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Abstract

We study the semi-simplicity of the second dual of the Banach algebra of operators

on a Banach space, B(E)′′, endowed with either Arens product. It was previously

shown that if E is a Hilbert space, then B(E) is Arens regular and B(E)′′ is semi-

simple. We show that for a large class of Banach spaces E, including subspaces of Lp

spaces not isomorphic to a Hilbert space, B(E)′′ is not semi-simple. This is achieved

by deriving a new representation of B(lp)′, and then constructing a member of the

radical of B(lp)′′, for p 6= 2.
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1 Introduction and algebraic background

When E is a Banach space, E ′′ is its second dual space, and we have a canonical

isometry κ : E → E ′′. We can thus view E ′′ as an “extension” of E. The same

is true of a Banach algebra A: the first and second Arens products, 2 and

3, are defined on A′′ extending the algebra product on A. When these two

natural products coincide, we say that A is Arens regular.
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In [3], it was shown that B(E), the Banach algebra of operators on a Banach

space, is Arens regular whenever E is super-reflexive. The proof uses an in-

jective homomorphism B(E)′′ → B(F ) (for either Arens product) where F is

another reflexive Banach space– one can take F = (l2(E))U where (l2(E))U is

an ultrapower. This is a natural approach to take, as ultrapowers are another

form of “extension”, and one which is closely linked to second duals (see [8,

Section 2]).

When E is a Hilbert space, B(E) is a C∗-algebra, which gives another way to

show that B(E) is Arens regular in this special case, and to show that B(E)′′

is semi-simple. It thus seems natural to ask whether B(E)′′ is semi-simple for

any super-reflexive Banach space. In this paper, we shall show that, for a large

class of spaces E, including E = Lp(ν) for any measure ν and p 6= 2, B(E)′′

is not semi-simple. Indeed, the only spaces E for which B(E)′′ is known to be

semi-simple are those spaces which are isomorphic to a Hilbert space.

1.1 Algebraic Background

Throughout, if E is a Banach space, then E ′ is its dual space, the space of

all continuous linear functionals on E. If x ∈ E and λ ∈ E ′ then we write

〈λ, x〉 = λ(x). We maintain the convention that the left-hand side of 〈., .〉 is a

member of the dual of the space which contains the right-hand side member

of 〈., .〉.

For a Banach space E there is a natural map κE : E → E ′′ given by

〈κE(x), µ〉 = 〈µ, x〉 (x ∈ E, µ ∈ E ′).

Then κE is an isometry, and we say that E is reflexive if κE is an isomorphism.

When E and F are Banach spaces, B(E,F ) is the Banach space of all bounded

linear maps from E to F , with the operator norm. By K(E,F ) we denote the

ideal of compact operators in B(E,F ); by F(E,F ) the ideal the finite-rank

operators. The closure of F(E,F ) in B(E,F ) is the ideal of approximable
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operators, A(E,F ). We write B(E) = B(E,E) for the Banach algebra of

operators on a Banach space E, and similarly K(E),F(E) and A(E).

We denote the tensor product of Banach spaces E and F by E ⊗ F . Then we

can give E ⊗ F the projective tensor norm, defined for u ∈ E ⊗ F by

‖u‖π = inf

{
n∑

i=1

‖ei‖‖fi‖ : u =
n∑

i=1

ei ⊗ fi

}
.

Then the completion of E ⊗ F under ‖ · ‖π is E⊗̂F , the projective tensor

product of E and F . See [10, Chapter 2] for more details.

There is a natural norm-decreasing map from E⊗̂E ′ to B(E) given by( ∞∑
i=1

xi ⊗ µi

)
(x) =

∞∑
i=1

xi〈µi, x〉
( ∞∑

i=1

xi ⊗ µi ∈ E⊗̂E ′, x ∈ E
)
.

We say that E has the approximation property (AP) when this map has trivial

kernel. In this case, A(E) = K(E). See [10, Chapter 4] for more details.

Finally, we can identify B(E,F ′) with (E⊗̂F )′ by

〈T, e⊗ f〉 = 〈T (e), f〉 (T ∈ B(E,F ′), e⊗ f ∈ E⊗̂F )

and linearity. In particular, if E is reflexive, then (E⊗̂E ′)′ = B(E).

1.2 Arens products

For a Banach algebra A, a, b ∈ A, λ ∈ A′ and Φ ∈ A′′ we define a.λ ∈ A′,

λ.a ∈ A′, λ.Φ ∈ A′ and Φ.λ ∈ A′ by

a.λ : b 7→ 〈λ, ba〉 , λ.a : b 7→ 〈λ, ab〉,

λ.Φ : b 7→ 〈Φ, b.λ〉 , Φ.λ : b 7→ 〈Φ, λ.b〉,

and then define two products 2 and 3 on A′′ by

〈Φ2Ψ, λ〉 = 〈Φ,Ψ.λ〉 , 〈Φ3Ψ, λ〉 = 〈Ψ, λ.Φ〉 (Φ,Ψ ∈ A′′, λ ∈ A′).
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Then (A′′,2) and (A′′,3) become Banach algebras, and both 2 and 3 agree

with the original algebra product on A. We call 2 and 3 the first and second

Arens products respectively. If 2 and 3 agree on the whole of A′′, then A is

said to be Arens regular. For further details we refer to reader to [1, Section

2.6] or [2].

In [3] (or see [2] for a different presentation) it is shown that whenever a

Banach space E is a super-reflexive, B(E) is Arens regular.

For a Banach space E, an index set I and an ultrafilter U define

l∞(E, I) = {(xi)i∈I ⊂ E : sup
i∈I

‖xi‖ <∞},

NU = {(xi) ∈ l∞(E, I) : lim
i∈U

‖xi‖ = 0}.

ThenNU is a closed subspace of l∞(E, I), and we define (E)U to be the quotient

space l∞(E, I)/NU . It is easy to check that if (xi) is some representative of an

equivalence class in (E)U , then ‖(xi)‖ = limi∈U ‖xi‖. For more details see [3]

and [8].

If F is a reflexive left B(E)-module, then define a map φ : F ⊗̂F ′ → B(E)′ by

〈φ(f ⊗ µ), T 〉 = 〈µ, T.f〉 (f ⊗ µ ∈ F ⊗̂F ′, T ∈ B(E)).

In [3] it is shown that φ′ : B(E)′′ → B(F ) is a homomorphism for either Arens

product on B(E)′′. In particular, if φ is surjective, then φ′ is an isomorphism

onto its range, so that B(E) is Arens regular.

It would be natural, in the above construction, to consider using F = (E)U

for some ultrapower U , but it seems unlikely that, in general, φ even has

dense range in this case. However, we can make l2(E) into a left B(E)-module

by letting B(E) act co-ordinate wise, and then (l2(E))U naturally becomes a

left B(E)-module as well. As E is super-reflexive, l2(E) is super-reflexive, so

(l2(E))U is reflexive. In [3] it was shown that for a suitable ultrafilter U , if we

set F = (l2(E))U , then φ is a surjection. In section 3.1 of this paper, we shall

show that for a suitable ultrafilter U , if E = lp for 1 < p < ∞, then φ is a
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surjection with F = (E)U .

1.3 Semi-simplicity and radicals

We state (see [1]) that for a unital Banach algebra A, with unit e, the radical

of A is

rad(A) = {a ∈ A : e− ba is invertible (b ∈ A)}

= {a ∈ A : e− ab is invertible (b ∈ A)}

= {a ∈ A : Sp(ab) = {0} (b ∈ A)}

= {a ∈ A : Sp(ba) = {0} (b ∈ A)}

= {a ∈ A : lim
n→∞

‖(ab)n‖1/n = 0 (b ∈ A)}

= {a ∈ A : lim
n→∞

‖(ba)n‖1/n = 0 (b ∈ A)},

where Sp(c) = {λ ∈ C : λe− c is not invertible} is the spectrum of c in A.

2 A case when B(E)′′ is not semi-simple

For this section, let E be a reflexive Banach space. Let κ : E⊗̂E ′ → B(E)′ be

the usual isometry from the Banach space E⊗̂E ′ to its second dual. Then κ′

is a linear map from B(E)′′ onto B(E).

Proposition 2.1 Let E and κ be as above. Then we have the following:

(1) κ is a B(E)-bimodule homomorphism;

(2) κ′ is a B(E)-bimodule homomorphism;

(3) for Φ ∈ B(E)′′ and τ ∈ E⊗̂E ′, we have Φ.κ(τ) = κ(κ′(Φ).τ) and

κ(τ).Φ = κ(τ.κ′(Φ));

(4) κ′ is a homomorphism for both Arens products on B(E)′′;

(5) if we identify B(E) with its image in B(E)′′, then κ′ is a projection onto

B(E), and so we have B(E)′′ = B(E)⊕ kerκ′.
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(6) Writing B(E)′′ = B(E)⊕ kerκ′, we have

(T,Γ1)2(S,Γ2) = (TS, T.Γ2 + Γ1.S + Γ12Γ2) ∈ B(E)⊕ kerκ′,

for (T,Γ1), (S,Γ2) ∈ B(E)⊕ kerκ′, and similarly for the product 3.

Proof.

(1) For S, T ∈ B(E) and τ ∈ E⊗̂E ′ we have

〈κ(T.τ), S〉 = 〈S, T.τ〉 = 〈ST , τ〉 = 〈κ(τ), ST 〉 = 〈T.κ(τ), S〉

and similarly κ(τ.T ) = κ(τ).T .

(2) This is now standard from (1).

(3) For T ∈ B(E) we have

〈Φ.κ(τ), T 〉 = 〈Φ, κ(τ).T 〉 = 〈Φ, κ(τ.T )〉 = 〈κ′(Φ), τ.T 〉

= 〈T ◦ κ′(Φ), τ〉 = 〈T, κ′(Φ).τ〉 = 〈κ(κ′(Φ).τ), T 〉,

and similarly κ(τ).Φ = κ(τ.κ′(Φ)).

(4) For Φ,Ψ ∈ B(E)′′ and τ ∈ E⊗̂E ′ we have

〈κ′(Φ2Ψ), τ〉 = 〈Φ,Ψ.κ(τ)〉 = 〈Φ, κ(κ′(Ψ).τ)〉 = 〈κ′(Φ) ◦ κ′(Ψ), τ〉

and

〈κ′(Φ3Ψ), τ〉 = 〈Ψ, κ(τ).Φ〉 = 〈Ψ, κ(τ.κ′(Φ))〉 = 〈κ′(Φ) ◦ κ′(Ψ), τ〉.

(5) We wish to show that for T ∈ B(E), we have κ′(T ) = T , which follows

because 〈κ′(T ), τ〉 = 〈T, κ(τ)〉 = 〈T, τ〉.
(6) We have κ′((T +Γ1)2(S+Γ2)) = κ′(TS)+κ′(Γ1).S+T.κ′(Γ2)+κ′(Γ1) ◦

κ′(Γ2) = TS.

2

Proposition 2.2 Let Φ ∈ B(E)′′ and suppose that κ′(Φ) 6= 0. Then Φ 6∈
radB(E)′′ for either Arens product.
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Proof. Pick x ∈ E and µ ∈ E ′ with κ′(Φ)(x) 6= 0 and 〈µ, κ′(Φ)(x)〉 = 1.

Then let T = x ⊗ µ ∈ B(E), so that κ′(T2Φ)(x) = T (κ′(Φ)(x)) = x, and

hence κ′(Id−T2Φ) has non-trivial kernel and so cannot be invertible. Thus

Id−T2Φ is not invertible in B(E)′′, so that Φ 6∈ radB(E)′′. The same holds

for the product 3. 2

Note that Proposition 2.1(6) shows that kerκ′ is an ideal of B(E)′′ for either

Arens product. Consequently, by Proposition 2.2, radB(E)′′ = (radB(E)′′) ∩
kerκ′ = rad kerκ′. Thus we can concentrate on kerκ′ ⊆ B(E)′′ when consid-

ering the radical of B(E)′′.

2.1 An example where B(E)′′ is not semi-simple

We look at a Banach space E = F ⊕ G, where E is reflexive (so that F and

G are reflexive), and use the results of the last section. We can regard B(E)

as an algebra of two-by-two matricies with entries from B(F ), B(F,G) etc.

Indeed,

B(E) =




A11 A21

A12 A22

 :
A11 ∈ B(F ), A21 ∈ B(G,F ),

A12 ∈ B(F,G), A22 ∈ B(G)

 ,

and so

B(E)′′ =




Φ11 Φ12

Φ21 Φ22

 :
Φ11 ∈ B(F )′′,Φ12 ∈ B(G,F )′′,

Φ21 ∈ B(F,G)′′,Φ22 ∈ B(G)′′

 .

Lemma 2.3 Let A be a unital Banach algebra, and let p, q ∈ A be orthogonal

idemopotents (that is, p2 = p, q2 = q and pq = qp = 0) such that p + q = eA.

Then

A =


pAp pAq

qAp qAq

 .
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Let A be a subalgebra of A, and let B be an ideal in A, so that

A ⊆


pAp 0

qAp qAq

 , B ⊆


0 0

qAp 0

 .

Then B lies in the radical of A.

Proof. Firstly note that if a ∈ A, then a = eAaeA = pap + paq + qap + qaq,

so that A does have the form of a two-by-two matrix algebra. Pick b ∈ B and

a ∈ A. Then

eA + ba =


p 0

0 q

+


0 0

qbp 0



pap 0

qap qaq

 =


p 0

qbpap q

 ,

which has inverse
(

p 0
−qbpap q

)
. Thus, as a ∈ A was arbitrary, b ∈ rad A. 2

We can certainly apply this lemma to A = B(F ⊕ G)′′ = B(E)′′, with either

of the Arens products (with p and q being the projections onto F and G

respectively). Then, with reference to the comment after Proposition 2.2, we

wish to impose conditions on F and G so that kerκ′ = A (by which we mean

that kerκ′ has, as a matrix algebra, the correct form to apply the preceding

Lemma).

Lemma 2.4 If every bounded linear map from G to F is compact, then

kerκ′ = A.

Proof. We need to show that, if B(G,F ) = K(G,F ), then if Φ ∈ B(G,F )′′

with κ′ ( 0 Φ
0 0 ) = 0, then Φ = 0. Now, κ′ ( 0 Φ

0 0 ) = 0 if and only if 〈Φ, λ〉 = 0 for

each λ ∈ G⊗̂F ′ (noting that (G⊗̂F ′)′ = B(G,F )). Thus it is enough to show

that κG⊗̂F ′ : G⊗̂F ′ → B(G,F )′ is surjective, that is, G⊗̂F ′ is reflexive.

Now, G⊗̂F ′ is reflexive if and only if B(G,F ) is reflexive. By [10, Theorem

4.19], if B(G,F ) = K(G,F ), then B(G,F ) is reflexive, so we are done. 2

Finally, we would like B to not be the zero space.
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Lemma 2.5 With F , G and κ as above, there is a non-zero Ψ ∈ kerκ′ ∩
B(F,G)′′ if and only if B(F,G) is not reflexive. If one of F or G has the

approximation property, then B(F,G) is not reflexive if and only if B(F,G) 6=
K(F,G).

Proof. As κ′ restricts to a projection of B(F,G)′′ onto B(F,G), the first part

is clear.

As (F ⊗̂G′)′ = B(F,G), the space B(F,G) is reflexive if and only if F ⊗̂G′ is

reflexive. The second part of the lemma then follows from [10, Theorem 4.21].

2

Theorem 2.6 Let F and G be reflexive Banach spaces such that one has the

approximation property, B(F,G) = K(F,G) and B(G,F ) 6= K(G,F ). Then

B(F ⊕G)′′, with either Arens product, is not semisimple.

Proof. This follows directly from the above results. 2

Corollary 2.7 Choose p and q so that 1 < p < q < ∞. Then B(lp ⊕ lq)′′ is

not semi-simple.

Proof. By [10, Theorem 4.23], B(lq, lp) = K(lq, lp). By considering the formal

identity map from lp to lq we see that B(lp, lq) 6= K(lp, lq). 2

3 The case where E = lp

In this section, we will show that B(lp)′′ is not semi-simple for 1 < p < ∞,

p 6= 2.

If A is a Banach algebra, denote by Aop the Banach algebra whose underlying

Banach space is A but with reversed product. It is then clear that A is semi-

simple if and only if Aop is, and that (A′′)op = (Aop)′′ when A is Arens regular.

Thus we can restrict ourselves to the case where 1 < p < 2, the other cases

following from the anti-isomorphism B(lp) → B(lq), T 7→ T ′ (where, as usual,
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p−1 + q−1 = 1).

Our approach is to try to adapt the method used in Section 2, but instead

of writing E = F ⊕ G with B(E,F ) being very small (that is, all compact

operators), we shall construct an operator T ∈ B(E) which is “in the limit”

compact, in the sense that we can find a system of operators (PA) so that

weak*-limA TPA is in the radical. If B(E,F ) = K(E,F ), then any T would

do, with PA being such that weak*-limA(Id−PA) = Id. We have to work

somewhat harder for the space E = lp.

3.1 Action of B(E)′′ on (E)U and (l2(E))U

For an ultrafilter U and a super-reflexive Banach space E, recall that we define

φ : (E)U⊗̂(E ′)U → B(E)′ by

〈φ((xi)⊗ (µi)), T 〉 = 〈(µi), T.(xi)〉 = lim
i∈U

〈µi, T (xi)〉

for T ∈ B(E) and (xi) ⊗ (µi) ∈ (E)U⊗̂(E ′)U . When we need to stress which

ultrafilter is being used, we shall write φU . Then we have φ′ : B(E)′′ → B((E)U)

given by

〈µ, φ′(Φ)(x)〉 = 〈Φ, φ(x⊗ µ)〉 (Φ ∈ B(E)′′, x ∈ (E)U , µ ∈ (E ′)U).

Then φ′ is a homomorphism for either Arens product (by results in [3]). If

Φ ∈ B(E)′′, then we know that, for some ultrafilter W and some bounded

family (Tα) in B(E), we have weak*-limα∈W Tα = Φ. Thus we see that, for

x ∈ (E)U and µ ∈ (E ′)U , we have 〈µ, φ′(Φ)(x)〉 = limα∈W 〈µ, Tα(x)〉 and so

φ′(Φ)(x) = weak-lim
α∈W

Tα(x) (x ∈ (E)U),

which makes sense because (E)U is reflexive.

Lemma 3.1 For each Φ ∈ B(E)′′, x ∈ (E)U and ε > 0 we can find S ∈ B(E)

with ‖S‖ ≤ ‖Φ‖ and ‖φ′(Φ)(x)− S(x)‖ < ε.
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Proof. Let X = {S(x) : S ∈ B(E), ‖S‖ ≤ ‖Φ‖} so that, by the above, φ′(Φ)(x)

is in the weak closure of X. Since X is convex and bounded, φ′(Φ)(x) is thus

in the norm closure of X, so we are done. 2

As stated above, in general, it is not the case that φ is surjective. However,

define a map ρ : E ×E ′ → (E)U⊗̂(E ′)U by ρ(x, µ) = x⊗ µ, where we identify

E with its image in (E)U and E ′ with its image in (E ′)U . Then ρ is norm-

decreasing and so extends to a norm-decreasing map ρ : E⊗̂E ′ → (E)U⊗̂(E ′)U .

Lemma 3.2 The map ρ is an isometry, and φ ◦ ρ : E⊗̂E ′ → B(E)′ is the

map κ : E⊗̂E ′ → B(E)′.

Proof. If T ∈ B(E) then

〈φ(ρ(x⊗ µ)), T 〉 = 〈µ, T (x)〉 = 〈κ(x⊗ µ), T 〉,

so, by linearity and continuity, φ ◦ ρ = κ. As κ is an isometry, and φ and ρ are

norm-decreasing, ρ must also be an isometry. 2

In the rest of this section, we shall prove that, when E = lp for 1 < p < ∞,

the map φ actually is surjective for a suitable ultrafilter U .

Let E be a reflexive Banach space with the approximation property, so that

A(E)′ = E⊗̂E ′, with the duality given by

〈x⊗ µ, T 〉 = 〈µ, T (x)〉 (x⊗ µ ∈ E⊗̂E ′, T ∈ A(E)).

For more details, see [10, Theorem 5.33]. Consequently we shall identify A(E)′′

with B(E), and it is easy to check that the canonical map κA(E) : A(E) →
A(E)′′ = B(E) is just the inclusion map. Thus E⊗̂E ′ is complemented in

B(E)′ with projection κ′A(E) : B(E)′ → E⊗̂E ′ and B(E)′ = E⊗̂E ′ ⊕ A(E)◦

where

A(E)◦ = {λ ∈ B(E)′ : 〈λ, T 〉 = 0 (T ∈ A(E))}.

We can form the quotient algebra B(E)/A(E), which in a natural way has

dual space A(E)◦. For T ∈ B(E), write T + A(E) for the image of T in
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B(E)/A(E), so that

‖T +A(E)‖ = inf{‖T + S‖ : S ∈ A(E)}.

Then in the case where E = lp (which does have the approximation property),

define Pn ∈ B(lp) to be projection onto the first n co-ordinates, and Qn =

Id−Pn, for n ∈ N. Then we have the following.

Proposition 3.3 For T ∈ B(lp), we have

‖T +A(lp)‖ = lim
n→∞

‖TQn‖ = lim
n→∞

‖QnTQn‖.

We may also replace limn→∞ by infn.

Proof. As (‖TQn‖)∞n=1 and (‖QnTQn‖)∞n=1 are decreasing sequences, we can

interchange taking limits and taking infima. Then as TQn = T − TPn and

TPn ∈ A(lp), we have ‖T + A(lp)‖ ≤ ‖TQn‖ for every n. Assume that we

have S ∈ A(lp) with ‖T + S‖ < infn ‖TQn‖, so that as S = limn SPn, we

have limn ‖SQn‖ = 0, and so limn ‖TQn‖ = limn ‖(T + S)Qn‖ ≤ ‖T + S‖ <
limn ‖TQn‖. This contradiction shows that

‖T +A(lp)‖ = lim
n
‖TQn‖.

For n ∈ N, we have QnTQn = T −TPn−PnT +PnTPn, and so ‖T +A(lp)‖ ≤
‖QnTQn‖. Hence

‖T +A(lp)‖ ≤ lim
n
‖QnTQn‖ ≤ lim

n
‖TQn‖ = ‖T +A(lp)‖

so we must have equality throughout, completing the proof. 2

The following is a variant of Helley’s Lemma, and is a standard result.

Proposition 3.4 Let F be a Banach space, Φ ∈ F ′′ and M ⊂ F ′ be a finite-

dimensional subspace. Then for ε > 0 we can find x ∈ F so that 〈µ, x〉 = 〈Φ, µ〉
for each µ ∈M , and

‖x‖ ≤ ε+ max{|〈Φ, µ〉| : µ ∈M, ‖µ‖ = 1}.
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Proof. This follows easily from [7, Lemma I.6.2]. 2

Let (ei)
∞
i=1 be the standard unit basis vectors of lp. For x =

∑∞
i=1 xiei ∈ lp,

define the support of x to be supp(x) = {i ∈ N : xi 6= 0}. Then Pn(x) = x

if and only if supp(x) ⊆ {1, . . . , n}, and Qn(x) = x if and only if supp(x) ⊆
{n+ 1, n+ 2, . . .}.

Lemma 3.5 Let M ⊂ B(lp) be a finite-dimensional subspace, ε > 0 and x ∈
lp. Then there exists an N0 ∈ N so that ‖Qn(T (x))‖ < ε‖T‖ for each T ∈ M

and n ≥ N0. For each m ∈ N, there exists N1 ∈ N so that ‖PmTQn‖ < ε‖T‖
for each T ∈M and n ≥ N1.

Proof. Firstly, assume towards a contradiction that for each n ∈ N, we can

find Tn ∈ M with ‖Tn‖ = 1 and ‖Qn(Tn(x))‖ ≥ ε‖Tn‖ = ε. Then, as M has

compact unit ball, we can find a subsequence (ni) so that for some T ∈ M ,

Tni
→ T as i→∞. Then we have

0 = lim
i
‖Qni

(T (x))‖ = lim
i
‖Qni

(Tni
(x))‖ ≥ ε

which is the required contradiction.

For the second part, pick δ > 0 and, by the compactness of the unit ball of

M , let (Ti)
N
i=1 be in M with ‖Ti‖ = 1 for each i, so that for each T ∈M with

‖T‖ = 1, we can find i with ‖T − Ti‖ < δ. Then we claim that we can find

N1 ∈ N so that n ≥ N1 implies that ‖PmTiQn‖ < δ‖Ti‖ for 1 ≤ i ≤ N .

It is enough to show this for each separate i as we have only finitely many to

consider. Then, towards a contradiction, if limn ‖PmTiQn‖ 6= 0, then we can

find θ > 0 and n1 < n2 < · · · so that ‖PmTiQnj
‖ ≥ 2θ for each j. Then we

can find (xj)
∞
j=1 with ‖xj‖ = 1 and Qnj

(xj) = xj so that ‖PmTi(xj)‖ ≥ θ for

each j. However, we have

lim
j→∞

‖PmTi(xj)‖ = lim
j→∞

(
m∑

k=1

|〈ek, Ti(xj)〉|p
)1/p

=

(
m∑

k=1

lim
j→∞

|〈T ′i (ek), xj〉|p
)1/p

= 0,
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which is the required contradiction.

So if T ∈M with ‖T‖ = 1 and n ≥ N1, for some i we have ‖T − Ti‖ < δ and

so

‖PmTQn‖ ≤ ‖PmTiQn‖+ δ < δ‖Ti‖+ δ = 2δ.

Thus, if δ = ε/2, we have ‖PmTQn‖ < ε as required. 2

A block-basis in lp is a sequence of norm-one vectors (xn)∞n=1 in lp such that

supp(xn) is finite for each n, and such that max supp(xn) < min supp(xn+1)

for each n.

For A ⊆ N, let PA be the projection on lp defined by

PA(en) =


en (n ∈ A),

0 (n 6∈ A).

Proposition 3.6 Let λ ∈ A(lp)◦ with ‖λ‖ = 1, M ⊂ B(lp) be a finite-

dimensional subspace with M ∩A(lp) = {0}, n1 ∈ N and (εn) be a sequence of

positive reals. Then we can find a block-basis (xn) in lp and (An)∞n=1 a sequence

of pairwise-disjoint subsets of N such that:

(1) |〈λ, T 〉| ≤ (1 + ε1) supn ‖T (xn)‖ for each T ∈M ;

(2) ‖PN\An(T (xn))‖ < εn‖T‖ and ‖PAn(T (xm))‖ < εm‖T‖ for each n,m ∈ N

with n 6= m, and each T ∈M ;

(3) supp(xn) ⊆ {n1 + 1, n1 + 2, . . .} for each n ∈ N.

Proof. As M has a compact unit ball, let (Tn)∞n=1 be a dense sequence in

{T ∈ M : ‖T‖ = 1}. Then for T1, we can find x1 in lp with finite support,

‖x1‖ = 1, min supp(x1) > n1 and (1 + ε1)‖T1(x1)‖ > |〈λ, T1〉|. We can do this

because, using the fact that λ ∈ A(lp)◦, |〈λ, T1〉| = |〈λ, T1Qn1〉| ≤ ‖T1Qn1‖.
Then using Lemma 3.5 we can find r1 ∈ N so that ‖Qr1T (x1)‖ < 1

2
ε1‖T‖ for

each T ∈M .

Assume inductively that we have found (xi)
k
i=1 ⊂ lp of norm one and with

pairwise-disjoint support, and 0 = r0 < r1 < r2 < · · · < rk so that:

14



(1) for 1 ≤ i ≤ k, |〈λ, Ti〉| ≤ (1 + ε1)‖Ti(xi)‖;
(2) for 1 ≤ i ≤ k and T ∈M , ‖Qri

T (xi)‖ < 1
2
εi‖T‖;

(3) for 1 ≤ i ≤ k and T ∈M , ‖Pri−1
T (xi)‖ < 1

2
εi‖T‖.

We shall show how to choose xk+1 and rk+1. By Lemma 3.5 we can find m ∈ N

so that ‖Prk
TQm(x)‖ < 1

2
εk+1‖T‖‖x‖ for each T ∈ M and each x ∈ lp. We

may suppose that m > max supp(xk), so as

|〈λ, Tk+1〉| = |〈λ, Tk+1Qm〉| ≤ ‖Tk+1Qm‖,

we can find a unit vector xk+1 ∈ lp with finite support, min supp(xk+1) > m,

and |〈λ, Tk+1〉| ≤ (1 + ε1)‖Tk+1(xk+1)‖. Then, by our choice of m,

‖Prk
T (xk+1)‖ <

1

2
εk+1‖T‖ (T ∈M).

By Lemma 3.5 we can find rk+1 so that, for T ∈M , we have ‖Qrk+1
T (xk+1)‖ <

1
2
εk+1‖T‖.

So by induction we can find a block basis (xn)∞n=1 and 0 = r0 < r1 < r2 < · · ·
with the above properties. For each n ∈ N, set An = {i : rn−1 < i ≤ rn}.
Then, for T ∈M , we have

‖PN\AnT (xn)‖ ≤ ‖Prn−1T (xn)‖+ ‖QrnT (xn)‖ < εn‖T‖

and, if n < m,

‖PAnT (xm)‖ ≤ ‖PrnT (xm)‖ ≤ ‖Prm−1T (xm)‖ < 1
2
εm‖T‖ < εm‖T‖,

while, if n > m, we have,

‖PAnT (xm)‖ ≤ ‖Qrn−1T (xm)‖ ≤ ‖QrmT (xm)‖

≤ ‖T (xm)‖ − ‖PrmT (xm)‖

< 1
2
εm‖T (xm)‖ < εm‖T‖,

as required.
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Finally, let T ∈ M . Then, for each δ > 0, there exists an n ∈ N so that

‖T − Tn‖ < δ, and thus

|〈λ, T 〉| < |〈λ, Tn〉|+ δ ≤ (1 + ε1)‖Tn(xn)‖+ δ

≤ (1 + ε1)‖T (xn)‖+ δ(2 + ε1).

As this holds for each δ > 0, we see that |〈λ, T 〉| ≤ (1 + ε1) supn ‖T (xn)‖. 2

We can now prove our key result, which tells us that any member of A(lp)◦ can

be approximated, on a finite-dimensional subspace of B(lp), by an elementary

tensor in lp⊗̂lq (recalling that p−1 + q−1 = 1).

Theorem 3.7 Let λ ∈ A(lp)◦, M ⊂ B(lp) be a finite-dimensional subspace

and ε > 0. Then we can find x ∈ lp and µ ∈ lq with ‖x‖ < ‖λ‖1/p(1 + ε)1/p

and ‖µ‖ < ‖λ‖1/q(1 + ε)1/q, and such that |〈λ, T 〉 − 〈µ, T (x)〉| < ε‖λ‖‖T‖ for

each T ∈M .

Proof. We can find n1 so that ‖TQn1‖ < 1
2
ε‖T‖ for each T ∈M ∩A(lp). This

follows by a compactness arguement, similar to those used above. Let M̂ ⊆M

be a subspace ofM so that M̂∩A(lp) = {0} andM = M̂⊕(M∩A(lp)). Let (εn)

be a sequence of positive reals so that
∑∞

n=1 εn < ε/3. If the result is true in the

special case that ‖λ‖ = 1, then we can find x and µ with ‖x‖ < (1+ ε)1/p and

‖µ‖ < (1 + ε)1/q and with |‖λ‖−1〈λ, T 〉 − 〈µ, T (x)〉| < ε‖T‖ for each T ∈ M .

Then let x̂ = ‖λ‖1/px and µ̂ = ‖λ‖1/qµ so that ‖x̂‖ < ‖λ‖1/p(1 + ε)1/p and

‖µ̂‖ < ‖λ‖1/q(1 + ε)1/q and, for each T ∈ M , we have |〈λ, T 〉 − 〈µ̂, T (x̂)〉| <
ε‖λ‖‖T‖, as required. Thus we may suppose henceforth that ‖λ‖ = 1.

We can use Proposition 3.6, applied to M̂ , to find sequences (xn) and (An).

Let l1(lp) be the Banach space of all absolutely-summable sequences of vectors

in lp with the l1 norm, so that

l1(lp) =

{
(yn)∞n=1 ⊂ lp : ‖(yn)‖ :=

∞∑
n=1

‖yn‖ <∞
}
,

16



and let l∞(lp) have a similar definition. Then l1(lq)′ = l∞(lp). Let

X = {(T (xn))∞n=1 : T ∈ M̂} ⊂ l∞(lp),

so that X is a finite-dimensional subspace of l∞(lp). Define Φ ∈ X ′ by

〈Φ, (T (xn))〉 = 〈λ, T 〉 (T ∈ M̂).

Because |〈λ, T 〉| ≤ (1 + ε1)‖(T (xn))‖∞, we have ‖Φ‖ ≤ 1 + ε1. Then, by

Proposition 3.4, as X is finite-dimensional, we can find (µn) ∈ l1(lq) so that∑∞
n=1 ‖µn‖ ≤ 1+ ε1 + ε2 < 1+ ε and 〈Φ, (T (xn))〉 =

∑∞
n=1 〈µn, T (xn)〉 for each

T ∈ M̂ .

For each n ∈ N, set µ̂n = PAn(µn), and set

x =
∞∑

n=1

xn‖µ̂n‖1/p and µ =
∞∑

n=1

µ̂n‖µ̂n‖−1+1/p,

so that

‖x‖ =

( ∞∑
n=1

‖µ̂n‖
)1/p

< (1 + ε)1/p , ‖µ‖ =

( ∞∑
n=1

‖µ̂n‖
)1/q

< (1 + ε)1/q.

Then, for T ∈ M̂ , we have

〈µ, T (x)〉 =
∞∑

n=1

∞∑
m=1

〈PAn(µn), T (xm)〉.

By condition (2) in Proposition 3.6, for each T ∈ M̂ , we have∣∣∣∣∣∣
∑
n6=m

〈PAn(µn), T (xm)〉

∣∣∣∣∣∣ ≤
∞∑

n=1

∣∣∣∣∣∣〈µn,
∑
m6=n

PAn(T (xm))〉

∣∣∣∣∣∣
≤

∞∑
n=1

‖µn‖
∞∑

m=1

εm‖T‖ ≤ ‖T‖
( ∞∑

m=1

εm

)( ∞∑
n=1

‖µn‖
)
< 1

3
ε(1 + ε1 + ε2)‖T‖.

Then, again by condition (2), for T ∈ M̂ , we have∣∣∣∣∣〈λ, T 〉 −
∞∑

n=1

〈µ̂n, T (xn)〉
∣∣∣∣∣ ≤

∞∑
n=1

‖µn‖‖PAn(T (xn))− T (xn)‖

<
∞∑

n=1

εn‖µn‖‖T‖ < ‖T‖
(
sup

n
‖µn‖

)( ∞∑
n=1

εn

)
< 1

3
ε(1 + ε1 + ε2)‖T‖.
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Consequently, if T ∈ M̂ , then

|〈λ, T 〉 − 〈µ, T (x)〉| < 2
3
ε(1 + ε1 + ε2)‖T‖,

and we may suppose that 2
3
ε(1 + ε1 + ε2) < ε. Finally, if T ∈M ∩A(lp), then,

by the choice of n1, we have

|〈µ, T (x)〉| ≤
∞∑

n=1

|〈PAn(µn), T (xn)〉| ≤
∞∑

n=1

‖µn‖‖TQn1‖

< 1
2
ε(1 + ε1 + ε2)‖T‖ < ε‖T‖,

as required, since 〈λ, T 〉 = 0 and ‖λ‖ = 1. 2

Theorem 3.8 For p ∈ (1,∞), the map φ : (lp)U⊗̂(lq)U → B(lp)′ is surjective

for a suitable ultrafilter U . In fact, for λ ∈ B(lp)′, we can find σ ∈ (lp)U⊗̂(lq)U

with φ(σ) = λ and ‖σ‖ = ‖λ‖.

Proof. Let I be the collection of finite-dimensional subspaces of B(lp), partially

ordered by inclusion. Let U be an ultrafilter on I which refines the order filter,

so that, if M ∈ I, then {N ∈ I : M ⊆ N} ∈ U .

Pick λ ∈ A(lp)◦ and, for M ∈ I, let xM ∈ lp and µM ∈ lq be given by

Theorem 3.7 applied with εM = (dimM)−1. Then ‖xM‖ < (1 + εM)1/p‖λ‖1/p

and ‖µM‖ < (1 + εM)1/q‖λ‖1/q, so that if we set x = (xM) and µ = (µM) then

x ∈ (lp)U , µ ∈ (lq)U , and

‖x‖‖µ‖ = lim
M∈U

‖xM‖‖µM‖ ≤ lim
M∈U

(1 + εM) = ‖λ‖.

Then, for each T ∈ B(lp), we have

|〈λ, T 〉 − 〈φ(x⊗ µ), T 〉| = |〈λ, T 〉 − lim
M∈U

〈µM , T (xM)〉| < lim
M∈U

εM‖λ‖‖T‖ = 0,

so that φ(x⊗ µ) = λ, and hence ‖x‖‖µ‖ = ‖λ‖.

Let λ ∈ B(lp)′. Then let λ = λ̂+τ where τ = κ′A(lp)(λ) ∈ lp⊗̂lq and λ̂ = λ−τ ∈
A(lp)◦. Then we can find x0 ∈ (lp)U and µ0 ∈ (lq)U with ‖x0‖‖µ0‖ = ‖λ̂‖ and

φ(x0 ⊗ µ0) = λ̂. We see that

φ(ρ(τ) + x0 ⊗ µ0) = λ , ‖ρ(τ) + x0 ⊗ µ0‖ ≤ ‖τ‖+ ‖λ̂‖.
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For each ε > 0, we can find S ∈ F(lp) and N ∈ N so that ‖S‖ = 1, PNSPN =

S, |〈τ, S〉| > ‖τ‖ − ε, and |〈QNRQN , τ〉| < ε‖R‖ for R ∈ B(lp). Next, we can

find T ∈ B(lp) with ‖T‖ = 1 and |〈λ̂, QNTQN〉| = |〈λ̂, T 〉| > ‖λ̂‖ − ε. Then,

for each x ∈ lp, we have

‖S(x) +QNTQN(x)‖ = (‖PNSPN(x)‖p + ‖QNTQN(x)‖p)1/p

≤ (‖S‖p‖PN(x)‖p + ‖QNTQN‖p‖QN(x)‖p)1/p

≤ ‖x‖max{‖S‖, ‖T‖} = ‖x‖.

Thus ‖S +QNTQN‖ ≤ 1, and so

‖λ‖ = ‖τ + λ̂‖ ≥ |〈τ + λ̂, S +QNTQN〉| > ‖τ‖+ ‖λ̂‖ − 3ε.

As ε > 0 was arbitrary, we see that

‖τ‖+ ‖λ̂‖ ≤ ‖λ‖ = ‖φ(ρ(τ) + x0 ⊗ µ0)‖ ≤ ‖ρ(τ) + x0 ⊗ µ0‖ ≤ ‖τ‖+ ‖λ̂‖,

and so we must have ‖λ‖ = ‖ρ(τ) + x0 ⊗ µ0‖, as required. 2

We can thus identify B(lp)′ with a quotient of (lp)U⊗̂(lq)U , and hence the map

φ′ : B(lp)′′ → B((lp)U) is an isometry onto its range.

3.2 Systems of projections

Let W be an ultrafilter on N, and partially order W by reverse inclusion (so

that A ≤ B if and only if B ⊆ A). Then, as W is a filter, W is a directed set

with this order, and so we can let V be an ultrafilter on W refining the order

filter. Hence for each A ∈ W we have VA = {B ∈ U : B ⊆ A} ∈ V .

For A ⊆ N, recall the definition of PA from above:

PA(en) =


en (n ∈ A),

0 (n 6∈ A).
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Let U be some ultrafilter on N, and define ψ ∈ B((lp)U) by,

ψ(x) = weak-lim
A∈V

PA(x) (x = (xi) ∈ (lp)U).

Lemma 3.9 The map ψ is a projection onto the subspace

{x ∈ (lp)U : PA(x) = x (A ∈ W)}.

Proof. If µ ∈ (lq)U and B ∈ W , then

〈µ, PBψ(x)〉 = lim
A∈V

〈P ′
B(µ), PA(x)〉 = lim

A∈V
〈µ, PB∩A(x)〉

= lim
A∈V

〈µ, PA(x)〉 = 〈µ, ψ(x)〉,

so that PB ◦ψ = ψ, and hence ψ ◦ψ = ψ. If x ∈ (lp)U with PA(x) = x for each

A ∈ W , then clearly ψ(x) = x, so we are done. 2

Lemma 3.10 For each x ∈ (lp)U , the limit limA∈V PA(x) exists (we only know

a priori that the limit exists in the weak topology, not the norm topology).

Proof. Let C be the convex hull of {PA(x) : A ∈ W}, so that the norm

and weak closures of C coincide. Thus for each ε > 0 we can find a convex

combination S =
∑n

i=1 λiPAi
so that ‖S(x)−ψ(x)‖ < ε. Let A = A1∩· · ·∩An,

so that A ∈ W , and PA(S(x)) =
∑n

i=1 λiPAPAi
(x) = PA(x). Then

‖PA(x)− ψ(x)‖ = ‖PA(S(x))− PA(ψ(x))‖ < ‖PA‖ε = ε.

Hence for each B ∈ VA, we have

‖PB(x)− ψ(x)‖ = ‖PB(PA(x))− PB(ψ(x))‖ ≤ ‖PA(x)− ψ(x)‖ < ε.

Hence {B ∈ W : ‖PB(x)−ψ(x)‖ < ε} ⊇ VA ∈ V , so that ψ(x) = limA∈V PA(x).

2

20



3.3 Hilbert spaces in lp

When E and F are Banach spaces and ε > 0, a map T ∈ B(E,F ) is said to be

a (1+ ε)-isomorphism if T is an isomorphism onto its range, and (1− ε)‖x‖ ≤
‖T (x)‖ ≤ (1 + ε)‖x‖ for each x ∈ E.

For n ∈ N and p ∈ [1,∞], let lpn be Cn with the lp norm. If A ⊆ N, then lp(A)

is the subspace of lp consisting of vectors x with supp(x) ⊆ A. If |A| < ∞,

then lp(A) is isometrically isomorphic to lp|A|.

By a result of Dvoretsky (see, for example, [6]) we know that for any Banach

space E, ε > 0 and n ∈ N, we can find a (1 + ε)-isomorphism T : l2n → E.

Choose an increasing sequence (nk) of integers, and let N0 = 0, N1 = n1,

Ni+1 = Ni + ni+1 and Ak = {i : Nk−1 < i ≤ Nk}. Then we can find a linear

map T : lp → lp which maps lin{ei : i ∈ Ak} to a (1 + 1
k
)-isomorphic copy of

l2nk
, say wi = T (ei). By this, we mean that if (ai)i∈Ak

is a sequence of scalars,

then

k − 1

k

∑
i∈Ak

|ai|2
1/2

≤

∥∥∥∥∥∥
∑
i∈Ak

aiwi

∥∥∥∥∥∥ ≤ k + 1

k

∑
i∈Ak

|ai|2
1/2

.

Further, we may assume that, when k 6= l, the sets {wi : i ∈ Ak} and {wi :

i ∈ Al} are disjointly supported in lp. That is, if i ∈ Al and j ∈ Ak, then

supp(wi) ∩ supp(wj) = ∅.

In the case where 1 < p < 2 and (ak) is a sequence of scalars, we have

∥∥∥∥∥T
(∑

k

akek

)∥∥∥∥∥ =

∥∥∥∥∥∥
∑
k

∑
i∈Ak

aiwi

∥∥∥∥∥∥ =

∑
k

∥∥∥∥∥∥
∑
i∈Ak

aiwi

∥∥∥∥∥∥
p1/p

≤

∑
k

(
k + 1

k

)p
∑

i∈Ak

|ai|2
p/2


1/p

≤ 2‖(ak)‖p. (1)

Thus T ∈ B(lp) with ‖T‖ ≤ 2.
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3.4 Construction of an operator in the radical

Now fix p ∈ (1, 2) and form T as above (where we shall choose (nk) later). For

each A ⊆ N, let

ud(A) = lim sup
k→∞

|A ∩ Ak|
|Ak|

,

and let F = {A ⊆ N : ud(N \ A) = 0}. Then F is a filter on N; let W be an

ultrafilter on N refining F . By Theorem 3.8, there is an ultrafilter U , on some

suitable index set I, such that φU : (lp)U⊗̂(lq)U → B(lp)′ is surjective and such

that φ′U is an isometric isomorphism onto its range. Define

Φ = weak*-lim
A∈V

TPA ∈ B(lp)′′.

Recall the definition of ψ from section 3.2.

Lemma 3.11 We have φ′U(Φ) = T ◦ ψ and Φ 6= 0.

Proof. Choose x ∈ (lp)U , and let y = ψ(x) = limA∈V PA(x) (the limit exists by

Lemma 3.10), so that, if µ ∈ (lq)U , we have

〈µ, φ′U(Φ)(x)〉 = lim
A∈V

〈µ, TPA(x)〉 = 〈T ′(µ), y〉 = 〈µ, T (ψ(x))〉.

Thus φ′U(Φ) = T ◦ ψ. Actually, we have also shown that φ′V(Φ) = T ◦ ψ in

B((lp)V).

Now let α : W → N be such that α(A) ∈ A for each A ∈ W . Then let

xA = eα(A) so that x = (xA) ∈ (lp)V . For each B ∈ W , we have

{A ∈ W : PB(xA) = xA} = {A ∈ W : α(A) ∈ B} ⊇ {A ∈ W : A ⊆ B} ∈ V ,

and so limA∈V ‖PB(xA) − xA‖ = 0. Thus PB(x) = x. So, by Lemma 3.9,

ψ(x) = x, and clearly T (x) 6= 0, so that φ′V(Φ)(x) 6= 0, and hence Φ 6= 0. 2
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3.5 B(lp)′′ is not semi-simple

We shall now show, by contradiction, that this functional Φ (as defined above)

is in the radical of B(lp)′′.

Proposition 3.12 Let E be a super-reflexive Banach space such that there

exists a surjection φU : (E)U⊗̂(E ′)U → B(E)′ (for example, E = lp for 1 < p <

∞). If Φ 6∈ radB(E)′′, then, for some Ψ ∈ B(E)′′, the operator φ′(Id−ΨΦ) ∈
B((E)U) is not bounded below.

Proof. As Φ 6∈ radB(E)′′, we can find Ψ ∈ B(E)′′ with 1 ∈ Sp(ΨΦ). Thus, by

rescaling Ψ, we may suppose that 1 is in the boundary of Sp(ΨΦ). Thus we

can find a sequence (λn) in C so that λn → 1 and λn Id−ΨΦ is invertible for

each n ∈ N. Let Un = (λn Id−ΨΦ)−1, and suppose that (Un) is a bounded

sequence. Then

‖Un(Id−ΨΦ)− Id ‖ = ‖Un(λn Id−ΨΦ) + Un(Id−λn Id)− Id ‖

= ‖Un‖(1− λn) → 0,

which contradicts the fact that Id−ΨΦ is not invertible. Indeed, we have

shown that no subsequence of (Un) can be bounded.

Let Sn = φ′(Un)‖φ′(Un)‖−1 for each n ∈ N, so that ‖Sn‖ = 1 for each n, and

note that ‖φ′(Un)‖−1 → 0, because φ′ is an isomorphism onto its range. Then

‖φ′(Id−ΨΦ)Sn‖ ≤ ‖φ′((λn Id−ΨΦ)Un)‖‖φ′(Un)‖−1 + (1− λn) → 0,

so φ′(Id−ΨΦ) cannot be bounded below. 2

Let us say that C ⊂ N is B-reasonable if |C ∩Ak| ≤ B for every k. For any r,

a vector x ∈ lr is B-reasonable if supp(x) is B-reasonable. For an ultrafilter U ,

x ∈ (lr)U is B-reasonable if for some representative (xi) of x, xi is B-reasonable

for every i.

Proposition 3.13 If Φ 6∈ radB(lp)′′, then there exists Ψ ∈ B(lp)′′, B ∈ N

and a B-reasonable z ∈ (lp)U with the following properties:
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(1) ‖z‖ ≤ 1;

(2) PA(z) = z for each A ∈ W;

(3) if µz ∈ (lq)W with 〈µz, z〉 = ‖z‖ and ‖µz‖ = 1, then

|〈µz, φ′(Ψ)(T (z))〉| > 1

2
‖Ψ‖−1.

Proof. By Proposition 3.12, we can find Ψ ∈ B(lp)′′ and x ∈ (lp)U with ‖x‖ = 1

and

‖φ′(ΨΦ)(x)− x‖ = ‖(φ′(Ψ) ◦ T ◦ ψ)(x)− x‖ < ε,

where ε > 0 is to be chosen later. By Lemma 3.10, limA∈V PA(x) exists; set

y = limA∈V PA(x), so that ‖y‖ ≤ 1 and ‖φ′(Ψ)(T (y))−x‖ < ε, and hence also

‖φ′(Ψ)(T (y))‖ > 1− ε.

Choose a representative (yi) of y with, for each i ∈ I, ‖yi‖ = ‖y‖ and yi =∑
j yi,jej. Then let γi,k =

(∑
j∈Ak

|yi,j|p
)1/p

, and let δi,k = maxj∈Ak
|yi,j|. Then,

for each k and i, we have

∑
j∈Ak

|yi,j|2
1/2

= γi,k

∑
j∈Ak

|yi,j|2

|γi,k|2

1/2

≤ γi,k

∑
j∈Ak

|yi,j|p

|γi,k|p
δ2−p
i,k γp−2

i,k

1/2

= δ
1−p/2
i,k γ

p/2
i,k

∑
j∈Ak

|yi,j|p

|γi,k|p

1/2

= δ
1−p/2
i,k γ

p/2
i,k .

Hence, by (1), we have

‖T (yi)‖ ≤
(∑

k

(k + 1)p

kp
δ

p(1−p/2)
i,k γ

p2/2
i,k

)1/p

. (2)

Pick K ∈ N and choose B ∈ N so that B ≥ |Ak| for k ≤ K, and B1/p−1/2 >

(K + 1)/Kε. For each i ∈ N choose a B-reasonable set Di ⊂ N so that∑
j∈Di

|yi,j|p is maximal. For each i let ŷi = PN\Di
(yi), and define γ̂i,k and δ̂i,k

for ŷi in an analogous manner to the definitions of γi,k and δi,k. Note that, if

B ≥ |Ak|, then γ̂i,k = 0 for each i. For each i and k, γ̂i,k ≤ γi,k, and we have

γp
i,k =

∑
j∈Ak∩Di

|yi,j|p +
∑

j∈Ak\Di

|yi,j|p ≥ B max
j∈Ak\Di

|yi,j|p = Bδ̂p
i,k,
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so that δ̂i,k ≤ B−1/pγi,k. Thus, by (2),

‖T (ŷi)‖ ≤

∑
k>K

(k + 1)p

kp
δ̂

p(1−p/2)
i,k γ̂

p2/2
i,k

1/p

≤

∑
k>K

(k + 1)p

kp
Bp/2−1γp

i,k

1/p

= B1/2−1/p

∑
k>K

(k + 1)p

kp
γp

i,k

1/p

≤ K + 1

K
B1/2−1/p‖yi‖ < ε

by our choice of B.

Let z = y − ŷ = (PDi
(yi)), so that z is B-reasonable, and ‖z‖ ≤ 1. For each

A ∈ W , we have y = PA(y), and so

‖PA(z)− z‖ = lim
i∈U

‖PA(PDi
(yi))− PDi

(yi)‖

≤ lim
i∈U

‖PA(yi)− yi‖ = ‖PA(y)− y‖ = 0.

Now let µz = (µz
i ) ∈ (lq)U be such that ‖µz

i ‖ = 1 and 〈µz
i , zi〉 = ‖zi‖ for each

i. Then, for each i, supp(zi) = supp(µz
i ) so that

〈µz
i , yi − zi〉 = 〈PDi

(µz
i ), PN\Di

(yi)〉 = 0.

Thus 〈µz, z〉 = 〈µz, y〉. For A ∈ W , as PA(z) = z we have PA(µz) = µz, and so

‖z‖ = 〈µz, z〉 = 〈µz, y〉 = lim
A∈V

〈µz, PA(x)〉 = lim
A∈V

〈PA(µz), x〉 = 〈µz, x〉.

Let TK be T restricted to the subspace of vectors in lp whose support is

contained in
⋃

k>K Ak. Then we have T (z) = T (y − ŷ) = TK(z) and ‖TK‖ ≤
(K + 1)/K. As ‖φ′(Ψ)(T (y))‖ > 1− ε and ‖T (ŷ)‖ < ε, we have

‖z‖ ≥ ‖TK‖−1‖TK(z)‖ ≥ K(K + 1)−1(‖T (y)‖ − ‖T (y − z)‖)

≥ K(K + 1)−1(‖φ′(Ψ)(T (y))‖‖Ψ‖−1 − ε)

≥ K(K + 1)−1((1− ε)‖Ψ‖−1 − ε)
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So finally we have

|〈µz, φ′(Ψ)(T (z))〉| ≥ |〈µz, φ′(Ψ)(T (y))〉| − ‖µz‖‖Ψ‖‖T (z − y)‖

≥ |〈µz, x〉| − |〈µz, x− φ′(Ψ)(T (y))〉| − ε‖Ψ‖

≥ ‖z‖ − ε− ε‖Ψ‖.

Thus, for each δ > 0, we can, by a choice of ε > 0 and K ∈ N, ensure that

|〈µz, φ′(Ψ)(T (z))〉| ≥ ‖Ψ‖−1(1− δ).

We thus have conclusions (1) and (2), and setting δ = 1/2 we get conclusion

(3). 2

We shall now study maps from l2 to lp, and show how this gives rise to a

contradiction with the above proposition.

Lemma 3.14 Fix M > 0 and ε > 0, and let

δk = δk(M, ε) = sup
Sk

1

k
|{1 ≤ n ≤ k : |〈Sk(en), en〉| ≥ ε}| (k ∈ N)

where Sk varies over B(l2k, l
p
k) with ‖Sk‖ ≤M . Then limk→∞ δk = 0 and (kδk)

is eventually a decreasing sequence.

Proof. If (δk) does not tend to zero for some M > 0 and ε > 0, then for

some δ > 0, we can find infinitely many values of k for which there exists

Sk ∈ B(l2k, l
p
k) so that |{1 ≤ n ≤ k : |〈Sk(en), en〉| ≥ ε}| ≥ kδ. Move to

a subsequence (kj) for which this is always true. By composing Skj
with a

permutation operator, we may suppose that

|〈Skj
(en), en〉| ≥ ε (j ∈ N, 1 ≤ n ≤ kjδ).

For each j ∈ N, let αj : l2 → l2j be projection onto the first j co-ordinates, and

let βj : lpj → lp be the natural inclusion. Then βkj
◦Skj

◦αkj
∈ B(l2, lp) for each

j. As B(l2, lp) = K(l2, lp) is reflexive, we can define R = weak-limj∈U βkj
◦Skj

◦
αkj

∈ B(l2, lp). Then ‖R‖ ≤M , R is compact, and, for each n ∈ N, we have

|〈R(en), en〉| = lim
j∈U

|〈Skj
(en), en〉| ≥ ε,
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because eventually n ≤ kjδ. This clearly contradicts the fact that R is com-

pact, showing that limk→∞ δk = 0.

Now fix k ∈ N, and choose l ∈ N so that kδk ≤ l ≤ k. Let ι1 : l2l →
l2k be the canonical inclusion, and ι2 : lpk → lpl be the projection onto the

first l co-ordinates. Choose Sk ∈ B(l2k, l
p
k) so that, for 1 ≤ i ≤ kδk, we have

|〈Sk(ei), ei〉| ≥ ε. Let R = ι2 ◦ Sk ◦ ι1 ∈ B(l2l , l
p
l ), so that |〈R(ei), ei〉| ≥ ε for

1 ≤ i ≤ kδk. We conclude that lδl ≥ kδk, and thus that, if k is sufficiently

large, kδk ≥ (k + 1)δk+1. 2

For each M > 0, ε > 0 define (δk(M, ε)) as above, and let

δ(M, ε) = inf{kδk(M, ε) : k ∈ N} = lim
k→∞

kδk(M, ε).

As kδk(M, ε) ∈ N, eventually kδk(M, ε) = δ(M, ε).

Lemma 3.15 Let M > 0, ε > 0, S ∈ B(l2, lp) with ‖S‖ ≤ M , (xi)
n
i=1 be an

orthonormal set in l2 and (Ai)
n
i=1 be a pairwise disjoint family of subsets of

N. If, for each i, ‖PAi
(S(xi))‖ ≥ ε, then n ≤ δ(M, ε).

Proof. For each i, choose µi ∈ lq with ‖µi‖ = 1 and 〈µi, S(xi)〉 = ‖PAi
(S(xi))‖,

so that supp(µi) ⊆ Ai. Choose U ∈ B(l2) with ‖U‖ = 1, and U(ei) = xi for

1 ≤ i ≤ n, and choose V ∈ B(lq) with ‖V ‖ = 1, and V (ei) = µi for 1 ≤ i ≤ n.

Let R = V ′ ◦ S ◦ U so that |〈R(ei), ei〉| = |〈µi, S(xi)〉| ≥ ε. Hence, by Lemma

3.14, for each k ≥ n, we have kδk ≥ n, and so n ≤ δ(M, ε). 2

Lemma 3.16 If the sequence (nk) is such that nk → ∞, then, for each S ∈
B(lp), each B ∈ N and each ε > 0, we can find A ∈ F ⊂ W so that for

any B-reasonable x ∈ lp and µ ∈ lq with 〈µ, x〉 = ‖µ‖ = ‖x‖ = 1, we have∑∞
k=1 |〈µ, PAk∩ASTPAk∩A(x)〉| < ε.

Proof. For k ∈ N, let Tk = T ◦ PAk
so, as lpnk

is canonically isomorphic to

lp(Ak), the image of PAk
, we can view Tk as a map from lpnk

to lp. Then, for

x ∈ lpnk
, we have

k − 1

k
‖x‖2 ≤ ‖Tk(x)‖ ≤

k + 1

k
‖x‖2,
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so we can view Tk as an isomorphism from l2nk
onto its image in lp. Thus, for

each k, let Sk = S ◦ T ◦ PAk
: l2nk

→ lp, so that ‖Sk‖ ≤ 2‖S‖. Let m ∈ N be

maximal so that we have (xi)
m
i=1 a set of B-reasonable norm one vectors in

l2nk
with disjoint support, and (Bi)

m
i=1 a set of B-reasonable pairwise disjoint

subsets of Ak, so that ‖PBi
(Sk(xi))‖ ≥ ε. Let Ck =

⋃m
i=1 supp(xi) ∪

⋃m
i=1Bi ⊆

Ak.

If x ∈ l2nk
is B-reasonable with Ck ∩ supp(x) = ∅, and µ ∈ lq is B-reasonable

with supp(µ) ∩ Ck = ∅, then, by the maximality of m,

|〈µ, Sk(x)〉| ≤ ‖µ‖‖Psupp(µ)(Sk(x))‖ < ε‖µ‖‖x‖.

Also, by Lemma 3.15, m ≤ δ(2‖S‖, ε), so that |Ck| ≤ 2Bm ≤ 2Bδ(2‖S‖, ε).

Let A = N \ ⋃∞k=1Ck, so that for each k, we have

|(N \ A) ∩ Ak||Ak|−1 = |Ck||Ak|−1 ≤ 2Bδ(2‖S‖, ε)n−1
k ,

and thus lim supk→∞ |(N \ A) ∩ Ak||Ak|−1 = 0, so that A ∈ F . For a B-

reasonable x ∈ lp, and µ ∈ lq with 1 = 〈µ, x〉 = ‖x‖ = ‖µ‖, µ is B-reasonable,

and so we have

∞∑
k=1

|〈µ, PAk∩ASTPAk∩A(x)〉| =
∞∑

k=1

|〈µ, PAk∩ASkPAk∩A(x)〉|

< ε
∞∑

k=1

‖PAk∩A(µ)‖‖PAk∩A(x)‖

≤ ε

( ∞∑
k=1

‖PAk∩A(µ)‖q

)1/q ( ∞∑
k=1

‖PAk∩A(x)‖p

)1/p

≤ ε,

as required. 2

Proposition 3.17 If the sequence (nk) increases fast enough, then for S ∈
B(lp), B ∈ N and ε > 0, we can find A ∈ F so that for any B-reasonable x ∈ lp

and µ ∈ lq with 〈µ, x〉 = ‖x‖ and ‖µ‖ = 1, we have |〈µ, PASTPA(x)〉| < ε‖x‖.

Proof. First note that it is enough to prove the result in the case where ‖x‖ = 1,

for otherwise let y = ‖x‖−1x, so that ‖y‖ = 1 and 〈µ, y〉 = ‖x‖−1〈µ, x〉 = 1,

so that |〈µ, PASTPA(x)〉| = ‖x‖|〈µ, PASTPA(y)〉| < ε‖x‖ as required. Hence

28



we shall suppose that ‖x‖ = 1.

By (nk) increasing fast enough, we mean that

21+k+n1+...+nk−1/nk → 0

as k →∞.

If x =
∑∞

i=1 xiei and µ =
∑∞

i=1 µiei then, for each i ∈ N, µi = xi|xi|p−2. We

then have

|〈µ, PASTPA(x)〉| =

∣∣∣∣∣∣
∑

i,j∈A

xj|xj|p−2xi〈ej, ST (ei)〉

∣∣∣∣∣∣
≤

∞∑
k=1

∣∣∣∣∣∣
∞∑
l=1

∑
i∈A∩Ak

∑
j∈A∩Al

xj|xj|p−2xi〈ej, ST (ei)〉

∣∣∣∣∣∣ ≤ α1 + α2 + α3,

where we shall define α1, α2 and α3 below. Note that, if we can find Ai ∈ W
so that with A = A1, α1 is small, and similarly for A2 and A3, then setting

A = A1 ∩ A2 ∩ A3 ∈ F will ensure that |〈µ, PASTPA(x)〉| is small.

We first ensure that α1 can be made as small as we like by a choice of A ∈ F .

Indeed,

α1 =
∞∑

k=1

∣∣∣∣∣∣
∞∑

l=k+1

∑
i∈A∩Ak

∑
j∈A∩Al

xj|xj|p−2xi〈ej, ST (ei)〉

∣∣∣∣∣∣
≤ B2

∞∑
k=1

∞∑
l=k+1

max
i∈A∩Ak,j∈A∩Al

|xj|p−1|xi||〈ej, ST (ei)〉|

≤ B2
∞∑

k=1

∞∑
l=k+1

max
i∈A∩Ak,j∈A∩Al

|〈ej, ST (ei)〉| (3)

because both x and µ are B-reasonable. Let C be chosen later to be much

larger than B. For each k ∈ N and i ∈ Ak, let Ei ⊂ Ak+1 ∪ Ak+2 ∪ · · · be

chosen so that, for each l > k, |Ei ∩ Al| ≤ 2i+lC and
∑

j∈Ei
|〈ej, ST (ei)〉|p is

maximal. Let A = N \ ⋃∞i=1Ei, so for each k,

|(N \ A) ∩ Ak| =

∣∣∣∣∣∣
Nk−1⋃
i=1

Ei ∩ Ak

∣∣∣∣∣∣ ≤
Nk−1∑
i=1

|Ei ∩ Ak| ≤ C
Nk−1∑
i=1

2i+k ≤ C2Nk−1+k+1,

and so |(N \ A) ∩ Ak||Ak|−1 ≤ C21+k+n1+···+nk−1/nk. By the assumption on

(nk), we thus have |(N\A)∩Ak||Ak|−1 → 0 as n→∞, so that ud(N\A) = 0,
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and so A ∈ F .

Now, for each k ∈ N, l > k, i ∈ A∩Ak and j ∈ A∩Al we have j ∈ Al\
⋃Nl−1

r=1 Er,

so certainly j ∈ Al \ Ei, and hence

(2‖S‖)p ≥ ‖ST (ei)‖p =
∞∑

s=1

|〈es, ST (ei)〉|p

=
∑

s∈Al∩Ei

|〈es, ST (ei)〉|p +
∑

s∈Al\Ei

|〈es, ST (ei)〉|p

≥
∑

s∈Al∩Ei

|〈es, ST (ei)〉|p ≥ |Al ∩ Ei||〈ej, ST (ei)〉|p,

so that |〈ej, ST (ei)〉| ≤ 2‖S‖(2i+lC)−1/p. Thus

α1 ≤ B2
∞∑

k=1

∞∑
l=k+1

max
i∈A∩Ak,j∈A∩Al

2‖S‖(2i+lB′)−1/p

≤ 2‖S‖B2C−1/p
∞∑

k=1

∞∑
l=k+1

2−(Nk+l)/p

≤ DB2‖S‖C−1/p

for some constant D depending on (nk)
∞
k=1. Thus, by choosing C sufficiently

large, we can make α1 arbitrarily small, independently of x and µ.

Now we will look at α2, which is

α2 =
∞∑

k=1

∣∣∣∣∣∣
k−1∑
l=1

∑
i∈A∩Ak

∑
j∈A∩Al

xj|xj|p−2xi〈ej, ST (ei)〉

∣∣∣∣∣∣
≤ B2

∞∑
k=1

∞∑
l=k+1

max
i∈A∩Ak,j∈A∩Al

|〈T ′S ′(ei), ej〉|.

Compare this to (3), and we see that we can use exactly the same argument

as above to ensure that α2 is arbitrarily small.

Finally, we need to show that α3 can be made small, where

α3 =
∞∑

k=1

∣∣∣∣∣∣
∑

i,j∈A∩Ak

xj|xj|p−2xi〈ej, ST (ei)〉

∣∣∣∣∣∣ =
∞∑

k=1

|〈µ, PA∩Ak
STPA∩Ak

(x)〉| .

So by Lemma 3.16, we are done. 2

We now put Propositions 3.13 and 3.17 together.
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Theorem 3.18 For 1 < p < 2, B(lp)′′ is not semi-simple.

Proof. Choose and fix (nk) so that Proposition 3.17 can be applied. If Φ 6∈
radB(lp)′′, then by Proposition 3.13, there exists Ψ ∈ B(lp)′′ and z ∈ (lp)U with

|〈µz, φ′(Ψ)(T (z))〉| > 1/2‖Ψ‖. Using Lemma 3.1 we can find S ∈ B(lp) with

‖S‖ ≤ ‖Ψ‖ and ‖φ′(Ψ)(T (z)) − ST (z)‖ < ε, so that |〈µz, ST (z)〉| > 1/2‖Ψ‖
if ε > 0 is sufficiently small. As z is such that PA(z) = z for every A ∈ W , we

also have PA(µz) = µz for every A ∈ W . Thus we have

lim
A∈V

|〈µz, PASTPA(z)〉| ≥ 1/2‖Ψ‖.

However, by Proposition 3.17, for every δ > 0 we can find A ∈ F ⊂ W so that

|〈µz
i , PASTPA(zi)〉| < δ for each i. Thus we have

|〈µz, PASTPA(z)〉| ≤ δ,

and as δ > 0 was arbitrary, we have

lim
A∈V

|〈µz, PASTPA(z)〉| = 0.

This contradiction shows that actually Φ ∈ radB(lp)′′ and so B(lp)′′ is not

semi-simple. 2

4 A generalisation

We can use the same idea as in Lemma 2.3 to find further examples of Banach

spaces E such that B(E)′′ is not semi-simple.

Proposition 4.1 Let A be a unital Banach algebra, and let p, q ∈ A be or-

thogonal idemopotents (that is, p2 = p, q2 = q and pq = qp = 0) such that

p + q = eA. If the subalgebra pAp is not semi-simple, then A is not semi-

simple.
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Proof. As in Lemma 2.3, we can view A as a matrix algebra. Let c ∈ rad pAp
be non-zero, let a = pcp ∈ A, and pick b ∈ A. Then

ab =


pcp 0

0 0



pbp pbq

qbp qbq

 =


pcpbp pcpbq

0 0

 ,

so that

(ab)n =


(pcpbp)n (pcpbp)n−1(pcpbq)

0 0

 .
As c ∈ rad pAp, we see that limn→∞ ‖(pcpbp)n‖1/n = limn→∞ ‖(cbp)n‖1/n = 0.

We then have

‖(ab)n‖1/n = ‖(pcpbp)n + (pcpbp)n−1(pcpbq)‖1/n

≤ (‖(pcpbp)n‖+ ‖(pcpbp)n−1‖‖pcpbq‖)1/n → 0

as n→ 0. Thus, as b was arbitrary, a ∈ radA, and so A is not semi-simple. 2

Let F and G be Banach spaces, and let E = F ⊕G. Then

B(E)′′ =




Φ11 Φ12

Φ21 Φ22

 : Φ11 ∈ B(F )′′,Φ12 ∈ B(G,F )′′ etc.

 .

We can thus apply to above proposition to see that if E is a Banach space with

complemented subspace F such that B(F )′′ is not semi-simple, with respect

to one of the Arens products, then B(E)′′ is not semi-simple with respect to

the same Arens product.

We now set out some results about general Lp-spaces, with the aim of showing

that B(Lp(µ))′′ is semi-simple if and only if Lp(µ) is isomorphic to a Hilbert

space.

Proposition 4.2 Let ε > 0, p ∈ (2,∞) and ν be an arbitrary measure, and

let (xn) be a normalised sequence in Lp(ν) equivalent to the canonical basis of
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lp. Then there exists a subsequence (xn(i)) which is (1 + ε)-equivalent to the

basis of lp, and whose closed linear span is (1 + ε)-complemented in Lp(ν).

Proof. This follows from the proof of [9, Theorem 2]; see also the proof of [8,

Theorem 10]. 2

Proposition 4.3 Let p ∈ [1,∞) and E be a separable subspace of Lp(ν) for

some measure ν. Then E is isometrically isomorphic to a subspace of Lp[0, 1].

Proof. This is [7, Theorem IV.1.7]. 2

Proposition 4.4 Let p ∈ [2,∞) and E be an infinite-dimensional subspace

of Lp[0, 1]. Then either E is isomorphic to l2 or, for each ε > 0, E contains a

subspace which is (1 + ε)-isomorphic to lp.

Proof. This is [7, Corollary IV.4.4]. 2

Theorem 4.5 Let p ∈ (2,∞), ν be an arbitrary measure, and E be a subspace

of Lp(ν) such that E is not isomorphic to a Hilbert space. Then B(E)′′ is not

semi-simple.

Proof. Choose a separable subspace F of E, so that, by Theorem 4.3, F is

isometrically isomorphic to a subspace of Lp[0, 1]. Then by Proposition 4.4,

either F is isomorphic to l2, or F contains an isomorphic copy of lp. If the

latter, then by Proposition 4.2, F contains a complemented copy of lp, and so,

by an application of Proposition 4.1, B(F )′′ is not semi-simple.

So the only case left to consider is when every separable subspace of E is

isomorphic to l2. However, then E is itself isomorphic to a Hilbert space, a

contradiction of a hypothesis. 2

The class of Lg
p,λ spaces are defined in [4, Section 3.13], for 1 ≤ p ≤ ∞,

1 ≤ λ < ∞, to be Banach spaces E such that for each finite dimensional

subspace M of E, and each ε > 0, we can find R ∈ B(M, lpm) and S ∈ B(lpm, E)

for some m ∈ N, so that SR(x) = x for each x ∈ M , and ‖S‖‖R‖ ≤ λ + ε.

Then E is an-Lg
p space if it is an Lg

p,λ-space for some λ. In [4, Section 23.2], it
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is shown that for 1 < p <∞, E is an Lg
p-space if and only if E is isomorphic

to a complemented subspace of some Lp(µ) space. Thus we have the following.

Corollary 4.6 Let E be a complemented subspace of Lp(ν) for 1 < p < ∞
and some measure ν (that is, E is an Lg

p-space). Then B(E)′′ is semi-simple

if and only if E is isomorphic to a Hilbert space.

5 Conclusion

Summing up our results, we have the following.

Theorem 5.1 Let E be a Banach space such that at least one of the following

holds:

(1) E is reflexive and E = F ⊕ G with one of F and G having the AP,

B(F,G) = K(F,G) and B(F,G) 6= K(F,G);

(2) E is a complemented subspace of Lp(ν), for some measure ν and 1 < p <

∞, such that E is not isomorphic to a Hilbert space;

(3) E is a closed subspace of Lp(ν) for some measure ν and 2 < p <∞, and

E is not isomorphic to a Hilbert space;

(4) E contains a complemented subspace F so that F has property (1), (2)

or (3).

Then B(E)′′ is not semi-simple. 2

In particular, at present the only Banach spaces E for which B(E)′′ is semi-

simple are those isomorphic to a Hilbert space. We conjecture that B(E)′′ is

semi-simple only if E is isomorphic to a Hilbert space, at least when E is

super-reflexive.

34



A Acknowledgements

The authors wish to thank Garth Dales, colleague at Leeds and the first au-

thor’s PhD supervisor, for much support, and in particular, the suggestion of

the basis for Proposition 4.1.

References

[1] H.G. Dales, Banach algebras and automatic continuity, Clarendon Press, Oxford,

2000.

[2] H.G. Dales, A.T.-M. Lau, Second duals of Beurling algebras, preprint.

[3] M. Daws, Arens regularity of the algebra of operators on a Banach space, to

appear in Bull. London Math. Soc.

[4] A. Defant, K. Floret, Tensor norms and operator ideals, North-Holland,

Amsterdam, 1993.

[5] J. Diestel, Sequences and series in Banach spaces, Springer-Verlag, New York,

1984.

[6] T. Figiel, J. Lindenstrauss, V. Milman, The dimension of almost spherical

sections of convex sets, Acta Math. 139 (1977) 53–94.

[7] S. Guerre-Delabrière, Classical sequences in Banach spaces, Marcel Dekker, New

York, 1992.

[8] S. Heinrich, Ultraproducts in Banach space theory, J. reine angew. Math. 313

(1980) 72–104.

[9] M.I. Kadec, A. Pelczynski, Bases, lacunary sequences and complemented

subspaces in the spaces Lp, Studia Math. 21 (1962) 161–176.

[10] R. Ryan, Introduction to Tensor Products of Banach Spaces, Springer-Verlag,

London, 2002.

35


