Purely infinite algebras and ultrapowers

Matthew Daws

UCLan

Athens, via Zoom, May 2021

The plan

- I want to think about general Banach Algebras, and compare and contrast to C^{*}-algebras
- Particularly interested in the classification of idempotents/projections; and
- the Ultrapower construction.
- I'm going to assume some/much of this is new to at least some of the audience.

Ultrafilters: motivation

From elementary Analysis we know that compactness is equivalent to every sequence having a convergent subsequence (in a metric space; more generally work with nets).
But for example,

$$
(1,2,1,2,1,2,1,2, \cdots)
$$

has subsequences which converge to 1 or to 2 . The sequence

$$
(3,4,3,3,4,3,3,3,4,3,3,3,3,4, \cdots)
$$

has subsequences which converge to 3 or to 4 . How to choose?
If we now (pointwise addition) add the sequences, we get

$$
(4,6,4,5,5,5,4,5, \cdots)
$$

We want to pick the subsequence which gives the limit which is the sum of the limits we chose before.

How can we consistently choose?

A bit of set theory

A filter \mathcal{F} on a set I is a non-empty collection of subsets of I with:
(1) If $A, B \in \mathcal{F}$ then $A \cap B \in \mathcal{F}$;
(2) If $A \in \mathcal{F}$ and $A \subseteq B$ then $B \in \mathcal{F}$.
(3) $\emptyset \notin \mathcal{F}$ (this ensures $\mathcal{F} \neq 2^{I}$).

Interpretations:

- Subsets of \mathcal{F} are "big";
- We are allowed to "choose" sets in \mathcal{F}.

Convergence

Example

The Fréchet Filter is the collection of all cofinite subsets of I; that is $A \in \mathcal{F}$ if and only if $I \backslash A$ is finite.

Let \mathcal{F} be the Fréchet Filter on \mathbb{N}. Consider the condition on a (scalar) sequence (a_{n}) that

$$
\forall \epsilon>0, \quad\left\{n:\left|a_{n}\right|<\epsilon\right\} \in \mathcal{F}
$$

This is clearly equivalent to $\lim _{n \rightarrow \infty} a_{n}=0$.
Definition
A sequence $\left(a_{n}\right)$ converges along \mathcal{F} to a if

$$
\forall \epsilon>0, \quad\left\{n:\left|a_{n}-a\right|<\epsilon\right\} \in \mathcal{F} .
$$

Ultrafilters

The collection of filters on a set I is partially ordered by inclusions. Zorn's Lemma ensures that there are maximal filters, which are called ultrafilters.

Lemma

A filter \mathcal{U} on I is an ultrafilter if and only if for each $A \subseteq I$ either $A \in \mathcal{U}$ or $I \backslash A \in \mathcal{U}$.

- For example, for $i_{0} \in I$ the principle ultrafilter at i_{0} is $\left\{A \subseteq I: i_{0} \in A\right\}$.
- Use Zorn's Lemma to find a maximal filter which contains the Fréchet Filter. This ultrafilter is not principle.

Convergence and Ultrafilters

Fix an ultrafilter \mathcal{U}. If $\left(a_{i}\right)_{i \in I}$ is a bounded sequence in \mathbb{R} then a compactness argument shows that $\left(a_{i}\right)$ does converge along \mathcal{U}.

- This provides a "consistent choice".
- For example, given two bounded sequences $\left(a_{i}\right)$ and $\left(b_{i}\right)$,

$$
\lim _{i \rightarrow \mathcal{U}}\left(a_{i}+b_{i}\right)=\lim _{i \rightarrow \mathcal{U}} a_{i}+\lim _{i \rightarrow \mathcal{U}} b_{i} .
$$

How might we deal with sequences in a Banach space where (in infinite dimensions) we don't have compactness. The (slightly vague) idea is to "enlarge" the space we work with.

Ultrapowers

Given a Banach space E let $\ell^{\infty}(E)$ be the space of bounded sequences in E with pointwise operations, and the sup norm.
For any filter \mathcal{F} define

$$
N(\mathcal{F})=\left\{\left(x_{n}\right) \in \ell^{\infty}(E): \lim _{n \rightarrow \mathcal{F}}\left\|x_{n}\right\|=0\right\}
$$

Recall that $\lim _{n \rightarrow \mathcal{F}} x_{n}=0$ means

$$
\forall \epsilon>0, \quad\left\{n:\left\|x_{n}\right\|<\epsilon\right\} \in \mathcal{F}
$$

- Easy to see that $N(\mathcal{F})$ is a subspace.
- Also $N(\mathcal{F})$ is closed (using uniform convergence in $\ell^{\infty}(E)$). So we may define the quotient space

$$
(E)_{\mathcal{F}}=\ell^{\infty}(E) / N(\mathcal{F})
$$

Ultrapowers

Definition

Let \mathcal{U} be a non-principle ultrafilter (on \mathbb{N}). The ultrapower of a Banach space E is

$$
(E)_{\mathcal{U}}=\ell^{\infty}(E) / N(\mathcal{U}) .
$$

Equivalently, we define a semi-norm on $\ell^{\infty}(E)$ by

$$
\left\|\left(x_{n}\right)\right\|=\lim _{n \rightarrow \mathcal{U}}\left\|x_{n}\right\|
$$

- Then $(E)_{\mathcal{U}}$ is simply $\ell^{\infty}(E)$ quotiented by the null space of this semi-norm.
- So we tend to confuse elements of $(E)_{\mathcal{U}}$ with elements of $\ell^{\infty}(E)$.
- We always have a map $E \rightarrow(E)_{\mathcal{U}} ; x \mapsto(x)$ which is an isometry.
- This is surjective exactly when E is finite-dimensional.

Ultrapowers of Hilbert spaces

Consider defining a sesquilinear form on $(H)_{\mathcal{U}}$ by

$$
\left(\left(a_{n}\right) \mid\left(b_{n}\right)\right)=\lim _{n \rightarrow \mathcal{U}}\left(a_{n} \mid b_{n}\right)
$$

- This is well-defined as if $\left(a_{n}\right)=0$ in the quotient $(H)_{\mathcal{U}}$ then $\lim _{n \rightarrow \mathcal{U}}\left\|a_{n}\right\|=0$ and so $\lim _{n \rightarrow \mathcal{U}}\left(a_{n} \mid b_{n}\right)=0$ for any $\left(b_{n}\right)$, using the Cauchy-Schwarz inequality.
- Clearly sesquilinear.
- Recover the existing norm on $(H)_{\mathcal{U}}$.
- So $(H)_{\mathcal{U}}$ is a Hilbert space.

This wouldn't work with other filters.

- If we use the Fréchet Filter, then we quotient by the sequences which (in the usual sense) tend to 0.
- So $(H)_{\mathcal{F}}=\ell^{\infty}(H) / c_{0}(H)$, which is not a Hilbert Space.

Algebras

Let A be a Banach algebra, and consider $(A)_{\mathcal{U}}$.

- Define a product on $(A)_{\mathcal{U}}$ by

$$
\left(a_{n}\right) \cdot\left(b_{n}\right)=\left(a_{n} b_{n}\right)
$$

This is of course well-defined.

- If A is a C^{*}-algebra then there is an involution on $(A)_{\mathcal{U}}$ given by

$$
\left(a_{n}\right)^{*}=\left(a_{n}^{*}\right) .
$$

This satisfies the C^{*}-condition.

- If A is represented on a Hilbert space H, then $(A)_{\mathcal{U}}$ is represented on $(H)_{\mathcal{U}}$.

Unital algebras

This is joint work with Bence Horváth. Fix a Banach algebra A.

Question

When is $(A)_{\mathcal{U}}$ unital?

- If A is unital, under the diagonal embedding $A \rightarrow(A)_{\mathcal{U}}$, the unit becomes a unit for $(A)_{\mathcal{U}}$.
- Conversely, let $e \in(A)_{\mathcal{U}}$ be a unit. This has a representative $\left(e_{n}\right) \in \ell^{\infty}(A)$, which satisfies

$$
\lim _{n \rightarrow \mathcal{U}}\left\|e_{n} a_{n}-a_{n}\right\|=0, \quad \lim _{n \rightarrow \mathcal{U}}\left\|a_{n} e_{n}-a_{n}\right\|=0 \quad\left(\left(a_{n}\right) \in \ell^{\infty}(A)\right)
$$

Let's pretend this was original convergence.

- By picking (a_{n}) suitably, this shows that, for example,

$$
\lim _{n} \sup \left\{\left\|e_{n} a-a\right\|: a \in A,\|a\| \leq 1\right\}=0
$$

Unital algebras cont.

$$
\lim _{n} \sup \left\{\left\|e_{n} a-a\right\|,\left\|a e_{n}-a\right\|: a \in A,\|a\| \leq 1\right\}=0
$$

- Extract a subsequence $\left(e_{n}\right)$ with $\left\|e_{n} a-a\right\|,\left\|a e_{n}-a\right\| \leq \frac{1}{n}\|a\|$ for $a \in A$.
- We also know that e.g. $\left\|e_{n}\right\| \leq K$ say.
- Thus $\left\|e_{n}-e_{m}\right\| \leq\left\|e_{n}-e_{n} e_{m}\right\|+\left\|e_{n} e_{m}-e_{m}\right\| \leq K\left(\frac{1}{m}+\frac{1}{n}\right)$.
- So $\left(e_{n}\right)$ is Cauchy in A, so converges in A, say to e. Clearly e is a unit.
The proper argument, with ultrafilters, is similar, just with more bookkeeping.

Metric model theory

[Health warning: I am not a model theorist!]
There is a way to study "metric objects", like Banach algebras, from the perspective of model theory:

- The "language" takes account of uniform continuity;
- We replace binary-valued true/false with, say, values in the interval $[0,1]$;
- We use sup and inf in place of \exists, \forall.

There is a notion of ultrapower here, which agrees with our definition.
There is a version of Łos's Theorem which tells us that "formulae" hold in the structue if and only if they hold in an ultrapower.

- The tricky thing is how to "axiomatise" the properties we are interested in.

Axiomatising unital algebras

Proposition

A Banach algebra A is unital if and only if

$$
\inf _{e \in B_{1}} \sup _{a \in B_{1}} \max (\|e a-a\|,\|a e-a\|)=0
$$

where B_{1} is the unit ball of A.

Proof.
 As before, extract a Cauchy sequence $\left(e_{n}\right)$.

We can then apply Łos's Theorem to this. Moral is that the hard work is in using the "language" to "axiomatise" the properties we are interested in.

Idempotents and equivalence

Let A be a (Banach) algebra.

Definition

$p \in A$ is an idempotent if $p^{2}=p$.
Two idempotents p, q are equivalent, written $p \sim q$, if there are $a, b \in A$ with $p=a b$ and $q=b a$.
[If $q \sim r$, say $q=c d, r=d c$, then $p=p^{2}=a b a b=a q b=(a c)(d b)$ and $(d b)(a c)=d q c=d c d c=r^{2}=r$ so $p \sim r$.]
For example, with $A=\mathbb{M}_{n} \cong \mathcal{B}\left(\mathbb{C}^{n}\right)$:

- idempotents correspond to direct sums

$$
\mathbb{C}^{n}=V \oplus W=\operatorname{Im}(p) \oplus \operatorname{ker}(p)
$$

- equivalence looks at the dimension of V.

Finiteness

Definition

Let A be a unital algebra. A is Dedekind finite if $p \sim 1$ implies $p=1$.

- So \mathbb{M}_{n} is Dedekind finite, via dimension.
- A Banach algebra like $\mathcal{B}\left(\ell^{p}\right)$ is not, as there are proper subspaces of ℓ^{p} isomorphic to ℓ^{p}.

For C^{*}-algebras

For C^{*}-algebras:

- We typically only consider self-adjoint idempotents $p=p^{*}=p^{2}$, called projections.
- The equivalence we typically use is Murray-von Neumann equivalence, which is that $p=u^{*} u$ and $q=u u^{*}$. This implies that u is a partial isometry. We write $p \approx q$.
These are actually the same concepts as we have defined.
- For any idempotent p there is a projection q with $p \sim q$. In fact, we can choose q with $p q=q$ and $q p=p$.
- If p, q are projections with $p \sim q$ then also $p \approx q$.
- Suppose A is a Dedekind-finite C^{*}-algebra. If $p^{2}=p \sim 1$ then there is a projection q with $q \sim p$, so also $q \sim 1$ so $q \approx 1$ so $q=1$. Then $1=q=p q=p$, so A is Dedekind-finite in our sense.

Properly infinite

Definition

A is properly infinite if there are idempotents $p \sim 1$ and $q \sim 1$ which are orthogonal: $p q=q p=0$.

- Again, $\mathcal{B}\left(\ell^{p}\right)$ is properly infinite.
- Again, in a C^{*}-algebra, if we work only with projections, we get equivalent definitions.

Theorem

Let A be a simple unital C^{*}-algebra. The following are equivalent:
(1) A is infinite (that is, not (Dedekind) finite);
(2) A is properly infinite;
(3) A contains a left invertible element which is not invertible.

Purely infinite

Definition

A is purely infinite if $A \neq \mathbb{C}$ and for $a \neq 0$ there are $b, c \in A$ with $b a c=1$.

Theorem (Ara, Goodearl, Pardo)

Let A be a simple algebra. TFAE:

- A is purely infinite;
- every non-zero right ideal of A contains an infinite idempotent.

Theorem

If A is a C^{*}-algebra, equivalently:

- every non-zero hereditary C^{*}-subalgebra contains an infinite projection.

To ultrapowers

Motivated by Łos's Theorem, and previous work, we seek "norm control".

Definition

For a unital Banach algebra A, for $a \neq 0$, define

$$
C_{p i}(a)=\inf \{\|b\|\|c\|: b a c=1\}
$$

- Thus A is purely infinite if $C_{p i}(a)<\infty$ for each $a \neq 0$.
- We always have

$$
\frac{1}{\|a\|} \leq C_{p i}(a), \quad C_{p i}(z a)=|z|^{-1} C_{p i}(a) \quad(a \neq 0, z \in \mathbb{C})
$$

For ultrapowers

Theorem

For a unital Banach algebra, the following are equivalent:
(1) $(A)_{\mathcal{U}}$ is purely infinite;
(1) $\sup \left\{C_{p i}(a):\|a\|=1\right\}<\infty$.

Sketch.

$(1) \Rightarrow(2)$. If not, then there is sequence $\left(a_{n}\right)$ in the unit sphere of A with $C_{p i}\left(a_{n}\right) \rightarrow \infty$. With $a=\left(a_{n}\right) \in(A)_{\mathcal{U}}$ there are $b, c \in(A)_{\mathcal{U}}$ with $b a c=1$. Picking representatives $b=\left(b_{n}\right), c=\left(c_{n}\right)$ we find

$$
\lim _{n \rightarrow \mathcal{U}}\left\|b_{n} a_{n} c_{n}-1\right\|=0
$$

So eventually $b_{n} a_{n} c_{n}$ is invertible, with norm control, from which it follows that $C_{p i}\left(a_{n}\right)$ can be controlled by $\|b\|\|c\|$, contradiction.

For ultrapowers, cont.

Theorem

For a unital Banach algebra, the following are equivalent:
(1) $(A)_{\mathcal{U}}$ is purely infinite;
(1) $\sup \left\{C_{p i}(a):\|a\|=1\right\}<\infty$.

Corollary

If $(A)_{\mathcal{U}}$ is purely infinite, then so is A.
What about the converse?

Examples

Result

If A is a simple unital purely infinite C^{*}-algebra, then $C_{p i}(a)=1$ for each $\|a\|=1$.

For a Banach space E, let $\mathcal{B}(E)$ and $\mathcal{K}(E)$ be the algebras of bounded, respectively, compact operators. Sometimes, $\mathcal{K}(E)$ is the unique closed, two-sided ideal in $\mathcal{B}(E)$, so that $\mathcal{B}(E) / \mathcal{K}(E)$ is simple.

Theorem

For $E=c_{0}$ or ℓ^{p}, the algebra $\mathcal{B}(E) / \mathcal{K}(E)$ has purely infinite ultrapowers.

Proof.

A result of Ware gives exactly that $C_{p i}(T+\mathcal{K}(E))=1 /\|T+\mathcal{K}(E)\|$ for each non-compact $T \in \mathcal{B}(E)$.

Towards a counter-example

We seek a Banach algebra which is purely infinite, but with no good control of $C_{p i}(\cdot)$. This is hard, because being purely infinite is a "global" property.

Proposition

Let A, B be unital Banach algebras. Let A have purely infinite ultrapowers. When $\theta: A \rightarrow B$ is a homomorphism, θ is automatically bounded below.

Proof.

If $\|a\|=1$ and $\|\theta(a)\|<\delta$ then there are $b, c \in A$ with $\|b\|\|c\|<2 C_{p i}(a)$ and $b a c=1$ so $\theta(b) \theta(a) \theta(c)=1$ so

$$
1 \leq\|\theta(b)\|\|\theta(c)\|\|\theta(a)\|<\|\theta\|^{2} 2 C_{p i}(a) \delta
$$

which puts a lower-bound on δ.

The Cuntz monoid

(Or "Cuntz semigroup", but that has multiple meanings.)

$$
C u_{2}=\left\langle s_{1}, s_{2}, t_{1}, t_{2}: t_{1} s_{1}=t_{2} s_{2}=1, t_{1} s_{2}=t_{2} s_{1}=\Delta\right\rangle
$$

where \diamond is a "semigroup zero", meaning $s \diamond=\diamond s=\diamond$ for all s. So $C u_{2}$ is all words in these generators, subject to the relations. For example:

$$
s_{1} s_{2} t_{2} s_{1} t_{2}=s_{1} s_{2} \diamond t_{2}=\diamond, \quad s_{1} s_{2} t_{2} s_{2} t_{2}=s_{1} s_{2} t_{2}
$$

In fact, any word reduces to either \diamond or a word starting in s_{1}, s_{2} and ending in t_{1}, t_{2}.
ℓ^{1} algebras
We form the usual ℓ^{1} algebra of this monoid:

- $\ell^{1}\left(C u_{2}\right)$ is all sequences indexed by $C u_{2}$ with finite ℓ^{1}-norm:

$$
\left\|\left(a_{s}\right)_{s \in C u_{2}}\right\|=\sum_{s \in C u_{2}}\left|a_{s}\right| .
$$

- Write elements as sums of "point-mass measures" δ_{s} :

$$
\left(a_{s}\right)=\sum_{s \in C u_{2}} a_{s} \delta_{s} .
$$

- Use the convolution product: $\delta_{s} \delta_{t}=\delta_{s t}$.

Notice that $\mathbb{C} \delta_{\diamond}$ is a two-sided ideal. So we can quotient by it:

$$
\mathcal{A}:=\ell^{1}\left(C u_{2}\right) / \mathbb{C} \delta_{\diamond} .
$$

This is equivalent to identify δ_{\diamond} with the algebra 0 , so e.g.

$$
\delta_{t_{1}} \delta_{s_{1}}=1, \quad \delta_{t_{1}} \delta_{s_{2}}=0
$$

Comparison with the Cuntz algebra \mathcal{O}_{2}

\mathcal{O}_{2} is generated by isometries s_{1}, s_{2} (so $s_{1}^{*} s_{1}=s_{2}^{*} s_{2}=1$) with relation

$$
s_{1} s_{1}^{*}+s_{2} s_{2}^{*}=1
$$

This implies that s_{1} and s_{2} have orthogonal ranges, so $s_{1}^{*} s_{2}=s_{2}^{*} s_{1}=0$.
Let $\mathcal{J} \subseteq \mathcal{A}$ be the closed ideal generated by

$$
1-\delta_{s_{1} t_{1}}-\delta_{s_{2} t_{2}}
$$

- So in the quotient algebra $\mathcal{A} / \mathcal{J}$ we do have that $\delta_{s_{1} t_{1}}+\delta_{s_{2} t_{2}}=1$.

Theorem

The algebra $\mathcal{A} / \mathcal{J}$ is simple.

Towards a proof

Consider the Banach space ℓ^{1}, with standard unit vector basis $\left(e_{n}\right)_{n \geq 1}$. Define isometries

$$
S_{1}: e_{n} \mapsto e_{2 n}, \quad S_{2}: e_{n} \mapsto e_{2 n-1}
$$

and define surjections

$$
T_{1}: e_{n} \mapsto\left\{\begin{array}{ll}
e_{n / 2} & : n \text { even, } \\
0 & : n \text { odd, }
\end{array} \quad T_{2}: e_{n} \mapsto \begin{cases}0 & : n \text { even } \\
e_{(n+1) / 2} & : n \text { odd }\end{cases}\right.
$$

Then

$$
T_{1} S_{1}=1, \quad T_{2} S_{2}=1, \quad T_{1} S_{2}=0, \quad T_{2} S_{1}=0
$$

and

$$
S_{1} T_{1}+S_{2} T_{2}=1
$$

We have a representation

So we obtain a representation $\mathcal{A} \rightarrow \mathcal{B}\left(\ell^{1}\right)$ which annihilates \mathcal{J}, and so drops to a representation of $\mathcal{A} / \mathcal{J}$.

Proposition

The representation $\Theta: \mathcal{A} / \mathcal{J} \rightarrow \mathcal{B}\left(\ell^{1}\right)$ is not bounded below.
Proof.
Let $T=T_{1}+T_{2}$ so for $\left(\xi_{n}\right) \in \ell^{1}$,

$$
T\left(\xi_{n}\right)=\left(\xi_{1}+\xi_{2}, \xi_{3}+\xi_{4}, \xi_{5}+\xi_{6}, \cdots\right) .
$$

Hence $\|T\|=1$. Consider

$$
a=\left(\delta_{t_{1}}+\delta_{t_{2}}\right)^{N}=\sum\left\{\delta_{s}: s \text { is a word in } t_{1}, t_{2} \text { of length } N\right\}
$$

So $\|a\|=2^{N}$ and one can show that $\|a+\mathcal{J}\|=2^{N}$ as well. Notice that $\Theta(a+\mathcal{J})=T^{N}$, so $\|\Theta(a+\mathcal{J})\| \leq 1$.

Purely infinite

Theorem

$\mathcal{A} / \mathcal{J}$ is purely infinite.
The proof is a careful but direct construction: given $a \in \mathcal{A}$ with $a \notin \mathcal{J}$, we find $b, c \in \mathcal{A}$ with $b a c=1$.

- Of use is identifying \mathcal{J}^{\perp} in $\mathcal{A}^{*} \cong \ell^{\infty}\left(C u_{2} \backslash\{\diamond\}\right)$ and playing Hahn-Banach games.
- Consider $a=1-\delta_{s_{1} t_{1}}-\delta_{s_{2} t_{2}} \in \mathcal{J}$. Then

$$
\delta_{t_{1}} a=\delta_{t_{1}}-\delta_{t_{1} s_{1} t_{1}}-\delta_{t_{1} s_{2} t_{2}}=0,
$$

similarly $\delta_{t_{2}} a=0$ and $a \delta_{s_{1}}=a \delta_{s_{2}}=0$.

- So we can only left-multiply by s_{1}, s_{2} and right multiply by t_{1}, t_{2}, but then no cancellation can occur. So we can never get $b a c=1$.

Corollaries

Corollary
 $\mathcal{A} / \mathcal{J}$ is simple.

Corollary

$\mathcal{A} / \mathcal{J}$ does not have purely infinite ultrapowers.

Proof.

It is purely infinite, but we found a non-bounded below homomorphism.

Interesting (to me) that the example is rather "natural". We didn't "build in" to the algebra some "bad norm control".

References

- Our papers: arXiv:1912.07108 [math.FA] and arXiv:2104.14989 [math.FA]
- Ilijas Farah, Bradd Hart, David Sherman, a series of papers "Model theory of Operator algebras".

Furthermore, Phillips studied (amongst other things) the closure of $\Theta(\mathcal{A} / \mathcal{J})$ in $\mathcal{B}\left(\ell^{1}\right)$, showing that this is also purely infinite, see arXiv:1201.4196 [math.FA] and arXiv:1309.0115 [math.FA]

- If $A \rightarrow B$ is a homomorphism with dense range, there seems to be no relationship between A being purely infinite, and B being purely infinite.

