Commentary on "Unitaires multiplicatifs et dualité pour les produits croisés de C^{*}-algèbres"

Matthew Daws

March 26, 2015

Abstract

We

1 Notation

The original paper assumed throughout that Hilbert spaces are separable. We shall try hard not to use this assumption. Exceptions are: Proposition pr.13.

We shall follow the convention that inner products are linear on the right. We write \otimes for various completed tensor products, which should be clear by context (either Hilbert space, or the minimal C^{*}-algebraic, tensor products).

Given H a Hilbert space and $\xi \in H$, define

$$
\theta_{\xi}, \theta_{\xi}^{\prime} \in \mathcal{B}(H, H \otimes H) ; \quad \theta_{\xi}(\eta)=\xi \otimes \eta, \quad \theta_{\xi}^{\prime}(\eta)=\eta \otimes \xi \quad(\eta \in H)
$$

Similarly, for $i=1,2,3$, define $\theta_{i, \xi} \in \mathcal{B}(H \otimes H, H \otimes H \otimes H)$ by $\theta_{1, \xi}(\eta \otimes \zeta)=\xi \otimes \eta \otimes \zeta$, $\theta_{2, \xi}(\eta \otimes \zeta)=\eta \otimes \xi \otimes \zeta$ and $\theta_{3, \xi}(\eta \otimes \zeta)=\eta \otimes \zeta \otimes \xi$.

For $T \in \mathcal{B}(H \otimes H)$, we define $T_{12}, T_{13}, T_{23} \in \mathcal{B}(H \otimes H \otimes H)$ using the usual leg-numbering notation. Notice that $T_{12} \theta_{3, \xi}=\theta_{3, \xi} T, T_{13} \theta_{2, \xi}=\theta_{2, \xi} T$ and $T_{23} \theta_{1, \xi}=\theta_{1, \xi} T$. Similarly, if $\Sigma \in$ $\mathcal{B}(H \otimes H)$ denotes the "swap map", then $T_{21}=\Sigma T_{12} \Sigma$, and so forth.

We shall also sometimes work with Hilbert C^{*}-modules (see, for example, lance. For a Hilbert C^{*}-module E over A, we shall write (in a non-standard way) $\mathcal{B}(E)$ for the adjointable maps on E.

Given $T \in \mathcal{B}(H \otimes H)$ and $\omega \in \mathcal{B}(H)_{*}$, we define the slice maps $(\omega \otimes \iota)(T)$ and $(\iota \otimes \omega)(T)$ as usual. Notice that

$$
(\xi \mid(\iota \otimes \omega)(T) \eta)=\left\langle\theta_{\xi}^{*} T \theta_{\eta}, \omega\right\rangle, \quad(\xi \mid(\omega \otimes \iota)(T) \eta)=\left\langle\theta_{\xi}^{\prime *} T \theta_{\eta}^{\prime}, \omega\right\rangle .
$$

Given a C^{*}-algebra A, we denote by \tilde{A} the C^{*}-algebra given by adjoining a unit, and we denote by $M(A)$ the multiplier algebra of A (see $[10,3.12]$). If J is a closed two-sided ideal in A, let $M(A ; J)=\{m \in M(A): m A+A m \subseteq J\}$. Clearly $M(A ; J)$ is a sub-C*-algebra of $M(A)$. Restricting each element of $M(A)$ to J defines a member of $M(J)$; indeed, for $m \in M(A)$ and $a \in J$, if $\left(e_{i}\right)$ is an approximate identity for A, then $m a=\lim _{i}\left(e_{i} m\right) a \in J$, and similarly $a m \in J$. Thus we get a $*$-homomorphism $M(A) \rightarrow M(J)$, and so a $*$-homomorphism $M(A ; J) \rightarrow M(J)$. This latter map is injective, as if $m \in M(A ; J)$ with $m J=\{0\}=J m$, then for $a \in A$, and $\left(f_{i}\right)$ an approximate identity for J, then $a m=\lim a\left(m f_{i}\right)=0$, as $a m \in J$; similarly $m a=0$ and so $m=0$. Thus we can also regard $M(A ; J)$ as a sub-C*-algebra of $M(J)$.

Recall that a $*$-homomorphism $\pi: A \rightarrow M(B)$ is non-degenerate if $\pi\left(e_{i}\right) \rightarrow 1$ strictly (meaning that $\lim _{i} \pi\left(e_{i}\right) b=\lim _{i} b \pi\left(e_{i}\right)=b$ for $b \in B$) for a (or equivalently, any) approximate identity $\left(e_{i}\right)$ for A. This is equivalent to asking that π extends to a strictly- 50 ontinuous, unital *-homomorphism $\pi: M(A) \rightarrow M(B)$. (This notion is termed "spécial" in $\left[\begin{array}{ll}{[50} \\ {[2]}\end{array}\right)$.

Definition 1.1 (Définition 0.1). A Hopf-C*-algebra is a pair (A, δ) where A is a C^{*}-algebra and $\delta: A \rightarrow M(\tilde{A} \otimes A+A \otimes \tilde{A} ; A \otimes A)$ is a non-degenerate $*$-homomorphism (notice that this means that δ is a non-degenerate $*$-homomorphism $A \rightarrow M(A \otimes A)$ such that $\delta(a)(1 \otimes b), \delta(a)(b \otimes 1) \in$ $A \otimes A)$ with

We call δ the coproduct of A. We say that A is right simplifiable (or left simplifiable) if $\delta(A)(1 \otimes A)$ is linearly dense in $A \otimes A$ (respectively $\delta(A)(A \otimes 1)$). We say that A is bisimplifiable if A is left and right simplifiable.

Be aware that this clashes with $\| 2,1.1]$. Given a Hilbert space H, we can form the interior tensor product (see tance tanapter 4]) $(H \otimes A) \otimes_{\delta}(A \otimes A)$. Recall that this is the completion of $(H \otimes A) \otimes_{\mathrm{alg}}(A \otimes A) / X$ where X is the linear span of elements of the form $(\xi \otimes a b) \otimes(c \otimes$ $d)-(\xi \otimes a) \otimes \delta(b)(c \otimes d)$. A little bit of work shows that we can identify, as $A \otimes A$-modules, the spaces $(H \otimes A) \otimes_{\delta}(A \otimes A)$ and $H \otimes A \otimes A$ by the map $(\xi \otimes a) \otimes(c \otimes d) \mapsto \xi \otimes \delta(a)(c \otimes d)$.

Definition 1.2 (Définition 0.2). A coaction of a Hopf-C C^{*}-algebra on a C^{*}-algebra B is a nondegenerate $*$-homomorphism $\delta_{B}: B \rightarrow M(\tilde{B} \otimes A ; B \otimes A)$ such that the following diagram commutes:

(Again, this means that $\left.\delta_{B}(b)(1 \otimes a) \in B \otimes A\right)$. A C^{*}-algebra B with a coaction δ_{B} of a Hopf-C^{*}-algebra (A, δ) is an A-algebra if additionally δ_{B} is injective, and $\delta_{B}(B)(1 \otimes A)$ is linearly dense in $B \otimes A$.

Definition 1.3 (Définition 0.3). Let A be a Hopf-C*-algebra. A unitary corepresentation of A on a Hilbert space (or Hilbert C^{*}-module) H is a unitary $u \in \mathcal{B}(H \otimes A)$ such that $(\iota \otimes \delta)(u)=$ $u_{12} u_{13}$; alternatively, in

$$
(H \otimes A) \otimes_{\delta}(A \otimes A) \cong H \otimes A \otimes A \quad \text { we have } \quad u \otimes_{\delta} 1=u_{12} u_{13} .
$$

Let B be a C^{*}-algebra with a coaction δ_{B} of (A, δ). A covariant representation of $\left(B, \delta_{B}\right)$ is a pair (π, u) where $\pi: B \rightarrow \mathcal{B}(H)$ is a*-representation, and u is a unitary corepresentation of A, such that $(\pi \otimes \iota) \delta_{B}(b)=u(\pi(b) \otimes 1) u^{*}$ for each $b \in B$.

Remember that $\mathcal{B}(H \otimes A) \cong M\left(\mathcal{B}_{0}(H) \otimes A\right)$, so if H is a Hilbert space, we can phrase the above without reference to Hilbert C^{*}-modules.

Definition 1.4 (Définition 0.4). Let B be a C^{*}-algebra with a coaction δ_{B} of (A, δ). A unitary $u \in M(B \otimes A)$ is a cocycle for δ_{B} if

$$
u_{12}\left(\delta_{B} \otimes \iota\right)(u)=(\iota \otimes \delta)(u) .
$$

If u is a cocycle for δ_{B}, the map $\delta_{B, u}: B \rightarrow M(B \otimes A) ; x \mapsto u \delta_{B}(x) u^{*}$ satisfies $\left(\delta_{B, u} \otimes \iota\right) \delta_{B, u}=$ $(\iota \otimes \delta) \delta_{B, u}$, and hence is a coaction.

Finally, we recall the notion of morphism for the category of Hopf-C*-algebras.
Definition 1.5 (Définition 0.5). Let (S, δ) and $\left(S^{\prime}, \delta^{\prime}\right)$ be Hopf- C^{*}-algebras. A morphism $(S, \delta) \rightarrow\left(S^{\prime}, \delta^{\prime}\right)$ is a non-degenerate $*$-homomorphism $\phi: S \rightarrow M\left(S^{\prime}\right)$ with $(\phi \otimes \phi) \delta=\delta^{\prime} \phi$.

2 Definitions

Consult ${ }_{[30}^{[90}$ for motivations on studying the Pentagonal equation.
Definition 2.1 (Définition 1.1). A unitary $V \in \mathcal{B}(H \otimes H)$ is multiplicative if it satisfies the pentagonal equation:

$$
V_{12} V_{13} V_{23}=V_{23} V_{12}
$$

Examples 2.2 (Exemples 1.2). tary.

- If V is a multiplicative unitary and $U \in \mathcal{B}\left(H, H^{\prime}\right)$ is a unitary, then $W=(U \otimes$ $U) V\left(U^{*} \otimes U^{*}\right)$ is a multiplicative unitary on H^{\prime}. We say that V and W are equivalent.
- If V is a multiplicative unitary and $\Sigma \in \mathcal{B}(H \otimes H)$ is the swap map, then $\Sigma V^{*} \Sigma$ is also a multiplicative unitary. We say that V and W are opposite if V and $\Sigma W^{*} \Sigma$ are equivalent.
- If V and W are two multiplicative unitaries on H and K, respectively, then $V_{13} W_{24} \in$ $\mathcal{B}(H \otimes K \otimes H \otimes K)$ is a multiplicative unitary on $H \otimes K$. We call this the tensor product of V and W, sometimes denoted (abusively) by $V \otimes W$. Notice that $V \otimes W$ and $W \otimes V$ are equivalent.

2. If G is a locally compact group with right Haar measure $d g$, then $V_{G}(\xi)(s, t)=\xi(s t, t)$ is a multiplicative unitary on $L^{2}(G, d g)$.
 multiplicative unitary.
3. If (A, δ) is a Hopf-C*-algebra, and ϕ is a right Haar measure on A (so $\phi \in A^{*}$ is a state with $(\phi \otimes \mu) \delta(a)=\phi(a) \mu(1)$ for $\left.a \in A, \mu \in A^{*}\right)$, then let (H, π, ξ) be the cyclic GNS construction for ϕ. If we define V_{ϕ} by $V_{\phi}(\pi(x) \xi \otimes \eta)=(\pi \otimes \pi)(\delta(x))(\xi \otimes \eta)$ for $\eta \in H$, then V_{ϕ} is an isometry which satisfies the pentagonal equation. If V_{ϕ} surjects, then it is a multiplicative unitary; this is the case of a compact quantum group in the sense of Woronowicz, [13].
4. Let (A, δ) be a Hopf-C*-algebra. The coproduct δ is a coaction of A on itself. If also (π, u) is a covariant representation of (A, δ) on a Hilbert space H. So $(\iota \otimes \delta)(u)=u_{12} u_{13}$ and $(\pi \otimes \iota) \delta(a)=u(\pi(a) \otimes 1) u^{*}$ for $a \in A$. Setting $V=(\iota \otimes \pi)(u)$, we see that V is a multiplicative unitary.
5. Another interpretation of the pentagonal equation is the following:

If A is a finite-dimensional Hopf algebra, and let E be the algebra of linear maps $A \rightarrow$ A. We identify E with $A^{*} \otimes A$, and let $v \in A^{*} \otimes A$ be the identity map. Define a homomorphism $L: A \rightarrow E$ by $L(a)(b)=a b$. Recall that A^{*} becomes an algebra for the product

$$
\langle x y, a\rangle=\langle x \otimes y, \delta(a)\rangle \quad\left(x, y \in A^{*}, a \in A\right) .
$$

For $x \in A^{*}$ and $a \in A$, we let $\rho(x)(a)=(\iota \otimes x) \delta(a)$, so ρ is a homomorphism $A^{*} \rightarrow E$.
Proposition 2.3 (Page 431). (a) For $a \in A, x \in A^{*}$, write $\delta(a)=\sum_{i} a_{i} \otimes b_{i}$; then $\rho(x) L(a)=\sum_{i} L\left(a_{i}\right) \rho\left(x b_{i}\right)$.
(b) For $a \in A$, we have that $(\rho \otimes \iota)(v)(L(a) \otimes 1)=(L \otimes \iota)(\delta(a))(\rho \otimes \iota)(v)$ in $E \otimes A$.
(c) We have that $(\iota \otimes \delta)(v)=v_{12} v_{13}$.

$$
((\iota \otimes L)(v))_{12} v_{13}((\rho \otimes \iota)(v))_{23}=((\rho \otimes \iota)(v))_{23}((\iota \otimes L)(v))_{12} .
$$

Proof. For (brop: 1 . 1 $\sum_{i} a_{i}\left(\iota \otimes x b_{i}\right) \delta(b)=\sum_{i} L\left(a_{i}\right) \rho\left(x b_{i}\right) b$, as claimed.
 Thus, using part (fa),

$$
\begin{aligned}
(\iota \otimes x)((\rho \otimes \iota)(v)(L(a) \otimes 1)) & =\rho(x) L(a)=\sum_{i} L\left(a_{i}\right) \rho\left(x b_{i}\right) \\
& =(\iota \otimes x) \sum_{i}\left(L\left(a_{i}\right) \otimes b_{i}\right)(\rho \otimes \iota)(v) \\
& =(\iota \otimes x)((L \otimes \iota)(\delta(a))(\rho \otimes \iota)(v)) .
\end{aligned}
$$

As x was arbitrary, this shows (brop:1.2
Now let $x, y \in A^{*}$ and $a \in A=A^{* *}$. Then $(a \otimes \iota)(v)=a,(\iota \otimes x)(v)=x$ and $(\iota \otimes y)(v)=y$. Thus

$$
\langle a \otimes x \otimes y,(\iota \otimes \delta)(v)\rangle=\langle x \otimes y, \delta(a)\rangle=\langle x y, a\rangle .
$$

However, also

$$
\left\langle a \otimes x \otimes y, v_{12} v_{13}\right\rangle=\langle(\iota \otimes x)(v)(\iota \otimes y)(v), a\rangle=\langle x y, a\rangle .
$$

Thus we have shown (brop): 1.3
Finally, by ($\frac{\text { prop: }}{6 \hbar), ~ w e ~ s e e ~ t h a t ~}$

$$
((\rho \otimes \iota)(v))_{23}((\iota \otimes L)(v))_{12}=(\iota \otimes L \otimes \iota)(\iota \otimes \delta)(v)((\rho \otimes \iota)(v))_{23}
$$

By (brop:1.3 ${ }^{\text {(bc }}$, this is equal to $((\iota \otimes L)(v))_{12} v_{13}((\rho \otimes \iota)(v))_{23}$, as required to show (lorop:1.4
Corollary 2.4 (Page 431). The operator $V=(\rho \otimes L(v)$ satisfies the pentagonal equation.
If A is both unital and counital, then L and ρ inject, and we have the following.
Proposition 2.5 (Page 431). Let $1 \in A$ be the unit of A, and $\epsilon \in A^{*}$ be the unit of A^{*}.
(a) If V, and so v, are invertible, then the map $\kappa: A \rightarrow A ; a \mapsto(a \otimes \iota)\left(v^{-1}\right)$ is the antipode of A. That is, for $a \in A$,

$$
m(\iota \otimes \kappa) \delta(a)=m(\kappa \otimes \iota) \delta(a)=\epsilon(a) 1
$$

Here $m: A \otimes A \rightarrow A$ is the multiplication map.
(b) Conversely, if A has an antipode, then v is invertible.

Proof. For (prop:2.1 $(6 a)$ as above, we have that $\delta(a)=(a \otimes \iota \otimes \iota)\left(v_{12} v_{13}\right)$ and $(\iota \otimes \kappa) \delta(a)=$ $(a \otimes \iota \otimes \iota)\left(v_{12} v_{13}^{-1}\right)$. Thus

$$
m(\iota \otimes \kappa) \delta(a)=(a \otimes m)\left(v_{12} v_{13}^{-1}\right)=(a \otimes \iota)\left(v v^{-1}\right)=(a \otimes \iota)(\epsilon \otimes 1)=\epsilon(a) 1 .
$$

Similarly, $m(\kappa \otimes \iota) \delta(a)=(a \otimes m)\left(v_{12}^{-1} v_{13}\right)=\epsilon(a) 1$. This shows (fáa).

$$
\begin{aligned}
v u & =(\iota \otimes m)\left(v_{12} u_{13}\right)=(\iota \otimes m(\iota \otimes \kappa))\left(v_{12} v_{13}\right)=(\iota \otimes m(\iota \otimes \kappa) \delta)(v) \\
& =(\iota \otimes \epsilon)(v) \otimes 1=\epsilon \otimes 1 .
\end{aligned}
$$

So $u=v^{-1}$.

We continue studying general multiplicative unitaries. Let H be a Hilbert space and $V \in$ $\mathcal{B}(H \otimes H)$ a multiplicative unitary.

Definition 2.6 (Définition 1.3). Let $\omega \in \mathcal{B}(H)_{*}$, and define $L(\omega), \rho(\omega) \in \mathcal{B}(H)$ by $L(\omega)=$ $(\omega \otimes \iota)(V)$ and $\rho(\omega)=(\iota \otimes \omega)(V)$. Let

$$
A(V)=\left\{L(\omega): \omega \in \mathcal{B}(H)_{*}\right\} \quad \hat{A}(V)=\left\{\rho(\omega): \omega \in \mathcal{B}(H)_{*}\right\} .
$$

Then $A(V)$ and $\hat{A}(V)$ form a dual pairing:

$$
\left\langle L(\omega), \rho\left(\omega^{\prime}\right)\right\rangle=\left(\omega \otimes \omega^{\prime}\right)(V)=\left\langle\rho\left(\omega^{\prime}\right), \omega\right\rangle=\left\langle L(\omega), \omega^{\prime}\right\rangle .
$$

prop:3 Proposition 2.7 (Proposition 1.4). The spaces $A(V)$ and $\hat{A}(V)$ are subalgebras of $\mathcal{B}(H)$, and the spaces $A(V) H$ and $\hat{A}(V) H$ are linearly dense in H.

Proof. Let $\omega, \omega^{\prime} \in \mathcal{B}(H)_{*}$, and define $\psi \in \mathcal{B}(H)_{*}$ by define $\langle T, \psi\rangle=\left\langle V^{*}(1 \otimes T) V, \omega \otimes \omega^{\prime}\right\rangle$ for $T \in \mathcal{B}(H)$. Then, using the pentagonal equation,

$$
\begin{aligned}
L(\omega) L\left(\omega^{\prime}\right) & =(\omega \otimes \iota)(V)\left(\omega^{\prime} \otimes \iota\right)(V)=\left(\omega \otimes \otimes^{\prime} \otimes \iota\right)\left(V_{13} V_{23}\right) \\
& =\left(\omega \otimes \otimes^{\prime} \otimes \iota\right)\left(V_{12}^{*} V_{23} V_{12}\right)=(\psi \otimes \iota)(V)=L(\psi) .
\end{aligned}
$$

Similarly, $\rho(\omega) \rho\left(\omega^{\prime}\right)=\rho\left(\psi^{\prime}\right)$ where $\left\langle T, \psi^{\prime}\right\rangle=\left(\omega \otimes \omega^{\prime}\right)\left(V(T \otimes 1) V^{*}\right)$.
Given non-zero $\xi, \eta \in H$, we have that $V^{*}(\xi \otimes \eta) \neq 0$, and so there are $\alpha, \beta \in H$ with $\langle\xi \otimes \eta, V(\alpha \otimes \beta)\rangle \neq 0$. Thus $L\left(\omega_{\xi, \alpha}\right) \beta$ is not orthogonal to η, and $\rho\left(\omega_{\eta, \beta}\right) \alpha$ is not orthogonal to ξ, showing linear density of the spaces $A(V) H$ and $\hat{A}(V) H$.

Definition 2.8 (Définition 1.5). Let V be a multiplicative unitary. We write S for the norm closure of the algebra $A(V)$, and similarly denote by \hat{S} the norm closure of $\hat{A}(V)$.

We remark that the functionals ψ which appear in the proof above are dense in $\mathcal{B}(H)_{*}$. It follows that $\{x y: x, y \in A(V)\}$ is dense in S, and similarly $\{x y: x, y \in \hat{A}(V)\}$ is dense in \hat{S}.

Proposition 2.9 (Proposition 1.6). Let $C^{*}(S)$ be the C^{*}-algebra (in $\mathcal{B}(H)$) generated by S, and similarly for $C^{*}(\hat{S})$. Then V is in the von Neumann algebra generated by $C^{*}(\hat{S}) \otimes C^{*}(S)$.

Proof. Let $T \in \mathcal{B}(H \otimes H)$. For $\omega \in \mathcal{B}(H)_{*}$,

$$
(\iota \otimes \omega \otimes \iota)\left(T_{13} V_{23}-V_{23} T_{13}\right)=T(1 \otimes L(\omega))-(1 \otimes L(\omega)) T .
$$

So T commutes with $1 \otimes S$ if and only if T_{13} commutes with V_{23}. A similar calculation shows that $\hat{S} \otimes 1$ commutes with T if and only if T_{13} commutes with V_{12}.

So if $T \in(\hat{S} \otimes S)^{\prime}$ then T_{13} commutes with both $V_{23} V_{12}$. As $V_{13}=V_{12}^{*} V_{23} V_{12} V_{23}^{*}$, it follows that T_{13} commutes with V_{13}. So $V \in(\hat{S} \otimes S)^{\prime \prime}$ and hence certainly $V \in\left(C^{*}(\hat{S}) \otimes C^{*}(S)\right)^{\prime \prime}$.

Definition 2.10 (Définition 1.7). Let V be a multiplicative unitary. We say that V is of compact type if S is unital. We say that V is of discrete type if \hat{S} is unital.
defn:2 Definition 2.11 (Définition 1.8). Let V be a multiplicative unitary. A vector $e \in H$ is fixed if $V \theta_{e}=\theta_{e}$ (that is, $V(e \otimes \xi)=e \otimes \xi$ for all $\xi \in H$), and is cofixed if $V \theta_{e}^{\prime}=\theta_{e}^{\prime}$ (that is, $V(\xi \otimes e)=\xi \otimes e$ for all $\xi \in H)$.

Proposition 2.12 (Proposition 1.9). Let e be a fixed (respectively cofixed) unit vector. Then $L\left(\omega_{e}\right)=1$ and $\rho\left(\omega_{e}\right)$ is the projection onto the subspace of all fixed vectors (respectively, $\rho\left(\omega_{e}\right)=$ 1 and $L\left(\omega_{e}\right)$ is the projection onto the subspace of all cofixed vectors).

Proof. Clearly $L\left(\omega_{e}\right)=\left(\omega_{e} \otimes \iota\right)(V)=1$. Define $\psi^{\prime} \in \mathcal{B}(H)_{*}$ by $\psi^{\prime}(T)=\left(e_{0} \otimes e \mid V(T \otimes\right.$ 1) $\left.V^{*}(e \otimes e)\right)=\left\langle T, \omega_{e}\right\rangle$, as $V^{*}(e \otimes e)=e \otimes e$. By (the proof of) Proposition prop: $2.7, \rho\left(\omega_{e}\right)$ is an idempotent, and as $\left\|\rho\left(\omega_{e}\right)\right\| \leq 1$, it follows that $\rho\left(\omega_{e}\right)$ is a projection. Now, $\rho\left(\omega_{e}\right) \xi=x i$ if and only if $\left(\xi \mid \rho\left(\omega_{e}\right) \xi\right)=\|\xi\|^{2}$, that is, $\left(\xi \otimes e \mid V(\xi \otimes e)=\|\xi \otimes e\|^{2}\right.$. Thus the image of $\rho\left(\omega_{e}\right)$ is $\{\xi \in H: V(\xi \otimes e)=\xi \otimes e\}$. However, notice that if $V(\xi \otimes e)=\xi \otimes e$, then for $\eta \in H$, the vector $\xi \otimes e \otimes \eta$ is fixed by both V_{12} and V_{23}, and hence by $V_{13}=V_{12}^{*} V_{23} V_{12} V_{23}^{*}$, showing that ξ is fixed.

The other case follows by working with $\Sigma V^{*} \Sigma$ instead of V.
prop:4 Proposition 2.13 (Proposition 1.10). Let V be a multiplicative unitary on H, where H is now separable. Then V is of compact type (respectively, discrete type) if and only if the spaces of fixed vectors (respectively, cofixed vectors) is not zero.

Proof. If there is a fixed vector e then $L(e) . \overline{3} 1$ so S is unital. Conversely, suppose that S is unital, and recall from Proposition 2.7 that S acts non-degenerately on H, so the unit of S is the identity operator on H. Thus there is $\omega \in \mathcal{B}(H)_{*}$ with $\|L(\omega)-1\|<1 / 2$. Fix a faithful normal state ψ, using that H is separable. Then $|\langle\rho(\psi), \omega\rangle|=|\langle L(\omega), \psi\rangle|>1 / 2$. Set $\psi^{1}=\psi$, and defined inductively $\left\langle x, \psi^{n+1}\right\rangle=\left\langle V(x \otimes 1) V^{*}, \psi \otimes \psi^{n}\right\rangle$. Set $\psi_{n}=\frac{1}{n} \sum_{k=1}^{n} \psi^{k}$. Thus, from Proposition 1.7. $\left(\rho(\psi)-\rho(\psi)^{n+1}\right) / n$, which converges to 0 in norm.

If $T=1-\rho(\psi)$ is an injective operator, then T^{*} has dense range, and so there is $\omega^{\prime} \in \mathcal{B}(H)_{*}$ with $\left\|\omega-\omega^{\prime} T\right\|<1 / 4$. As $\left|\left\langle\rho\left(\psi_{n}\right), \omega\right\rangle\right|=\left|\left\langle L(\omega), \psi_{n}\right\rangle\right| \geq 1 / 2$, because ψ_{n} is a state, we arrive at a contradiction. So T is not injective, and we can find a unit vector $e \in H$ with $\rho(\psi)(e)=e$. Then $1=\left\langle\rho(\psi), \omega_{e}\right\rangle=\left\langle L\left(\omega_{e}\right), \psi\right\rangle$. As $\left\|L\left(\omega_{e}\right)\right\| \leq 1$, we have that $1-L\left(\omega_{e}\right)$ is positive, and $\left\langle 1-L\left(\omega_{e}\right), \psi\right\rangle=0$. As ψ is faithful, we must have that $L\left(\omega_{e}\right)=1$, as required to show that e is a fixed vector.

We see that $1 \in \mathcal{B}(H \otimes H)$ is both compact and discrete. If V is a multiplicative unitary, then V is of compact (respectively, discrete) type if and only if $\Sigma V^{*} \Sigma$ is of discrete (respectively, compact) type. The tensor product of two multiplicative unitaries of compact (discrete) type is again of compact (discrete) type.

If G is a compact group, and we form V_{G} as in Example eq: 2.2.1. 1.2 constant 1 is fixed by V_{G}. Similarly, if G is a discrete group, then the function which is 1 at the identity, and 0 elsewhere, is fixed by V_{G}.

In Example 2.2.4, the cyclic vector ξ is fixed.
Remarks 2.14 (Remarques 1.11). 1. Let $f \in H$ be a unit vector with $V(f \otimes f)=f \otimes f$. Then $L\left(\omega_{f}\right)^{2}=L\left(\omega_{f}\right)$ and $\rho\left(\omega_{f}\right)^{2}=\rho\left(\omega_{f}\right)$; as both $\left\|L\left(\omega_{f}\right)\right\|=\left\|\rho\left(\omega_{f}\right)\right\|=1$, both $L\left(\omega_{f}\right)$ and $\rho\left(\omega_{f}\right)$ are projections.

3 Commutative multiplicative unitaries

We will now study commutative multiplicative unitaries, and show that they correspond to locally compact groups.

Let V be a multiplicative unitary on a Hilbert space H.
Definition 3.1 (Définition 2.1). We say that V is commutative if V_{13} and V_{23} commute. We say that V is cocommutative if V_{12} and V_{13} commute.

The multiplicative unitary V_{G} from Example $\frac{\mathrm{eg} \text { : } \mathrm{leg}: 1.2}{2.1 \mathrm{I}}$ is commutative. We will show that every commutative multiplicative unitary is of this form. Notice that V is commutative (respectively, cocommutative) if and only if S (respectively, \hat{S}) is abelian. Also, if V is commutative, then V_{13} and V_{23}^{*} commute, and so $C^{*}(S)$ is abelian.

Theorem 3.2 (Théorèm 2.2). Let V be a commutative multiplicative unitary, and let G be the spectrum of the abelian C^{*}-algebra $C^{*}(S)$. Then G is a locally compact group and there is a Hilbert space J such that V is equivalent to the multiplicative unitary $V_{G} \otimes 1_{K \otimes K}$.

4 Regular multiplicative unitaries

In this section, we define and study regular multiplicative unitaries and deduce the existence of a densely defined antipode.

Lemma 4.1 (Lemme 3.1). Let H and K be Hilbert spaces, and let $X \subseteq \mathcal{B}(H \otimes K)$. The closures of the linear spans of

$$
\left\{(1 \otimes h) x(1 \otimes k): h, k \in \mathcal{B}_{0}(K), x \in X\right\}
$$

and

$$
\left\{(\iota \otimes \omega)(x) \otimes k: x \in X, k \in \mathcal{B}_{0}(K), \omega \in \mathcal{B}(K)_{*}\right\}
$$

agree.
Proof. For $h=\theta_{\xi, \xi^{\prime}}$ and $k=\theta_{\eta, \eta^{\prime}}$, and $x \in X$, we have

$$
(1 \otimes h) x(1 \otimes k)=\left(\iota \otimes \omega_{\xi^{\prime}, \eta}\right)(x) \otimes \theta_{\xi, \eta^{\prime}}
$$

from which the claim follows.
Given a multiplicative unitary V, we set $\mathcal{C}(V)=\left\{(\iota \otimes \omega)(\Sigma V): \omega \in \mathcal{B}(H)_{*}\right\}$.
prop:5 Proposition 4.2 (Proposition 3.2). The space $\mathcal{C}(V)$ is a subalgebra of $\mathcal{B}(H)$. The following conditions are equivalent:

1. The closure of $\mathcal{C}(V)$ is $\mathcal{B}_{0}(H)$.
2. The closure of the linear span of $\left\{(x \otimes 1) V(1 \otimes y): x, y \in \mathcal{B}_{0}(H)\right\}$ is $\mathcal{B}_{0}(H \otimes H)$.

Proof. For $\omega, \omega^{\prime} \in \mathcal{B}(H)_{*}$, we have that

$$
(\iota \otimes \omega)(\Sigma V)\left(\iota \otimes \omega^{\prime}\right)(\Sigma V)=\left(\iota \otimes \omega \otimes \omega^{\prime}\right)\left(\Sigma_{13} V_{13} \Sigma_{12} V_{12}\right)
$$

Now, $\Sigma_{13} V_{13} \Sigma_{12} V_{12}=\Sigma_{13} \Sigma_{12} V_{23} V_{12}=\Sigma_{23} \Sigma_{13} V_{12} V_{13} V_{23}=\Sigma_{23} V_{32} \Sigma_{13} V_{13} V_{23}=V_{23} \Sigma_{23} \Sigma_{13} V_{13} V_{23}$. Setting $\langle x, \psi\rangle=\left(\omega^{\prime} \otimes \omega\right)(V \Sigma(1 \otimes x) V)$, we see that $\psi \in \mathcal{B}(H)_{*}$, and that

$$
(\iota \otimes \omega)(\Sigma V)\left(\iota \otimes \omega^{\prime}\right)(\Sigma V)=(\iota \otimes \psi)(\Sigma V)
$$

Thus $\mathcal{C}(V)$ is a subalgebra.
Condition (prop: is equivalent to the closure of the linear span of

$$
\left\{\Sigma(x \otimes 1) V(1 \otimes y): x, y \in \mathcal{B}_{0}(H)\right\}=\left\{(1 \otimes x) \Sigma V(1 \otimes y): x, y \in \mathcal{B}_{0}(H)\right\}
$$

being equal to $\mathcal{B}_{0}(H \otimes H)$. The result follows by Lemma lemm
As V is unitary, it is clear that the functionals ψ constructed in the proof are norm dense in $\mathcal{B}(H)_{*}$. Thus $\{x y: x, y \in \mathcal{C}(V)\}$ is dense in $\mathcal{C}(V)$.

Definition 4.3 (Définition 3.3). A multiplicative unitary V is regular if the closure of $\mathcal{C}(V)$ is $\mathcal{B}_{0}(H)$.

Notice that $\mathcal{C}\left(\Sigma V^{*} \Sigma\right)=\mathcal{C}(V)^{*}$. It follows that V is regular if and only if $\Sigma V^{*} \Sigma$ is regular. Given two equivalent multiplicative unitaries, one is regular if and only if the other is regular.
eg:2 Examples 4.4 (Exemples 3.4). 1. For $\omega=\omega_{\xi, \eta}$, we have that $(\iota \otimes \omega)(\Sigma)=\theta_{\eta, \xi}$. Thus $1 \in \mathcal{B}(H \otimes H)$ is a regular multiplicative unitary.
2. A direct calculation shows that for a locally compact group G, the multiplicative unitary V_{G} is regular. Indeed, this is a special case of the following.
3. Suppose there ia a unitary $J: H \rightarrow \bar{H}$ with $J^{*} \overline{L(\omega)} J=L\left(\omega^{*}\right)$ for each $\omega \in \mathcal{B}(H)_{*}$. Let T be a Hilbert-Schmidt operator on H, so we can identify T with some vector $\tau \in$ $\bar{H} \otimes H$. Furthermore, suppose that T is trace class, and let $\omega \in \mathcal{B}(H)_{*}$ be the associated functional. Define W, a unitary on $\bar{H} \otimes H$, by $W=\left(1 \otimes J^{*}\right) \bar{V}(1 \otimes J)$. Notice that the composition of operators $W T$ is Hilbert-Schmidt, and so can be identified as a member of $\bar{H} \otimes H$, which is just $W(\tau)$.
For $\xi, \eta, \alpha, \beta \in H$

$$
\begin{aligned}
(\bar{\beta} \otimes \alpha \mid W(\bar{\xi} \otimes \eta)) & =(\bar{\beta} \otimes J(\alpha) \mid \bar{V}(\bar{\xi} \otimes J(\eta)))=(V(\xi \otimes \overline{J(\eta)}) \mid \beta \otimes \overline{J(\alpha)}) \\
& =\left(L\left(\omega_{\beta, \xi}\right) \overline{J(\eta)} \mid \overline{J(\alpha)}\right)=\left(J(\alpha) \mid \overline{L\left(\omega_{\beta, \xi}\right)} J(\eta)\right) \\
& =\left(\alpha \mid L\left(\omega_{\xi, \beta}\right) \eta\right)=(\alpha \otimes \xi \mid \Sigma V(\beta \otimes \eta),
\end{aligned}
$$

and so

$$
(\bar{\beta} \otimes \alpha \mid W T)=(\bar{\beta} \otimes \alpha \mid W(\tau))=(\alpha \mid(\iota \otimes \omega)(\Sigma V) \beta) .
$$

It follows that V is regular.
In particular, if $V_{6}=W^{*}$ and W is the fundamental unitary for a Kac algebra in the sense of $\{3]$, then $\{3$, Lemme 2.2.3], together with the preceding argument, shows that V regular.
ppop212 Proposition 4.5 (Proposition 3.4.4). 1. Let V be a multiplicative unitary. If V is a multiplier of $\mathcal{B}_{0}(H) \otimes \mathcal{B}(H)\left(\right.$ or $\left.\mathcal{B}(H) \otimes \mathcal{B}_{0}(H)\right)$ then $\mathcal{C}(V) \subseteq \mathcal{B}_{0}(H)$.
2. Let A be a Hopf-C*-algebra which is unital, and right simplifiable, and which has a right Haar state ϕ which satisfies $\phi\left(x^{*} x\right)=0$ if and only if $\phi\left(x x^{*}\right)=0$. Let (H, π, ξ) be the cyclic GNS construction. Define $V_{\phi} \in \mathcal{B}(H \otimes H)$ by $V_{\phi}(\pi(x) \xi \otimes \eta)=(\pi \otimes \pi) \delta(x)(\xi \otimes \eta)$ for $\eta \in H$. Then V_{ϕ} is a regular multiplicative unitary.

Proof. For $x, y \in \mathcal{B}_{0}(H)$, we have that $(x \otimes 1) V \in \mathcal{B}_{0}(H) \otimes \mathcal{B}(H)$ and so $(x \otimes 1) V\left(1_{1} \otimes y\right)$, \in $\mathcal{B}_{0}(H) \otimes \mathcal{B}_{0}(H)=\mathcal{B}_{0}(H \otimes H)$. The result follows by the methods used in Lemma 4.1 and Proposition $\frac{\text { prop }}{4.2 \text {. The }}$ The option follows by working with $\Sigma V^{*} \Sigma$.

As ϕ is right invariant, V_{ϕ} is isometric, compare Example 2.2.4. Clearly the image of V_{ϕ} contains the set

$$
\{(\pi \otimes \pi)(\delta(x)(1 \otimes y)): x, y \in A\}
$$

and so, as (A, δ) is right simplifiable, we conclude that V_{ϕ} surjects. So V_{ϕ} is a unitary, and a calculation shows that V_{ϕ} is multiplicative.

Then, for $a, b \in A$ and $\xi_{0}, \xi_{1}, \eta \in H$,

$$
V_{\phi}\left(\theta_{\pi(a) \xi, \xi_{0}} \otimes \pi(b)\right)\left(\xi_{1} \otimes \eta\right)=V_{\phi}(\pi(a) \xi \otimes \pi(b) \eta)\left(\xi_{0} \mid \xi_{1}\right)=(\pi \otimes \pi) \delta(a)(\xi \otimes \pi(b) \eta)\left(\xi_{0} \mid \xi_{1}\right)
$$

We can approximate $\delta(a)(1 \otimes b)$ be a sum of tensors of the form $x, y \in A$, so this is approximately

$$
(\pi(x) \otimes \pi(y))(\xi \otimes \eta)\left(\xi_{0} \mid \xi_{1}\right)=\left(\theta_{\pi(x) \xi, \xi_{0}} \otimes \pi(y)\right)\left(\xi_{1} \otimes \eta\right)
$$

Hence V_{ϕ} is a multiplier of $\mathcal{B}_{0}(H) \otimes \pi(A)$. As A is unital, it follows that V_{ϕ} is a multiplier of $\mathcal{B}_{0}(H) \otimes \mathcal{B}(H)$, and so the first part of the proposition shows that $\mathcal{C}\left(V_{\phi}\right) \subseteq \mathcal{B}_{0}(H)$.

Then, for $\eta, \eta_{1} \in H$ and $a \in A$, we have that

$$
\begin{aligned}
\left(\eta_{1} \mid\left(\iota \otimes \omega_{\xi, \eta}\right)\left(\Sigma V_{\phi}\right) \pi(a) \xi\right) & =\left(\xi \otimes \eta_{1} \mid V_{\phi}(\pi(a) \xi \otimes \eta)\right)=\left(\xi \otimes \eta_{1} \mid(\pi \otimes \pi) \delta(a)(\xi \otimes \eta)\right) \\
& =\left(\eta_{1} \mid \pi((\phi \otimes \iota) \delta(a)) \eta\right)=\phi(a)\left(\eta_{1} \mid \eta\right)=\left(\eta_{1} \mid \theta_{\eta, \xi} \pi(a) \xi\right)
\end{aligned}
$$

So $\left(\iota \otimes \omega_{\xi, \eta}\right)\left(\Sigma V_{\phi}\right)=\theta_{\eta, \xi}$.
To show that $\mathcal{C}\left(V_{\phi}\right)$ is dense in $\mathcal{B}_{0}(H)$, it suffices to prove that for each non-zero $\xi_{1} \in H$, there is $x \in \mathcal{C}\left(V_{\phi}\right)$ with $\left(\xi \mid x\left(\xi_{1}\right)\right) \neq 0$. Indeed, this would show that $\left\{x^{*}(\xi): x \in \mathcal{C}\left(V_{\phi}\right)\right\}$ is dense in H. Then, for $x \in \mathcal{C}\left(V_{\phi}\right)$ and $\eta \in H$, we have that $\theta_{\eta, x^{*} \xi}=\theta_{\eta, \xi} x \in \mathcal{C}\left(V_{\phi}\right)$, and thus $\mathcal{C}\left(V_{\phi}\right)$ is dense in $\mathcal{B}_{0}(H)$.

Now, for $b, c \in A$ and $\xi_{1}, \xi_{2} \in H$, we have that

$$
\begin{aligned}
\left(\xi_{1} \mid L\left(\omega_{\pi(b) \xi, \pi(c) \xi) \xi_{2}}\right)\right. & =\left(\pi(b) \xi \otimes \xi_{1} \mid V_{\phi}\left(\pi(c) \xi \otimes \xi_{2}\right)\right) \\
& =\left(\xi \otimes \xi_{1} \mid(\pi \otimes \pi)\left(\left(b^{*} \otimes 1\right) \delta(c)\right)\left(\xi \otimes \xi_{2}\right)\right)=\left(\xi_{1} \mid \pi(d) \xi_{2}\right)
\end{aligned}
$$

where $d=(\phi \otimes \iota)\left(\left(b^{*} \otimes 1\right) \delta(c)\right) \in A$, as $\left(b^{*} \otimes 1\right) \delta(c) \in A \otimes A$. Hence $L\left(\omega_{\pi(b) \xi, \pi(c) \xi}\right)=\pi(d) \in \pi(A)$. Now, $\pi(A)$ is closed in $\mathcal{B}(H)$, and so by continuity, $L(\omega) \in \pi(A)$ for all $\omega \in \mathcal{B}(H)_{*}$.

For $\eta, \eta_{1}, \eta_{2} \in H$, we have that

$$
\left(\xi \mid\left(\iota \otimes \omega_{\eta_{2}, \eta_{1}}\right)\left(\Sigma V_{\phi}\right) \eta\right)=\left(\eta_{2} \otimes \xi \mid V_{\phi}\left(\eta \otimes \eta_{1}\right)\right)=\left(\xi \mid L\left(\omega_{\eta_{2}, \eta}\right) \eta_{1}\right) .
$$

Suppose that $(\xi \mid x(\eta))=0$ for all $x \in \mathcal{C}\left(V_{\phi}\right)$. Thus $\left(\xi \mid L\left(\omega_{\eta_{2}, \eta}\right) \eta_{1}\right)=0$ for all $\eta_{2}, \eta_{1} \in H$, that is, $L\left(\omega_{\eta_{2}, \eta}\right)^{*} \xi=0$ for all $\eta_{2} \in H$. However, $L\left(\omega_{\eta_{2}, \eta}\right)=\pi(a)$ for some $a \in A$, and so $a^{*} \xi=0 \Longrightarrow \phi\left(a a^{*}\right)=0 \Longrightarrow \phi\left(a^{*} a\right)=0 \Longrightarrow a \xi=0$. Thus $L\left(\omega_{\eta_{2}, \eta}\right) \xi=0$ for all $\eta_{2} \in H$, which shows that $V_{\phi}(\eta \otimes \xi)=0$, so $\eta=0$, as required.

In particular, this result applies to compact quantum groups in the sense of Woronowicz, [13]. Furthermore, in this case, $S=\pi(A)$.
prop:6 Proposition 4.6 (Proposition 3.5). If V is a regular multiplicative unitary, the algebras S and \hat{S} are self-adjoint.

Proof. Let E be the linear span of

$$
\left\{\left(\omega \otimes \omega^{\prime} \otimes \iota\right)\left(\Sigma_{12} V_{23}^{*} V_{12} V_{13}\right)^{*}: \omega, \omega^{\prime} \in \mathcal{B}(H)_{*}\right\}
$$

As $\Sigma_{12} V_{23}^{*} V_{12} V_{13}=\Sigma_{12} V_{12} V_{23}^{*}$, we see that E is the linear span of

$$
\left\{\left(\omega \otimes \omega^{\prime} \otimes \iota\right)\left(V_{23}^{*}\right)^{*}: \omega, \omega^{\prime} \in \mathcal{B}(H)_{*}\right\}=\left\{\left(\omega^{\prime} \otimes \iota\right) V: \omega^{\prime} \in \mathcal{B}(H)_{*}\right\}
$$

and so the closure of E is S. Alternatively, $\Sigma_{12} V_{23}^{*} V_{12} V_{13}=V_{13}^{*} \Sigma_{12} V_{12} V_{13}$, and so

$$
\left(\omega \otimes \omega^{\prime} \otimes \iota\right)\left(\Sigma_{12} V_{23}^{*} V_{12} V_{13}\right)=(\omega \otimes \iota)\left(V^{*}(y \otimes 1) V\right)
$$

where $y=\left(\iota \otimes \omega^{\prime}\right)(\Sigma V)$. From this, it follows that the norm closure of E is the norm closure of

$$
\left\{(\omega \otimes \iota)\left(V^{*}(y \otimes 1) V\right): \omega \in \mathcal{B}(H)_{*}, y \in \mathcal{B}_{0}(H)\right\}
$$

which is clearly self-adjoint. So S is self-adjoint. The \hat{S} case follows, as $\hat{S}=S\left(\Sigma V^{*} \Sigma\right)^{*}$.
prop:7 Proposition 4.7 (Proposition 3.6). Let V be a regular multiplicative unitary, with associated C^{*}-algebras S and \hat{S}. We have that
rop: 7.4

1. $V \in M\left(\mathcal{B}_{0}(H) \otimes S\right)$ and $V \in M\left(\hat{S} \otimes \mathcal{B}_{0}(H)\right)$;
2. The closed linear span of $\left\{(x \otimes 1) V(1 \otimes y): x \in \mathcal{B}_{0}(H), y \in S\right\}$ is $\mathcal{B}_{0}(H) \otimes S$, and the closed linear span of $\left\{(x \otimes 1) V(1 \otimes y): x \in \hat{S}, y \in \mathcal{B}_{0}(H)\right\}$ is $\hat{S} \otimes \mathcal{B}_{0}(H)$;
3. $V \in M(\hat{S} \otimes S)$;
4. The closed linear span of $\{(x \otimes 1) V(1 \otimes y): x \in \hat{S}, y \in S\}$ is $\hat{S} \otimes S$.

Proof. For $x, y \in \mathcal{B}_{0}(H)$ and $\omega \in \mathcal{B}(H)_{*}$, we have that $V(x \otimes L(y \omega))=(\iota \otimes \omega \otimes \iota)\left(\left(V_{13} V_{23}\right)(x \otimes\right.$ $y \otimes 1))=(\iota \otimes \omega \otimes \iota)\left(\left(V_{12}^{*} V_{23} V_{12}\right)(x \otimes y \otimes 1)\right)$. As $V(x \otimes y) \in \mathcal{B}_{0}(H \otimes H)$, we see that $V(x \otimes L(y \omega))$ is in the closed linear span of

$$
\left\{(\iota \otimes \omega \otimes \iota)\left(\left(V_{12}^{*} V_{23}\right)(a \otimes b \otimes 1)\right): a, b \in \mathcal{B}_{0}(H)\right\} .
$$

Let $\omega=\omega^{\prime} c$ for some $\omega^{\prime} \in \mathcal{B}(H)_{*}$ and $c \in \mathcal{B}_{0}(H)$ (we may do this, by Lemma Aem; ap. 1. Then

$$
(\iota \otimes \omega \otimes \iota)\left(\left(V_{12}^{*} V_{23}\right)(a \otimes b \otimes 1)\right)=\left(\iota \otimes b \omega^{\prime} \otimes 1\right)\left((1 \otimes c \otimes 1) V_{12}^{*}(a \otimes 1 \otimes 1) V_{23}\right) \in \mathcal{B}_{0}(H) \otimes S,
$$

using Proposition $\frac{\text { propppop:5.2 }}{4.2(2) .}$

Also $\left(x \otimes \otimes_{0} L\left(\omega^{*} y^{*}\right)^{*}\right) V=\left(x \otimes(y \omega \otimes \iota)\left(V^{*}\right)\right) V=(\iota \otimes \omega \otimes \iota)\left(V_{23}^{*}(x \otimes y \otimes 1) V_{13}\right)$, so using Proposition $\frac{\text { pres }}{4.2(2)}$ is in the closed linear span of

$$
\left\{(\iota \otimes \omega \otimes \iota)\left(V_{23}^{*}(a \otimes 1 \otimes 1) V_{12}(1 \otimes b \otimes 1) V_{13}\right): a, b \in \mathcal{B}_{0}(H)\right\} .
$$

Notice that $(\iota \otimes \omega \otimes \iota)\left(V_{23}^{*}(a \otimes 1 \otimes 1) V_{12}(1 \otimes b \otimes 1) V_{13}\right)=(\iota \otimes \omega \otimes \iota)\left((a \otimes 1 \otimes 1) V_{23}^{*} V_{12} V_{13}(1 \otimes b \otimes 1)\right)=$ $(\iota \otimes b \omega \otimes \iota)\left((a \otimes 1 \otimes 1) V_{12} V_{23}^{*}\right)$. Writing $b \omega=\omega^{\prime} c$, with $c \in \mathcal{B}_{0}(H)$, as $(a \otimes c) V \in \mathcal{B}_{0}(H \otimes H)$, we have that

$$
(\iota \otimes b \omega \otimes \iota)\left((a \otimes 1 \otimes 1) V_{12} V_{23}^{*}\right)=\left(\iota \otimes \omega^{\prime} \otimes \iota\right)\left((a \otimes c \otimes 1) V_{12} V_{23}^{*}\right) \in \mathcal{B}_{0}(H) \otimes S,
$$

where here we use Proposition $\frac{\text { prop: } 6}{4.6 \text {. This shows the first part of (lprop; } 7.1 \text {; the second part follows by }}$ working with $\Sigma V^{*} \Sigma$.

Let $a, b \in \mathcal{B}_{0}(H), \omega \in \mathcal{B}(H)_{*}$ and set $y=L(\omega a)$. Then

$$
(b \otimes 1) V(1 \otimes y)=(\iota \otimes \omega \otimes \iota)\left((b \otimes a \otimes 1) V_{13} V_{23}\right)=(\iota \otimes \omega \otimes \iota)\left(\left((b \otimes a) V^{*} \otimes 1\right) V_{23} V_{12}\right) .
$$

Again, as V is unitary, the closed linear span of $\left\{(b \otimes a) V^{*}: a, b \in \mathcal{B}_{0}(H)\right\}$ is $\mathcal{B}_{0}(H) \otimes \mathcal{B}_{0}(H)$. To show (2) it hence suffices to show that

$$
\begin{aligned}
& \left\{(\iota \otimes \omega \otimes \iota)\left((a \otimes 1 \otimes 1) V_{23} V_{12}\right): a \in \mathcal{B}_{0}(H), \omega \in \mathcal{B}(H)_{*}\right\} \\
& \quad=\left\{(\iota \otimes b \omega \otimes \iota)\left((a \otimes 1 \otimes 1) V_{23} V_{12}\right): a, b \in \mathcal{B}_{0}(H), \omega \in \mathcal{B}(H)_{*}\right\}
\end{aligned}
$$

is linearly dense in $B_{0}(H) \otimes S$. However,

$$
(\iota \otimes b \omega \otimes \iota)\left((a \otimes 1 \otimes 1) V_{23} V_{12}=(\iota \otimes \omega \otimes \iota)\left(V_{23}((a \otimes 1) V(1 \otimes b) \otimes 1)\right)\right.
$$

and so the result follows by Proposition $\frac{\text { prop: }}{4.2 \text {. Similarly, the second claim of (prop:7.2 }}$ (2) follows by working with $\Sigma V_{\text {prop }}{ }^{*} \Sigma$.
 so is $V_{13}=V_{12}^{*} V_{23} V_{12} V_{23}^{*}$. Thus $V \in M(\hat{S} \otimes S)$, as claimed.

For (14), it suffices to show that the closed linear span of

$$
\left\{(x \otimes a \otimes 1) V_{13}(1 \otimes b \otimes y): a, b \in \mathcal{B}_{0}(H), x \in \hat{S}, y \in S\right\}
$$

is $\hat{S} \otimes \mathcal{B}_{0}(H) \otimes S$. As $V_{13}=V_{12}^{*} V_{23} V_{12} V_{23}^{*}$, as $V^{*} \in M\left(\hat{S} \otimes \mathcal{B}_{0}(H)\right.$ and $V \in M\left(\mathcal{B}_{0}(H) \otimes S\right)$, and as V is unitary, we equivalently can show that the closed linear span of

$$
\left\{(x \otimes a \otimes 1) V_{23} V_{12}(1 \otimes b \otimes y): a, b \in \mathcal{B}_{0}(H), x \in \hat{S}, y \in S\right\}
$$

is $\hat{S} \otimes \mathcal{B}_{0}(H) \otimes S$. Notice that

$$
(x \otimes a \otimes 1) V_{23} V_{12}(1 \otimes b \otimes y)=(x \otimes(a \otimes 1) V(1 \otimes y))(V(1 \otimes b) \otimes 1)
$$

and so by (prop:7.2 , we get the closed linear span of

$$
\begin{aligned}
& \left\{(x \otimes c \otimes z) V_{12}(1 \otimes b \otimes 1): b, c \in \mathcal{B}_{0}(H), z \in S, x \in \hat{S}\right\} \\
& \quad=\left\{(1 \otimes c \otimes z)((x \otimes 1) V(1 \otimes b) \otimes 1): b, c \in \mathcal{B}_{0}(H), z \in S, x \in \hat{S}\right\}
\end{aligned}
$$

which again by (prop: 7.2 is the closed linear span of

$$
\left\{(1 \otimes c \otimes z)(x \otimes b \otimes 1): b, c \in \mathcal{B}_{0}(H), z \in S, x \in \hat{S}\right\}
$$

which is of course $\hat{S} \otimes \mathcal{B}_{0}(H) \otimes S$, as required.
corr:1 Corollary 4.8 (Corollaire 3.7). Let V be a regular multiplicative unitary, and let S, \hat{S} be the associated C^{*}-algebras. Then:

1. The closed linear spans of $\left\{V(x \otimes 1) V^{*}(1 \otimes y): x, y \in S\right\}$ and $\left\{V(x \otimes 1) V^{*}(y \otimes 1): x, y \in S\right\}$ are both equal to $S \otimes S$;
2. The closed linear spans of $\left\{V^{*}(1 \otimes x) V(1 \otimes y): x, y \in \hat{S}\right\}$ and $\left\{V^{*}(1 \otimes x) V(y \otimes 1): x, y \in \hat{S}\right\}$ are both equal to $\hat{S} \otimes \hat{S}$;

Proof. For $a \in \mathcal{B}_{0}(H), \omega \in \mathcal{B}(H)_{*}$ and $y \in S$,

$$
\begin{aligned}
V(L(a \omega) \otimes 1) V^{*}(1 \otimes y) & =(\omega \otimes \iota \otimes \iota)\left(V_{23} V_{12}(a \otimes 1 \otimes 1) V_{23}^{*}(1 \otimes 1 \otimes y)\right) \\
& =(\omega \otimes \iota \otimes \iota)\left(V_{12} V_{13}(a \otimes 1 \otimes y)\right)
\end{aligned}
$$

By Proposition $\frac{\text { proppyop: } 7.1}{4.7(1) \text { we see that }}$

$$
\begin{aligned}
\overline{\operatorname{lin}}\left\{V(x \otimes 1) V^{*}(1 \otimes y): x, y \in S\right\} & =\overline{\operatorname{lin}}\left\{(\omega \otimes \iota \otimes \iota)\left(V_{12}(a \otimes 1 \otimes y): a \in \mathcal{B}_{0}(H), y \in S\right\}\right. \\
& =\overline{\ln }\left\{(\omega \otimes \iota)(V(a \otimes 1)): a \in \mathcal{B}_{0}(H)\right\} \otimes S=S \otimes S
\end{aligned}
$$

Now consider

$$
\begin{aligned}
V(L(\omega a) \otimes 1) V^{*}(y \otimes 1) & =(\omega \otimes \iota \otimes \iota)\left(V_{23}(a \otimes 1 \otimes 1) V_{12} V_{23}^{*}(1 \otimes y \otimes 1)\right) \\
& =(\omega \otimes \iota \otimes \iota)\left((a \otimes 1 \otimes 1) V_{12} V_{13}(1 \otimes y \otimes 1)\right) .
\end{aligned}
$$

Thus, now using Proposition $\begin{aligned} & \text { proppizop:7.2 } \\ & 4.7(2),\end{aligned}$

$$
\begin{aligned}
\overline{\operatorname{lin}}\{ & \left.V(x \otimes 1) V^{*}(y \otimes 1): x, y \in S\right\} \\
& =\overline{\operatorname{lin}}\left\{(\omega \otimes \iota \otimes \iota)\left(((a \otimes 1) V(1 \otimes y) \otimes 1) V_{13}\right): a \in \mathcal{B}_{0}(H), y \in S\right\} \\
& =\overline{\operatorname{lin}}\left\{(\omega \otimes \iota \otimes \iota)\left((a \otimes y \otimes 1) V_{13}\right): a \in \mathcal{B}_{0}(H), y \in S\right\}=S \otimes S .
\end{aligned}
$$

thm:1 Theorem 4.9 (Théorème 3.8). Let V be a regular multiplicative unitary, and let S, \hat{S} be the associated C^{*}-algebras. We may define a coproduct δ on S by $\delta(x)=V(x \otimes 1) V^{*}$, and then (S, δ) becomes a bisimplifiable Hopf-C*-algebra. We may define a coproduct $\hat{\delta}$ on \hat{S} by $\hat{\delta}(x)=$ $V^{*}(1 \otimes x) V$, and then $(\hat{S}, \hat{\delta})$ becomes a bisimplifiable Hopf- C^{*}-algebra.
 that $\delta(S)(1 \otimes S)$ and $\delta(S)(S \otimes 1)$ are (dense) subsets of $S \otimes S$; this also shows that (S, δ) is bisimplifiable. That δ is coassociative follows as

$$
(\iota \otimes \delta) \delta(x)=V_{23} V_{12}(x \otimes 1 \otimes 1) V_{12}^{*} V_{23}^{*}=V_{12} V_{13} V_{23}(x \otimes 1 \otimes 1) V_{23}^{*} V_{13}^{*} V_{12}^{*}=(\delta \otimes \iota) \delta(x),
$$

as required. Let $\left(u_{i}\right)$ be a bounded approximate identity for S, and let $x, y \in S$, so with $\tau=\delta(x)(1 \otimes y) \in S \otimes S$,

$$
\delta\left(u_{i}\right) \tau=\delta\left(u_{i} x\right)(1 \otimes y) \rightarrow \delta(x)(1 \otimes y)=\tau
$$

 working with $\Sigma V^{*} \Sigma$.
prop: 8 Proposition 4.10 (Proposition 3.9). The map $\kappa: A(V) \rightarrow S ;(\omega \otimes \iota)(V) \mapsto(\omega \otimes \iota)\left(V^{*}\right)$ is a well-defined algebra antihomomorphism, called the antipode.
Proof. We have that $(\omega \otimes \iota)\left(V^{*}\right)=L\left(\omega^{*}\right)^{*} \in S$ by Proposition $\frac{\text { prop; } 4.6 \text {. If }}{} L(\omega)=0$ then

$$
0=\left\langle L(\omega), \omega^{\prime}\right\rangle=\left\langle\rho\left(\omega^{\prime}\right), \omega\right\rangle=\langle x, \omega\rangle \quad\left(\omega^{\prime} \in \mathcal{B}(H)_{*}, x \in \hat{S}\right)
$$

the last equality following by density. As \hat{S} is self-adjoint, also $\left\langle x, \omega^{*}\right\rangle=\overline{\left\langle x^{*}, \omega\right\rangle}=0$ for all $x \in \hat{S}$, and so $\left\langle L\left(\omega^{*}\right), \omega^{\prime}\right\rangle=\left\langle\rho\left(\omega^{\prime}\right), \omega^{*}\right\rangle=0$ for all $\omega^{\prime} \in \mathcal{B}(H)_{*}$. Thus $L\left(\omega^{*}\right)=0$, and so κ is well-defined.

As in the proof of Proposition prop:3 2.7 , given $\omega, \omega^{\prime} \in \mathcal{B}(H)_{*}$, if $\psi \in \mathcal{B}(H)_{*}$ is defined by $\langle T, \psi\rangle=$ $\left\langle V^{*}(1 \otimes T) V, \omega \otimes \omega^{\prime}\right\rangle$ then $L(\omega) L\left(\omega^{\prime}\right)=L(\psi)$. Then $\left\langle T, \psi^{*}\right\rangle=\overline{\left\langle V^{*}\left(1 \otimes T^{*}\right) V, \omega \otimes \omega^{\prime}\right\rangle}=$ $\left\langle V^{*}(1 \otimes T) V, \omega^{*} \otimes\left(\omega^{\prime}\right)^{*}\right\rangle$ and so $L\left(\psi^{*}\right)=L\left(\omega^{*}\right) L\left(\left(\omega^{\prime}\right)^{*}\right)$. Thus $\kappa\left(L(\omega) L\left(\omega^{\prime}\right)\right)=L\left(\psi^{*}\right)^{*}=$ $L\left(\left(\omega^{\prime}\right)^{*}\right)^{*} L\left(\omega^{*}\right)^{*}=\kappa\left(L\left(\omega^{\prime}\right)\right) \kappa(L(\omega))$ and so κ is an antihomomorphism as required.

Definition 4.11 (Définition 3.10). A multiplicative unitary V is biregular if it is regular, and if $\left\{(\omega \otimes \iota)(\Sigma V): \omega \in \mathcal{B}(H)_{*}\right\}$ is dense in $\mathcal{B}_{0}(H)$.
defn:1 Remark 4.12 (Remarques $311(\mathrm{a})$). Let W be the fundamental unitary associated to a Kacvon Neumann algebra, see [3]. Set $V=W^{*}$ and let $\hat{\Delta}$ be the modular operator associated with the dual Haar weight $\hat{\phi}$ on the dual Kac algebra \hat{M}. Following $[3,2.1 .5(\mathrm{a})]$ it follows that $\hat{A}(V)$ generates \hat{M} as a von Neumann algebra; the same is true of S. Then [[3, corollaire 3.1. 10$]$ shows that the restriction of $\hat{\phi}$ to S^{+}, say ψ, defines a normal semi-finite weight on S. By \int_{4}, Lemme I.1], we have that $V^{*}(1 \otimes \hat{\Delta}) V=\hat{\Delta} \otimes \hat{\Delta}$. Thus, for $\omega \in M_{*}$ and all $t \in \mathbb{R}$, we have that $L\left(\hat{\Delta}^{i t} \omega\right)=\hat{\Delta}^{i t} L(\omega) \hat{\Delta}^{-i t}$ and so the modular automorphism group $\left(\sigma_{t}\right)$ of \hat{M} restricts to S to give a norm-continuous group of automorphisms. ${ }^{5}$ t is now easy to verify that S together with κ and ψ gives a Kac C^{*}-algebra in the sense of $\left[\begin{array}{l}\text { ri2 } \\ 12]\end{array}\right.$

Remark 4.13 (Remarques $3.11(\mathrm{~b}))$. Let V be a regular multiplicative unitary. For $\omega \in \mathcal{B}(H)_{*}$, as in the proof above, we see that $L(\omega)=0$ if and only if ω induces the zero functional on S.
 is zero on S only if $\omega=0$. (This follows, as let $\left(e_{\alpha}\right)$ be a bounded approximate identity in S. Non-degeneracy implies that $e_{\alpha} \rightarrow 1$ strongly, and so $\|\omega\|=\langle 1, \omega\rangle=\lim _{\alpha}\left\langle e_{\alpha}, \omega\right\rangle$.) Similarly, if $\omega \geq 0$ and $\rho(\omega)=0$, then $\omega=0$.

For $x \in S$ and $\omega, \omega^{\prime} \in S^{*}$, define

$$
x * \omega=(\omega \otimes \iota) \delta(x), \quad \omega * x=(\iota \otimes \omega) \delta(x), \quad \omega * \omega^{\prime}=\left(\omega \otimes \omega^{\prime}\right) \circ \delta .
$$

By Lemma h. A. ap 1 , we may suppose that $\omega=\omega_{0} a_{0}$ for some $\omega_{0} \in S^{*}, a_{0} \in S$. Then $x * \omega=$ $(\omega \otimes \iota)\left(\left(a_{0} \otimes 1\right) \delta(x)\right) \in S$, as $\left(a_{0} \otimes 1\right) \delta(x) \in S \otimes S$. Similarly $\omega * x \in S$.

Suppose now $x \geq 0$ and $\omega \geq 0$ and that $\omega * x=0$. If $\omega \neq 0$, write $x=y^{*} y$ for some $y \in S$, and let (π, H, ξ) be the cyclic GNS construction for ω. Then

$$
0=(\iota \otimes \omega) \delta(x)=\left(\iota \otimes \omega_{\xi}\right)(\iota \otimes \pi)\left(V\left(y^{*} y \otimes 1\right) V^{*}\right)
$$

and so $(y \otimes 1)(\iota \otimes \pi)\left(V^{*}\right)(\cdot \otimes \xi)=0$. In particular, for $a \in \mathcal{B}_{0}(H), b \in S$, also

$$
0=(y \otimes \pi(b))(\iota \otimes \pi)\left(V^{*}\right)(a(\cdot) \otimes \xi)=(y \otimes 1)(\iota \otimes \pi)\left((1 \otimes b) V^{*}(a \otimes 1)\right)(\cdot \otimes \xi)
$$

By Proposition $4.7(2)$, tropis ${ }^{2}$. ${ }^{2}$ shows that

$$
0=(y \otimes 1)(c \otimes \pi(d))(\cdot \otimes \xi) \quad\left(c \in \mathcal{B}_{0}(H), d \in S\right)
$$

It follows that $y=0$, so $x=0$. In conclusion, $x \geq 0, \omega \geq 0, \omega * x=0 \Longrightarrow x=0$ or $\omega=0$.
Remark 4.14 (Remarques $3.11(\mathrm{c})$). We say that (A, δ) is right reduced (respectively, left reduced) if for non-zero $\omega \in A_{+}^{*}, x \in A_{+}$also $\omega * x$ (respectively, $x * \omega$) is non-zero. We have just shown that (S, δ) arising from a regular multiplicative unitary is right reduced; similarly \hat{S} will be left reduced.
prop:9
orop:9.1

rop: 9.2

Proof. We prove the assertions in the right reduced case; the left reduced case follows by replacing δ with $\sigma \delta$ where $\sigma: A \otimes A \rightarrow A \otimes A$ is the swap map. For non-zero $y \in A_{+}$,

$$
\left\langle\omega * \omega^{\prime}, y\right\rangle=\left\langle\omega, \omega^{\prime} * y\right\rangle \neq 0
$$

as $\omega^{\prime} * y \neq 0$ and ω is faithful. Similarly, for a state μ,

$$
\langle\mu, x * \omega\rangle=\langle\omega * \mu, x\rangle \neq 0,
$$

by using the previous calculation. To show (prop:9.2 ${ }^{(2)}$ we use the following lemma.
lem:1 Lemma 4.16 (Lemme 3.11.2). With (A, δ) being unital and right reduced, let ω be a faithful state. Then:

1. If $x \in A$ with $x * \omega=x$, then $x \in \mathbb{C} 1$;
2. There is a state ϕ with $\omega * \phi=\phi * \omega=\phi$ (compare $\left.{ }_{[154}^{[13]}\right]$).
3. Such ϕ is also a faithful right Haar state.

Proof. As $(x * \omega)^{*}=((\omega \otimes \iota) \delta(x))^{*}=(\omega \otimes \iota) \delta\left(x^{*}\right)=x^{*} * \omega$, for (1) (1) we we may suppose that $x=x^{*}$.
 by Proposition $4.15(1)$ we have that $(x-\lambda) * \omega=x-\lambda$ is strictly positive. Taking λ to be the minimum of the spectrum of x shows that $x \in \mathbb{R} 1$ as claimed.

For (2) let ϕ be a weak*-limit of the Cesaro means of $\omega^{n}=\omega * \omega * \cdots * \omega$ (n times). Then ϕ is a state and clearly $\phi * \omega=\omega * \phi=\phi$.

For (1), for $x \in A$ we have that $(x * \phi) * \omega=x *(\phi * \omega)=x * \phi$ and so by (1) 1 : $x * 1.1$ is a

5 Multiplicative unitaries of compact type, and Woronowicz C*-algebras

In this section, we depart from the orivinal paper, and study the relationship between Compact Quantum Groups (in the sense of $\left[\frac{w o r}{\text { Wor }], ~ a ~ p a p e r ~ n o t ~ p u b l i s h e d ~ a t ~ t h e ~ t i m e) ~ a n d ~ m u l t i p l i c a t i v e ~}\right.$ unitaries of compact type. Compact Quantum Groups have subsumed the theory of Matrix Pseudogroups as a special case, and an added advantage is that the resulting proofs are easier in some cases.

Firstly, let $(A>\delta)$ be a compact quantum group. That is, A is unital and (A, δ) is , bisimimplifiable. Then $\left[\frac{\text { woro }}{[w o r}\right]$ shows that (A, δ) admits a unique Haar state ϕ. By Example eq. 造: 1.4 construct a multiplicative unitary V on the GNS space for ϕ. By Proposition $\frac{\text { prophep } 4.12 .2}{4}(2) V$ is regular (we note that the condition here, that $\phi\left(x^{*} x\right)=0$ if and only if $\phi\left(x x^{*}\right)=0$ is quite involved to prove- see woro , ???]). The C^{*}-algebra S is simply $\pi(A)$, and the coproduct on S is the natural quotient of δ. As S is thus unital, V is of compact type.
[Do we want to give a self-contained (sketch/account) of all of this? It might be rather involved...]

We now start with a multiplicative unitary V on H of compact type which admits a nonzero fixed vector $E \in H$ (see Definition defn:2 In 2.11 . If H is separable, then by Proposition prop: 2.13 such a fixed vector automatically exists. Let $\phi=\omega_{e} \in \mathcal{B}(H)_{*}$.

Proposition 5.2 (Proposition 4.4). For $\xi \in H$, we have that $\left(\lambda_{\xi} \otimes 1\right) V=V\left(\lambda_{\xi} \otimes 1\right)$.
Proof. We have that $\lambda_{\xi}^{*} \otimes 1=\theta_{1, \xi}^{*} V_{12} \theta_{2, e}$. Thus

$$
\begin{aligned}
V\left(\lambda_{\xi}^{*} \otimes 1\right) & =V \theta_{1, \xi}^{*} V_{12} \theta_{2, e}=\theta_{1, \xi}^{*} V_{23} V_{12} \theta_{2, e}=\theta_{1, \xi}^{*} V_{12} V_{13} V_{23} \theta_{2, e} \\
& =\theta_{1, \xi}^{*} V_{12} V_{13} \theta_{2, e} \quad \text { as } e \text { is fixed, so } V \theta_{e}=\theta_{e} \\
& =\theta_{1, \xi}^{*} V_{12} \theta_{2, e} V=\left(\lambda_{\xi}^{*} \otimes 1\right) V .
\end{aligned}
$$

6 Constructions with Woronowicz C*-algebras

$7 \quad$ Irreducible multiplicative unitaries

Definition 5.1 (Définition 4.3). For $\xi \in H$ define $\lambda_{\xi} \in \mathcal{B}(H)$ by $\lambda_{\xi}=\left(\theta_{e}^{\prime}\right)^{*} V^{*} \theta_{\xi}$. That is, for $\eta, \eta^{\prime} \in H,\left(\lambda_{\xi}(\eta) \mid \eta^{\prime}\right)=\left(V(\xi \otimes \eta) \mid \eta^{\prime} \otimes e\right)$.

Proposition 7.1 (Proposition 6.1). Let V be a multiplicative unitary on H and let $U \in \mathcal{B}(H)$ be a unitary with $U^{2}=1$ such that $\hat{V}=\Sigma(U \otimes 1) V(U \otimes 1) \Sigma$ and $\tilde{V}=(U \otimes U) \hat{V}(U \otimes U)$ are both multiplicative. Then the following formulae hold:

1. $V_{12}(1 \otimes U \otimes 1) V_{23}(1 \otimes U \otimes 1)=(1 \otimes U \otimes 1) V_{23}(1 \otimes U \otimes 1) V_{13} V_{12}$;
2. $\hat{V}_{23} V_{12} V_{13}=V_{13} \hat{V}_{23}$;
3. $\tilde{V}_{12} V_{13}=V_{13} V_{23} \tilde{V}_{12}$;
4. the unitaries $\Sigma_{23} \hat{V}_{23} V_{23}$ and V_{12} commute;
5. the unitaries $V_{12} \tilde{V}_{12} \Sigma_{12}$ and V_{23} commute.

Proof. We have that

$$
\begin{aligned}
& \Sigma_{13} \hat{V}_{12} \Sigma_{13}=(1 \otimes U \otimes 1) V_{23}(1 \otimes U \otimes 1), \\
& \Sigma_{13} \hat{V}_{23} \Sigma_{13}=(U \otimes 1 \otimes 1) V_{12}(U \otimes 1 \otimes 1),
\end{aligned}
$$

That \hat{V} is multiplicative means that

$$
\begin{aligned}
\hat{V}_{12} \hat{V}_{13} \hat{V}_{23} & =\hat{V}_{12} \Sigma_{13}(U \otimes 1 \otimes 1) V_{13}(U \otimes 1 \otimes 1) \Sigma_{13} \hat{V}_{23} \\
& =\Sigma_{13}(1 \otimes U \otimes 1) V_{23}(U \otimes U \otimes 1) V_{13} V_{12}(U \otimes 1 \otimes 1) \Sigma_{13}=\hat{V}_{23} \hat{V}_{12}
\end{aligned}
$$

that is

$$
(U \otimes U \otimes 1) V_{23}(1 \otimes U \otimes 1) V_{13} V_{12}(U \otimes 1 \otimes 1)=(U \otimes 1 \otimes 1) V_{12}(1 \otimes U \otimes 1) V_{23}(U \otimes U \otimes 1)
$$

Then (1) 1 frop:10.1 follows.
 notice that $\tilde{V}=\Sigma(1 \otimes U) V\left(1 \otimes \otimes_{\text {prop }} U\right)_{0.2}$,

Definition 7.2 (Définition 6.2). A multiplicative unitary V is irreducible is there is a unitary $U \in \mathcal{B}(H)$ with:

1. $U^{2}=1$ and $(\Sigma(1 \otimes U) V)^{3}=1$;
2. the unitaries $\hat{V}=\Sigma(U \otimes 1) V(U \otimes 1) \Sigma$ and $\tilde{V}=(U \otimes U) \hat{V}(U \otimes U)$ are both multiplicative.

Notice that clearly \tilde{V} is multiplicative if and only if \hat{V} is multiplicative. That $(\Sigma(1 \otimes U) V)^{3}=$ 1 is equivalent to $\hat{V} V \tilde{V}=(U \otimes 1) \Sigma$. Finally, observe that U being unitary with $U^{2}=1$ is equivalent to U being self-adjoint and unitary.

Proposition 7.3 (Proposition 6.3). Let V be a multiplicative unitary which is regular and irreducible. Then $\{x y: x \in S, y \in \hat{S}\}$ is linearly dense in $\mathcal{B}_{0}(H)$.

Proof. Notice that $\Sigma \tilde{V}^{*}=\left(1 \otimes U^{*}\right) V^{*}\left(1 \otimes U^{*}\right) \Sigma=\left(1 \otimes U^{*}\right) \Sigma\left(\Sigma V^{*} \Sigma\right)\left(U^{*} \otimes 1\right)$ and so

$$
\mathcal{C}\left(\Sigma \tilde{V}^{*}\right)=\left\{(\iota \otimes \omega)\left(\left(1 \otimes U^{*}\right) \Sigma\left(\Sigma V^{*} \Sigma\right)\left(U^{*} \otimes 1\right)\right): \omega \in \mathcal{B}(H)_{*}\right\}=\mathcal{C}\left(\Sigma V^{*} \Sigma\right) U^{*}=\mathcal{C}(V)^{*} U^{*}
$$

which equals $\mathcal{B}_{0}(H)$ as V is regular. Hence also $\left\{(\iota \otimes \omega)\left((U \otimes 1) \Sigma \tilde{V}^{*}\right): \omega \in \mathcal{B}(H)_{*}\right\}$ is dense in $\mathcal{B}_{0}(H)$. As V is irreducible, $(U \otimes 1) \Sigma \tilde{V}^{*}=\hat{V} V$, and so $\left\{(\iota \otimes \omega)(\hat{V} V): \omega \in \mathcal{B}(H)_{*}\right\}$ is dense in $\mathcal{B}_{0}(H)$. As \hat{S} acts irreducibly on H, also $\left\{(\iota \otimes \omega)(\hat{V} V) y: \omega \in \mathcal{B}(H)_{*}, y \in \hat{S}\right\}$ is linearly dense in $\mathcal{B}_{0}(H)$.

Now, $(\iota \otimes \operatorname{prosp})(\hat{V} V$. $V) y=(\iota \otimes \omega)(\hat{V} V(y \otimes 1))$ and as V is a unitary multiplier of $\hat{S} \otimes \mathcal{B}_{0}(H)$ (by Proposition $4.7(1))$ it follows that

$$
\left\{(\iota \otimes \omega)(\hat{V}(y \otimes 1)): \omega \in \mathcal{B}(H)_{*}, y \in \hat{S}\right\}
$$

is linearly dense in $\mathcal{B}_{0}(H)$. As $(\iota \otimes \omega)(\hat{V}(y \otimes 1))=(U \omega U \otimes \iota)(V) y=L(U \omega U) y$ the result follows.

Definition 7.4 (Définition 6.4). A Kac system is a triple (H, V, U) where H is a Hilbert space, V is a biregular multiplicative unitary (see Definition $\frac{\text { detn: }}{4.12}$) and U is a unitary verifing that V is also irreducible.

1. $\left(H, \Sigma V^{*} \Sigma, U\right)$ and (H, \hat{V}, U) are Kac systems;
2. The unitaries V_{12} and \tilde{V}_{23} commute;
3. The unitaries V_{23} and \hat{V}_{12} commute.

Proof. By definition, V is biregular if and only if $\mathcal{C}(V)=\left\{(\iota \otimes \omega)(\Sigma V): \omega \in \mathcal{B}(H)_{*}\right\}$ is dense in $\mathcal{B}_{0}(H)$ and $\left\{\left(\omega \otimes \iota(\Sigma V): \omega \in \mathcal{B}(H)_{*}\right\}=\left\{\left(\iota \otimes \omega(V \Sigma): \omega \in \mathcal{B}(H)_{*}\right\}=\{(\iota \otimes \omega(\Sigma \hat{V}): \omega \in\right.\right.$ $\left.\mathcal{B}(H)_{*}\right\}=\mathcal{C}(\hat{V})$ is dense in $\mathcal{B}_{0}(H)$. That is, V is biregular if and only if V and \hat{V} are regular.

So set $W=\Sigma V^{*} \Sigma$, so

$$
\hat{W}=\Sigma(U \otimes 1) \Sigma V^{*} \Sigma(U \otimes 1) \Sigma=(1 \otimes U) V^{*}(1 \otimes U)=\Sigma \tilde{V}^{*} \Sigma
$$

Similarly $\tilde{W}=\Sigma \hat{V}^{*} \Sigma$. Then (1) $\frac{1 \text { em: } 2 i i^{1}}{1}$ follows.
 which commutes with V_{12} by Proposition p.in (4). Hence also \tilde{V}_{23} commutes with V_{12}, giving (2). Similarly, Proposition $17.1\left(\frac{5}{5}\right)$ shows (3).

Definition 7.6 (Définition 6.6). We say that (H, \hat{V}, U) is the dual Kac system to (H, V, U), and that $\left(H, \Sigma V^{*} \Sigma, U\right)$ is the opposite Kac system to (H, V, U). Two Kac systems (H, V, U) and $\left(H^{\prime}, V^{\prime}, U^{\prime}\right)$ are isomorphic if there is a unitary $w \in \mathcal{B}\left(H, H^{\prime}\right)$ with $(w \otimes w) V=V^{\prime}(w \otimes w)$ and $w U=U^{\prime} w$. We also say that $\left(H^{\prime}, V^{\prime}, U^{\prime}\right)$ is dual to (H, V, U) if it is isomorphic to (H, \hat{V}, U).

Notice that the Kac systems (H, \hat{V}, U) and (H, \tilde{V}, U) are isomorphic (by U).
Definition 7.7 (Définition 6.7). Let (H, V, U) be a Kac system. For $\omega \in \mathcal{B}(H)_{*}$, we write

$$
\lambda(\omega)=L_{\hat{V}}(\omega)=(\omega \otimes \iota)(\hat{V}), \quad R(\omega)=\rho_{\tilde{V}}(\omega)=(\iota \otimes \omega)(\tilde{V}) .
$$

[Note: At this point, the original paper overloads notation, and seems to write L for both the map $\mathcal{B}(H)_{*} \rightarrow S \subseteq \mathcal{B}(H)$, and also for the (trivial) representation of S on $\mathcal{B}(H)$. Then λ is now both a map $\mathcal{B}(H)_{*} \rightarrow U \hat{S} U$, and also the representation $\hat{S} \rightarrow \mathcal{B}(H)$ given by $y \mapsto U y U$. We have tried to avoid doing this, and continue to view S and \hat{S} as concrete subalgebras of $\mathcal{B}(H)$.]

Proposition 7.8. (Proposition 6.8) We have that:

1. $\lambda(\omega)=U \rho(\omega) U$ and $R(\omega)=U L(\omega) U$;
2. For all $\omega, \omega^{\prime} \in \mathcal{B}(H)_{*}$, the operators $\rho(\omega)$ and $\lambda\left(\omega^{\prime}\right)$ commute, and also $L(\omega)$ and $R\left(\omega^{\prime}\right)$ commute;
3. For $x \in S, y \in \hat{S}$ we have that

$$
\delta(x)=\hat{V}^{*}(1 \otimes x) \hat{V}, \quad(U \otimes U) \hat{\delta}(y)(U \otimes U)=\hat{V}(U y U \otimes 1) \hat{V}^{*}
$$

Proof. For (liem:3.1. we simply calculate that

$$
\lambda(\omega)=(\omega \otimes \iota)(\Sigma(U \otimes 1) V(U \otimes 1) \Sigma)=U(\iota \otimes \omega)(V) U=U \rho(\omega) U
$$

the other case following similarly.
For (2 em we see that

$$
\rho(\omega) \lambda\left(\omega^{\prime}\right)=(\iota \otimes \omega)(V)\left(\omega^{\prime} \otimes \iota\right)(\hat{V})=\left(\omega^{\prime} \otimes \iota \otimes \omega\right)\left(V_{23} \hat{V}_{12}\right),
$$

Let $\omega \in \mathcal{B}(H)_{*}$ and set $x=L(\omega)$. Then

$$
\begin{aligned}
\delta(x) & =V((\omega \otimes \iota)(V) \otimes 1) V^{*}=(\omega \otimes \iota \otimes \iota)\left(V_{23} V_{12} V_{23}^{*}\right)=(\omega \otimes \iota \otimes \iota)\left(V_{12} V_{13}\right) \\
& =(\omega \otimes \iota \otimes \iota)\left(\hat{V}_{23}^{*} V_{13} \hat{V}_{23}\right)=\hat{V}^{*}(1 \otimes x) \hat{V},
\end{aligned}
$$

 of (3) fom fillows as such x are dense in S. Similarly, using Proposition $7.1(3)$ shows that

$$
\hat{\delta}(y)=\tilde{V}(y \otimes 1) \tilde{V}^{*} \quad(y \in \hat{S})
$$

Proposition 7.9 (Proposition 6.9). Let V be a mutliplicative unitary on H, and let $U \in \mathcal{B}(H)$ be a unitary with $U^{2}=1$, and such that V_{12} and \tilde{V}_{23} commute, and \hat{V}_{12} and V_{23} commute. Then:

1. If the set $\left\{\rho(\omega) L\left(\omega^{\prime}\right): \omega, \omega^{\prime} \in \mathcal{B}(H)_{*}\right\}$ is linearly dense in $\mathcal{B}_{0}(H)$, then V is regular;
2. If \hat{V} is multiplicative, and both $(S \cup \hat{S})^{\prime}=\mathbb{C} 1$ and $(S \cup U \hat{S} U)^{\prime}=\mathbb{C} 1$, then $(1 \otimes U) \Sigma \hat{V} V \tilde{V} \in$ $\mathbb{C} 1$.
Proof. We first prove (1f). Let: 11.1 $U L\left(\omega^{\prime}\right) U=R\left(\omega^{\prime}\right)=\left(\iota \otimes \omega^{\prime}\right)(\tilde{V})$. As V_{12} and \tilde{V}_{23} commute, it follows that $(1 \otimes s) V=V(1 \otimes s)$ and so

$$
s x=(\iota \otimes \omega)((s \otimes 1) \Sigma V)=(\iota \otimes \omega)(\Sigma V(1 \otimes s))=(\iota \otimes s \omega)(\Sigma V) \in \mathcal{C}(V)
$$

As $A(V) H$ is linearly dense in H (by Proposition prop:3 it follows that $\mathcal{C}(V)$ has the same closure as the linear span of $U A(V) U \mathcal{C}(V)$.

Similarly, setting $t=U \rho\left(\omega^{\prime}\right) U=\left(\omega^{\prime} \otimes \iota\right)(\hat{V})$ and using that \hat{V}_{12} and V_{23} commute will show that $\mathcal{C}(V) U \hat{A}(V) U$ has closed linear span equal to the closure of $\mathcal{C}(V)$.

We hence see that $\mathcal{C}(V)^{2}$ has $_{5}$ closed linear span equal to $\overline{\operatorname{lin}} \mathcal{C}(V) U \hat{A}(V) \hat{A}(V) U \mathcal{C}(V)$. As remarked after Proposition $\frac{\text { prop: }}{4.2, \mathcal{C}(V)^{2}}$ is linearly dense in $\mathcal{C}(V)$. By hypothesis, $\hat{A}(V) \hat{A}(V)$ is linearly dense in $\mathcal{B}_{0}(H)$. As V is unitary, it is easy to see that $\mathcal{C}(V) H$ and $\mathcal{C}(V)^{*} H$ are linearly dense in H. It follows that $\mathcal{C}(V) U \hat{A}(V) \hat{A}(V) U \mathcal{C}(V)$ is linearly dense in $\mathcal{B}_{0}(H)$, and so the same is true of $\mathcal{C}(V)$ showing that V is regular.

For (2), set 1 Proposition $1.1(4)$, we conclude that V_{12} and W_{23} commute. Applying Proposition propprop:10. 7.1 , to V and noting that $\hat{\tilde{V}}=V$, we see that \tilde{V}_{12} and $\Sigma_{23} V_{23} \tilde{V}_{23}$ commute. As \hat{V}_{12} and V_{23} commute, also \tilde{V}_{12} and $(1 \otimes U \otimes U) V_{23}(1 \otimes U \otimes 1)$ commute. As $W=(U \otimes U) V(U \otimes 1) \Sigma V \tilde{V}$, we conclude that \tilde{V}_{12} and W_{23} commute. So W will commute with $(x \otimes 1)$ for all x of the form $(\omega \otimes \iota)(V)$ and of the form $(\omega \otimes \iota)(\tilde{V})=(\omega \otimes \iota)(\Sigma(1 \otimes U) V(1 \otimes U) \Sigma)=(\iota \otimes U \omega U)(V)$, that is, for all $x \in S \cup \hat{S}$.

If we replace V by \hat{V} in the argument of the previous paragraph, then as $\hat{\hat{V}}=(U \otimes U) V(U \otimes$ $U)$ and $\tilde{\hat{V}}=V$, we see that $X=(1 \otimes U) \Sigma(U \otimes U) V(U \otimes U) \hat{V} V$ commutes with $1 \otimes x$ for all x of the form $(\omega \otimes \iota)(\hat{V})=U \rho(\omega) U$ and of the form $(\iota \otimes \omega)(\hat{V})=L(U \omega U)$. That is, for all $x \in S \cup U \hat{S} U$. As $X=\Sigma(U \otimes 1) W(U \otimes 1) \Sigma$, we conclude that W commutes with $1 \otimes x$ for all $x \in S \cap U \hat{S} U$. Thus $W \in \mathbb{C} 1$ as required.

Corollary 7.10 (Corollaire 6.10). Let V be a multiplicative unitary and let $U \in \mathcal{B}(H)$ be a unitary with $U^{2}=1$. Form \hat{V}, \tilde{V} as before, and suppose that \hat{V} is multiplicative, that V_{12} commutes with \tilde{V}_{23}, and that \hat{V}_{12} commutes with V_{23}. If the closed linear span of $\{x U y U: x \in$ $S, y \in \hat{S}\}$ is $\mathcal{B}_{0}(H)$, then \tilde{V} and \hat{V} are regular.

Proof. Apply the previous proposition to \hat{V}.

Examples 7.11 (Exemples 6.11). 1. The multiplicative unitary $1 \in \mathcal{B}(H \otimes H)$ is not irreducible unless $H=\mathbb{C}$, as $(\Sigma(1 \otimes U))^{3}=\Sigma(U \otimes 1)$.
2. Let G be a locally compact group, equipped with the right Haar measure. Define a unitary U on $L^{2}(G)$ by $(U \xi)(t)=\Delta^{1 / 2}(t) \xi\left(t^{-1}\right)$, where Δ is the modular function for the Haar measure. Then $\left(L^{2}(G), V_{G}, U\right)$ is a Haar system (with $V_{G} \xi(s, t)=\xi(s t, t)$ as in Examples 2.2 . 2 . Indeed, we showed in Examples 4.4 that V_{G} is regular. Then $\Sigma(1 \otimes U) V_{G} \xi(s, t)=$ $V_{G} \xi\left(t, s^{-1}\right) \Delta^{1 / 2}(s)=\xi\left(t s^{-1}, s^{-1}\right) \Delta^{1 / 2}(s)$, and it follows that $\left(\Sigma(1 \otimes U) V_{G}\right)^{3}=1$. Then $\hat{V}_{G} \xi(s, t)=\xi\left(s, s^{-1} t\right) \Delta^{1 / 2}(s)$ and direct calculation shows this to be multiplicative and regular.
3. Let (A, δ) be a compact quantum group and form (H, V, U) as in Section $\frac{\text { sec. }{ }^{5} \text {. TO FINISH! }}{}$
4. Let W be the fundamental unitary of Kac-von Neumann algebra (see $\frac{106}{[3]}$). Let $V=W^{*}$ and set $U=J \hat{J}=\hat{J} J$ (see $\left[\begin{array}{ll}38 \\ {[1]}\end{array}\right)$. As \hat{V} is the fundamental unitary associated with the dual Kac-von Neumann algebra, it is regular. It's a result of $\left[\begin{array}{l}{[38} \\ {[1]}\end{array}\right.$, and Proposition 17.9 , that $(1 \otimes U) \Sigma \hat{V} V \tilde{V}$ is a scalar, and in fact, it's not hard to show that $(1 \otimes U) \Sigma \hat{V} V \tilde{V}=1$. Thus (H, V, U) is a Kac system.

Remark 7.12. (Remarque 6.12)

1. Let (H, U, V) be a Kac system. As $\hat{\hat{V}}=\tilde{\tilde{V}}=(U \otimes U) V(U \otimes U)$ we have that $(1 \otimes$ $U) \Sigma \hat{V} V \tilde{V}=\hat{\hat{V}} \hat{V} V(1 \otimes U) \Sigma$. It follows that $\hat{V} V \tilde{V}=\hat{\hat{V}} \hat{V} V=(U \otimes 1) \Sigma$ and so $\hat{V} V \tilde{V}=$ $\hat{\hat{V}} \hat{V} V=\tilde{V} \hat{\hat{V}} \hat{V}=V \tilde{V} \tilde{\tilde{V}}$.
2. The operator $\mathcal{R}=V(U \otimes 1) V(U \otimes 1)$ satisfies the Yang-Baxter equation: $\mathcal{R}_{12} \mathcal{R}_{13} \mathcal{R}_{23}=$ $\mathcal{R}_{23} \mathcal{R}_{13} \mathcal{R}_{12}$.
3. Some comments about $\left\{\frac{11}{[5]}\right.$.

8 Multiplicative unitaries and Takesaki-Takai biduality

Fix a Kac system (H, V, U).
Definition 8.1. (Définition 7.1) Let δ_{A} be a coaction of S (or \hat{S}) on a C^{*}-algebra A. Write π_{L} and π_{R} (respectively, $\hat{\pi}_{\lambda}$ and $\hat{\pi}_{\rho}$) for the representations of A on the Hilbert C^{*}-module $A \otimes H$ defined by

$$
\pi_{L}=(\iota \otimes \iota) \circ \delta_{A}, \quad \pi_{R}=(\iota \otimes U(\cdot) U) \circ \delta_{A},
$$

respectively,

$$
\hat{\pi}_{\lambda}=(\iota \otimes U(\cdot) U) \circ \delta_{A}, \quad \hat{\pi}_{\rho}=(\iota \otimes \iota) \delta_{A}
$$

Denote by $A \times \hat{S}$ (respectively $A \times S$) the crossed product of A by S (respectively, \hat{S}), which is the C^{*}-algebra generated by $\left\{\pi_{L}(a)(1 \otimes \rho(\omega)): a \in A, \omega \in \mathcal{B}(H)_{*}\right\}$ (respectively, $\left.\left\{\hat{\pi}_{\lambda}(a)(1 \otimes L(\omega)): a \in A, \omega \in \mathcal{B}(H)_{*}\right\}\right)$ inside $\mathcal{B}(A \otimes H)$.

Here $U(\cdot) U$ is the $*$-homomorphism $S \rightarrow \mathcal{B}(H) ; x \mapsto U x U$ (the notation π_{R} being inspired by Proposition 7.8 . . The odd notation is due to the fact that we are concretely viewing S as a subalgebra of $\mathcal{B}(H)$; whereas the original paper has by this point started using L to denote the inclusion map $S \rightarrow \mathcal{B}(H)$, and so forth; see the comment before Proposition 17.8.]

In fact, it is not really necessary to work with $A \otimes H$. Instead, we could work in $M(A \otimes$ $\mathcal{B}_{0}(H)$), noticing that clearly $M(A \otimes S)$ and $M(A \otimes \hat{S})$ are subalgebras of $M\left(A \otimes \mathcal{B}_{0}(H)\right)$. Then we can form $A \times S$ and $A \times \hat{S}$ inside $M\left(A \otimes \mathcal{B}_{0}(H)\right)$.

Lemma 8.2. (Lemme 7.2, see $\left.\frac{\mid 223}{[8]}\right)$ The crossed product $A \times \hat{S}($ or $A \times S)$ is the closed linear span of $\left\{\pi_{L}(a)(1 \otimes \rho(\omega)): a \in A, \omega \in \mathcal{B}(H)_{*}\right\}$ (respectively, $\left.\left\{\hat{\pi}_{\lambda}(a)(1 \otimes L(\omega)): a \in A, \omega \in \mathcal{B}(H)_{*}\right\}\right)$.
Proof. We give a proof for $A \times \hat{S}$; the proof for $A \times S$ follows by working with \hat{V} in place of V. We need to show that, for $a \in A$ and $\omega \in \mathcal{B}(H)_{*}$, we have that $(1 \otimes \rho(\omega)) \pi_{L}(a)$ is in the closed linear span of $\left\{\pi_{L}(a)(1 \otimes \rho(\omega)): a \in A, \omega \in \mathcal{B}(H)_{*}\right\}$. Let $\tilde{\pi}$ be the representation of A on the Hilbert C^{*}-module $A \otimes H \otimes H$ defined by

$$
\tilde{\pi}=\left(\pi_{L} \otimes \iota\right) \circ \delta_{A}=(\iota \otimes \delta) \circ \delta_{A},
$$

which follows as δ_{A} is a coaction. As $\delta_{A}(\cdot)=V(\cdot \otimes 1) V^{*}$, we see that $\tilde{\pi}(\cdot)=V_{23} \delta_{A}(\cdot)_{12} V_{23}^{*}$, and so

$$
(1 \otimes \rho(\omega)) \pi_{L}(a)=(\iota \otimes \iota \otimes \omega)\left(V_{23} \pi_{L}(a)_{12}\right)=(\iota \otimes \iota \otimes \omega)\left(\tilde{\pi}(a) V_{23}\right) .
$$

Writing $\omega=\omega^{\prime} s$ for some $\omega^{\prime} \in \mathcal{B}(H)_{*}$ and $s \in S$, we obtain

$$
(1 \otimes \rho(\omega)) \pi_{L}(a)=\left(\iota \otimes \iota \otimes \omega^{\prime}\right)\left(\left(\pi_{L} \otimes \iota\right)\left((1 \otimes s) \delta_{A}(a)\right) V_{23}\right) .
$$

Now, $(1 \otimes s) \delta_{A}(a) \in A \otimes S$ and so we can approximate it by a linear span of elements of the form $b \otimes t$. However, then observe that

$$
\left(\iota \otimes \iota \otimes \omega^{\prime}\right)\left(\left(\pi_{L} \otimes \iota\right)(b \otimes t) V_{23}\right)=\pi_{L}(b)\left(1 \otimes \rho\left(\omega^{\prime} t\right)\right)
$$

The result follows.
The previous lemma shows that for each $a \in A$, we have that $\pi_{L}(a) \in M(A \times \hat{S})$ (by the definition of $A \times \hat{S}$, we see that $\pi_{L}(a)$ is a left multiplier, and the lemma shows that it also a right multiplier). Denote by π the resulting $*$-homomorphism $A \rightarrow M(A \times \hat{S})$. This is non-degenerate, as clearly $\pi(A)(A \times \hat{S})$ is dense in $A \times \hat{S}$. Similar remarks apply to $A \times S$, leading to a non-degenerate $*$-homomorphism $\hat{\pi}: A \rightarrow A \times S$. Similarly, for $x \in \hat{S}$, the map $1 \otimes x \in M(A \times \hat{S})$, leading to a non-degenerate $*$-homomorphism $\hat{\theta}: \hat{S} \rightarrow M(A \times \hat{S})$. We also obtain $\theta: S \rightarrow M(A \times S)$.

Denote by $\Psi_{L, \rho}$ and $\Psi_{R, \lambda}$ the representations of $A \times \hat{S}$ on $A \otimes H$ defined by

$$
\Psi_{L, \rho}(\pi(a) \hat{\theta}(x))=\pi_{L}(a)(1 \otimes x), \quad \Psi_{R, \lambda}(\pi(a) \hat{\theta}(x))=\pi_{R}(a)(1 \otimes U x U) \quad(a \in A, x \in \hat{S})
$$

[Again, chasing the definitions shows that $\Psi_{L, \rho}$ is just the identity representation.] Similarly define representations $\hat{\Psi}_{\lambda, L}$ and $\hat{\Psi}_{\rho, R}$ of $A \times S$ on $A \otimes H$ by

$$
\hat{\Psi}_{\lambda, L}(\hat{\pi}(a) \theta(y))=\hat{\pi}_{\lambda}(a)(1 \otimes y), \quad \hat{\Psi}_{\rho, R}(\hat{\pi}(a) \theta(y))=\hat{\pi}_{\rho}(a)(1 \otimes U y U) \quad(a \in A, y \in S)
$$

Definition 8.3. (Définition 7.3) Let δ_{A} be a coaction of S (respectively, \hat{S}) on A. The dual coaction of \hat{S} (respectively, S) on $A \times \hat{S}$ (respectively $A \times S$) by

$$
\begin{array}{lll}
\delta_{A \times \hat{S}}: A \times \hat{S} \rightarrow M(A \times \hat{S} \otimes \hat{S}) ; & \pi(a) \hat{\theta}(x) \mapsto(\pi(a) \otimes 1)(\hat{\theta} \otimes \iota) \hat{\delta}(x) & (a \in A, x \in \hat{S}) . \\
\delta_{A \times S}: A \times S \rightarrow M(A \times S \otimes S) ; & \hat{\pi}(a) \theta(x) \mapsto(\hat{\pi}(a) \otimes 1)(\theta \otimes \iota) \delta(x) & (a \in A, x \in S) .
\end{array}
$$

Notice that for $y=\hat{\theta}(x)=1 \otimes x$, we have that

$$
\tilde{V}_{23}(y \otimes 1) \tilde{V}_{23}^{*}=1 \otimes \tilde{V}(x \otimes 1) \tilde{V}^{*}=1 \otimes \hat{\delta}(x)
$$

thanks to (the proof of) Proposition 7 lem: For $y=\pi(a)=\delta(a)=V^{*}(a \otimes 1) V$, we have that

$$
\tilde{V}_{23}(y \otimes 1) \tilde{V}_{23}^{*}=\tilde{V}_{23} V_{12}^{*}(a \otimes 1 \otimes 1) V_{12} \tilde{V}_{23}^{*}=V_{12}^{*} \tilde{V}_{23}(a \otimes 1 \otimes 1) \tilde{V}_{23}^{*} V_{12}=\delta(a) \otimes 1
$$

where here we used Lemma $\frac{\text { lem: } 1 / 5 \mathrm{Dem}: 2.2}{7.2(2) \cdot \text { As such elements } y \text { generate } A \times \hat{S} \text {, it follows that } \delta_{A \times \hat{S}}(\cdot)=}$ $\tilde{V}_{23}(\cdot \otimes 1) \tilde{V}_{23}^{*}$, and so $\delta_{A \times \hat{S}}$ is well-defined and a $*$-homomorphism. Similar remarks apply to $\delta_{A \times S}$.

A Useful results

The following is an assortment of results which are used implicitly by Baaj and Skandalis. We prove (sketch) proofs to aid the reader.
lem:ap1 Lemma A.1. Let A be a C^{*}-algebra. Then $A^{*}=\left\{a \mu: a \in A, \mu \in A^{*}\right\}=\left\{\mu a: a \in A, \mu \in A^{*}\right\}$. Let A act faithfully on a Hilbert space H. Then $\mathcal{B}(H)_{*}=\left\{a \omega: a \in A, \omega \in \mathcal{B}(H)_{*}\right\}=\{\omega a: a \in$ $\left.A, \omega \in \mathcal{B}(H)_{*}\right\}$.

Proof. We firstly claim that $\left\{a \mu: a \in A, \mu \in A^{*}\right\}$ is linearly dense in A^{*} - this follows by a GNS argument, see $\left[\begin{array}{ll}m \mathrm{~m} n \\ \mathrm{~m} \\ \text {, }\end{array}\right.$ Appendix A]. Then the Cohen Factorisation Theorem shows that actually $A^{*}=\left\{a \mu: a \in A, \mu \in A^{*}\right\}=\left\{\mu a: a \in A, \mu \in A^{*}\right\}$. Indeed, given $\lambda \in A^{*}$ and $\epsilon>0$, we can find $a \in A$ with $\|a\| \leq 1$ and $\mu \in A^{*}$ with $a \mu=\lambda$ and $\|\mu-\lambda\|<\epsilon$.

That A acts non-degenerately on H means, again using the Cohen Factorisation Theorem, that $H=\{a(\xi): a \in A, \xi \in H\}$. It follows that $\left\{a \omega: a \in A, \omega \in \mathcal{B}(H)_{*}\right\}$ is linearly dense in $\mathcal{B}(H)_{*}$, so the result again follows by Cohen Factorisation.

References

The following are extra bibliographic entries not in the original paper.
lance [lan] Lance's Hilbert C*-module book.
[mnw] Masuda et al. " C^{*}-algebraic framework for Quantum Groups".
woro [wor] Woronowicz's Compact Quantum Groups paper.

