Kaplansky Density for automorphism groups

Matthew Daws

UCLan

Banach Algebras 2019

Outline

Operator algebras

2 One parameter automorphism groups

3 Interlude: Motivation

4 Kaplansky density for automorphism groups

Operator algebras

- A C^* -algebra is either:
 - A norm closed, self-adjoint, subalgebra A of $\mathcal{B}(H)$ (algebra of bounded operators on a Hilbert space).
 - A Banach algebra A with an involution * with $\|a^*a\| = \|a\|^2$ for $a \in A$.
- A von Neumann algebra is either:
 - A SOT closed, self-adjoint, subalgebra M of $\mathcal{B}(H)$. So if (x_i) a net in M, and $x \in \mathcal{B}(H)$, with $||x_i(\xi) - x(\xi)|| \to 0$ for $\xi \in H$, then $x \in M$.
 - A C*-algebra M which is isometrically isomorphic to the dual of some Banach space M_{*}.

Operator algebras

- A C^* -algebra is either:
 - A norm closed, self-adjoint, subalgebra A of $\mathcal{B}(H)$ (algebra of bounded operators on a Hilbert space).
 - A Banach algebra A with an involution * with $\|a^*a\| = \|a\|^2$ for $a \in A$.
- A von Neumann algebra is either:
 - A SOT closed, self-adjoint, subalgebra M of $\mathcal{B}(H)$. So if (x_i) a net in M, and $x \in \mathcal{B}(H)$, with $||x_i(\xi) - x(\xi)|| \to 0$ for $\xi \in H$, then $x \in M$.
 - A C^* -algebra M which is isometrically isomorphic to the dual of some Banach space M_* .

Let $\mathcal{T}(H)$ be the space of trace-class operators on H: those $x \in \mathcal{B}(H)$ for which |x| has finite trace, $tr(|x|) < \infty$.

There is a dual pairing between $\mathcal{T}(H)$ and $\mathcal{B}(H)$:

 $\langle x,y
angle = {
m tr}(xy) \qquad (x\in {\mathcal B}(H),y\in {\mathcal T}(H)).$

• Under this, $\mathcal{B}(H)$ is the dual space of $\mathcal{T}(H)$.

• We often write $\mathcal{B}(H)_*$ for $\mathcal{T}(H)$ as $\mathcal{T}(H)$ is the *predual* of $\mathcal{B}(H)$. Given a von Neumann algebra $M \subseteq \mathcal{B}(H)$, that M is SOT closed means that M is closed in $\mathcal{B}(H)$ for the weak*-topology induced by $\mathcal{B}(H)_*$.

$$\left(\mathcal{B}(H)_*/^{\perp}M\right)^* = (^{\perp}M)^{\perp} = M.$$

Let $\mathcal{T}(H)$ be the space of trace-class operators on H: those $x \in \mathcal{B}(H)$ for which |x| has finite trace, $tr(|x|) < \infty$. There is a dual pairing between $\mathcal{T}(H)$ and $\mathcal{B}(H)$:

 $\langle x,y
angle = \mathrm{tr}(xy) \qquad (x\in \mathcal{B}(H),y\in \mathcal{T}(H)).$

• Under this, $\mathcal{B}(H)$ is the dual space of $\mathcal{T}(H)$.

• We often write $\mathcal{B}(H)_*$ for $\mathcal{T}(H)$ as $\mathcal{T}(H)$ is the *predual* of $\mathcal{B}(H)$. Given a von Neumann algebra $M \subseteq \mathcal{B}(H)$, that M is SOT closed means that M is closed in $\mathcal{B}(H)$ for the weak*-topology induced by $\mathcal{B}(H)_*$.

$$\left(\mathcal{B}(H)_*/^{\perp}M\right)^* = (^{\perp}M)^{\perp} = M.$$

Let $\mathcal{T}(H)$ be the space of trace-class operators on H: those $x \in \mathcal{B}(H)$ for which |x| has finite trace, $tr(|x|) < \infty$. There is a dual pairing between $\mathcal{T}(H)$ and $\mathcal{B}(H)$:

 $\langle x,y
angle = \operatorname{tr}(xy) \qquad (x \in \mathcal{B}(H), y \in \mathcal{T}(H)).$

• Under this, $\mathcal{B}(H)$ is the dual space of $\mathcal{T}(H)$.

• We often write $\mathcal{B}(H)_*$ for $\mathcal{T}(H)$ as $\mathcal{T}(H)$ is the *predual* of $\mathcal{B}(H)$. Given a von Neumann algebra $M \subseteq \mathcal{B}(H)$, that M is SOT closed means that M is closed in $\mathcal{B}(H)$ for the weak*-topology induced by $\mathcal{B}(H)_*$.

$$\left(\mathcal{B}(H)_*/^{\perp}M\right)^* = (^{\perp}M)^{\perp} = M.$$

Let $\mathcal{T}(H)$ be the space of trace-class operators on H: those $x \in \mathcal{B}(H)$ for which |x| has finite trace, $tr(|x|) < \infty$. There is a dual pairing between $\mathcal{T}(H)$ and $\mathcal{B}(H)$:

 $\langle x,y
angle = \operatorname{tr}(xy) \qquad (x \in \mathcal{B}(H), y \in \mathcal{T}(H)).$

- Under this, $\mathcal{B}(H)$ is the dual space of $\mathcal{T}(H)$.
- We often write $\mathcal{B}(H)_*$ for $\mathcal{T}(H)$ as $\mathcal{T}(H)$ is the *predual* of $\mathcal{B}(H)$.

Given a von Neumann algebra $M \subseteq \mathcal{B}(H)$, that M is SOT closed means that M is closed in $\mathcal{B}(H)$ for the weak*-topology induced by $\mathcal{B}(H)_*$.

$$\left(\mathcal{B}(H)_*/^{\perp}M\right)^* = (^{\perp}M)^{\perp} = M.$$

Let $\mathcal{T}(H)$ be the space of trace-class operators on H: those $x \in \mathcal{B}(H)$ for which |x| has finite trace, $tr(|x|) < \infty$. There is a dual pairing between $\mathcal{T}(H)$ and $\mathcal{B}(H)$:

 $\langle x, y \rangle = \operatorname{tr}(xy) \qquad (x \in \mathcal{B}(H), y \in \mathcal{T}(H)).$

• Under this, $\mathcal{B}(H)$ is the dual space of $\mathcal{T}(H)$.

• We often write $\mathcal{B}(H)_*$ for $\mathcal{T}(H)$ as $\mathcal{T}(H)$ is the predual of $\mathcal{B}(H)$. Given a von Neumann algebra $M \subseteq \mathcal{B}(H)$, that M is SOT closed means that M is closed in $\mathcal{B}(H)$ for the weak*-topology induced by $\mathcal{B}(H)_*$.

$$\left(\mathcal{B}(H)_*/^{\perp}M\right)^* = (^{\perp}M)^{\perp} = M.$$

Let $\mathcal{T}(H)$ be the space of trace-class operators on H: those $x \in \mathcal{B}(H)$ for which |x| has finite trace, $tr(|x|) < \infty$. There is a dual pairing between $\mathcal{T}(H)$ and $\mathcal{B}(H)$:

 $\langle x, y \rangle = \operatorname{tr}(xy) \qquad (x \in \mathcal{B}(H), y \in \mathcal{T}(H)).$

• Under this, $\mathcal{B}(H)$ is the dual space of $\mathcal{T}(H)$.

• We often write $\mathcal{B}(H)_*$ for $\mathcal{T}(H)$ as $\mathcal{T}(H)$ is the predual of $\mathcal{B}(H)$. Given a von Neumann algebra $M \subseteq \mathcal{B}(H)$, that M is SOT closed means that M is closed in $\mathcal{B}(H)$ for the weak*-topology induced by $\mathcal{B}(H)_*$.

$$\left(\mathcal{B}(H)_*/^{\perp}M
ight)^* = (^{\perp}M)^{\perp} = M.$$

Kaplansky Density

Theorem (Kaplansky)

Let M be a von Neumann algebra, and $A \subseteq M$ be a C^* -algebra which is weak*-dense in M. Then the unit ball of A is weak*-dense in the unit ball of M.

There exist weak*-closed subalgebra $M \subseteq \mathcal{B}(H)$ and a norm-closed subalgebra $A \subseteq M$ such that:

- A is weak*-dense in M;
- the unit ball of A is not weak^{*}-dense in the unit ball of M.
- Dowson found an example with A and M commutative, with M self-adjoint, and such that $\{a \in A : ||a|| \le r\}$ is not weak*-dense in the unit ball of M for any r.

Kaplansky Density

Theorem (Kaplansky)

Let M be a von Neumann algebra, and $A \subseteq M$ be a C^* -algebra which is weak*-dense in M. Then the unit ball of A is weak*-dense in the unit ball of M.

There exist weak*-closed subalgebra $M \subseteq \mathcal{B}(H)$ and a norm-closed subalgebra $A \subseteq M$ such that:

- A is weak*-dense in M;
- the unit ball of A is not weak^{*}-dense in the unit ball of M.
- Dowson found an example with A and M commutative, with M self-adjoint, and such that $\{a \in A : ||a|| \le r\}$ is not weak*-dense in the unit ball of M for any r.

Kaplansky Density

Theorem (Kaplansky)

Let M be a von Neumann algebra, and $A \subseteq M$ be a C^* -algebra which is weak*-dense in M. Then the unit ball of A is weak*-dense in the unit ball of M.

There exist weak*-closed subalgebra $M \subseteq \mathcal{B}(H)$ and a norm-closed subalgebra $A \subseteq M$ such that:

- A is weak*-dense in M;
- the unit ball of A is not weak^{*}-dense in the unit ball of M.
- Dowson found an example with A and M commutative, with M self-adjoint, and such that $\{a \in A : ||a|| \le r\}$ is not weak*-dense in the unit ball of M for any r.

Outline

1 Operator algebras

2 One parameter automorphism groups

3 Interlude: Motivation

4 Kaplansky density for automorphism groups

Automorphism groups

Definition

Let *E* be a Banach space. A one-parameter group of isometries of *E* is a family $(\alpha_t)_{t\in\mathbb{R}}$ with:

- Each α_t is a contraction in $\mathcal{B}(E)$;
- $\alpha_0 = 1;$
- $\alpha_{t+s} = \alpha_t \circ \alpha_s$ for $s, t \in \mathbb{R}$.

Then $\alpha_{-t} \circ \alpha_t = \alpha_t \circ \alpha_{-t} = \alpha_0 = 1$ so each α_t is a bijective isometry. Say that (α_t) is strongly-continuous or a C_0 -group if

$$\lim_{t o 0}\|lpha_t(x)-x\|=0 \qquad (x\in E).$$

Equivalently, $\mathbb{R} \to E, t \mapsto lpha_t(x)$ is (norm) continuous.

Automorphism groups

Definition

Let *E* be a Banach space. A one-parameter group of isometries of *E* is a family $(\alpha_t)_{t\in\mathbb{R}}$ with:

- Each α_t is a contraction in $\mathcal{B}(E)$;
- $\alpha_0 = 1;$
- $\alpha_{t+s} = \alpha_t \circ \alpha_s$ for $s, t \in \mathbb{R}$.

Then $\alpha_{-t} \circ \alpha_t = \alpha_t \circ \alpha_{-t} = \alpha_0 = 1$ so each α_t is a bijective isometry. Say that (α_t) is *strongly-continuous* or a C_0 -group if

$$\lim_{t\to 0}\|\alpha_t(x)-x\|=0\qquad (x\in E).$$

Equivalently, $\mathbb{R} \to E, t \mapsto \alpha_t(x)$ is (norm) continuous.

Examples

Let E = H a Hilbert space, so that each α_t is a unitary on H.

Theorem (Stone)

There is an (unbounded) self-adjoint operator T with $\alpha_t = \exp(iTt)$ for $t \in \mathbb{R}$.

Let $T\in \mathbb{M}_n$ be self-adjoint, so $u_t=\exp(iTt)$ forms a 1-parameter unitary group on \mathbb{C}^n . For $x\in \mathbb{M}_n$ define

$$lpha_t(x) = u_t x u_{-t} = e^{iTt} x e^{-iTt} \qquad (x \in \mathbb{M}_n).$$

- Each α_t is an isometry for the operator norm.
- (α_t) is a 1-parameter group.
- Each α_t is a *-automorphism of the algebra \mathbb{M}_n .

Examples

Let E = H a Hilbert space, so that each α_t is a unitary on H.

Theorem (Stone)

There is an (unbounded) self-adjoint operator T with $\alpha_t = \exp(iTt)$ for $t \in \mathbb{R}$.

Let $T \in \mathbb{M}_n$ be self-adjoint, so $u_t = \exp(iTt)$ forms a 1-parameter unitary group on \mathbb{C}^n . For $x \in \mathbb{M}_n$ define

$$\alpha_t(x) = u_t x u_{-t} = e^{iTt} x e^{-iTt}$$
 $(x \in \mathbb{M}_n).$

- Each α_t is an isometry for the operator norm.
- (α_t) is a 1-parameter group.
- Each α_t is a *-automorphism of the algebra \mathbb{M}_n .

Examples cont.

Consider $C_0(\mathbb{R})$, the C*-algebra of continuous functions $f:\mathbb{R}\to\mathbb{C}$ with $\lim_{|t|\to\infty}f(t)=0$.

• Define $\alpha_t(f)$ to be the function $s \mapsto f(s-t)$.

• Then (α_t) is a 1-parameter group of *-automorphisms of $C_0(\mathbb{R})$.

Let $L^{\infty}(\mathbb{R})$ be the von Neumann algebra of (equivalence classes) of (essentially) bounded measurable functions $f:\mathbb{R} o\mathbb{C}.$

- Define $\alpha_t(f)$ to be the function $s \mapsto f(s-t)$.
- Then (α_t) is a 1-parameter group of *-automorphisms of L[∞](ℝ), continuous in the weak* sense.

Notice that $C_0(\mathbb{R})$ is weak^{*}-dense in $L^{\infty}(\mathbb{R})$, and that the automorphism groups are compatible with this inclusion.

Examples cont.

Consider $C_0(\mathbb{R})$, the C*-algebra of continuous functions $f:\mathbb{R}\to\mathbb{C}$ with $\lim_{|t|\to\infty}f(t)=0$.

• Define $\alpha_t(f)$ to be the function $s\mapsto f(s-t).$

• Then (α_t) is a 1-parameter group of *-automorphisms of $C_0(\mathbb{R})$. Let $L^{\infty}(\mathbb{R})$ be the von Neumann algebra of (equivalence classes) of (essentially) bounded measurable functions $f : \mathbb{R} \to \mathbb{C}$.

- Define $\alpha_t(f)$ to be the function $s\mapsto f(s-t).$
- Then (α_t) is a 1-parameter group of *-automorphisms of L[∞](ℝ), continuous in the weak* sense.

Notice that $C_0(\mathbb{R})$ is weak^{*}-dense in $L^{\infty}(\mathbb{R})$, and that the automorphism groups are compatible with this inclusion.

Examples cont.

Consider $C_0(\mathbb{R})$, the C*-algebra of continuous functions $f:\mathbb{R}\to\mathbb{C}$ with $\lim_{|t|\to\infty}f(t)=0$.

• Define $\alpha_t(f)$ to be the function $s\mapsto f(s-t).$

• Then (α_t) is a 1-parameter group of *-automorphisms of $C_0(\mathbb{R})$. Let $L^{\infty}(\mathbb{R})$ be the von Neumann algebra of (equivalence classes) of (essentially) bounded measurable functions $f : \mathbb{R} \to \mathbb{C}$.

- Define $\alpha_t(f)$ to be the function $s \mapsto f(s-t)$.
- Then (α_t) is a 1-parameter group of *-automorphisms of L[∞](ℝ), continuous in the weak* sense.

Notice that $C_0(\mathbb{R})$ is weak*-dense in $L^{\infty}(\mathbb{R})$, and that the automorphism groups are compatible with this inclusion.

Holomorphic functions

Let E be a Banach space, $D \subseteq \mathbb{C}$ a domain, and $f: D \to E$ a function. The following are equivalent:

• f is *analytic* in the sense that for each $\alpha \in D$ there is an absolutely convergence power series for f, near α :

$$f(z) = \sum_{n \ge 0} a_n (z - lpha)^n \qquad |z - lpha| < r.$$

• f is holomorphic, in the sense that there is $F \subseteq E^*$ norming, with $D \to \mathbb{C}; z \mapsto \phi(f(z))$ is differentiable, for each $\phi \in F$.

Here *norming* means that

$$\|x\| = \sup\{|\phi(x)| : \phi \in F\}$$
 $(x \in E).$

In particular, "weakly holomorphic" or "weak*-holomorphic" imply "norm analytic".

Holomorphic functions

Let E be a Banach space, $D \subseteq \mathbb{C}$ a domain, and $f: D \to E$ a function. The following are equivalent:

• f is *analytic* in the sense that for each $\alpha \in D$ there is an absolutely convergence power series for f, near α :

$$f(z) = \sum_{n \ge 0} a_n (z - lpha)^n \qquad |z - lpha| < r.$$

• f is holomorphic, in the sense that there is $F \subseteq E^*$ norming, with $D \to \mathbb{C}; z \mapsto \phi(f(z))$ is differentiable, for each $\phi \in F$.

Here *norming* means that

$$||x|| = \sup\{|\phi(x)| : \phi \in F\}$$
 $(x \in E).$

In particular, "weakly holomorphic" or "weak*-holomorphic" imply "norm analytic".

Given $\alpha \in \mathbb{C}$ let

$$S(lpha) = \Big\{ z \in \mathbb{C} : egin{array}{ccc} 0 \leq \operatorname{Im}(z) \leq \operatorname{Im}(lpha) & ext{if } \operatorname{Im}(lpha) \geq 0 \ 0 \geq \operatorname{Im}(z) \geq \operatorname{Im}(lpha) & ext{if } \operatorname{Im}(lpha) \leq 0 \Big\}. \end{split}$$

That is, the closed horizontal strip bounded by \mathbb{R} and $\mathbb{R} + \alpha$. A function $f: S(\alpha) \to E$ is regular if f is continuous, analytic in the interior of $S(\alpha)$, and bounded on \mathbb{R} and $\mathbb{R} + \alpha$:

$$M := \sup_{t \in \mathbb{R}} \max\left(\|f(t)\|, \|f(\alpha + t)\| \right) < \infty.$$

The 3-Lines Theorem shows that then $\|f(z)\| \le M$ for all $z \in S(\alpha)$. Some link with complex interpolation?

Given $\alpha \in \mathbb{C}$ let

$$S(\alpha) = \Big\{ z \in \mathbb{C} : egin{array}{ccc} 0 \leq \operatorname{Im}(z) \leq \operatorname{Im}(lpha) & ext{if } \operatorname{Im}(lpha) \geq 0 \ 0 \geq \operatorname{Im}(z) \geq \operatorname{Im}(lpha) & ext{if } \operatorname{Im}(lpha) \leq 0 \Big\}. \end{split}$$

That is, the closed horizontal strip bounded by \mathbb{R} and $\mathbb{R} + \alpha$. A function $f: S(\alpha) \to E$ is *regular* if f is continuous, analytic in the interior of $S(\alpha)$, and bounded on \mathbb{R} and $\mathbb{R} + \alpha$:

$$M := \sup_{t \in \mathbb{R}} \max \left(\|f(t)\|, \|f(\alpha+t)\| \right) < \infty.$$

The 3-Lines Theorem shows that then $||f(z)|| \le M$ for all $z \in S(\alpha)$. Some link with complex interpolation?

Given $\alpha \in \mathbb{C}$ let

$$S(\alpha) = \Big\{ z \in \mathbb{C} : egin{array}{ccc} 0 \leq \operatorname{Im}(z) \leq \operatorname{Im}(lpha) & ext{if } \operatorname{Im}(lpha) \geq 0 \ 0 \geq \operatorname{Im}(z) \geq \operatorname{Im}(lpha) & ext{if } \operatorname{Im}(lpha) \leq 0 \Big\}. \end{split}$$

That is, the closed horizontal strip bounded by \mathbb{R} and $\mathbb{R} + \alpha$. A function $f: S(\alpha) \to E$ is *regular* if f is continuous, analytic in the interior of $S(\alpha)$, and bounded on \mathbb{R} and $\mathbb{R} + \alpha$:

$$M := \sup_{t \in \mathbb{R}} \max \left(\|f(t)\|, \|f(\alpha+t)\| \right) < \infty.$$

The 3-Lines Theorem shows that then $||f(z)|| \le M$ for all $z \in S(\alpha)$. Some link with complex interpolation?

Given $\alpha \in \mathbb{C}$ let

$$S(\alpha) = \Big\{ z \in \mathbb{C} : egin{array}{ccc} 0 \leq \operatorname{Im}(z) \leq \operatorname{Im}(lpha) & ext{if } \operatorname{Im}(lpha) \geq 0 \ 0 \geq \operatorname{Im}(z) \geq \operatorname{Im}(lpha) & ext{if } \operatorname{Im}(lpha) \leq 0 \Big\}. \end{split}$$

That is, the closed horizontal strip bounded by \mathbb{R} and $\mathbb{R} + \alpha$. A function $f: S(\alpha) \to E$ is *regular* if f is continuous, analytic in the interior of $S(\alpha)$, and bounded on \mathbb{R} and $\mathbb{R} + \alpha$:

$$M := \sup_{t \in \mathbb{R}} \max \left(\|f(t)\|, \|f(\alpha+t)\| \right) < \infty.$$

The 3-Lines Theorem shows that then $||f(z)|| \le M$ for all $z \in S(\alpha)$. Some link with complex interpolation?

Given (α_t) , a 1-parameter group on E, and $z \in \mathbb{C}$, define an operator $D(\alpha_z) \to E$ by

 $x\in D(lpha_z)$ when there is f:S(z) o E regular with $f(t)=lpha_t(x) \,\,(t\in \mathbb{R}).$

- Morera's Theorem and the Reflection Principle imply that such an f is unique. So α_z is well-defined.
- Think of α_z as an "analytic extension" of the mapping $t \mapsto \alpha_t(x)$.
- Can show that $D(\alpha_z)$ is dense in E and that α_z is *closed*.
- Then α_{-i} is the analytic generator of (α_t) .

Given (α_t) , a 1-parameter group on E, and $z \in \mathbb{C}$, define an operator $D(\alpha_z) \to E$ by

$$x\in D(lpha_z)$$
 when there is $f:S(z) o E$ regular with $f(t)=lpha_t(x) \ (t\in \mathbb{R}).$

- Morera's Theorem and the Reflection Principle imply that such an f is unique. So α_z is well-defined.
- Think of α_z as an "analytic extension" of the mapping $t \mapsto \alpha_t(x)$.
- Can show that $D(\alpha_z)$ is dense in E and that α_z is closed.
- Then α_{-i} is the analytic generator of (α_t) .

Given (α_t) , a 1-parameter group on E, and $z \in \mathbb{C}$, define an operator $D(\alpha_z) \to E$ by

$$x\in D(lpha_z)$$
 when there is $f:S(z) o E$ regular with $f(t)=lpha_t(x) \ (t\in \mathbb{R}).$

- Morera's Theorem and the Reflection Principle imply that such an f is unique. So α_z is well-defined.
- Think of α_z as an "analytic extension" of the mapping $t \mapsto \alpha_t(x)$.
- Can show that $D(\alpha_z)$ is dense in E and that α_z is closed.
- Then α_{-i} is the analytic generator of (α_t) .

Given (α_t) , a 1-parameter group on E, and $z \in \mathbb{C}$, define an operator $D(\alpha_z) \to E$ by

$$x\in D(lpha_z)$$
 when there is $f:S(z) o E$ regular with $f(t)=lpha_t(x) \ (t\in \mathbb{R}).$

Then we set $\alpha_z(x) = f(z)$.

- Morera's Theorem and the Reflection Principle imply that such an f is unique. So α_z is well-defined.
- Think of α_z as an "analytic extension" of the mapping $t \mapsto \alpha_t(x)$.
- Can show that $D(\alpha_z)$ is dense in E and that α_z is *closed*.

• Then α_{-i} is the analytic generator of (α_t) .

Given (α_t) , a 1-parameter group on E, and $z \in \mathbb{C}$, define an operator $D(\alpha_z) \to E$ by

$$x\in D(lpha_z)$$
 when there is $f:S(z) o E$ regular with $f(t)=lpha_t(x) \ (t\in \mathbb{R}).$

- Morera's Theorem and the Reflection Principle imply that such an f is unique. So α_z is well-defined.
- Think of α_z as an "analytic extension" of the mapping $t \mapsto \alpha_t(x)$.
- Can show that $D(\alpha_z)$ is dense in E and that α_z is *closed*.
- Then α_{-i} is the analytic generator of (α_t) .

Examples

When (α_t) is a continuous unitary group on a Hilbert space H, with $\alpha_t = \exp(iTt)$, then

$$\alpha_{-i} = \exp(T).$$

Define $\exp(T)$ by functional calculus. The equality means with equality of domains. (Of course formally obvious; but the LHS and RHS have different definitions.)

If (α_t) on \mathbb{M}_n is

$$\alpha_t(x) = u_t x u_{-t} = e^{iTt} x e^{-iTt},$$

then

$$\alpha_{-i}(x) = e^T x e^{-T} = P x P^{-1},$$

where $P = e^{T}$ is the analytic generator of (u_t) .

Examples

When (α_t) is a continuous unitary group on a Hilbert space H, with $\alpha_t = \exp(iTt)$, then

$$\alpha_{-i} = \exp(T).$$

Define $\exp(T)$ by functional calculus. The equality means with equality of domains. (Of course formally obvious; but the LHS and RHS have different definitions.) If (α_t) on \mathbb{M}_n is

$$\alpha_t(x) = u_t x u_{-t} = e^{iTt} x e^{-iTt},$$

then

$$\alpha_{-i}(\boldsymbol{x}) = e^T \boldsymbol{x} e^{-T} = P \boldsymbol{x} P^{-1},$$

where $P = e^{T}$ is the analytic generator of (u_t) .

Some properties

α_z is *closed* in the sense that the *graph*

$$\mathcal{G}(\alpha_z) = ig\{(x, lpha_z(x)) : x \in D(lpha_z)ig\} \subseteq E \oplus E$$

is closed.

Recall how to compose two unbounded operators T:D(T)
ightarrow E,S:D(S)
ightarrow E;

 $D(ST) = \{x \in D(T) : T(x) \in D(S)\}; \quad ST : D(ST) \ni x \mapsto S(T(x)).$

Then S = T means $\mathcal{G}(S) = \mathcal{G}(T)$; and $S \subseteq T$ means $\mathcal{G}(S) \subseteq \mathcal{G}(T)$. As closed operators, we have that

•
$$\alpha_t \circ \alpha_z = \alpha_z \circ \alpha_t = \alpha_{t+z}$$

- If z, w lie on the same side of the real axis, then $\alpha_z \alpha_w = \alpha_{z+w}$
- In general, $\alpha_z \alpha_w \subseteq \alpha_{z+w}$.

Some properties

 α_z is *closed* in the sense that the *graph*

$$\mathcal{G}(lpha_z) = ig\{(x, lpha_z(x)): x \in D(lpha_z)ig\} \subseteq E \oplus E$$

is closed.

Recall how to compose two unbounded operators $T: D(T) \rightarrow E, S: D(S) \rightarrow E:$

 $D(ST) = \{x \in D(T) : T(x) \in D(S)\}; \quad ST : D(ST) \ni x \mapsto S(T(x)).$

Then S = T means $\mathcal{G}(S) = \mathcal{G}(T)$; and $S \subseteq T$ means $\mathcal{G}(S) \subseteq \mathcal{G}(T)$. As closed operators, we have that

•
$$\alpha_t \circ \alpha_z = \alpha_z \circ \alpha_t = \alpha_{t+z}$$

• If z, w lie on the same side of the real axis, then $\alpha_z \alpha_w = \alpha_{z+w}$

• In general,
$$\alpha_z \alpha_w \subseteq \alpha_{z+w}$$
.

Some properties

 α_z is *closed* in the sense that the *graph*

$$\mathcal{G}(lpha_z) = ig\{(x, lpha_z(x)): x \in D(lpha_z)ig\} \subseteq E \oplus E$$

is closed.

Recall how to compose two unbounded operators T: D(T)
ightarrow E, S: D(S)
ightarrow E:

$$D(ST) = \{x \in D(T) : T(x) \in D(S)\}; \quad ST : D(ST) \ni x \mapsto S(T(x)).$$

Then S = T means $\mathcal{G}(S) = \mathcal{G}(T)$; and $S \subseteq T$ means $\mathcal{G}(S) \subseteq \mathcal{G}(T)$. As closed operators, we have that

•
$$\alpha_t \circ \alpha_z = \alpha_z \circ \alpha_t = \alpha_{t+z}$$

- If z, w lie on the same side of the real axis, then $\alpha_z \alpha_w = \alpha_{z+w}$
- In general, $\alpha_z \alpha_w \subseteq \alpha_{z+w}$.

$$lpha_t(f)(s) = f(s-t)$$
 $(s,t \in \mathbb{R}, f \in C_0(\mathbb{R})).$

• Let $f \in D(\alpha_{-i})$;

• Let $F: S(-i) \to C_0(\mathbb{R})$ be the associated regular function.

- Define $g: S(i) \to \mathbb{C}$ by g(z) = F(-z)(0).
- Then $g(t) = F(-t)(0) = \alpha_{-t}(f)(0) = f(t)$.
- Also g is regular.
- Can reverse this: given regular $g: S(i) \to \mathbb{C}$ then define $F: S(-i) \to C_0(\mathbb{R})$ by F(z)(t) = g(t-z), so that F becomes a $C_0(\mathbb{R})$ -valued regular function.

So f itself analytically extends to S(i), and F(-i) is this extension of f, evaluated on $\mathbb{R} + i$.

(Somehow like a Hardy space...)

$$lpha_t(f)(s) = f(s-t) \qquad (s,t\in\mathbb{R}, f\in C_0(\mathbb{R})).$$

• Let
$$f \in D(\alpha_{-i})$$
;

- Let $F: S(-i) \to C_0(\mathbb{R})$ be the associated regular function.
- Define $g:S(i) \to \mathbb{C}$ by g(z) = F(-z)(0).
- Then $g(t) = F(-t)(0) = \alpha_{-t}(f)(0) = f(t)$.
- Also g is regular.
- Can reverse this: given regular $g: S(i) \to \mathbb{C}$ then define $F: S(-i) \to C_0(\mathbb{R})$ by F(z)(t) = g(t-z), so that F becomes a $C_0(\mathbb{R})$ -valued regular function.

So f itself analytically extends to S(i), and F(-i) is this extension of f, evaluated on $\mathbb{R} + i$.

(Somehow like a Hardy space...)

$$lpha_t(f)(s) = f(s-t) \qquad (s,t\in\mathbb{R}, f\in C_0(\mathbb{R})).$$

• Let
$$f \in D(\alpha_{-i})$$
;

- Let $F: S(-i) \to C_0(\mathbb{R})$ be the associated regular function.
- Define $g:S(i) \to \mathbb{C}$ by g(z) = F(-z)(0).
- Then $g(t) = F(-t)(0) = \alpha_{-t}(f)(0) = f(t)$.
- Also g is regular.
- Can reverse this: given regular $g: S(i) \to \mathbb{C}$ then define $F: S(-i) \to C_0(\mathbb{R})$ by F(z)(t) = g(t-z), so that F becomes a $C_0(\mathbb{R})$ -valued regular function.

So f itself analytically extends to S(i), and F(-i) is this extension of f, evaluated on $\mathbb{R}+i$.

(Somehow like a Hardy space...)

Matthew Daws (UCLan)

$$lpha_t(f)(s) = f(s-t)$$
 $(s,t \in \mathbb{R}, f \in C_0(\mathbb{R})).$

• Let
$$f \in D(\alpha_{-i})$$
;

• Let $F: S(-i) \to C_0(\mathbb{R})$ be the associated regular function.

• Define
$$g:S(i)
ightarrow \mathbb{C}$$
 by $g(z)=F(-z)(0).$

- Then $g(t) = F(-t)(0) = \alpha_{-t}(f)(0) = f(t)$.
- Also g is regular.
- Can reverse this: given regular $g: S(i) \to \mathbb{C}$ then define $F: S(-i) \to C_0(\mathbb{R})$ by F(z)(t) = g(t-z), so that F becomes a $C_0(\mathbb{R})$ -valued regular function.

So f itself analytically extends to S(i), and F(-i) is this extension of f, evaluated on $\mathbb{R} + i$.

(Somehow like a Hardy space...)

Now suppose E = A is a C*-algebra and each α_t is a *-automorphism. Given $a, b \in D(\alpha_z)$ with associated regular functions

 $F_a, F_b: S(z) \to A$

we can pointwise multiply to obtain

$$F: S(z) \to A; \quad w \mapsto F_a(w)F_b(w).$$

• F is regular (local power series expansion).

• $F(t) = F_a(t)F_b(t) = \alpha_t(a)\alpha_t(b) = \alpha_t(ab)$ for $t \in \mathbb{R}$.

• So $ab \in D(\alpha_z)$ with $\alpha_z(ab) = F(z) = \alpha_z(a)\alpha_z(b)$.

Equivalently, we see that the graph $\mathcal{G}(lpha_z)$ is a subalgebra of $A\oplus A.$

Now suppose E = A is a C^{*}-algebra and each α_t is a *-automorphism. Given $a, b \in D(\alpha_z)$ with associated regular functions

$$F_a, F_b: S(z) \to A$$

we can pointwise multiply to obtain

$$F: S(z) \to A; \quad w \mapsto F_a(w)F_b(w).$$

• F is regular (local power series expansion).

• $F(t) = F_a(t)F_b(t) = \alpha_t(a)\alpha_t(b) = \alpha_t(ab)$ for $t \in \mathbb{R}$.

• So $ab \in D(\alpha_z)$ with $\alpha_z(ab) = F(z) = \alpha_z(a)\alpha_z(b)$.

Equivalently, we see that the graph $\mathcal{G}(lpha_z)$ is a subalgebra of $A\oplus A.$

Now suppose E = A is a C^{*}-algebra and each α_t is a *-automorphism. Given $a, b \in D(\alpha_z)$ with associated regular functions

$$F_a, F_b: S(z) \to A$$

we can pointwise multiply to obtain

$$F: S(z) \rightarrow A; \quad w \mapsto F_a(w)F_b(w).$$

• F is regular (local power series expansion).

- $F(t) = F_a(t)F_b(t) = \alpha_t(a)\alpha_t(b) = \alpha_t(ab)$ for $t \in \mathbb{R}$.
- So $ab \in D(\alpha_z)$ with $\alpha_z(ab) = F(z) = \alpha_z(a)\alpha_z(b)$.

Equivalently, we see that the graph $\mathcal{G}(\alpha_z)$ is a subalgebra of $A\oplus A$.

Now suppose E = A is a C*-algebra and each α_t is a *-automorphism. Given $a, b \in D(\alpha_z)$ with associated regular functions

$$F_a, F_b: S(z) \to A$$

we can pointwise multiply to obtain

$$F: S(z) \rightarrow A; \quad w \mapsto F_a(w)F_b(w).$$

• F is regular (local power series expansion).

•
$$F(t) = F_a(t)F_b(t) = \alpha_t(a)\alpha_t(b) = \alpha_t(ab)$$
 for $t \in \mathbb{R}$.

• So $ab \in D(\alpha_z)$ with $\alpha_z(ab) = F(z) = \alpha_z(a)\alpha_z(b)$.

Equivalently, we see that the graph $\mathcal{G}(\alpha_z)$ is a subalgebra of $A \oplus A$.

Given $a \in D(lpha_{-i})$ with regular F: S(-i)
ightarrow A define

$$F^\star:S\left(-i
ight)
ightarrow A; \quad w\mapsto F(\overline{w}-i)^st.$$

That is, use the involution on A.

• F^* is regular (local power series expansion).

•
$$F^{\star}(t) = F(t-i)^{*} = (\alpha_{t}\alpha_{-i}(a))^{*} = \alpha_{t}(\alpha_{-i}(a)^{*})$$
 for $t \in \mathbb{R}$.

•
$$F^{\star}(-i) = F(0)^* = a^*$$

So $\alpha_{-i}(a)^* \in D(\alpha_{-i})$ and $\alpha_{-i}(\alpha_{-i}(a)^*) = a^*$.

Given $a \in D(lpha_{-i})$ with regular F: S(-i)
ightarrow A define

$$F^\star:S\left(-i
ight)
ightarrow A; \quad w\mapsto F(\overline{w}-i)^st.$$

That is, use the involution on A.

• F^* is regular (local power series expansion).

•
$$F^{\star}(t) = F(t-i)^{*} = (\alpha_{t}\alpha_{-i}(a))^{*} = \alpha_{t}(\alpha_{-i}(a)^{*})$$
 for $t \in \mathbb{R}$.

•
$$F^{\star}(-i) = F(0)^* = a^*$$

So $\alpha_{-i}(a)^* \in D(\alpha_{-i})$ and $\alpha_{-i}(\alpha_{-i}(a)^*) = a^*$.

Given $a \in D(\alpha_{-i})$ with regular $F: S(-i) \to A$ define

$$F^\star:S\left(-i
ight)
ightarrow A; \quad w\mapsto F(\overline{w}-i)^st.$$

That is, use the involution on A.

• F^* is regular (local power series expansion).

•
$$F^{\star}(t) = F(t-i)^{*} = (\alpha_{t}\alpha_{-i}(a))^{*} = \alpha_{t}(\alpha_{-i}(a)^{*})$$
 for $t \in \mathbb{R}$.

•
$$F^{\star}(-i) = F(0)^* = a^*$$

So $\alpha_{-i}(a)^* \in D(\alpha_{-i})$ and $\alpha_{-i}(\alpha_{-i}(a)^*) = a^*$.

Given $a \in D(lpha_{-i})$ with regular F: S(-i)
ightarrow A define

$$F^\star:S\left(-i
ight)
ightarrow A; \quad w\mapsto F(\overline{w}-i)^st.$$

That is, use the involution on A.

F* is regular (local power series expansion).
F*(t) = F(t - i)* = (α_tα_{-i}(a))* = α_t(α_{-i}(a)*) for t ∈ ℝ.
F*(-i) = F(0)* = a*
So α_{-i}(a)* ∈ D(α_{-i}) and α_{-i}(α_{-i}(a)*) = a*.

Outline

Operator algebras

2 One parameter automorphism groups

Interlude: Motivation

4 Kaplansky density for automorphism groups

The Operator algebraic approach to Quantum Groups uses C^* and von Neumann algebras to generalise the notion of a locally compact group, and Pontryagin duality.

- Write G for the "abstract quantum group" and $L^{\infty}(\mathbb{G})$ and $C_0(\mathbb{G})$ for the associated algebras.
- The correct notion of the "group inverse" here is the *antipode S*, which in interesting examples turns out to be unbounded.
- Can "polar decompose" $S = R\tau_{-i/2}$ where R is the unitary antipode (and anti-*-automorphism), and...
- (τ_t) is the scaling group, a 1-parameter group of *-automorphisms of L[∞](G).

• $S^2 = \tau_{-i}$.

The Operator algebraic approach to Quantum Groups uses C^* and von Neumann algebras to generalise the notion of a locally compact group, and Pontryagin duality.

- Write \mathbb{G} for the "abstract quantum group" and $L^{\infty}(\mathbb{G})$ and $C_0(\mathbb{G})$ for the associated algebras.
- The correct notion of the "group inverse" here is the *antipode* S, which in interesting examples turns out to be unbounded.
- Can "polar decompose" $S = R\tau_{-i/2}$ where R is the unitary antipode (and anti-*-automorphism), and...
- (τ_t) is the scaling group, a 1-parameter group of *-automorphisms of L[∞](G).

• $S^2 = \tau_{-i}$.

The Operator algebraic approach to Quantum Groups uses C^* and von Neumann algebras to generalise the notion of a locally compact group, and Pontryagin duality.

- Write G for the "abstract quantum group" and L[∞](G) and C₀(G) for the associated algebras.
- The correct notion of the "group inverse" here is the *antipode* S, which in interesting examples turns out to be unbounded.
- Can "polar decompose" $S = R\tau_{-i/2}$ where R is the unitary antipode (and anti-*-automorphism), and...
- (τ_t) is the scaling group, a 1-parameter group of *-automorphisms of $L^{\infty}(\mathbb{G})$.

• $S^2 = \tau_{-i}$.

The Operator algebraic approach to Quantum Groups uses C^* and von Neumann algebras to generalise the notion of a locally compact group, and Pontryagin duality.

- Write G for the "abstract quantum group" and L[∞](G) and C₀(G) for the associated algebras.
- The correct notion of the "group inverse" here is the *antipode* S, which in interesting examples turns out to be unbounded.
- Can "polar decompose" $S = R\tau_{-i/2}$ where R is the unitary antipode (and anti-*-automorphism), and...
- (τ_t) is the scaling group, a 1-parameter group of *-automorphisms of L[∞](G).

• $S^2 = \tau_{-i}$.

The Operator algebraic approach to Quantum Groups uses C^* and von Neumann algebras to generalise the notion of a locally compact group, and Pontryagin duality.

- Write \mathbb{G} for the "abstract quantum group" and $L^{\infty}(\mathbb{G})$ and $C_0(\mathbb{G})$ for the associated algebras.
- The correct notion of the "group inverse" here is the *antipode* S, which in interesting examples turns out to be unbounded.
- Can "polar decompose" $S = R\tau_{-i/2}$ where R is the unitary antipode (and anti-*-automorphism), and...
- (τ_t) is the scaling group, a 1-parameter group of *-automorphisms of L[∞](G).
- $S^2 = \tau_{-i}$.

The Operator algebraic approach to Quantum Groups uses C^* and von Neumann algebras to generalise the notion of a locally compact group, and Pontryagin duality.

- Write \mathbb{G} for the "abstract quantum group" and $L^{\infty}(\mathbb{G})$ and $C_0(\mathbb{G})$ for the associated algebras.
- The correct notion of the "group inverse" here is the *antipode* S, which in interesting examples turns out to be unbounded.
- Can "polar decompose" $S = R\tau_{-i/2}$ where R is the unitary antipode (and anti-*-automorphism), and...
- (τ_t) is the scaling group, a 1-parameter group of *-automorphisms of L[∞](G).

•
$$S^2 = \tau_{-i}$$
.

Von Neumann setting

Each α_t is normal, and for $x \in M$, the orbit map $R \to M$; $t \mapsto \alpha_t(x)$ is weak*-continuous.

- Form α_z in the same way, but we only require a weak*-regular extension.
- (But weak*-holomorphic implies norm analytic. The extension to the boundary is only weak*-continuous).
- Then $\mathcal{G}(\alpha_z)$ is weak*-closed.
- Still $\mathcal{G}(\alpha_z)$ is an algebra, and $\mathcal{G}(\alpha_{-i})$ is a *-algebra. (Harder to prove, as the product is only *separately* continuous now.)

Von Neumann setting

Each α_t is normal, and for $x \in M$, the orbit map $R \to M$; $t \mapsto \alpha_t(x)$ is weak*-continuous.

- Form α_z in the same way, but we only require a weak*-regular extension.
- (But weak*-holomorphic implies norm analytic. The extension to the boundary is only weak*-continuous).
- Then $\mathcal{G}(\alpha_z)$ is weak*-closed.
- Still $\mathcal{G}(\alpha_z)$ is an algebra, and $\mathcal{G}(\alpha_{-i})$ is a *-algebra. (Harder to prove, as the product is only *separately* continuous now.)

Arveson introduced and studied the notion of a spectral subspace.

- For a strongly continuous unitary group (u_t) on a Hilbert space, we have $u_t = e^{-itH}$ for some self-adjoint H.
- We can understand H using its spectral decomposition.
- Arveson's ideas generalise this away from Hilbert spaces.

An example: $H^{\infty}(\alpha)$ is those $a \in A$ such that $a \in D(\alpha_z)$ for any z in the upper-half plane, and $\limsup_n \|\alpha_{in}(a)\|^{1/n} \leq 1$.

- Equivalently, for each $\mu \in A^*$, the scalar-valued function $z \mapsto \langle \mu, \alpha_z(a) \rangle$ is in H^{∞} of the upper-half-plane.
- This is a *closed* subspace of A.

Arveson introduced and studied the notion of a spectral subspace.

- For a strongly continuous unitary group (u_t) on a Hilbert space, we have $u_t = e^{-itH}$ for some self-adjoint H.
- We can understand H using its spectral decomposition.
- Arveson's ideas generalise this away from Hilbert spaces.

An example: $H^{\infty}(\alpha)$ is those $a \in A$ such that $a \in D(\alpha_z)$ for any z in the upper-half plane, and $\limsup_n \|\alpha_{in}(a)\|^{1/n} \leq 1$.

- Equivalently, for each $\mu \in A^*$, the scalar-valued function $z \mapsto \langle \mu, \alpha_z(a) \rangle$ is in H^{∞} of the upper-half-plane.
- This is a *closed* subspace of A.

Arveson introduced and studied the notion of a spectral subspace.

- For a strongly continuous unitary group (u_t) on a Hilbert space, we have $u_t = e^{-itH}$ for some self-adjoint H.
- We can understand H using its spectral decomposition.
- Arveson's ideas generalise this away from Hilbert spaces.

An example: $H^{\infty}(\alpha)$ is those $a \in A$ such that $a \in D(\alpha_z)$ for any z in the upper-half plane, and $\limsup_n \|\alpha_{in}(a)\|^{1/n} \leq 1$.

- Equivalently, for each $\mu \in A^*$, the scalar-valued function $z \mapsto \langle \mu, \alpha_z(a) \rangle$ is in H^{∞} of the upper-half-plane.
- This is a *closed* subspace of A.

Arveson introduced and studied the notion of a spectral subspace.

- For a strongly continuous unitary group (u_t) on a Hilbert space, we have $u_t = e^{-itH}$ for some self-adjoint H.
- We can understand H using its spectral decomposition.
- Arveson's ideas generalise this away from Hilbert spaces.

An example: $H^{\infty}(\alpha)$ is those $a \in A$ such that $a \in D(\alpha_z)$ for any z in the upper-half plane, and $\limsup_n \|\alpha_{in}(a)\|^{1/n} \leq 1$.

• Equivalently, for each $\mu \in A^*$, the scalar-valued function $z \mapsto \langle \mu, \alpha_z(a) \rangle$ is in H^{∞} of the upper-half-plane.

• This is a *closed* subspace of A.

Arveson introduced and studied the notion of a spectral subspace.

- For a strongly continuous unitary group (u_t) on a Hilbert space, we have $u_t = e^{-itH}$ for some self-adjoint H.
- We can understand H using its spectral decomposition.
- Arveson's ideas generalise this away from Hilbert spaces.

An example: $H^{\infty}(\alpha)$ is those $a \in A$ such that $a \in D(\alpha_z)$ for any z in the upper-half plane, and $\limsup_n \|\alpha_{in}(a)\|^{1/n} \leq 1$.

• Equivalently, for each $\mu \in A^*$, the scalar-valued function $z \mapsto \langle \mu, \alpha_z(a) \rangle$ is in H^{∞} of the upper-half-plane.

• This is a *closed* subspace of *A*.

Arveson introduced and studied the notion of a spectral subspace.

- For a strongly continuous unitary group (u_t) on a Hilbert space, we have $u_t = e^{-itH}$ for some self-adjoint H.
- We can understand H using its spectral decomposition.
- Arveson's ideas generalise this away from Hilbert spaces.

An example: $H^{\infty}(\alpha)$ is those $a \in A$ such that $a \in D(\alpha_z)$ for any z in the upper-half plane, and $\limsup_n \|\alpha_{in}(a)\|^{1/n} \leq 1$.

• Equivalently, for each $\mu \in A^*$, the scalar-valued function $z \mapsto \langle \mu, \alpha_z(a) \rangle$ is in H^{∞} of the upper-half-plane.

• This is a *closed* subspace of A.

If you apply this to a von Neumann algebra M, then $H^{\infty}(\alpha)$ is (often) an example of a maximal subdiagonal algebra.

- Consider the "shift semigroup" on L[∞](ℝ). Then you exactly obtain the classical Hardy space H[∞] of the upper-half-plane.
- Also generalises familiar non-self-adjoint operator algebras.
- For example, with $\alpha_t(x) = P^{it}xP^{-it}$ for $x \in \mathbb{M}_n$, if P is diagonal with increasing real entries, then $H^{\infty}(\alpha)$ is the upper-triangular matrices.

- Is there an analogous theory for $\mathcal{G}(\alpha_{-i})$?
- These are *not* maximal subdiagonal algebras, but there are tantalising similarities.

If you apply this to a von Neumann algebra M, then $H^{\infty}(\alpha)$ is (often) an example of a maximal subdiagonal algebra.

- Consider the "shift semigroup" on L[∞](ℝ). Then you exactly obtain the classical Hardy space H[∞] of the upper-half-plane.
- Also generalises familiar non-self-adjoint operator algebras.
- For example, with $\alpha_t(x) = P^{it}xP^{-it}$ for $x \in \mathbb{M}_n$, if P is diagonal with increasing real entries, then $H^{\infty}(\alpha)$ is the upper-triangular matrices.

- Is there an analogous theory for $\mathcal{G}(\alpha_{-i})$?
- These are *not* maximal subdiagonal algebras, but there are tantalising similarities.

If you apply this to a von Neumann algebra M, then $H^{\infty}(\alpha)$ is (often) an example of a maximal subdiagonal algebra.

- Consider the "shift semigroup" on L[∞](ℝ). Then you exactly obtain the classical Hardy space H[∞] of the upper-half-plane.
- Also generalises familiar non-self-adjoint operator algebras.
- For example, with $\alpha_t(x) = P^{it}xP^{-it}$ for $x \in \mathbb{M}_n$, if P is diagonal with increasing real entries, then $H^{\infty}(\alpha)$ is the upper-triangular matrices.

- Is there an analogous theory for $\mathcal{G}(\alpha_{-i})$?
- These are *not* maximal subdiagonal algebras, but there are tantalising similarities.

If you apply this to a von Neumann algebra M, then $H^{\infty}(\alpha)$ is (often) an example of a maximal subdiagonal algebra.

- Consider the "shift semigroup" on L[∞](ℝ). Then you exactly obtain the classical Hardy space H[∞] of the upper-half-plane.
- Also generalises familiar non-self-adjoint operator algebras.
- For example, with $\alpha_t(x) = P^{it}xP^{-it}$ for $x \in \mathbb{M}_n$, if P is diagonal with increasing real entries, then $H^{\infty}(\alpha)$ is the upper-triangular matrices.

- Is there an analogous theory for $\mathcal{G}(\alpha_{-i})$?
- These are *not* maximal subdiagonal algebras, but there are tantalising similarities.

Outline

1) Operator algebras

2 One parameter automorphism groups

3 Interlude: Motivation

4 Kaplansky density for automorphism groups

Setup

We will suppose we have:

- a C*-algebra A which is weak*-dense in a von Neumann algebra M;
- A (strongly-continuous) 1-parameter *-automorphism group (α^A_t) on A, which extends to a (weak*-continuous) 1-parameter *-automorphism group (α^M_t) on M.

So we can consider:

 α^A_{-i} a norm-closed, norm-densely defined operator on A, α^M_{-i} a weak*-closed, weak*-densely defined operator on M.

How are these related?

Setup

We will suppose we have:

- a C*-algebra A which is weak*-dense in a von Neumann algebra M;
- A (strongly-continuous) 1-parameter *-automorphism group (α^A_t) on A, which extends to a (weak*-continuous) 1-parameter *-automorphism group (α^M_t) on M.

So we can consider:

 α_{-i}^{A} a norm-closed, norm-densely defined operator on A, α_{-i}^{M} a weak*-closed, weak*-densely defined operator on M.

How are these related?

Graphs

Almost by definition, we have that α_{-i}^{M} extends α_{-i}^{A} , which means that

$$\mathcal{G}(\alpha_{-i}^A) \subseteq \mathcal{G}(\alpha_{-i}^M),$$

under the obvious inclusions $A \oplus A \subseteq M \oplus M$.

• In fact, $\mathcal{G}(\alpha_{-i}^A) = \mathcal{G}(\alpha_{-i}^M) \cap (A \oplus A).$

One can show that actually

 $\mathcal{G}(\pmb{lpha}_{-i}^A)$ is weak^{*} dense in $\mathcal{G}(\pmb{lpha}_{-i}^M).$

In other words, α_{-i}^A is a (weak^{*}) core for α_{-i}^M .

Graphs

Almost by definition, we have that α_{-i}^{M} extends α_{-i}^{A} , which means that

$$\mathcal{G}(\alpha_{-i}^A) \subseteq \mathcal{G}(\alpha_{-i}^M),$$

under the obvious inclusions $A \oplus A \subseteq M \oplus M$.

• In fact, $\mathcal{G}(\alpha_{-i}^A) = \mathcal{G}(\alpha_{-i}^M) \cap (A \oplus A).$

One can show that actually

 $\mathcal{G}(\pmb{lpha}_{-i}^A)$ is weak * dense in $\mathcal{G}(\pmb{lpha}_{-i}^M).$

In other words, α_{-i}^A is a (weak^{*}) core for α_{-i}^M .

Graphs

Almost by definition, we have that α_{-i}^{M} extends α_{-i}^{A} , which means that

$$\mathcal{G}(\alpha_{-i}^A) \subseteq \mathcal{G}(\alpha_{-i}^M),$$

under the obvious inclusions $A \oplus A \subseteq M \oplus M$.

• In fact,
$$\mathcal{G}(\alpha_{-i}^A) = \mathcal{G}(\alpha_{-i}^M) \cap (A \oplus A).$$

One can show that actually

$$\mathcal{G}(lpha^A_{-i})$$
 is weak * dense in $\mathcal{G}(lpha^M_{-i}).$

In other words, α_{-i}^A is a (weak^{*}) core for α_{-i}^M .

Kaplansky

Theorem

The unit ball of $\mathcal{G}(\alpha_{-i}^A)$ is weak*-dense in the unit ball of $\mathcal{G}(\alpha_{-i}^M)$.

To be concrete, this means that given $x \in D(lpha^M_{-i})$ with

 $\|x\| \leq 1 ext{ and } \|lpha_{-i}^M(x)\| \leq 1,$

there is a net (a_j) in $D(\alpha_{-i}^A)$ with $a_j \to x$ and $\alpha_{-i}^A(a_j) \to \alpha_{-i}^M(x)$ weak*, and with

$$\|a_j\|\leq 1 ext{ and } \|lpha^A_{-i}(a_j)\|\leq 1.$$

The key idea is von Neumann algebraic:

- Using Kaplansky density for $A \subseteq M$ we see that A norms the predual M_* .
- Equivalently, the induced map $M_* \to A^*$ (given by restricting functions in M_* to $A \subseteq M$) is an isometry.
- The resulting subspace of A^* is an A-bimodule, and so there is a central projection $z \in A^{**}$ with $A^*z = M_*$.

• Thus
$$A^{**}z \cong M$$
.

We now consider $\mathcal{G}(\alpha_{-i}^A)^{**} \subseteq A^{**} \oplus A^{**}$. One can carefully show that

 $\mathcal{G}(\alpha_{-i}^{M}) \cong \mathcal{G}(\alpha_{-i}^{A})^{**}(z \oplus z) \text{ and } \mathcal{G}(\alpha_{-i}^{M}) \subseteq \mathcal{G}(\alpha_{-i}^{A})^{**}.$

The key idea is von Neumann algebraic:

- Using Kaplansky density for $A \subseteq M$ we see that A norms the predual M_* .
- Equivalently, the induced map $M_* \to A^*$ (given by restricting functions in M_* to $A \subseteq M$) is an isometry.
- The resulting subspace of A^* is an A-bimodule, and so there is a central projection $z \in A^{**}$ with $A^*z = M_*$.

• Thus
$$A^{**}z \cong M$$
.

We now consider $\mathcal{G}(\alpha_{-i}^A)^{**} \subseteq A^{**} \oplus A^{**}$. One can carefully show that

 $\mathcal{G}(\alpha^M_{-i}) \cong \mathcal{G}(\alpha^A_{-i})^{**}(z \oplus z) \text{ and } \mathcal{G}(\alpha^M_{-i}) \subseteq \mathcal{G}(\alpha^A_{-i})^{**}.$

The key idea is von Neumann algebraic:

- Using Kaplansky density for $A \subseteq M$ we see that A norms the predual M_* .
- Equivalently, the induced map $M_* \to A^*$ (given by restricting functions in M_* to $A \subseteq M$) is an isometry.
- The resulting subspace of A^* is an A-bimodule, and so there is a central projection $z \in A^{**}$ with $A^*z = M_*$.

```
• Thus A^{**}z \cong M.
```

We now consider $\mathcal{G}(lpha^A_{-i})^{**}\subseteq A^{**}\oplus A^{**}.$ One can carefully show that

 $\mathcal{G}(\alpha_{-i}^M) \cong \mathcal{G}(\alpha_{-i}^A)^{**}(z \oplus z) \text{ and } \mathcal{G}(\alpha_{-i}^M) \subseteq \mathcal{G}(\alpha_{-i}^A)^{**}.$

The key idea is von Neumann algebraic:

- Using Kaplansky density for $A \subseteq M$ we see that A norms the predual M_* .
- Equivalently, the induced map $M_* \to A^*$ (given by restricting functions in M_* to $A \subseteq M$) is an isometry.
- The resulting subspace of A^* is an A-bimodule, and so there is a central projection $z \in A^{**}$ with $A^*z = M_*$.
- Thus $A^{**}z \cong M$.

We now consider $\mathcal{G}(lpha^A_{-i})^{**}\subseteq A^{**}\oplus A^{**}.$ One can carefully show that

 $\mathcal{G}(\alpha_{-i}^M) \cong \mathcal{G}(\alpha_{-i}^A)^{**}(z \oplus z) \text{ and } \mathcal{G}(\alpha_{-i}^M) \subseteq \mathcal{G}(\alpha_{-i}^A)^{**}.$

The key idea is von Neumann algebraic:

- Using Kaplansky density for $A \subseteq M$ we see that A norms the predual M_* .
- Equivalently, the induced map $M_* \to A^*$ (given by restricting functions in M_* to $A \subseteq M$) is an isometry.
- The resulting subspace of A^* is an A-bimodule, and so there is a central projection $z \in A^{**}$ with $A^*z = M_*$.

• Thus
$$A^{**}z \cong M$$
.

We now consider $\mathcal{G}(\alpha^A_{-i})^{**} \subseteq A^{**} \oplus A^{**}$. One can carefully show that

$$\mathcal{G}(\alpha^M_{-i})\cong \mathcal{G}(\alpha^A_{-i})^{**}(z\oplus z) \text{ and } \mathcal{G}(\alpha^M_{-i})\subseteq \mathcal{G}(\alpha^A_{-i})^{**}.$$

$$\mathcal{G}(lpha_{-i}^M) \cong \mathcal{G}(lpha_{-i}^A)^{**}(z \oplus z) \subseteq \mathcal{G}(lpha_{-i}^A)^{**}.$$

- Given $(x,y)\in \mathcal{G}(lpha_{-i}^M)$ with $\|x\|\leq 1, \|y\|\leq 1,$
- But then we can regard $\mathcal{G}(\alpha_{-i}^M)$ as a subset of $\mathcal{G}(\alpha_{-i}^A)^{**}$.
- So there are $(a^{**}, b^{**}) \in \mathcal{G}(\alpha_{-i}^A)^{**}$ with $a^{**}z = a^{**}$, $b^{**}z = b^{**}$ and (a^{**}, b^{**}) corresponds to (x, y).
- By Hahn-Banach ("Goldstine theorem") there is a net (a_j, b_j) in $\mathcal{G}(\alpha_{-i}^A)$ converging to (a^{**}, b^{**}) , with norm control: $||a_j|| \leq 1$ and $||b_j|| \leq 1$.
- Check the topologies agree, so that $(a_j, b_j)
 ightarrow (x, y)$ weak* as required.

$$\mathcal{G}(\pmb{lpha}_{-i}^M)\cong\mathcal{G}(\pmb{lpha}_{-i}^A)^{**}(\pmb{z}\oplus\pmb{z})\subseteq\mathcal{G}(\pmb{lpha}_{-i}^A)^{**}.$$

- Given $(x,y)\in \mathcal{G}(lpha_{-i}^M)$ with $\|x\|\leq 1, \|y\|\leq 1,$
- But then we can regard $\mathcal{G}(\alpha_{-i}^M)$ as a subset of $\mathcal{G}(\alpha_{-i}^A)^{**}$.
- So there are $(a^{**}, b^{**}) \in \mathcal{G}(\alpha_{-i}^A)^{**}$ with $a^{**}z = a^{**}$, $b^{**}z = b^{**}$ and (a^{**}, b^{**}) corresponds to (x, y).
- By Hahn-Banach ("Goldstine theorem") there is a net (a_j, b_j) in $\mathcal{G}(\alpha_{-i}^A)$ converging to (a^{**}, b^{**}) , with norm control: $||a_j|| \leq 1$ and $||b_j|| \leq 1$.
- Check the topologies agree, so that $(a_j, b_j)
 ightarrow (x, y)$ weak* as required.

$$\mathcal{G}(\pmb{lpha}_{-i}^M)\cong\mathcal{G}(\pmb{lpha}_{-i}^A)^{**}(\pmb{z}\oplus\pmb{z})\subseteq\mathcal{G}(\pmb{lpha}_{-i}^A)^{**}.$$

- Given $(x,y)\in \mathcal{G}(lpha_{-i}^M)$ with $\|x\|\leq 1, \|y\|\leq 1,$
- But then we can regard $\mathcal{G}(\alpha_{-i}^M)$ as a subset of $\mathcal{G}(\alpha_{-i}^A)^{**}$.
- So there are $(a^{**}, b^{**}) \in \mathcal{G}(\alpha_{-i}^A)^{**}$ with $a^{**}z = a^{**}$, $b^{**}z = b^{**}$ and (a^{**}, b^{**}) corresponds to (x, y).
- By Hahn-Banach ("Goldstine theorem") there is a net (a_j, b_j) in $\mathcal{G}(\alpha_{-i}^A)$ converging to (a^{**}, b^{**}) , with norm control: $||a_j|| \leq 1$ and $||b_j|| \leq 1$.
- Check the topologies agree, so that $(a_j, b_j)
 ightarrow (x, y)$ weak* as required.

$$\mathcal{G}(\pmb{lpha}_{-i}^M)\cong\mathcal{G}(\pmb{lpha}_{-i}^A)^{**}(\pmb{z}\oplus\pmb{z})\subseteq\mathcal{G}(\pmb{lpha}_{-i}^A)^{**}.$$

- Given $(x,y)\in \mathcal{G}(lpha_{-i}^M)$ with $\|x\|\leq 1, \|y\|\leq 1,$
- But then we can regard $\mathcal{G}(\alpha_{-i}^M)$ as a subset of $\mathcal{G}(\alpha_{-i}^A)^{**}$.
- So there are $(a^{**}, b^{**}) \in \mathcal{G}(\alpha_{-i}^A)^{**}$ with $a^{**}z = a^{**}$, $b^{**}z = b^{**}$ and (a^{**}, b^{**}) corresponds to (x, y).
- By Hahn-Banach ("Goldstine theorem") there is a net (a_j, b_j) in $\mathcal{G}(\alpha_{-i}^A)$ converging to (a^{**}, b^{**}) , with norm control: $||a_j|| \leq 1$ and $||b_j|| \leq 1$.
- Check the topologies agree, so that $(a_j, b_j)
 ightarrow (x, y)$ weak* as required.

$$\mathcal{G}(\mathbf{\alpha}^{M}_{-i})\cong \mathcal{G}(\mathbf{\alpha}^{A}_{-i})^{**}(z\oplus z)\subseteq \mathcal{G}(\mathbf{\alpha}^{A}_{-i})^{**}.$$

- Given $(x,y)\in \mathcal{G}(lpha_{-i}^M)$ with $\|x\|\leq 1, \|y\|\leq 1,$
- But then we can regard $\mathcal{G}(\alpha_{-i}^M)$ as a subset of $\mathcal{G}(\alpha_{-i}^A)^{**}$.
- So there are $(a^{**}, b^{**}) \in \mathcal{G}(\alpha_{-i}^A)^{**}$ with $a^{**}z = a^{**}$, $b^{**}z = b^{**}$ and (a^{**}, b^{**}) corresponds to (x, y).
- By Hahn-Banach ("Goldstine theorem") there is a net (a_j, b_j) in $\mathcal{G}(\alpha_{-i}^A)$ converging to (a^{**}, b^{**}) , with norm control: $||a_j|| \leq 1$ and $||b_j|| \leq 1$.
- Check the topologies agree, so that $(a_j, b_j)
 ightarrow (x, y)$ weak* as required.

Swap things about:

- The adjoints of (α^A_t) give rise to a weak*-continuous 1-parameter isometry group on A*.
- The pre-adjoints of (α^M_t) give rise to a norm-continuous
 1-parameter isometry group on M_{*}.

We have the isometric inclusion $M_* o A^*$ which leads to

$$\mathcal{G}(\alpha_{-i}^{M_*}) \subseteq \mathcal{G}(\alpha_{-i}^{A^*}),$$

which is weak^{*}-dense.

Theorem ("Automatic normality")

Let $\omega \in M_*$ be such that $\omega \in D(\alpha_{-i}^{A^*})$. Then $\omega \in D(\alpha_{-i}^{M_*})$, that is, $\alpha_{-i}^{A^*}(\omega) \in M_*$.

Swap things about:

- The adjoints of (α^A_t) give rise to a weak*-continuous 1-parameter isometry group on A*.
- The pre-adjoints of (α^M_t) give rise to a norm-continuous
 1-parameter isometry group on M_{*}.

We have the isometric inclusion $M_* o A^*$ which leads to

$$\mathcal{G}(\alpha_{-i}^{M_*}) \subseteq \mathcal{G}(\alpha_{-i}^{A^*}),$$

which is weak*-dense.

Theorem ("Automatic normality")

Let $\omega \in M_*$ be such that $\omega \in D(\alpha_{-i}^{A^*})$. Then $\omega \in D(\alpha_{-i}^{M_*})$, that is, $\alpha_{-i}^{A^*}(\omega) \in M_*$.

Swap things about:

- The adjoints of (α^A_t) give rise to a weak*-continuous 1-parameter isometry group on A*.
- The pre-adjoints of (α^M_t) give rise to a norm-continuous
 1-parameter isometry group on M_{*}.

We have the isometric inclusion $M_* o A^*$ which leads to

$$\mathcal{G}(\alpha_{-i}^{M_*}) \subseteq \mathcal{G}(\alpha_{-i}^{A^*}),$$

which is weak*-dense.

Theorem ("Automatic normality")

Let $\omega \in M_*$ be such that $\omega \in D(\alpha_{-i}^{A^*})$. Then $\omega \in D(\alpha_{-i}^{M_*})$, that is, $\alpha_{-i}^{A^*}(\omega) \in M_*$.

Swap things about:

- The adjoints of (α^A_t) give rise to a weak*-continuous 1-parameter isometry group on A*.
- The pre-adjoints of (α^M_t) give rise to a norm-continuous
 1-parameter isometry group on M_{*}.

We have the isometric inclusion $M_* o A^*$ which leads to

$$\mathcal{G}(\alpha_{-i}^{M_*}) \subseteq \mathcal{G}(\alpha_{-i}^{A^*}),$$

which is weak*-dense.

Theorem ("Automatic normality")

Let $\omega \in M_*$ be such that $\omega \in D(\alpha_{-i}^{A^*})$. Then $\omega \in D(\alpha_{-i}^{M_*})$, that is, $\alpha_{-i}^{A^*}(\omega) \in M_*$.

Open questions

- Does an analogue of Kaplansky Density hold for $\mathcal{G}(\alpha_{-i}^{M_*}) \subseteq \mathcal{G}(\alpha_{-i}^{A^*})$?
- Under some "weakly complemented" conditions, this is true.
- This clarifies (slightly) a proof of Daws & Salmi that if G is coamenable then L¹_μ(G) → M[#](G) satisfies Kaplansky Density. (This is equivalent to working with the scaling group (τ_t)).
- Broad question: Study $\mathcal{G}(\alpha_{-i})$ as a Banach *-algebra.

Proposition (After Verding; Kustermans; Van Daele)

Let (α_t) be an automorphism group of a Banach algebra A. If A has a bounded (contractive) approximate identity then so does $\mathcal{G}(\alpha_{-i})$.