ ⊗ e) = ξ ⊗ e}. However, notice that if V (ξ ⊗ e) = ξ ⊗ e, then for η ∈ H, the
vector ξ ⊗ e⊗ η is fixed by both V12 and V23, and hence by V13 = V ∗12V23V12V

∗
23, showing that ξ

is fixed.
The other case follows by working with ΣV ∗Σ instead of V .

prop:4 Proposition 2.13 (Proposition 1.10). Let V be a multiplicative unitary on H, where H is now
separable. Then V is of compact type (respectively, discrete type) if and only if the spaces of
fixed vectors (respectively, cofixed vectors) is not zero.

Proof. If there is a fixed vector e then L(e) = 1 so S is unital. Conversely, suppose that
S is unital, and recall from Proposition

prop:3
2.7 that S acts non-degenerately on H, so the unit

of S is the identity operator on H. Thus there is ω ∈ B(H)∗ with ‖L(ω) − 1‖ < 1/2. Fix
a faithful normal state ψ, using that H is separable. Then |〈ρ(ψ), ω〉| = |〈L(ω), ψ〉| > 1/2.
Set ψ1 = ψ, and defined inductively 〈x, ψn+1〉 = 〈V (x⊗ 1)V ∗, ψ ⊗ ψn〉. Set ψn = 1

n

∑n
k=1 ψ

k.
Thus, from Proposition

prop:3
2.7, ρ(ψn) = ρ(ψ)n. Notice that ‖ρ(ψ)‖ ≤ 1 and (1 − ρ(ψ))ρ(ψn) =

(ρ(ψ)− ρ(ψ)n+1)/n, which converges to 0 in norm.
If T = 1−ρ(ψ) is an injective operator, then T ∗ has dense range, and so there is ω′ ∈ B(H)∗

with ‖ω−ω′T‖ < 1/4. As |〈ρ(ψn), ω〉| = |〈L(ω), ψn〉| ≥ 1/2, because ψn is a state, we arrive at
a contradiction. So T is not injective, and we can find a unit vector e ∈ H with ρ(ψ)(e) = e.
Then 1 = 〈ρ(ψ), ωe〉 = 〈L(ωe), ψ〉. As ‖L(ωe)‖ ≤ 1, we have that 1 − L(ωe) is positive, and
〈1− L(ωe), ψ〉 = 0. As ψ is faithful, we must have that L(ωe) = 1, as required to show that e
is a fixed vector.

We see that 1 ∈ B(H ⊗H) is both compact and discrete. If V is a multiplicative unitary,
then V is of compact (respectively, discrete) type if and only if ΣV ∗Σ is of discrete (respectively,
compact) type. The tensor product of two multiplicative unitaries of compact (discrete) type
is again of compact (discrete) type.

If G is a compact group, and we form VG as in Example
eg:1
2.2.

eg:1.2
1, then the function which is

constant 1 is fixed by VG. Similarly, if G is a discrete group, then the function which is 1 at
the identity, and 0 elsewhere, is fixed by VG.

In Example
eg:1
2.2.

eg:1.4
4, the cyclic vector ξ is fixed.

Remarks 2.14 (Remarques 1.11). 1. Let f ∈ H be a unit vector with V (f ⊗ f) = f ⊗ f .
Then L(ωf )

2 = L(ωf ) and ρ(ωf )
2 = ρ(ωf ); as both ‖L(ωf )‖ = ‖ρ(ωf )‖ = 1, both L(ωf )

and ρ(ωf ) are projections.

3 Commutative multiplicative unitaries

We will now study commutative multiplicative unitaries, and show that they correspond to
locally compact groups.

Let V be a multiplicative unitary on a Hilbert space H.

Definition 3.1 (Définition 2.1). We say that V is commutative if V13 and V23 commute. We
say that V is cocommutative if V12 and V13 commute.

The multiplicative unitary VG from Example
eg:1
2.2.

eg:1.2
1 is commutative. We will show that every

commutative multiplicative unitary is of this form. Notice that V is commutative (respectively,
cocommutative) if and only if S (respectively, Ŝ) is abelian. Also, if V is commutative, then
V13 and V ∗23 commute, and so C∗(S) is abelian.
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Theorem 3.2 (Théorèm 2.2). Let V be a commutative multiplicative unitary, and let G be the
spectrum of the abelian C∗-algebra C∗(S). Then G is a locally compact group and there is a
Hilbert space J such that V is equivalent to the multiplicative unitary VG ⊗ 1K⊗K.

4 Regular multiplicative unitaries

In this section, we define and study regular multiplicative unitaries and deduce the existence
of a densely defined antipode.

lemma:1 Lemma 4.1 (Lemme 3.1). Let H and K be Hilbert spaces, and let X ⊆ B(H ⊗ K). The
closures of the linear spans of{

(1⊗ h)x(1⊗ k) : h, k ∈ B0(K), x ∈ X
}

and {
(ι⊗ ω)(x)⊗ k : x ∈ X, k ∈ B0(K), ω ∈ B(K)∗

}
,

agree.

Proof. For h = θξ,ξ′ and k = θη,η′ , and x ∈ X, we have

(1⊗ h)x(1⊗ k) = (ι⊗ ωξ′,η)(x)⊗ θξ,η′ ,

from which the claim follows.

Given a multiplicative unitary V , we set C(V ) = {(ι⊗ ω)(ΣV ) : ω ∈ B(H)∗}.

prop:5 Proposition 4.2 (Proposition 3.2). The space C(V ) is a subalgebra of B(H). The following
conditions are equivalent:

prop:5.1 1. The closure of C(V ) is B0(H).

prop:5.2 2. The closure of the linear span of {(x⊗ 1)V (1⊗ y) : x, y ∈ B0(H)} is B0(H ⊗H).

Proof. For ω, ω′ ∈ B(H)∗, we have that

(ι⊗ ω)(ΣV )(ι⊗ ω′)(ΣV ) = (ι⊗ ω ⊗ ω′)(Σ13V13Σ12V12).

Now, Σ13V13Σ12V12 = Σ13Σ12V23V12 = Σ23Σ13V12V13V23 = Σ23V32Σ13V13V23 = V23Σ23Σ13V13V23.
Setting 〈x, ψ〉 = (ω′ ⊗ ω)(V Σ(1⊗ x)V ), we see that ψ ∈ B(H)∗, and that

(ι⊗ ω)(ΣV )(ι⊗ ω′)(ΣV ) = (ι⊗ ψ)(ΣV ).

Thus C(V ) is a subalgebra.
Condition (

prop:5.2
2) is equivalent to the closure of the linear span of

{Σ(x⊗ 1)V (1⊗ y) : x, y ∈ B0(H)} = {(1⊗ x)ΣV (1⊗ y) : x, y ∈ B0(H)}

being equal to B0(H ⊗H). The result follows by Lemma
lemma:1
4.1.

As V is unitary, it is clear that the functionals ψ constructed in the proof are norm dense
in B(H)∗. Thus {xy : x, y ∈ C(V )} is dense in C(V ).

Definition 4.3 (Définition 3.3). A multiplicative unitary V is regular if the closure of C(V ) is
B0(H).
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Notice that C(ΣV ∗Σ) = C(V )∗. It follows that V is regular if and only if ΣV ∗Σ is regular.
Given two equivalent multiplicative unitaries, one is regular if and only if the other is regular.

eg:2 Examples 4.4 (Exemples 3.4). 1. For ω = ωξ,η, we have that (ι ⊗ ω)(Σ) = θη,ξ. Thus
1 ∈ B(H ⊗H) is a regular multiplicative unitary.

2. A direct calculation shows that for a locally compact group G, the multiplicative unitary
VG is regular. Indeed, this is a special case of the following.

3. Suppose there ia a unitary J : H → H with J∗L(ω)J = L(ω∗) for each ω ∈ B(H)∗.
Let T be a Hilbert-Schmidt operator on H, so we can identify T with some vector τ ∈
H ⊗H. Furthermore, suppose that T is trace class, and let ω ∈ B(H)∗ be the associated
functional. Define W , a unitary on H ⊗H, by W = (1 ⊗ J∗)V (1 ⊗ J). Notice that the
composition of operators WT is Hilbert-Schmidt, and so can be identified as a member
of H ⊗H, which is just W (τ).

For ξ, η, α, β ∈ H(
β ⊗ α

∣∣W (ξ ⊗ η)
)

=
(
β ⊗ J(α)

∣∣V (ξ ⊗ J(η))
)

=
(
V (ξ ⊗ J(η))

∣∣β ⊗ J(α)
)

=
(
L(ωβ,ξ)J(η)

∣∣J(α)
)

=
(
J(α)

∣∣L(ωβ,ξ)J(η)
)

=
(
α
∣∣L(ωξ,β)η

)
=
(
α⊗ ξ

∣∣ΣV (β ⊗ η
)
,

and so (
β ⊗ α

∣∣WT
)

=
(
β ⊗ α

∣∣W (τ)
)

=
(
α
∣∣(ι⊗ ω)(ΣV )β

)
.

It follows that V is regular.

In particular, if V = W ∗ and W is the fundamental unitary for a Kac algebra in the
sense of

r6
[3], then

r6
[3, Lemme 2.2.3], together with the preceding argument, shows that V

regular.

prop:12.1prop:12 Proposition 4.5 (Proposition 3.4.4). 1. Let V be a multiplicative unitary. If V is a multi-
plier of B0(H)⊗ B(H) (or B(H)⊗ B0(H)) then C(V ) ⊆ B0(H).

prop:12.2 2. Let A be a Hopf-C∗-algebra which is unital, and right simplifiable, and which has a right
Haar state φ which satisfies φ(x∗x) = 0 if and only if φ(xx∗) = 0. Let (H, π, ξ) be the
cyclic GNS construction. Define Vφ ∈ B(H ⊗H) by Vφ(π(x)ξ ⊗ η) = (π ⊗ π)δ(x)(ξ ⊗ η)
for η ∈ H. Then Vφ is a regular multiplicative unitary.

Proof. For x, y ∈ B0(H), we have that (x ⊗ 1)V ∈ B0(H) ⊗ B(H) and so (x ⊗ 1)V (1 ⊗ y) ∈
B0(H) ⊗ B0(H) = B0(H ⊗ H). The result follows by the methods used in Lemma

lemma:1
4.1 and

Proposition
prop:5
4.2. The other option follows by working with ΣV ∗Σ.

As φ is right invariant, Vφ is isometric, compare Example
eg:1
2.2.

eg:1.4
4. Clearly the image of Vφ

contains the set {
(π ⊗ π)(δ(x)(1⊗ y)) : x, y ∈ A

}
,

and so, as (A, δ) is right simplifiable, we conclude that Vφ surjects. So Vφ is a unitary, and a
calculation shows that Vφ is multiplicative.

Then, for a, b ∈ A and ξ0, ξ1, η ∈ H,

Vφ(θπ(a)ξ,ξ0 ⊗ π(b))(ξ1 ⊗ η) = Vφ(π(a)ξ ⊗ π(b)η)(ξ0|ξ1) = (π ⊗ π)δ(a)(ξ ⊗ π(b)η)(ξ0|ξ1).

We can approximate δ(a)(1⊗b) be a sum of tensors of the form x, y ∈ A, so this is approximately

(π(x)⊗ π(y))(ξ ⊗ η)(ξ0|ξ1) =
(
θπ(x)ξ,ξ0 ⊗ π(y)

)
(ξ1 ⊗ η).
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Hence Vφ is a multiplier of B0(H) ⊗ π(A). As A is unital, it follows that Vφ is a multiplier of
B0(H)⊗ B(H), and so the first part of the proposition shows that C(Vφ) ⊆ B0(H).

Then, for η, η1 ∈ H and a ∈ A, we have that(
η1

∣∣(ι⊗ ωξ,η)(ΣVφ)π(a)ξ
)

=
(
ξ ⊗ η1

∣∣Vφ(π(a)ξ ⊗ η)
)

=
(
ξ ⊗ η1

∣∣(π ⊗ π)δ(a)(ξ ⊗ η)
)

=
(
η1

∣∣π((φ⊗ ι)δ(a)
)
η
)

= φ(a)(η1|η) =
(
η1

∣∣θη,ξπ(a)ξ
)
.

So (ι⊗ ωξ,η)(ΣVφ) = θη,ξ.
To show that C(Vφ) is dense in B0(H), it suffices to prove that for each non-zero ξ1 ∈ H,

there is x ∈ C(Vφ) with (ξ|x(ξ1)) 6= 0. Indeed, this would show that {x∗(ξ) : x ∈ C(Vφ)} is
dense in H. Then, for x ∈ C(Vφ) and η ∈ H, we have that θη,x∗ξ = θη,ξx ∈ C(Vφ), and thus
C(Vφ) is dense in B0(H).

Now, for b, c ∈ A and ξ1, ξ2 ∈ H, we have that(
ξ1
∣∣L(ωπ(b)ξ,π(c)ξ)ξ2

)
=
(
π(b)ξ ⊗ ξ1

∣∣Vφ(π(c)ξ ⊗ ξ2)
)

=
(
ξ ⊗ ξ1

∣∣(π ⊗ π)((b∗ ⊗ 1)δ(c))(ξ ⊗ ξ2)
)

=
(
ξ1
∣∣π(d)ξ2

)
,

where d = (φ⊗ι)((b∗⊗1)δ(c)) ∈ A, as (b∗⊗1)δ(c) ∈ A⊗A. Hence L(ωπ(b)ξ,π(c)ξ) = π(d) ∈ π(A).
Now, π(A) is closed in B(H), and so by continuity, L(ω) ∈ π(A) for all ω ∈ B(H)∗.

For η, η1, η2 ∈ H, we have that(
ξ
∣∣(ι⊗ ωη2,η1)(ΣVφ)η

)
=
(
η2 ⊗ ξ

∣∣Vφ(η ⊗ η1)
)

=
(
ξ
∣∣L(ωη2,η)η1

)
.

Suppose that (ξ|x(η)) = 0 for all x ∈ C(Vφ). Thus (ξ|L(ωη2,η)η1) = 0 for all η2, η1 ∈ H,
that is, L(ωη2,η)

∗ξ = 0 for all η2 ∈ H. However, L(ωη2,η) = π(a) for some a ∈ A, and so
a∗ξ = 0 =⇒ φ(aa∗) = 0 =⇒ φ(a∗a) = 0 =⇒ aξ = 0. Thus L(ωη2,η)ξ = 0 for all η2 ∈ H,
which shows that Vφ(η ⊗ ξ) = 0, so η = 0, as required.

In particular, this result applies to compact quantum groups in the sense of Woronowicz,
r54
[13]. Furthermore, in this case, S = π(A).

prop:6 Proposition 4.6 (Proposition 3.5). If V is a regular multiplicative unitary, the algebras S and
Ŝ are self-adjoint.

Proof. Let E be the linear span of{
(ω ⊗ ω′ ⊗ ι)(Σ12V

∗
23V12V13)

∗ : ω, ω′ ∈ B(H)∗
}
.

As Σ12V
∗
23V12V13 = Σ12V12V

∗
23, we see that E is the linear span of{

(ω ⊗ ω′ ⊗ ι)(V ∗23)
∗ : ω, ω′ ∈ B(H)∗

}
=
{

(ω′ ⊗ ι)V : ω′ ∈ B(H)∗
}
,

and so the closure of E is S. Alternatively, Σ12V
∗
23V12V13 = V ∗13Σ12V12V13, and so

(ω ⊗ ω′ ⊗ ι)(Σ12V
∗
23V12V13) = (ω ⊗ ι)(V ∗(y ⊗ 1)V ),

where y = (ι⊗ω′)(ΣV ). From this, it follows that the norm closure of E is the norm closure of{
(ω ⊗ ι)(V ∗(y ⊗ 1)V ) : ω ∈ B(H)∗, y ∈ B0(H)

}
,

which is clearly self-adjoint. So S is self-adjoint. The Ŝ case follows, as Ŝ = S(ΣV ∗Σ)∗.

prop:7 Proposition 4.7 (Proposition 3.6). Let V be a regular multiplicative unitary, with associated
C∗-algebras S and Ŝ. We have that
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prop:7.1 1. V ∈M(B0(H)⊗ S) and V ∈M(Ŝ ⊗ B0(H));

prop:7.2 2. The closed linear span of {(x ⊗ 1)V (1 ⊗ y) : x ∈ B0(H), y ∈ S} is B0(H) ⊗ S, and the
closed linear span of {(x⊗ 1)V (1⊗ y) : x ∈ Ŝ, y ∈ B0(H)} is Ŝ ⊗ B0(H);

prop:7.3 3. V ∈M(Ŝ ⊗ S);

prop:7.4 4. The closed linear span of {(x⊗ 1)V (1⊗ y) : x ∈ Ŝ, y ∈ S} is Ŝ ⊗ S.

Proof. For x, y ∈ B0(H) and ω ∈ B(H)∗, we have that V (x⊗L(yω)) = (ι⊗ω⊗ ι)((V13V23)(x⊗
y⊗1)) = (ι⊗ω⊗ι)((V ∗12V23V12)(x⊗y⊗1)). As V (x⊗y) ∈ B0(H⊗H), we see that V (x⊗L(yω))
is in the closed linear span of

{(ι⊗ ω ⊗ ι)((V ∗12V23)(a⊗ b⊗ 1)) : a, b ∈ B0(H)}.

Let ω = ω′c for some ω′ ∈ B(H)∗ and c ∈ B0(H) (we may do this, by Lemma
lem:ap1
A.1). Then

(ι⊗ ω ⊗ ι)((V ∗12V23)(a⊗ b⊗ 1)) = (ι⊗ bω′ ⊗ 1)((1⊗ c⊗ 1)V ∗12(a⊗ 1⊗ 1)V23) ∈ B0(H)⊗ S,

using Proposition
prop:5
4.2(

prop:5.2
2).

Also (x ⊗ L(ω∗y∗)∗)V = (x ⊗ (yω ⊗ ι)(V ∗))V = (ι ⊗ ω ⊗ ι)(V ∗23(x ⊗ y ⊗ 1)V13), so using
Proposition

prop:5
4.2(

prop:5.2
2) is in the closed linear span of

{(ι⊗ ω ⊗ ι)(V ∗23(a⊗ 1⊗ 1)V12(1⊗ b⊗ 1)V13) : a, b ∈ B0(H)}.

Notice that (ι⊗ω⊗ι)(V ∗23(a⊗1⊗1)V12(1⊗b⊗1)V13) = (ι⊗ω⊗ι)((a⊗1⊗1)V ∗23V12V13(1⊗b⊗1)) =
(ι⊗ bω ⊗ ι)((a⊗ 1⊗ 1)V12V

∗
23). Writing bω = ω′c, with c ∈ B0(H), as (a⊗ c)V ∈ B0(H ⊗H),

we have that

(ι⊗ bω ⊗ ι)((a⊗ 1⊗ 1)V12V
∗
23) = (ι⊗ ω′ ⊗ ι)((a⊗ c⊗ 1)V12V

∗
23) ∈ B0(H)⊗ S,

where here we use Proposition
prop:6
4.6. This shows the first part of (

prop:7.1
1); the second part follows by

working with ΣV ∗Σ.
Let a, b ∈ B0(H), ω ∈ B(H)∗ and set y = L(ωa). Then

(b⊗ 1)V (1⊗ y) = (ι⊗ ω ⊗ ι)
(
(b⊗ a⊗ 1)V13V23

)
= (ι⊗ ω ⊗ ι)

(
((b⊗ a)V ∗ ⊗ 1)V23V12

)
.

Again, as V is unitary, the closed linear span of {(b⊗ a)V ∗ : a, b ∈ B0(H)} is B0(H)⊗ B0(H).
To show (

prop:7.2
2) it hence suffices to show that{

(ι⊗ ω ⊗ ι)
(
(a⊗ 1⊗ 1)V23V12

)
: a ∈ B0(H), ω ∈ B(H)∗}

=
{

(ι⊗ bω ⊗ ι)
(
(a⊗ 1⊗ 1)V23V12

)
: a, b ∈ B0(H), ω ∈ B(H)∗}

is linearly dense in B0(H)⊗ S. However,

(ι⊗ bω ⊗ ι)
(
(a⊗ 1⊗ 1)V23V12 = (ι⊗ ω ⊗ ι)

(
V23

(
(a⊗ 1)V (1⊗ b)⊗ 1

))
,

and so the result follows by Proposition
prop:5
4.2. Similarly, the second claim of (

prop:7.2
2) follows by

working with ΣV ∗Σ.
For (

prop:7.3
3), notice that by (

prop:7.1
1), both V12 and V23 are multipliers of Ŝ ⊗ B0(H) ⊗ S, and hence

so is V13 = V ∗12V23V12V
∗
23. Thus V ∈M(Ŝ ⊗ S), as claimed.

For (
prop:7.4
4), it suffices to show that the closed linear span of{

(x⊗ a⊗ 1)V13(1⊗ b⊗ y) : a, b ∈ B0(H), x ∈ Ŝ, y ∈ S
}
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is Ŝ ⊗B0(H)⊗ S. As V13 = V ∗12V23V12V
∗
23, as V ∗ ∈M(Ŝ ⊗B0(H) and V ∈M(B0(H)⊗ S), and

as V is unitary, we equivalently can show that the closed linear span of{
(x⊗ a⊗ 1)V23V12(1⊗ b⊗ y) : a, b ∈ B0(H), x ∈ Ŝ, y ∈ S

}
is Ŝ ⊗ B0(H)⊗ S. Notice that

(x⊗ a⊗ 1)V23V12(1⊗ b⊗ y) =
(
x⊗ (a⊗ 1)V (1⊗ y)

)(
V (1⊗ b)⊗ 1

)
,

and so by (
prop:7.2
2), we get the closed linear span of{(

x⊗ c⊗ z
)
V12(1⊗ b⊗ 1) : b, c ∈ B0(H), z ∈ S, x ∈ Ŝ

}
=
{

(1⊗ c⊗ z)
(
(x⊗ 1)V (1⊗ b)⊗ 1

)
: b, c ∈ B0(H), z ∈ S, x ∈ Ŝ

}
,

which again by (
prop:7.2
2) is the closed linear span of{

(1⊗ c⊗ z)(x⊗ b⊗ 1) : b, c ∈ B0(H), z ∈ S, x ∈ Ŝ
}
,

which is of course Ŝ ⊗ B0(H)⊗ S, as required.

corr:1 Corollary 4.8 (Corollaire 3.7). Let V be a regular multiplicative unitary, and let S, Ŝ be the
associated C∗-algebras. Then:

corr:1.1 1. The closed linear spans of {V (x⊗1)V ∗(1⊗y) : x, y ∈ S} and {V (x⊗1)V ∗(y⊗1) : x, y ∈ S}
are both equal to S ⊗ S;

corr:1.2 2. The closed linear spans of {V ∗(1⊗x)V (1⊗y) : x, y ∈ Ŝ} and {V ∗(1⊗x)V (y⊗1) : x, y ∈ Ŝ}
are both equal to Ŝ ⊗ Ŝ;

Proof. For a ∈ B0(H), ω ∈ B(H)∗ and y ∈ S,

V (L(aω)⊗ 1)V ∗(1⊗ y) = (ω ⊗ ι⊗ ι)
(
V23V12(a⊗ 1⊗ 1)V ∗23(1⊗ 1⊗ y)

)
= (ω ⊗ ι⊗ ι)

(
V12V13(a⊗ 1⊗ y)

)
.

By Proposition
prop:7
4.7(

prop:7.1
1) we see that

lin{V (x⊗ 1)V ∗(1⊗ y) : x, y ∈ S} = lin{(ω ⊗ ι⊗ ι)(V12(a⊗ 1⊗ y) : a ∈ B0(H), y ∈ S}
= lin{(ω ⊗ ι)(V (a⊗ 1)) : a ∈ B0(H)} ⊗ S = S ⊗ S.

Now consider

V (L(ωa)⊗ 1)V ∗(y ⊗ 1) = (ω ⊗ ι⊗ ι)
(
V23(a⊗ 1⊗ 1)V12V

∗
23(1⊗ y ⊗ 1)

)
= (ω ⊗ ι⊗ ι)

(
(a⊗ 1⊗ 1)V12V13(1⊗ y ⊗ 1)

)
.

Thus, now using Proposition
prop:7
4.7(

prop:7.2
2),

lin{V (x⊗ 1)V ∗(y ⊗ 1) : x, y ∈ S}
= lin{(ω ⊗ ι⊗ ι)

(
((a⊗ 1)V (1⊗ y)⊗ 1)V13

)
: a ∈ B0(H), y ∈ S}

= lin{(ω ⊗ ι⊗ ι)
(
(a⊗ y ⊗ 1)V13

)
: a ∈ B0(H), y ∈ S} = S ⊗ S.

This shows (
corr:1.1
1), and then (

corr:1.2
2) follows by working with ΣV ∗Σ.
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thm:1 Theorem 4.9 (Théorème 3.8). Let V be a regular multiplicative unitary, and let S, Ŝ be the
associated C∗-algebras. We may define a coproduct δ on S by δ(x) = V (x ⊗ 1)V ∗, and then
(S, δ) becomes a bisimplifiable Hopf-C∗-algebra. We may define a coproduct δ̂ on Ŝ by δ̂(x) =
V ∗(1⊗ x)V , and then (Ŝ, δ̂) becomes a bisimplifiable Hopf-C∗-algebra.

Proof. By Corollary
corr:1
4.8(

corr:1.1
1) it follows that δ is indeed a ∗-homomorphism S →M(S ⊗ S) such

that δ(S)(1 ⊗ S) and δ(S)(S ⊗ 1) are (dense) subsets of S ⊗ S; this also shows that (S, δ) is
bisimplifiable. That δ is coassociative follows as

(ι⊗ δ)δ(x) = V23V12(x⊗ 1⊗ 1)V ∗12V
∗
23 = V12V13V23(x⊗ 1⊗ 1)V ∗23V

∗
13V

∗
12 = (δ ⊗ ι)δ(x),

as required. Let (ui) be a bounded approximate identity for S, and let x, y ∈ S, so with
τ = δ(x)(1⊗ y) ∈ S ⊗ S,

δ(ui)τ = δ(uix)(1⊗ y)→ δ(x)(1⊗ y) = τ.

By Corollary
corr:1
4.8(

corr:1.1
1), such τ are dense, and so δ is non-degenerate. The results for Ŝ follow from

working with ΣV ∗Σ.

prop:8 Proposition 4.10 (Proposition 3.9). The map κ : A(V ) → S; (ω ⊗ ι)(V ) 7→ (ω ⊗ ι)(V ∗) is a
well-defined algebra antihomomorphism, called the antipode.

Proof. We have that (ω ⊗ ι)(V ∗) = L(ω∗)∗ ∈ S by Proposition
prop:6
4.6. If L(ω) = 0 then

0 = 〈L(ω), ω′〉 = 〈ρ(ω′), ω〉 = 〈x, ω〉 (ω′ ∈ B(H)∗, x ∈ Ŝ),

the last equality following by density. As Ŝ is self-adjoint, also 〈x, ω∗〉 = 〈x∗, ω〉 = 0 for all
x ∈ Ŝ, and so 〈L(ω∗), ω′〉 = 〈ρ(ω′), ω∗〉 = 0 for all ω′ ∈ B(H)∗. Thus L(ω∗) = 0, and so κ is
well-defined.

As in the proof of Proposition
prop:3
2.7, given ω, ω′ ∈ B(H)∗, if ψ ∈ B(H)∗ is defined by 〈T, ψ〉 =

〈V ∗(1⊗ T )V , ω ⊗ ω′〉 then L(ω)L(ω′) = L(ψ). Then 〈T, ψ∗〉 = 〈V ∗(1⊗ T ∗)V , ω ⊗ ω′〉 =
〈V ∗(1⊗ T )V , ω∗ ⊗ (ω′)∗〉 and so L(ψ∗) = L(ω∗)L((ω′)∗). Thus κ(L(ω)L(ω′)) = L(ψ∗)∗ =
L((ω′)∗)∗L(ω∗)∗ = κ(L(ω′))κ(L(ω)) and so κ is an antihomomorphism as required.

Definition 4.11 (Définition 3.10). A multiplicative unitary V is biregular if it is regular, and
if {(ω ⊗ ι)(ΣV ) : ω ∈ B(H)∗} is dense in B0(H).

defn:1 Remark 4.12 (Remarques 3.11(a)). Let W be the fundamental unitary associated to a Kac-
von Neumann algebra, see

r6
[3]. Set V = W ∗ and let ∆̂ be the modular operator associated

with the dual Haar weight φ̂ on the dual Kac algebra M̂ . Following
r6
[3, 2.1.5(a)] it follows that

Â(V ) generates M̂ as a von Neumann algebra; the same is true of S. Then
r6
[3, corollaire 3.1.10]

shows that the restriction of φ̂ to S+, say ψ, defines a normal semi-finite weight on S. By
r7
[4,

Lemme I.1], we have that V ∗(1⊗ ∆̂)V = ∆̂⊗ ∆̂. Thus, for ω ∈M∗ and all t ∈ R, we have that
L(∆̂itω) = ∆̂itL(ω)∆̂−it and so the modular automorphism group (σt) of M̂ restricts to S to
give a norm-continuous group of automorphisms. It is now easy to verify that S together with
κ and ψ gives a Kac C∗-algebra in the sense of

r50
[12].

Remark 4.13 (Remarques 3.11(b)). Let V be a regular multiplicative unitary. For ω ∈ B(H)∗,
as in the proof above, we see that L(ω) = 0 if and only if ω induces the zero functional on S.
As S is a non-degenerate C∗-algebra of H (by Proposition

prop:3
2.7) we see that if ω ≥ 0, then ω

is zero on S only if ω = 0. (This follows, as let (eα) be a bounded approximate identity in S.
Non-degeneracy implies that eα → 1 strongly, and so ‖ω‖ = 〈1, ω〉 = limα 〈eα, ω〉.) Similarly, if
ω ≥ 0 and ρ(ω) = 0, then ω = 0.
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For x ∈ S and ω, ω′ ∈ S∗, define

x ∗ ω = (ω ⊗ ι)δ(x), ω ∗ x = (ι⊗ ω)δ(x), ω ∗ ω′ = (ω ⊗ ω′) ◦ δ.

By Lemma
lem:ap1
A.1, we may suppose that ω = ω0a0 for some ω0 ∈ S∗, a0 ∈ S. Then x ∗ ω =

(ω ⊗ ι)((a0 ⊗ 1)δ(x)) ∈ S, as (a0 ⊗ 1)δ(x) ∈ S ⊗ S. Similarly ω ∗ x ∈ S.
Suppose now x ≥ 0 and ω ≥ 0 and that ω ∗ x = 0. If ω 6= 0, write x = y∗y for some y ∈ S,

and let (π,H, ξ) be the cyclic GNS construction for ω. Then

0 = (ι⊗ ω)δ(x) = (ι⊗ ωξ)(ι⊗ π)(V (y∗y ⊗ 1)V ∗),

and so (y ⊗ 1)(ι⊗ π)(V ∗)(· ⊗ ξ) = 0. In particular, for a ∈ B0(H), b ∈ S, also

0 = (y ⊗ π(b))(ι⊗ π)(V ∗)(a(·)⊗ ξ) = (y ⊗ 1)(ι⊗ π)
(
(1⊗ b)V ∗(a⊗ 1)

)
(· ⊗ ξ).

By Proposition
prop:7
4.7(

prop:7.2
2), this shows that

0 = (y ⊗ 1)(c⊗ π(d))(· ⊗ ξ) (c ∈ B0(H), d ∈ S).

It follows that y = 0, so x = 0. In conclusion, x ≥ 0, ω ≥ 0, ω ∗ x = 0 =⇒ x = 0 or ω = 0.

Remark 4.14 (Remarques 3.11(c)). We say that (A, δ) is right reduced (respectively, left
reduced) if for non-zero ω ∈ A∗+, x ∈ A+ also ω ∗ x (respectively, x ∗ ω) is non-zero. We have
just shown that (S, δ) arising from a regular multiplicative unitary is right reduced; similarly
Ŝ will be left reduced.

prop:9 Proposition 4.15 (Proposition 3.11.1). Let (A, δ) be right (respectively left) reduced. Then:

prop:9.1 1. For non-zero ω, ω′ ∈ A∗+ with ω faithful, and for non-zero x ∈ A+, we have that ω ∗ ω′
(respectively ω′ ∗ ω) is faithful, and x ∗ ω (respectively ω ∗ x) is strictly positive (meaning
that 〈µ, x ∗ ω〉 > 0 for all states µ, or that the right ideal generated by x ∗ ω is all of A).

prop:9.2 2. If A is unital and separable, then it admits a right (respectively, left) faithful Haar state.

Proof. We prove the assertions in the right reduced case; the left reduced case follows by
replacing δ with σδ where σ : A⊗ A→ A⊗ A is the swap map. For non-zero y ∈ A+,

〈ω ∗ ω′, y〉 = 〈ω, ω′ ∗ y〉 6= 0,

as ω′ ∗ y 6= 0 and ω is faithful. Similarly, for a state µ,

〈µ, x ∗ ω〉 = 〈ω ∗ µ, x〉 6= 0,

by using the previous calculation. To show (
prop:9.2
2), we use the following lemma.

lem:1 Lemma 4.16 (Lemme 3.11.2). With (A, δ) being unital and right reduced, let ω be a faithful
state. Then:

lem:1.1 1. If x ∈ A with x ∗ ω = x, then x ∈ C1;

lem:1.2 2. There is a state φ with ω ∗ φ = φ ∗ ω = φ (compare
r54
[13]).

lem:1.3 3. Such φ is also a faithful right Haar state.

Proof. As (x∗ω)∗ = ((ω⊗ ι)δ(x))∗ = (ω⊗ ι)δ(x∗) = x∗ ∗ω, for (
lem:1.1
1) we may suppose that x = x∗.

Notice that 1 ∗ ω = (ω ⊗ ι)δ(1) = 1. So for λ ∈ R, if x− λ ≥ 0 is positive and non-zero, then
by Proposition

prop:9
4.15(

prop:9.1
1) we have that (x− λ) ∗ω = x− λ is strictly positive. Taking λ to be the

minimum of the spectrum of x shows that x ∈ R1 as claimed.
For (

lem:1.2
2) let φ be a weak∗-limit of the Cesaro means of ωn = ω ∗ ω ∗ · · · ∗ ω (n times). Then

φ is a state, and clearly φ ∗ ω = ω ∗ φ = φ.
For (

lem:1.3
3), for x ∈ A we have that (x ∗ φ) ∗ ω = x ∗ (φ ∗ ω) = x ∗ φ and so by (

lem:1.1
1) x ∗ φ is a

scalar. But then x ∗ φ = (x ∗ φ) ∗ ω = (ω ⊗ ι)δ(x ∗ φ) = 〈ω, x ∗ φ〉1 = 〈φ, x〉1 so φ is a right
Haar state. As φ = ω ∗ φ, by Proposition

prop:9
4.15(

prop:9.1
1), φ is faithful.
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5 Multiplicative unitaries of compact type, and Woronow-

icz C∗-algebras

In this section, we depart from the original paper, and study the relationship between Compact
Quantum Groups (in the sense of

woro
[wor], a paper not published at the time) and multiplicative

unitaries of compact type. Compact Quantum Groups have subsumed the theory of Matrix
Pseudogroups as a special case, and an added advantage is that the resulting proofs are easier
in some cases.

Firstly, let (A, δ) be a compact quantum group. That is, A is unital and (A, δ) is bisim-
plifiable. Then

woro
[wor] shows that (A, δ) admits a unique Haar state φ. By Example

eg:1
2.2(

eg:1.4
4) we

construct a multiplicative unitary V on the GNS space for φ. By Proposition
prop:12
4.5(

prop:12.2
2) V is regular

(we note that the condition here, that φ(x∗x) = 0 if and only if φ(xx∗) = 0 is quite involved to
prove– see

woro
[wor, ???]). The C∗-algebra S is simply π(A), and the coproduct on S is the natural

quotient of δ. As S is thus unital, V is of compact type.
[Do we want to give a self-contained (sketch/account) of all of this? It might be rather

involved...]
We now start with a multiplicative unitary V on H of compact type which admits a non-

zero fixed vector E ∈ H (see Definition
defn:2
2.11). If H is separable, then by Proposition

prop:4
2.13 such

a fixed vector automatically exists. Let φ = ωe ∈ B(H)∗.

defn:3 Definition 5.1 (Définition 4.3). For ξ ∈ H define λξ ∈ B(H) by λξ = (θ′e)
∗V ∗θξ. That is, for

η, η′ ∈ H, (λξ(η)|η′) = (V (ξ ⊗ η)|η′ ⊗ e).

prop:13 Proposition 5.2 (Proposition 4.4). For ξ ∈ H, we have that (λξ ⊗ 1)V = V (λξ ⊗ 1).

Proof. We have that λ∗ξ ⊗ 1 = θ∗1,ξV12θ2,e. Thus

V (λ∗ξ ⊗ 1) = V θ∗1,ξV12θ2,e = θ∗1,ξV23V12θ2,e = θ∗1,ξV12V13V23θ2,e

= θ∗1,ξV12V13θ2,e as e is fixed, so V θe = θe

= θ∗1,ξV12θ2,eV = (λ∗ξ ⊗ 1)V.

6 Constructions with Woronowicz C∗-algebras
sec:5

7 Irreducible multiplicative unitaries

prop:10 Proposition 7.1 (Proposition 6.1). Let V be a multiplicative unitary on H and let U ∈ B(H)
be a unitary with U2 = 1 such that V̂ = Σ(U ⊗ 1)V (U ⊗ 1)Σ and Ṽ = (U ⊗ U)V̂ (U ⊗ U) are
both multiplicative. Then the following formulae hold:

prop:10.1 1. V12(1⊗ U ⊗ 1)V23(1⊗ U ⊗ 1) = (1⊗ U ⊗ 1)V23(1⊗ U ⊗ 1)V13V12;

prop:10.2 2. V̂23V12V13 = V13V̂23;

prop:10.3 3. Ṽ12V13 = V13V23Ṽ12;

prop:10.4 4. the unitaries Σ23V̂23V23 and V12 commute;

prop:10.5 5. the unitaries V12Ṽ12Σ12 and V23 commute.
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Proof. We have that

Σ13V̂12Σ13 = (1⊗ U ⊗ 1)V23(1⊗ U ⊗ 1),

Σ13V̂23Σ13 = (U ⊗ 1⊗ 1)V12(U ⊗ 1⊗ 1),

That V̂ is multiplicative means that

V̂12V̂13V̂23 = V̂12Σ13(U ⊗ 1⊗ 1)V13(U ⊗ 1⊗ 1)Σ13V̂23

= Σ13(1⊗ U ⊗ 1)V23(U ⊗ U ⊗ 1)V13V12(U ⊗ 1⊗ 1)Σ13 = V̂23V̂12,

that is

(U ⊗ U ⊗ 1)V23(1⊗ U ⊗ 1)V13V12(U ⊗ 1⊗ 1) = (U ⊗ 1⊗ 1)V12(1⊗ U ⊗ 1)V23(U ⊗ U ⊗ 1).

Then (
prop:10.1
1) follows.

Applying Σ23 to the left and right of (
prop:10.1
1) gives (

prop:10.2
2). Using Σ12 instead gives (

prop:10.3
3), once we

notice that Ṽ = Σ(1⊗ U)V (1⊗ U)Σ.
As V is multiplicative, (

prop:10.2
2) gives that V̂23V23V12 = V13V̂23V̂23 and applying Σ23 on the left

gives (
prop:10.4
4). A similar argument applied to (

prop:10.3
3) gives (

prop:10.5
5).

Definition 7.2 (Définition 6.2). A multiplicative unitary V is irreducible is there is a unitary
U ∈ B(H) with:

1. U2 = 1 and (Σ(1⊗ U)V )3 = 1;

2. the unitaries V̂ = Σ(U ⊗1)V (U ⊗1)Σ and Ṽ = (U ⊗U)V̂ (U ⊗U) are both multiplicative.

Notice that clearly Ṽ is multiplicative if and only if V̂ is multiplicative. That (Σ(1⊗U)V )3 =
1 is equivalent to V̂ V Ṽ = (U ⊗ 1)Σ. Finally, observe that U being unitary with U2 = 1 is
equivalent to U being self-adjoint and unitary.

Proposition 7.3 (Proposition 6.3). Let V be a multiplicative unitary which is regular and
irreducible. Then {xy : x ∈ S, y ∈ Ŝ} is linearly dense in B0(H).

Proof. Notice that ΣṼ ∗ = (1⊗ U∗)V ∗(1⊗ U∗)Σ = (1⊗ U∗)Σ(ΣV ∗Σ)(U∗ ⊗ 1) and so

C(ΣṼ ∗) = {(ι⊗ ω)((1⊗ U∗)Σ(ΣV ∗Σ)(U∗ ⊗ 1)) : ω ∈ B(H)∗} = C(ΣV ∗Σ)U∗ = C(V )∗U∗,

which equals B0(H) as V is regular. Hence also {(ι⊗ω)((U ⊗ 1)ΣṼ ∗) : ω ∈ B(H)∗} is dense in
B0(H). As V is irreducible, (U ⊗ 1)ΣṼ ∗ = V̂ V , and so {(ι⊗ ω)(V̂ V ) : ω ∈ B(H)∗} is dense in
B0(H). As Ŝ acts irreducibly on H, also {(ι ⊗ ω)(V̂ V )y : ω ∈ B(H)∗, y ∈ Ŝ} is linearly dense
in B0(H).

Now, (ι⊗ω)(V̂ V )y = (ι⊗ω)(V̂ V (y⊗ 1)) and as V is a unitary multiplier of Ŝ⊗B0(H) (by
Proposition

prop:7
4.7(

prop:7.1
1)) it follows that

{(ι⊗ ω)(V̂ (y ⊗ 1)) : ω ∈ B(H)∗, y ∈ Ŝ}

is linearly dense in B0(H). As (ι ⊗ ω)(V̂ (y ⊗ 1)) = (UωU ⊗ ι)(V )y = L(UωU)y the result
follows.

Definition 7.4 (Définition 6.4). A Kac system is a triple (H,V, U) where H is a Hilbert space,
V is a biregular multiplicative unitary (see Definition

defn:1
4.12) and U is a unitary verifing that V

is also irreducible.

lem:2 Lemma 7.5 (Définition 6.5). Let (H,V, U) be a Kac system. Then:
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lem:2.1 1. (H,ΣV ∗Σ, U) and (H, V̂ , U) are Kac systems;

lem:2.2 2. The unitaries V12 and Ṽ23 commute;

lem:2.3 3. The unitaries V23 and V̂12 commute.

Proof. By definition, V is biregular if and only if C(V ) = {(ι⊗ ω)(ΣV ) : ω ∈ B(H)∗} is dense
in B0(H) and {(ω ⊗ ι(ΣV ) : ω ∈ B(H)∗} = {(ι ⊗ ω(V Σ) : ω ∈ B(H)∗} = {(ι ⊗ ω(ΣV̂ ) : ω ∈
B(H)∗} = C(V̂ ) is dense in B0(H). That is, V is biregular if and only if V and V̂ are regular.

So set W = ΣV ∗Σ, so

Ŵ = Σ(U ⊗ 1)ΣV ∗Σ(U ⊗ 1)Σ = (1⊗ U)V ∗(1⊗ U) = ΣṼ ∗Σ.

Similarly W̃ = ΣV̂ ∗Σ. Then (
lem:2.1
1) follows.

As V̂ V Ṽ = (U ⊗ 1)Σ we see that Ṽ ∗23 = Σ23(1 ⊗ U ⊗ 1)V̂23V23 = (1 ⊗ 1 ⊗ U)(ΣV̂ V )23

which commutes with V12 by Proposition
prop:10
7.1(

prop:10.4
4). Hence also Ṽ23 commutes with V12, giving (

lem:2.2
2).

Similarly, Proposition
prop:10
7.1(

prop:10.5
5) shows (

lem:2.3
3).

Definition 7.6 (Définition 6.6). We say that (H, V̂ , U) is the dual Kac system to (H,V, U),
and that (H,ΣV ∗Σ, U) is the opposite Kac system to (H, V, U). Two Kac systems (H, V, U) and
(H ′, V ′, U ′) are isomorphic if there is a unitary w ∈ B(H,H ′) with (w⊗w)V = V ′(w⊗w) and
wU = U ′w. We also say that (H ′, V ′, U ′) is dual to (H,V, U) if it is isomorphic to (H, V̂ , U).

Notice that the Kac systems (H, V̂ , U) and (H, Ṽ , U) are isomorphic (by U).

Definition 7.7 (Définition 6.7). Let (H, V, U) be a Kac system. For ω ∈ B(H)∗, we write

λ(ω) = LV̂ (ω) = (ω ⊗ ι)(V̂ ), R(ω) = ρṼ (ω) = (ι⊗ ω)(Ṽ ).

[Note: At this point, the original paper overloads notation, and seems to write L for both
the map B(H)∗ → S ⊆ B(H), and also for the (trivial) representation of S on B(H). Then λ
is now both a map B(H)∗ → UŜU , and also the representation Ŝ → B(H) given by y 7→ UyU .
We have tried to avoid doing this, and continue to view S and Ŝ as concrete subalgebras of
B(H).]

Proposition 7.8. (Proposition 6.8) We have that:lem:3

lem:3.1 1. λ(ω) = Uρ(ω)U and R(ω) = UL(ω)U ;

lem:3.2 2. For all ω, ω′ ∈ B(H)∗, the operators ρ(ω) and λ(ω′) commute, and also L(ω) and R(ω′)
commute;

lem:3.3 3. For x ∈ S, y ∈ Ŝ we have that

δ(x) = V̂ ∗(1⊗ x)V̂ , (U ⊗ U)δ̂(y)(U ⊗ U) = V̂ (UyU ⊗ 1)V̂ ∗.

Proof. For (
lem:3.1
1) we simply calculate that

λ(ω) = (ω ⊗ ι)(Σ(U ⊗ 1)V (U ⊗ 1)Σ) = U(ι⊗ ω)(V )U = Uρ(ω)U,

the other case following similarly.
For (

lem:3.2
2) we see that

ρ(ω)λ(ω′) = (ι⊗ ω)(V )(ω′ ⊗ ι)(V̂ ) = (ω′ ⊗ ι⊗ ω)(V23V̂12),

and so the result follows from Lemma
lem:2
7.5(

lem:2.3
3). The other case uses Lemma

lem:2
7.5(

lem:2.2
2).
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Let ω ∈ B(H)∗ and set x = L(ω). Then

δ(x) = V ((ω ⊗ ι)(V )⊗ 1)V ∗ = (ω ⊗ ι⊗ ι)(V23V12V
∗
23) = (ω ⊗ ι⊗ ι)(V12V13)

= (ω ⊗ ι⊗ ι)(V̂ ∗23V13V̂23) = V̂ ∗(1⊗ x)V̂ ,

where we have used that V is multiplicative, and also Proposition
prop:10
7.1(

prop:10.2
2). Then the first part

of (
lem:3.3
3) follows as such x are dense in S. Similarly, using Proposition

prop:10
7.1(

prop:10.3
3) shows that

δ̂(y) = Ṽ (y ⊗ 1)Ṽ ∗ (y ∈ Ŝ).

Then the second part of (
lem:3.3
3) follows immediately.

prop:11 Proposition 7.9 (Proposition 6.9). Let V be a mutliplicative unitary on H, and let U ∈ B(H)
be a unitary with U2 = 1, and such that V12 and Ṽ23 commute, and V̂12 and V23 commute. Then:

prop:11.1 1. If the set {ρ(ω)L(ω′) : ω, ω′ ∈ B(H)∗} is linearly dense in B0(H), then V is regular;

prop:11.2 2. If V̂ is multiplicative, and both (S∪Ŝ)′ = C1 and (S∪UŜU)′ = C1, then (1⊗U)ΣV̂ V Ṽ ∈
C1.

Proof. We first prove (
prop:11.1
1). Let ω, ω′ ∈ B(H)∗, set x = (ι ⊗ ω)(ΣV ) ∈ C(V ) and set s =

UL(ω′)U = R(ω′) = (ι⊗ ω′)(Ṽ ). As V12 and Ṽ23 commute, it follows that (1⊗ s)V = V (1⊗ s)
and so

sx = (ι⊗ ω)((s⊗ 1)ΣV ) = (ι⊗ ω)(ΣV (1⊗ s)) = (ι⊗ sω)(ΣV ) ∈ C(V ).

As A(V )H is linearly dense in H (by Proposition
prop:3
2.7) it follows that C(V ) has the same closure

as the linear span of UA(V )UC(V ).
Similarly, setting t = Uρ(ω′)U = (ω′⊗ ι)(V̂ ) and using that V̂12 and V23 commute will show

that C(V )UÂ(V )U has closed linear span equal to the closure of C(V ).
We hence see that C(V )2 has closed linear span equal to linC(V )UÂ(V )Â(V )UC(V ). As

remarked after Proposition
prop:5
4.2, C(V )2 is linearly dense in C(V ). By hypothesis, Â(V )Â(V ) is

linearly dense in B0(H). As V is unitary, it is easy to see that C(V )H and C(V )∗H are linearly
dense in H. It follows that C(V )UÂ(V )Â(V )UC(V ) is linearly dense in B0(H), and so the same
is true of C(V ) showing that V is regular.

For (
prop:11.2
2), set W = (1 ⊗ U)ΣV̂ V Ṽ . As V12 commutes with Ṽ23, and as we can now apply

Proposition
prop:10
7.1(

prop:10.4
4), we conclude that V12 and W23 commute. Applying Proposition

prop:10
7.1(

prop:10.4
4) to Ṽ ,

and noting that ˆ̃V = V , we see that Ṽ12 and Σ23V23Ṽ23 commute. As V̂12 and V23 commute,
also Ṽ12 and (1⊗U ⊗U)V23(1⊗U ⊗ 1) commute. As W = (U ⊗U)V (U ⊗ 1)ΣV Ṽ , we conclude
that Ṽ12 and W23 commute. So W will commute with (x⊗ 1) for all x of the form (ω ⊗ ι)(V )
and of the form (ω ⊗ ι)(Ṽ ) = (ω ⊗ ι)(Σ(1 ⊗ U)V (1 ⊗ U)Σ) = (ι ⊗ UωU)(V ), that is, for all
x ∈ S ∪ Ŝ.

If we replace V by V̂ in the argument of the previous paragraph, then as
ˆ̂
V = (U⊗U)V (U⊗

U) and
˜̂
V = V , we see that X = (1 ⊗ U)Σ(U ⊗ U)V (U ⊗ U)V̂ V commutes with 1 ⊗ x for all

x of the form (ω ⊗ ι)(V̂ ) = Uρ(ω)U and of the form (ι ⊗ ω)(V̂ ) = L(UωU). That is, for all
x ∈ S ∪UŜU . As X = Σ(U ⊗ 1)W (U ⊗ 1)Σ, we conclude that W commutes with 1⊗ x for all
x ∈ S ∩ UŜU . Thus W ∈ C1 as required.

Corollary 7.10 (Corollaire 6.10). Let V be a multiplicative unitary and let U ∈ B(H) be a
unitary with U2 = 1. Form V̂ , Ṽ as before, and suppose that V̂ is multiplicative, that V12

commutes with Ṽ23, and that V̂12 commutes with V23. If the closed linear span of {xUyU : x ∈
S, y ∈ Ŝ} is B0(H), then Ṽ and V̂ are regular.

Proof. Apply the previous proposition to V̂ .
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Examples 7.11 (Exemples 6.11). 1. The multiplicative unitary 1 ∈ B(H ⊗H) is not irre-
ducible unless H = C, as (Σ(1⊗ U))3 = Σ(U ⊗ 1).

2. Let G be a locally compact group, equipped with the right Haar measure. Define a unitary
U on L2(G) by (Uξ)(t) = ∆1/2(t)ξ(t−1), where ∆ is the modular function for the Haar
measure. Then (L2(G), VG, U) is a Haar system (with VGξ(s, t) = ξ(st, t) as in Exam-
ples

eg:1
2.2). Indeed, we showed in Examples

eg:2
4.4 that VG is regular. Then Σ(1⊗U)VGξ(s, t) =

VGξ(t, s
−1)∆1/2(s) = ξ(ts−1, s−1)∆1/2(s), and it follows that (Σ(1 ⊗ U)VG)3 = 1. Then

V̂Gξ(s, t) = ξ(s, s−1t)∆1/2(s) and direct calculation shows this to be multiplicative and
regular.

3. Let (A, δ) be a compact quantum group and form (H, V, U) as in Section
sec:5
6. TO FINISH!

4. Let W be the fundamental unitary of Kac-von Neumann algebra (see
r6
[3]). Let V = W ∗

and set U = JĴ = ĴJ (see
r38
[11]). As V̂ is the fundamental unitary associated with the

dual Kac-von Neumann algebra, it is regular. It’s a result of
r38
[11], and Proposition

prop:11
7.9,

that (1⊗U)ΣV̂ V Ṽ is a scalar, and in fact, it’s not hard to show that (1⊗U)ΣV̂ V Ṽ = 1.
Thus (H, V, U) is a Kac system.

Remark 7.12. (Remarque 6.12)

1. Let (H,U, V ) be a Kac system. As
ˆ̂
V = ˜̃V = (U ⊗ U)V (U ⊗ U) we have that (1 ⊗

U)ΣV̂ V Ṽ =
ˆ̂
V V̂ V (1 ⊗ U)Σ. It follows that V̂ V Ṽ =

ˆ̂
V V̂ V = (U ⊗ 1)Σ and so V̂ V Ṽ =

ˆ̂
V V̂ V = Ṽ

ˆ̂
V V̂ = V Ṽ ˜̃V .

2. The operator R = V (U ⊗ 1)V (U ⊗ 1) satisfies the Yang-Baxter equation: R12R13R23 =
R23R13R12.

3. Some comments about
r11
[5].

8 Multiplicative unitaries and Takesaki-Takai biduality

Fix a Kac system (H, V, U).

Definition 8.1. (Définition 7.1) Let δA be a coaction of S (or Ŝ) on a C∗-algebra A. Write πL
and πR (respectively, π̂λ and π̂ρ) for the representations of A on the Hilbert C∗-module A⊗H
defined by

πL = (ι⊗ ι) ◦ δA, πR = (ι⊗ U(·)U) ◦ δA,

respectively,
π̂λ = (ι⊗ U(·)U) ◦ δA, π̂ρ = (ι⊗ ι)δA.

Denote by A × Ŝ (respectively A × S) the crossed product of A by S (respectively, Ŝ),
which is the C∗-algebra generated by {πL(a)(1 ⊗ ρ(ω)) : a ∈ A, ω ∈ B(H)∗} (respectively,
{π̂λ(a)(1⊗ L(ω)) : a ∈ A, ω ∈ B(H)∗}) inside B(A⊗H).

Here U(·)U is the ∗-homomorphism S → B(H);x 7→ UxU (the notation πR being inspired
by Proposition

lem:3
7.8). [The odd notation is due to the fact that we are concretely viewing S as

a subalgebra of B(H); whereas the original paper has by this point started using L to denote
the inclusion map S → B(H), and so forth; see the comment before Proposition

lem:3
7.8.]

In fact, it is not really necessary to work with A ⊗ H. Instead, we could work in M(A ⊗
B0(H)), noticing that clearly M(A⊗S) and M(A⊗ Ŝ) are subalgebras of M(A⊗B0(H)). Then
we can form A× S and A× Ŝ inside M(A⊗ B0(H)).
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Lemma 8.2. (Lemme 7.2, see
r23
[8]) The crossed product A×Ŝ (or A×S) is the closed linear spanlem:4

of {πL(a)(1⊗ ρ(ω)) : a ∈ A, ω ∈ B(H)∗} (respectively, {π̂λ(a)(1⊗ L(ω)) : a ∈ A, ω ∈ B(H)∗}).

Proof. We give a proof for A× Ŝ; the proof for A×S follows by working with V̂ in place of V .
We need to show that, for a ∈ A and ω ∈ B(H)∗, we have that (1⊗ ρ(ω))πL(a) is in the closed
linear span of {πL(a)(1⊗ ρ(ω)) : a ∈ A, ω ∈ B(H)∗}. Let π̃ be the representation of A on the
Hilbert C∗-module A⊗H ⊗H defined by

π̃ = (πL ⊗ ι) ◦ δA = (ι⊗ δ) ◦ δA,

which follows as δA is a coaction. As δA(·) = V (· ⊗ 1)V ∗, we see that π̃(·) = V23δA(·)12V
∗
23, and

so
(1⊗ ρ(ω))πL(a) = (ι⊗ ι⊗ ω)(V23πL(a)12) = (ι⊗ ι⊗ ω)(π̃(a)V23).

Writing ω = ω′s for some ω′ ∈ B(H)∗ and s ∈ S, we obtain

(1⊗ ρ(ω))πL(a) = (ι⊗ ι⊗ ω′)
(
(πL ⊗ ι)

(
(1⊗ s)δA(a)

)
V23

)
.

Now, (1 ⊗ s)δA(a) ∈ A ⊗ S and so we can approximate it by a linear span of elements of the
form b⊗ t. However, then observe that

(ι⊗ ι⊗ ω′)
(
(πL ⊗ ι)(b⊗ t)V23

)
= πL(b)(1⊗ ρ(ω′t)).

The result follows.

The previous lemma shows that for each a ∈ A, we have that πL(a) ∈ M(A × Ŝ) (by the
definition of A × Ŝ, we see that πL(a) is a left multiplier, and the lemma shows that it is
also a right multiplier). Denote by π the resulting ∗-homomorphism A → M(A × Ŝ). This is
non-degenerate, as clearly π(A)(A × Ŝ) is dense in A × Ŝ. Similar remarks apply to A × S,
leading to a non-degenerate ∗-homomorphism π̂ : A → A × S. Similarly, for x ∈ Ŝ, the map
1⊗ x ∈M(A× Ŝ), leading to a non-degenerate ∗-homomorphism θ̂ : Ŝ →M(A× Ŝ). We also
obtain θ : S →M(A× S).

Denote by ΨL,ρ and ΨR,λ the representations of A× Ŝ on A⊗H defined by

ΨL,ρ

(
π(a)θ̂(x)

)
= πL(a)(1⊗ x), ΨR,λ

(
π(a)θ̂(x)

)
= πR(a)(1⊗ UxU) (a ∈ A, x ∈ Ŝ).

[Again, chasing the definitions shows that ΨL,ρ is just the identity representation.] Similarly

define representations Ψ̂λ,L and Ψ̂ρ,R of A× S on A⊗H by

Ψ̂λ,L

(
π̂(a)θ(y)

)
= π̂λ(a)(1⊗ y), Ψ̂ρ,R

(
π̂(a)θ(y)

)
= π̂ρ(a)(1⊗ UyU) (a ∈ A, y ∈ S).

Definition 8.3. (Définition 7.3) Let δA be a coaction of S (respectively, Ŝ) on A. The dual
coaction of Ŝ (respectively, S) on A× Ŝ (respectively A× S) by

δA×Ŝ : A× Ŝ →M(A× Ŝ ⊗ Ŝ); π(a)θ̂(x) 7→ (π(a)⊗ 1)(θ̂ ⊗ ι)δ̂(x) (a ∈ A, x ∈ Ŝ).

δA×S : A× S →M(A× S ⊗ S); π̂(a)θ(x) 7→ (π̂(a)⊗ 1)(θ ⊗ ι)δ(x) (a ∈ A, x ∈ S).

Notice that for y = θ̂(x) = 1⊗ x, we have that

Ṽ23(y ⊗ 1)Ṽ ∗23 = 1⊗ Ṽ (x⊗ 1)Ṽ ∗ = 1⊗ δ̂(x),

thanks to (the proof of) Proposition
lem:3
7.8. For y = π(a) = δ(a) = V ∗(a⊗ 1)V , we have that

Ṽ23(y ⊗ 1)Ṽ ∗23 = Ṽ23V
∗
12(a⊗ 1⊗ 1)V12Ṽ

∗
23 = V ∗12Ṽ23(a⊗ 1⊗ 1)Ṽ ∗23V12 = δ(a)⊗ 1,

where here we used Lemma
lem:2
7.5(

lem:2.2
2). As such elements y generate A× Ŝ, it follows that δA×Ŝ(·) =

Ṽ23(· ⊗ 1)Ṽ ∗23, and so δA×Ŝ is well-defined and a ∗-homomorphism. Similar remarks apply to
δA×S.
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A Useful results

The following is an assortment of results which are used implicitly by Baaj and Skandalis. We
prove (sketch) proofs to aid the reader.

lem:ap1 Lemma A.1. Let A be a C∗-algebra. Then A∗ = {aµ : a ∈ A, µ ∈ A∗} = {µa : a ∈ A, µ ∈ A∗}.
Let A act faithfully on a Hilbert space H. Then B(H)∗ = {aω : a ∈ A, ω ∈ B(H)∗} = {ωa : a ∈
A, ω ∈ B(H)∗}.

Proof. We firstly claim that {aµ : a ∈ A, µ ∈ A∗} is linearly dense in A∗– this follows by a
GNS argument, see

mnw
[mnw, Appendix A]. Then the Cohen Factorisation Theorem shows that

actually A∗ = {aµ : a ∈ A, µ ∈ A∗} = {µa : a ∈ A, µ ∈ A∗}. Indeed, given λ ∈ A∗ and ε > 0,
we can find a ∈ A with ‖a‖ ≤ 1 and µ ∈ A∗ with aµ = λ and ‖µ− λ‖ < ε.

That A acts non-degenerately on H means, again using the Cohen Factorisation Theorem,
that H = {a(ξ) : a ∈ A, ξ ∈ H}. It follows that {aω : a ∈ A, ω ∈ B(H)∗} is linearly dense in
B(H)∗, so the result again follows by Cohen Factorisation.
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