Asymptotic sequence algebras, and ultrapowers, of

 Banach algebrasMatthew Daws

UCLan

Belfast, October 2019

The Calkin Algebra

Definition (Calkin, 1941)

Let H be a (separable, infinite dimensional) Hilbert space, and denote by $\mathcal{K}(H)$ the compact operators, and $\mathcal{B}(H)$ the bounded operators, on H. The Calkin Algebra is $\mathcal{C}(H)=\mathcal{B}(H) / \mathcal{K}(H)$.

```
- It is well-known that }\mathcal{K}(H)\mathrm{ is the only proper closed two-sided
    ideal in \mathcal{B}(H)
- So C(H) is simple.
- C}(H)\mathrm{ is a }\mp@subsup{C}{}{*}\mathrm{ -algebra, and so admits a faithful representation on
    some Hilbert space K (K cannot be separable). It was the first
    C*-algebra which does not obviously arise as a subalgebra of
    B}(K). [Calkin proved this before the GNS theory was available!]
- Does C}(H)\mathrm{ have outer automorphisms (not arising from a
    unitary)? This is independent of ZFC.
```


The Calkin Algebra

Definition (Calkin, 1941)

Let H be a (separable, infinite dimensional) Hilbert space, and denote by $\mathcal{K}(H)$ the compact operators, and $\mathcal{B}(H)$ the bounded operators, on H. The Calkin Algebra is $\mathcal{C}(H)=\mathcal{B}(H) / \mathcal{K}(H)$.

- It is well-known that $\mathcal{K}(H)$ is the only proper closed two-sided ideal in $\mathcal{B}(H)$.
- So $\mathcal{C}(H)$ is simple.

The Calkin Algebra

Definition (Calkin, 1941)

Let H be a (separable, infinite dimensional) Hilbert space, and denote by $\mathcal{K}(H)$ the compact operators, and $\mathcal{B}(H)$ the bounded operators, on H. The Calkin Algebra is $\mathcal{C}(H)=\mathcal{B}(H) / \mathcal{K}(H)$.

- It is well-known that $\mathcal{K}(H)$ is the only proper closed two-sided ideal in $\mathcal{B}(H)$.
- So $\mathcal{C}(H)$ is simple.
- $\mathcal{C}(H)$ is a C^{*}-algebra, and so admits a faithful representation on some Hilbert space K (K cannot be separable). It was the first C^{*}-algebra which does not obviously arise as a subalgebra of $\mathcal{B}(K)$. [Calkin proved this before the GNS theory was available!]
- Does $\mathcal{C}(H)$ have outer automorphisms (not arising from a unitary)? This is independent of ZFC.

The Calkin Algebra

Definition (Calkin, 1941)

Let H be a (separable, infinite dimensional) Hilbert space, and denote by $\mathcal{K}(H)$ the compact operators, and $\mathcal{B}(H)$ the bounded operators, on H. The Calkin Algebra is $\mathcal{C}(H)=\mathcal{B}(H) / \mathcal{K}(H)$.

- It is well-known that $\mathcal{K}(H)$ is the only proper closed two-sided ideal in $\mathcal{B}(H)$.
- So $\mathcal{C}(H)$ is simple.
- $\mathcal{C}(H)$ is a C^{*}-algebra, and so admits a faithful representation on some Hilbert space K (K cannot be separable). It was the first C^{*}-algebra which does not obviously arise as a subalgebra of $\mathcal{B}(K)$. [Calkin proved this before the GNS theory was available!]
- Does $\mathcal{C}(H)$ have outer automorphisms (not arising from a unitary)? This is independent of ZFC.

Reframe using multipliers

Given a (faithful Banach) C^{*}-algebra A, and an ideal $I \triangleleft A$, we say that I is essential if $a \in A, a I+I a=\{0\}$ implies $a=0$.
The Multiplier Algebra of A, denoted $M(A)$, is the largest C^{*}-algebra which contains A as an essential ideal.
More concretely, if $A \subseteq \mathcal{B}(H)$ then

$$
M(A) \cong\{T \in \mathcal{B}(H): T a, a T \in A(a \in A)\} .
$$

We think of $M(A)$ as being the "maximal unitisation" of A. For example:

- $M\left(C_{0}(X)\right)=C(\beta X)$ the Stone-Čech compactification of X.
- $M(\mathcal{K}(H))=\mathcal{B}(H)$

We call $\mathcal{C}(A):=M(A) / A$ the "Corona" of A.

Reframe using multipliers

Given a (faithful Banach) C^{*}-algebra A, and an ideal $I \triangleleft A$, we say that I is essential if $a \in A, a I+I a=\{0\}$ implies $a=0$. The Multiplier Algebra of A, denoted $M(A)$, is the largest C^{*}-algebra which contains A as an essential ideal.
More concretely, if $A \subseteq \mathcal{B}(H)$ then

We think of $M(A)$ as being the "maximal unitisation" of A. For example:

- $M\left(C_{0}(X)\right)=C(\beta X)$ the Stone-Čech compactification of X.
- $M(\mathcal{K}(H))=\mathcal{B}(H)$

We call $\mathcal{C}(A):=M(A) / A$ the "Corona" of A.

Reframe using multipliers

Given a (faithful Banach) C^{*}-algebra A, and an ideal $I \triangleleft A$, we say that I is essential if $a \in A, a I+I a=\{0\}$ implies $a=0$. The Multiplier Algebra of A, denoted $M(A)$, is the largest C^{*}-algebra which contains A as an essential ideal.
More concretely, if $A \subseteq \mathcal{B}(H)$ then

$$
M(A) \cong\{T \in \mathcal{B}(H): T a, a T \in A(a \in A)\}
$$

We think of $M(A)$ as being the "maximal unitisation" of A. For
example:

- $M\left(C_{0}(X)\right)=C(\beta X)$ the Stone-Čech compactification of X.
\square
We call $\mathcal{C}(A):=M(A) / A$ the "Corona" of A.

Reframe using multipliers

Given a (faithful Banach) C^{*}-algebra A, and an ideal $I \triangleleft A$, we say that I is essential if $a \in A, a I+I a=\{0\}$ implies $a=0$.
The Multiplier Algebra of A, denoted $M(A)$, is the largest C^{*}-algebra which contains A as an essential ideal.
More concretely, if $A \subseteq \mathcal{B}(H)$ then

$$
M(A) \cong\{T \in \mathcal{B}(H): T a, a T \in A(a \in A)\}
$$

We think of $M(A)$ as being the "maximal unitisation" of A. For example:

- $M\left(C_{0}(X)\right)=C(\beta X)$ the Stone-Čech compactification of X.
- $M(\mathcal{K}(H))=\mathcal{B}(H)$.

We call $\mathcal{C}(A):=M(A) / A$ the "Corona" of A.

Asymptotic sequence algebras

Given a (Banach) C^{*}-algebra A let $c_{0}(A)$ be the space of sequences $\left(a_{n}\right)$ in A with $\lim _{n}\left\|a_{n}\right\|=0$, endowed with the pointwise algebra operations:

$$
\left(a_{n}\right)+\left(b_{n}\right)=\left(a_{n}+b_{n}\right), \quad\left(a_{n}\right)\left(b_{n}\right)=\left(a_{n} b_{n}\right)
$$

The multiplier algebra of $c_{0}(A)$ is $\ell^{\infty}(A)$, the space of all bounded
sequences.
The corona of $c_{0}(A)$ is the "asymptotic sequence algebra"

$$
\operatorname{Asy}(A)=\ell^{\infty}(A) / c_{0}(A)
$$

Asymptotic sequence algebras

Given a (Banach) C^{*}-algebra A let $c_{0}(A)$ be the space of sequences $\left(a_{n}\right)$ in A with $\lim _{n}\left\|a_{n}\right\|=0$, endowed with the pointwise algebra operations:

$$
\left(a_{n}\right)+\left(b_{n}\right)=\left(a_{n}+b_{n}\right), \quad\left(a_{n}\right)\left(b_{n}\right)=\left(a_{n} b_{n}\right)
$$

The multiplier algebra of $c_{0}(A)$ is $\ell^{\infty}(A)$, the space of all bounded sequences.
The corona of $c_{0}(A)$ is the "asymptotic sequence algebra"

$$
\operatorname{Asy}(A)=\ell^{\infty}(A) / c_{0}(A)
$$

Asymptotic sequence algebras

Given a (Banach) C^{*}-algebra A let $c_{0}(A)$ be the space of sequences $\left(a_{n}\right)$ in A with $\lim _{n}\left\|a_{n}\right\|=0$, endowed with the pointwise algebra operations:

$$
\left(a_{n}\right)+\left(b_{n}\right)=\left(a_{n}+b_{n}\right), \quad\left(a_{n}\right)\left(b_{n}\right)=\left(a_{n} b_{n}\right)
$$

The multiplier algebra of $c_{0}(A)$ is $\ell^{\infty}(A)$, the space of all bounded sequences.
The corona of $c_{0}(A)$ is the "asymptotic sequence algebra"

$$
\operatorname{Asy}(A)=\ell^{\infty}(A) / c_{0}(A)
$$

(We can also let A vary, leading to $\operatorname{Asy}\left(\left(A_{n}\right)\right)=\ell^{\infty}\left(\left(A_{n}\right)\right) / c_{0}\left(\left(A_{n}\right)\right)$.)

Typical application

Here A, H, K are separable.

Theorem (Voiculescu)

Let $A \subseteq \mathcal{B}(H)$ and let $\pi: A \rightarrow \mathcal{B}(K)$ be a non-degenerate representation with $\pi(A \cap \mathcal{K}(H))=\{0\}$. Then there is a sequence of unitaries $u_{n}: H \oplus K \rightarrow H$ with:
(1) $\lim _{n}\left\|a-u_{n}(a \oplus \pi(a)) u_{n}^{*}\right\|=0$ for $a \in A$;
(2) $a-u_{n}(a \oplus \pi(a)) u_{n}^{*} \in \mathcal{K}(H)$ for $a \in A$.

So id and id $\oplus \pi$ are unitarily equivalent "in the limit".

Typical application continued

Let $\pi: \mathcal{B}(K) \rightarrow \mathcal{C}(K)=\mathcal{B}(K) / \mathcal{K}(K)$ be the quotient onto the Calkin algebra.

Corollary

Let π_{1} and π_{2} be representations of A with

$$
\operatorname{ker} \pi_{1}=\operatorname{ker} \pi_{2}=\operatorname{ker} \pi \pi_{1}=\operatorname{ker} \pi \pi_{2}
$$

(That is, the images of π_{1} and π_{2} contain no non-zero compact operators.)
Then there is a sequence of unitaries (u_{n}) with
$\lim _{n}\left\|\pi_{1}(a)-u_{n} \pi_{2}(a) u_{n}^{*}\right\|=0$ for $a \in A$.

Abstract key idea

Let A, B be C^{*}-algebras.

Definition

Two maps $\psi, \phi: A \rightarrow B$ are approximately unitarily equivalent if there is a sequence of unitaries $\left(u_{n}\right)$ in $M(B)$ with

$$
\left\|\phi(a)-u_{n} \psi(a) u_{n}^{*}\right\| \rightarrow 0 \quad(a \in A)
$$

- Let $\iota_{B}: B \rightarrow \ell^{\infty}(B)$ be the "diagonal embedding" which sends $b \in B$ to the constant sequence (b).
- The above definitions becomes that there is $u \in \ell^{\infty}(B)$ unitary with $\iota_{B}(\phi(a))-u \iota_{B}(\psi(b)) u^{*} \in c_{0}(B)$ for $a \in A$.
- Or equivalently $\iota_{B}(\phi(a))=u \iota_{B}(\psi(b)) u^{*}$ in $\operatorname{Asy}(B)=\ell^{\infty}(B) / c_{0}(B)$, for $a \in A$.

Abstract key idea

Let A, B be C^{*}-algebras.

Definition

Two maps $\psi, \phi: A \rightarrow B$ are approximately unitarily equivalent if there is a sequence of unitaries $\left(u_{n}\right)$ in $M(B)$ with

$$
\left\|\phi(a)-u_{n} \psi(a) u_{n}^{*}\right\| \rightarrow 0 \quad(a \in A)
$$

- Let $\mathfrak{l}_{B}: B \rightarrow \ell^{\infty}(B)$ be the "diagonal embedding" which sends $b \in B$ to the constant sequence (b).
- The above definitions becomes that there is $u \in \ell^{\infty}(B)$ unitary with $\iota_{B}(\phi(a))-u \iota_{B}(\psi(b)) u^{*} \in c_{0}(B)$ for $a \in A$.
- Or equivalently $\iota_{B}(\phi(a))=u \iota_{B}(\psi(b)) u^{*}$ in $\operatorname{Asy}(B)=\ell^{\infty}(B) / c_{0}(B)$, for $a \in A$.

Abstract key idea

Let A, B be C^{*}-algebras.

Definition

Two maps $\psi, \phi: A \rightarrow B$ are approximately unitarily equivalent if there is a sequence of unitaries $\left(u_{n}\right)$ in $M(B)$ with

$$
\left\|\phi(a)-u_{n} \psi(a) u_{n}^{*}\right\| \rightarrow 0 \quad(a \in A)
$$

- Let $\mathfrak{l}_{B}: B \rightarrow \ell^{\infty}(B)$ be the "diagonal embedding" which sends $b \in B$ to the constant sequence (b).
- The above definitions becomes that there is $u \in \ell^{\infty}(B)$ unitary with $\iota_{B}(\phi(a))-u \iota_{B}(\psi(b)) u^{*} \in c_{0}(B)$ for $a \in A$.

Abstract key idea

Let A, B be C^{*}-algebras.

Definition

Two maps $\psi, \phi: A \rightarrow B$ are approximately unitarily equivalent if there is a sequence of unitaries $\left(u_{n}\right)$ in $M(B)$ with

$$
\left\|\phi(a)-u_{n} \psi(a) u_{n}^{*}\right\| \rightarrow 0 \quad(a \in A)
$$

- Let $\mathfrak{l}_{B}: B \rightarrow \ell^{\infty}(B)$ be the "diagonal embedding" which sends $b \in B$ to the constant sequence (b).
- The above definitions becomes that there is $u \in \ell^{\infty}(B)$ unitary with $\iota_{B}(\phi(a))-u \iota_{B}(\psi(b)) u^{*} \in c_{0}(B)$ for $a \in A$.
- Or equivalently $\iota_{B}(\phi(a))=u \iota_{B}(\psi(b)) u^{*}$ in $\operatorname{Asy}(B)=\ell^{\infty}(B) / c_{0}(B)$, for $a \in A$.

Slogan

Asy (A) is a construct to convert "approximate relations" into "exact relations".

Proposition (Gabe)
Two maps $\psi, \phi: A \rightarrow \operatorname{Asy}(B)$ are approximately unitarily equivalent if and only if they are unitarily equivalent.

A "diagonal" argument.

Slogan

$\operatorname{Asy}(A)$ is a construct to convert "approximate relations" into "exact relations".

Proposition (Gabe)

Two maps $\psi, \phi: A \rightarrow \operatorname{Asy}(B)$ are approximately unitarily equivalent if and only if they are unitarily equivalent.

Proof.

A "diagonal" argument.

A bit of set theory

A filter \mathcal{F} on a set I is a non-empty collection of subsets of I with:
(1) If $A, B \in \mathcal{F}$ then $A \cap B \in \mathcal{F}$;
(2) If $A \in \mathcal{F}$ and $A \subseteq B$ then $B \in \mathcal{F}$.

- $\emptyset \notin \mathcal{F}$ (this ensure $\mathcal{F} \neq 2^{I}$).

Example

The Fréchet Filter is the collection of all cofinite subsets of I; that is $A \in \mathcal{F}$ if and only if $I \backslash A$ is finite.

Let \mathcal{F} be the Fréchet Filter on \mathbb{N}. Consider the condition on $\left(a_{n}\right) \in \ell^{\infty}(A)$ that

$$
\forall \epsilon>0, \quad\left\{n:\left\|a_{n}\right\|<\epsilon\right\} \in \mathcal{F} .
$$

This is clearly equivalent to $\left(a_{n}\right) \in c_{0}(A)$.

A bit of set theory

A filter \mathcal{F} on a set I is a non-empty collection of subsets of I with:
(1) If $A, B \in \mathcal{F}$ then $A \cap B \in \mathcal{F}$;
(2) If $A \in \mathcal{F}$ and $A \subseteq B$ then $B \in \mathcal{F}$.

- $\emptyset \notin \mathcal{F}$ (this ensure $\mathcal{F} \neq 2^{I}$).

Example

The Fréchet Filter is the collection of all cofinite subsets of I; that is $A \in \mathcal{F}$ if and only if $I \backslash A$ is finite.

Let \mathcal{F} be the Fréchet Filter on \mathbb{N}. Consider the condition on $\left(a_{n}\right) \in \ell^{\infty}(A)$ that
\square

A bit of set theory

A filter \mathcal{F} on a set I is a non-empty collection of subsets of I with:
(1) If $A, B \in \mathcal{F}$ then $A \cap B \in \mathcal{F}$;
(2) If $A \in \mathcal{F}$ and $A \subseteq B$ then $B \in \mathcal{F}$.

- $\emptyset \notin \mathcal{F}$ (this ensure $\mathcal{F} \neq 2^{I}$).

Example

The Fréchet Filter is the collection of all cofinite subsets of I; that is $A \in \mathcal{F}$ if and only if $I \backslash A$ is finite.

Let \mathcal{F} be the Fréchet Filter on \mathbb{N}. Consider the condition on $\left(a_{n}\right) \in \ell^{\infty}(A)$ that

$$
\forall \epsilon>0, \quad\left\{n:\left\|a_{n}\right\|<\epsilon\right\} \in \mathcal{F} .
$$

This is clearly equivalent to $\left(a_{n}\right) \in c_{0}(A)$.

Ultrafilters

The collection of filters on a set I is partially ordered by inclusions.
Zorn's Lemma ensures that there are maximal filters, which are called ultrafilters.

\square

Ultrafilters

The collection of filters on a set I is partially ordered by inclusions.
Zorn's Lemma ensures that there are maximal filters, which are called ultrafilters.

Lemma

A filter \mathcal{U} on I is an ultrafilter if and only if for each $A \subseteq I$ either $A \in \mathcal{U}$ or $I \backslash A \in \mathcal{U}$.

Ultrafilters

The collection of filters on a set I is partially ordered by inclusions.
Zorn's Lemma ensures that there are maximal filters, which are called ultrafilters.

Lemma

A filter \mathcal{U} on I is an ultrafilter if and only if for each $A \subseteq I$ either $A \in \mathcal{U}$ or $I \backslash A \in \mathcal{U}$.

- For example, for $i_{0} \in I$ the principle ultrafilter at i_{0} is $\left\{A \subseteq I: i_{0} \in A\right\}$.
- Use Zorn's Lemma to find a maximal filter which contains the
Fréchet Filter. This ultrafilter is not principle.
Fix an ultrafilter \mathcal{U}. If $\left(a_{i}\right)_{i \in I}$ is a bounded sequence in \mathbb{R} then a
compactness argument shows that there is a (unique) $t \in \mathbb{R}$ such that

Ultrafilters

The collection of filters on a set I is partially ordered by inclusions.
Zorn's Lemma ensures that there are maximal filters, which are called ultrafilters.

Lemma

A filter \mathcal{U} on I is an ultrafilter if and only if for each $A \subseteq I$ either $A \in \mathcal{U}$ or $I \backslash A \in \mathcal{U}$.

- For example, for $i_{0} \in I$ the principle ultrafilter at i_{0} is $\left\{A \subseteq I: i_{0} \in A\right\}$.
- Use Zorn's Lemma to find a maximal filter which contains the Fréchet Filter. This ultrafilter is not principle.
compactness argument shows that there is a (unique) $t \in \mathbb{R}$ such that

Ultrafilters

The collection of filters on a set I is partially ordered by inclusions.
Zorn's Lemma ensures that there are maximal filters, which are called ultrafilters.

Lemma

A filter \mathcal{U} on I is an ultrafilter if and only if for each $A \subseteq I$ either $A \in \mathcal{U}$ or $I \backslash A \in \mathcal{U}$.

- For example, for $i_{0} \in I$ the principle ultrafilter at i_{0} is $\left\{A \subseteq I: i_{0} \in A\right\}$.
- Use Zorn's Lemma to find a maximal filter which contains the Fréchet Filter. This ultrafilter is not principle.
Fix an ultrafilter \mathcal{U}. If $\left(a_{i}\right)_{i \in I}$ is a bounded sequence in \mathbb{R} then a compactness argument shows that there is a (unique) $t \in \mathbb{R}$ such that

$$
\forall \epsilon>0, \quad\left\{i:\left|a_{i}-t\right|<\epsilon\right\} \in \mathcal{U}
$$

Write $t=\lim _{i \rightarrow \mathcal{U}} a_{i}$.

Ultrapowers

For any filter \mathcal{F} define $(A)_{\mathcal{F}}$ to be the quotient of $\ell^{\infty}(A)$ by those sequences $\left(a_{n}\right)$ with

$$
\forall \epsilon>0, \quad\left\{n:\left\|a_{n}\right\|<\epsilon\right\} \in \mathcal{F} .
$$

Definition
Let \mathcal{U} be a non-principle ultrafilter (on \mathbb{N}). The ultrapower of a Banach space E is $(E) \mathcal{U}$.
Equivalently, this is $\ell^{\infty}(E)$ with the semi-norm

$$
\left\|\left(a_{n}\right)\right\|=\lim _{n \rightarrow \mathcal{U}}\left\|a_{n}\right\|
$$

One can show that $(E)_{\mathcal{U}}$ is complete.

Ultrapowers

For any filter \mathcal{F} define $(A)_{\mathcal{F}}$ to be the quotient of $\ell^{\infty}(A)$ by those sequences $\left(a_{n}\right)$ with

$$
\forall \epsilon>0, \quad\left\{n:\left\|a_{n}\right\|<\epsilon\right\} \in \mathcal{F} .
$$

Definition

Let \mathcal{U} be a non-principle ultrafilter (on \mathbb{N}). The ultrapower of a Banach space E is $(E)_{\mathcal{U}}$.
Equivalently, this is $\ell^{\infty}(E)$ with the semi-norm

$$
\left\|\left(a_{n}\right)\right\|=\lim _{n \rightarrow \mathcal{U}}\left\|a_{n}\right\|
$$

One can show that $(E)_{\mathcal{U}}$ is complete.

Ultrapowers of Hilbert spaces

Consider defining a sesquilinear form on $(H)_{\mathcal{U}}$ by

$$
\left(\left(a_{n}\right) \mid\left(b_{n}\right)\right)=\lim _{n \rightarrow \mathcal{U}}\left(a_{n} \mid b_{n}\right)
$$

- This is well-defined as if $\left(a_{n}\right)=0$ in the quotient $(E)_{\mathcal{U}}$ then $\lim _{n \rightarrow \mathcal{U}}\left\|a_{n}\right\|=0$ and so $\lim _{n \rightarrow \mathcal{U}}\left(a_{n} \mid b_{n}\right)=0$ for any $\left(b_{n}\right)$.
- Clearly sesquilinear.
- The induced seminorm is a norm, because of the norm on $(H)_{\mathcal{U}}$
- $S o(H)_{\mathcal{U}}$ is a Hilbert space.

Contrast this $\operatorname{Asy}(H)=\ell^{\infty}(H) / c_{0}(H)$.

Ultrapowers of Hilbert spaces

Consider defining a sesquilinear form on $(H)_{\mathcal{U}}$ by

$$
\left(\left(a_{n}\right) \mid\left(b_{n}\right)\right)=\lim _{n \rightarrow \mathcal{U}}\left(a_{n} \mid b_{n}\right)
$$

- This is well-defined as if $\left(a_{n}\right)=0$ in the quotient $(E)_{\mathcal{U}}$ then $\lim _{n \rightarrow \mathcal{U}}\left\|a_{n}\right\|=0$ and so $\lim _{n \rightarrow \mathcal{U}}\left(a_{n} \mid b_{n}\right)=0$ for any $\left(b_{n}\right)$.
- Clearly sesquilinear.
- The induced seminorm is a norm, because of the norm on $(H)_{\mathcal{U}}$
- So $(H)_{\mathcal{U}}$ is a Hilbert space.

Contrast this $\operatorname{Asy}(H)=\ell^{\infty}(H) / c_{0}(H)$.

Ultrapowers of Hilbert spaces

Consider defining a sesquilinear form on $(H)_{\mathcal{U}}$ by

$$
\left(\left(a_{n}\right) \mid\left(b_{n}\right)\right)=\lim _{n \rightarrow \mathcal{U}}\left(a_{n} \mid b_{n}\right)
$$

- This is well-defined as if $\left(a_{n}\right)=0$ in the quotient $(E)_{\mathcal{U}}$ then $\lim _{n \rightarrow \mathcal{U}}\left\|a_{n}\right\|=0$ and so $\lim _{n \rightarrow \mathcal{U}}\left(a_{n} \mid b_{n}\right)=0$ for any $\left(b_{n}\right)$.
- Clearly sesquilinear.
- The induced seminorm is a norm, because of the norm on $(H)_{\mathcal{U}}$
- $S o(H)_{\mathcal{U}}$ is a Hilbert space.

Contrast this $\operatorname{Asy}(H)=\ell^{\infty}(H) / c_{0}(H)$.

Ultrapowers of Hilbert spaces

Consider defining a sesquilinear form on $(H)_{\mathcal{U}}$ by

$$
\left(\left(a_{n}\right) \mid\left(b_{n}\right)\right)=\lim _{n \rightarrow \mathcal{U}}\left(a_{n} \mid b_{n}\right)
$$

- This is well-defined as if $\left(a_{n}\right)=0$ in the quotient $(E)_{\mathcal{U}}$ then $\lim _{n \rightarrow \mathcal{U}}\left\|a_{n}\right\|=0$ and so $\lim _{n \rightarrow \mathcal{U}}\left(a_{n} \mid b_{n}\right)=0$ for any $\left(b_{n}\right)$.
- Clearly sesquilinear.
- The induced seminorm is a norm, because of the norm on $(H)_{\mathcal{U}}$
- So $(H)_{\mathcal{U}}$ is a Hilbert space.

Contrast this Asy $(H)=\ell^{\infty}(H) / c_{0}(H)$.

Ultrapowers of Hilbert spaces

Consider defining a sesquilinear form on $(H)_{\mathcal{U}}$ by

$$
\left(\left(a_{n}\right) \mid\left(b_{n}\right)\right)=\lim _{n \rightarrow \mathcal{U}}\left(a_{n} \mid b_{n}\right)
$$

- This is well-defined as if $\left(a_{n}\right)=0$ in the quotient $(E)_{\mathcal{U}}$ then $\lim _{n \rightarrow \mathcal{U}}\left\|a_{n}\right\|=0$ and so $\lim _{n \rightarrow \mathcal{U}}\left(a_{n} \mid b_{n}\right)=0$ for any $\left(b_{n}\right)$.
- Clearly sesquilinear.
- The induced seminorm is a norm, because of the norm on $(H)_{\mathcal{U}}$
- So $(H)_{\mathcal{U}}$ is a Hilbert space.

Contrast this $\operatorname{Asy}(H)=\ell^{\infty}(H) / c_{0}(H)$.

Unital algebras

This is joint work with Bence Horváth. Fix a Banach algebra A.

Question

When is $(A)_{\mathcal{U}}$, or $\operatorname{Asy}(A)$, unital?

- If A is unital, under the diagonal embedding $A \rightarrow(A)_{\mathcal{U}}$, the unit becomes a unit for $\operatorname{Asy}(A)$.
- Conversely, let $e \in \operatorname{Asy}(A)$ be a unit for A. This has a representative $\left(e_{n}\right) \in \ell^{\infty}(A)$, which satisfies

- By picking $\left(a_{n}\right)$ suitably, this shows that, for example, $\lim \sup \left\{\left\|e_{n} a-a\right\|: a \in A,\|a\| \leq 1\right\}=0$.

Unital algebras

This is joint work with Bence Horváth. Fix a Banach algebra A.

Question

When is $(A)_{\mathcal{U}}$, or $\operatorname{Asy}(A)$, unital?

- If A is unital, under the diagonal embedding $A \rightarrow(A)_{\mathcal{U}}$, the unit becomes a unit for $\operatorname{Asy}(A)$.
- Conversely, let $e \in \operatorname{Asy}(A)$ be a unit for A. This has a representative $\left(e_{n}\right) \in \ell^{\infty}(A)$, which satisfies
- By picking $\left(a_{n}\right)$ suitably, this shows that, for example,
$11 \mathrm{msup}\left\{\left\|e_{n} a-a\right\|: a \in A,\|a\| \leq 1\right\}=0$.

Unital algebras

This is joint work with Bence Horváth. Fix a Banach algebra A.

Question

When is $(A)_{\mathcal{U}}$, or $\operatorname{Asy}(A)$, unital?

- If A is unital, under the diagonal embedding $A \rightarrow(A)_{\mathcal{U}}$, the unit becomes a unit for $\operatorname{Asy}(A)$.
- Conversely, let $e \in \operatorname{Asy}(A)$ be a unit for A. This has a representative $\left(e_{n}\right) \in \ell^{\infty}(A)$, which satisfies

$$
\lim _{n}\left\|e_{n} a_{n}-a_{n}\right\|=0, \quad \lim _{n}\left\|a_{n} e_{n}-a_{n}\right\|=0 \quad\left(\left(a_{n}\right) \in \ell^{\infty}(A)\right)
$$

- By picking $\left(a_{n}\right)$ suitably, this shows that, for example,

Unital algebras

This is joint work with Bence Horváth. Fix a Banach algebra A.

Question

When is $(A)_{\mathcal{U}}$, or $\operatorname{Asy}(A)$, unital?

- If A is unital, under the diagonal embedding $A \rightarrow(A)_{\mathcal{U}}$, the unit becomes a unit for $\operatorname{Asy}(A)$.
- Conversely, let $e \in \operatorname{Asy}(A)$ be a unit for A. This has a representative $\left(e_{n}\right) \in \ell^{\infty}(A)$, which satisfies

$$
\lim _{n}\left\|e_{n} a_{n}-a_{n}\right\|=0, \quad \lim _{n}\left\|a_{n} e_{n}-a_{n}\right\|=0 \quad\left(\left(a_{n}\right) \in \ell^{\infty}(A)\right)
$$

- By picking (a_{n}) suitably, this shows that, for example,

$$
\lim _{n} \sup \left\{\left\|e_{n} a-a\right\|: a \in A,\|a\| \leq 1\right\}=0
$$

Unital algebras cont.

$$
\lim _{n} \sup \left\{\left\|e_{n} a-a\right\|,\left\|a e_{n}-a\right\|: a \in A,\|a\| \leq 1\right\}=0
$$

- Extract a subsequence $\left(e_{n}\right)$ with $\left\|e_{n} a-a\right\|,\left\|a e_{n}-a\right\| \leq \frac{1}{n}\|a\|$ for $a \in A$.
- We can also arrange that e.g. $\left\|e_{n}\right\| \leq 2\left\|\left(a_{n}\right)\right\|_{\text {Asy }}=K$ say.
- Thus $\left\|e_{n}-e_{m}\right\| \leq\left\|e_{n}-e_{n} e_{m}\right\|+\left\|e_{n} e_{m}-e_{m}\right\| \leq K\left(\frac{1}{m}+\frac{1}{n}\right)$.
- So $\left(e_{n}\right)$ is Cauchy in A, so converges in A, say to e. Clearly e is a unit.

Unital algebras cont.

$$
\lim _{n} \sup \left\{\left\|e_{n} a-a\right\|,\left\|a e_{n}-a\right\|: a \in A,\|a\| \leq 1\right\}=0
$$

- Extract a subsequence $\left(e_{n}\right)$ with $\left\|e_{n} a-a\right\|,\left\|a e_{n}-a\right\| \leq \frac{1}{n}\|a\|$ for $a \in A$.
- We can also arrange that e.g. $\left\|e_{n}\right\| \leq 2\left\|\left(a_{n}\right)\right\|_{\text {Asy }}=K$ say.
- Thus $\left\|e_{n}-e_{m}\right\| \leq\left\|e_{n}-e_{n} e_{m}\right\|+\left\|e_{n} e_{m}-e_{m}\right\| \leq K\left(\frac{1}{m}+\frac{1}{n}\right)$.
- So $\left(e_{n}\right)$ is Cauchy in A, so converges in A, say to e. Clearly e is a unit.

Unital algebras cont.

$$
\lim _{n} \sup \left\{\left\|e_{n} a-a\right\|,\left\|a e_{n}-a\right\|: a \in A,\|a\| \leq 1\right\}=0
$$

- Extract a subsequence $\left(e_{n}\right)$ with $\left\|e_{n} a-a\right\|,\left\|a e_{n}-a\right\| \leq \frac{1}{n}\|a\|$ for $a \in A$.
- We can also arrange that e.g. $\left\|e_{n}\right\| \leq 2\left\|\left(a_{n}\right)\right\|_{\text {Asy }}=K$ say.
- Thus $\left\|e_{n}-e_{m}\right\| \leq\left\|e_{n}-e_{n} e_{m}\right\|+\left\|e_{n} e_{m}-e_{m}\right\| \leq K\left(\frac{1}{m}+\frac{1}{n}\right)$
- So $\left(e_{n}\right)$ is Cauchy in A, so converges in A, say to e. Clearly e is a unit.

Unital algebras cont.

$$
\lim _{n} \sup \left\{\left\|e_{n} a-a\right\|,\left\|a e_{n}-a\right\|: a \in A,\|a\| \leq 1\right\}=0
$$

- Extract a subsequence $\left(e_{n}\right)$ with $\left\|e_{n} a-a\right\|,\left\|a e_{n}-a\right\| \leq \frac{1}{n}\|a\|$ for $a \in A$.
- We can also arrange that e.g. $\left\|e_{n}\right\| \leq 2\left\|\left(a_{n}\right)\right\|_{\text {Asy }}=K$ say.
- Thus $\left\|e_{n}-e_{m}\right\| \leq\left\|e_{n}-e_{n} e_{m}\right\|+\left\|e_{n} e_{m}-e_{m}\right\| \leq K\left(\frac{1}{m}+\frac{1}{n}\right)$.
- So $\left(e_{n}\right)$ is Cauchy in A, so converges in A, say to e. Clearly e is a unit.

Unital algebras cont.

$$
\lim _{n} \sup \left\{\left\|e_{n} a-a\right\|,\left\|a e_{n}-a\right\|: a \in A,\|a\| \leq 1\right\}=0
$$

- Extract a subsequence $\left(e_{n}\right)$ with $\left\|e_{n} a-a\right\|,\left\|a e_{n}-a\right\| \leq \frac{1}{n}\|a\|$ for $a \in A$.
- We can also arrange that e.g. $\left\|e_{n}\right\| \leq 2\left\|\left(a_{n}\right)\right\|_{\text {Asy }}=K$ say.
- Thus $\left\|e_{n}-e_{m}\right\| \leq\left\|e_{n}-e_{n} e_{m}\right\|+\left\|e_{n} e_{m}-e_{m}\right\| \leq K\left(\frac{1}{m}+\frac{1}{n}\right)$.
- So $\left(e_{n}\right)$ is Cauchy in A, so converges in A, say to e. Clearly e is a unit.

The argument for an ultrapower is similar, just with more bookkeeping.

Unital algebras cont.

$$
\lim _{n} \sup \left\{\left\|e_{n} a-a\right\|,\left\|a e_{n}-a\right\|: a \in A,\|a\| \leq 1\right\}=0
$$

- Extract a subsequence $\left(e_{n}\right)$ with $\left\|e_{n} a-a\right\|,\left\|a e_{n}-a\right\| \leq \frac{1}{n}\|a\|$ for $a \in A$.
- We can also arrange that e.g. $\left\|e_{n}\right\| \leq 2\left\|\left(a_{n}\right)\right\|_{\text {Asy }}=K$ say.
- Thus $\left\|e_{n}-e_{m}\right\| \leq\left\|e_{n}-e_{n} e_{m}\right\|+\left\|e_{n} e_{m}-e_{m}\right\| \leq K\left(\frac{1}{m}+\frac{1}{n}\right)$.
- So $\left(e_{n}\right)$ is Cauchy in A, so converges in A, say to e. Clearly e is a unit.

The argument for an ultrapower is similar, just with more bookkeeping.

Some model theory 1

[Health warning: I am not a model theorist!] Classical model theory deals with "models" of theories in a formal language.

```
Example
What is a group? The "language" is usually taken to be the binary
product (_) > (_), the unary inverse (_)}\mp@subsup{)}{}{-1}\mathrm{ , and a distinguished constant
1.
A "formula" is constructed inductively using the language and first
order logic (so }\forall,\exists\mathrm{ , and, or, not).
A "structure" is a set G with an "interpretation" of the product,
inverse and 1 (so just a binary map and a unary map, and a constant
1\inG). A formula may or may not be true in the structure.
```


Some model theory 1

[Health warning: I am not a model theorist!]
Classical model theory deals with "models" of theories in a formal language.

Example

What is a group? The "language" is usually taken to be the binary product ()$) \times()_{\text {) , the unary inverse }}()^{-1}$, and a distinguished constant 1.

A "formula" is constructed inductively using the language and first order logic (so \forall, \exists, and, or, not).
A "structure" is a set G with an "interpretation" of the product, inverse and 1 (so just a binary map and a unary map, and a constant $1 \in G)$. A formula may or may not be true in the structure.

Some model theory 2

Example

The "theory" of groups is the usual group axioms:
(1) $\forall g \forall h \forall k, g \times(h \times k)=(g \times h) \times k$;
() $\forall g, g^{-1} \times g=g \times g^{-1}=1$;

- $\forall g, g \times 1=1 \times g=g$.

A structure G that satisfies these axioms is indeed a group.

> There is a notion of ultrapower; £os's Theorem then tells us that a formula is true in an ultrapower if and only if it is true in the original structure.

Some model theory 2

Example

The "theory" of groups is the usual group axioms:
(1) $\forall g \forall h \forall k, g \times(h \times k)=(g \times h) \times k$;
() $\forall g, g^{-1} \times g=g \times g^{-1}=1$;

- $\forall g, g \times 1=1 \times g=g$.

A structure G that satisfies these axioms is indeed a group.
There is a notion of ultrapower; formula is true in an ultrapower if and only if it is true in the original structure.

Some model theory 2

Example

The "theory" of groups is the usual group axioms:
(1) $\forall g \forall h \forall k, g \times(h \times k)=(g \times h) \times k$;
() $\forall g, g^{-1} \times g=g \times g^{-1}=1$;

- $\forall g, g \times 1=1 \times g=g$.

A structure G that satisfies these axioms is indeed a group.
There is a notion of ultrapower; Łos's Theorem then tells us that a formula is true in an ultrapower if and only if it is true in the original structure.

Metric Model theory 1

Analysis is not a first-order theory; so model theory doesn't apply, right?
To get around this, one can consider "metric model theory". The language is now:

- A collection of "domains" (which will be bounded subsets of a metric space) and a privileged "relation" d (which will be the metric);
- Functions (which will be uniformly continuous functions) together with a uniform continuity modulus, one for each possible choice of domain;
- Relations (uniformly continuous functions into a bounded subset of the reals)

Metric Model theory 1

Analysis is not a first-order theory; so model theory doesn't apply, right?
To get around this, one can consider "metric model theory". The language is now:

- A collection of "domains" (which will be bounded subsets of a metric space) and a privileged "relation" d (which will be the metric);
- Functions (which will be uniformly continuous functions) together with a uniform continuity modulus, one for each possible choice of domain;
- Relations (uniformly continuous functions into a bounded subset of the reals)

Metric Model theory 1

Analysis is not a first-order theory; so model theory doesn't apply, right?
To get around this, one can consider "metric model theory". The language is now:

- A collection of "domains" (which will be bounded subsets of a metric space) and a privileged "relation" d (which will be the metric);
- Functions (which will be uniformly continuous functions) together with a uniform continuity modulus, one for each possible choice of domain;
- Relations (uniformly continuous functions into a bounded subset of the reals)

Metric Model theory 1

Analysis is not a first-order theory; so model theory doesn't apply, right?
To get around this, one can consider "metric model theory". The language is now:

- A collection of "domains" (which will be bounded subsets of a metric space) and a privileged "relation" d (which will be the metric);
- Functions (which will be uniformly continuous functions) together with a uniform continuity modulus, one for each possible choice of domain;
- Relations (uniformly continuous functions into a bounded subset of the reals)

Metric Model theory 1

Analysis is not a first-order theory; so model theory doesn't apply, right?
To get around this, one can consider "metric model theory". The language is now:

- A collection of "domains" (which will be bounded subsets of a metric space) and a privileged "relation" d (which will be the metric);
- Functions (which will be uniformly continuous functions) together with a uniform continuity modulus, one for each possible choice of domain;
- Relations (uniformly continuous functions into a bounded subset of the reals)

Metric Model theory: C^{*}-algebras

The language of C^{*}-algebras will be:

- Domains B_{n} which will be the ball of radius $n \in \mathbb{N}$, and metric $d(a, b)=\|a-b\|$;
- A constant (a constant function) $0 \in B_{1}$;
- For every $\lambda \in \mathbb{C}$ a function $B_{n} \rightarrow B_{m}$ which will be scalar multiplication;
- A unary function $*: B_{n} \rightarrow B_{n}$ (which will be involution);
- Binary functions + and . (from suitable B_{n} to B_{m}) which will be addition and multiplication.
A "structure" is then just a metric space with subsets B_{n} and functions, which only need to satisfy that the functions have the correct uniform continuity bounds.

Metric Model theory: C^{*}-algebras

The language of C^{*}-algebras will be:

- Domains B_{n} which will be the ball of radius $n \in \mathbb{N}$, and metric $d(a, b)=\|a-b\|$;
- A constant (a constant function) $0 \in B_{1}$;
- For every $\lambda \in \mathbb{C}$ a function $B_{n} \rightarrow B_{m}$ which will be scalar multiplication;
- A unary function $*: B_{n} \rightarrow B_{n}$ (which will be involution);
- Binary functions + and. (from suitable B_{n} to B_{m}) which will be addition and multiplication.
A "structure" is then just a metric space with subsets B_{n} and functions, which only need to satisfy that the functions have the correct uniform continuity bounds.

Metric Model theory: C^{*}-algebras cont.

We can now write down the "axioms" to be a C^{*}-algebra:

- Axioms to be a vector space over \mathbb{C};
- To be a \mathbb{C}-algebra;
- Axioms for the involution;
- $d(x, y)=d(x-y, 0)$ (we define $\|x\|=d(x, 0)$).
- $\|x y\| \leq\|x\|\|y\|$ and $\|\lambda x\|=|\lambda|\|x\|$;
- $\left\|x^{*} x\right\|=\|x\|^{2}$;
- $\sup _{a \in B_{1}}\|a\| \leq 1$.

Metric Model theory: C^{*}-algebras cont.

We can now write down the "axioms" to be a C^{*}-algebra:

- Axioms to be a vector space over \mathbb{C};
- To be a \mathbb{C}-algebra;
- Axioms for the involution;
- $d(x, y)=d(x-y, 0)$ (we define $\|x\|=d(x, 0)$).
- $\|x y\| \leq\|x\|\|y\|$ and $\|\lambda x\|=|\lambda|\|x\|$;
- $\left\|x^{*} x\right\|=\|x\|^{2}$;
- $\sup _{a \in B_{1}}\|a\| \leq 1$.

Where did sup come from? We cannot use first-order logic; the formulas are built inductively using relations and functions from the language, together with uniformly continuous functions on \mathbb{R}^{n}, and sup and inf.

Metric Model theory: C^{*}-algebras cont.

These axioms are not enough to ensure that B_{1} is equal to the ball $\{a \in A:\|a\| \leq 1\}$. To get this, we have to play some tricks by forcing *-polynomials to have the correct domains and codomains: see Farah, Hart, Sherman.
Can also perform another trick for a Banach space / algebra.

- We can form ultrapowers; these agree with our previous notion.
- Łoś's Theorem still holds.

So we can immediately show that $(A) u$ is unital if and only if A is unital, right?
Well, we cannot quantify with \exists or \forall, so this cannot work:

$$
\exists e \in A, \forall a \in A, \quad e a=a e=a
$$

Metric Model theory: C^{*}-algebras cont.

These axioms are not enough to ensure that B_{1} is equal to the ball $\{a \in A:\|a\| \leq 1\}$. To get this, we have to play some tricks by forcing *-polynomials to have the correct domains and codomains: see Farah, Hart, Sherman.
Can also perform another trick for a Banach space / algebra.

- We can form ultrapowers; these agree with our previous notion.
- Łoś's Theorem still holds.

So we can immediately show that $(A)_{\mathcal{U}}$ is unital if and only if A is unital, right?
Well, we cannot quantify with \exists or \forall, so this cannot work:
$\exists e \in A, \forall a \in A, \quad e a=a e=a$.

Metric Model theory: C^{*}-algebras cont.

These axioms are not enough to ensure that B_{1} is equal to the ball $\{a \in A:\|a\| \leq 1\}$. To get this, we have to play some tricks by forcing *-polynomials to have the correct domains and codomains: see Farah, Hart, Sherman.
Can also perform another trick for a Banach space / algebra.

- We can form ultrapowers; these agree with our previous notion.
- Łoś's Theorem still holds.

So we can immediately show that $(A) u$ is unital if and only if A is unital, right?
Well, we cannot quantify with \exists or \forall, so this cannot work:

$$
\exists e \in A, \forall a \in A, \quad e a=a e=a .
$$

Metric Model theory: C^{*}-algebras cont.

These axioms are not enough to ensure that B_{1} is equal to the ball $\{a \in A:\|a\| \leq 1\}$. To get this, we have to play some tricks by forcing *-polynomials to have the correct domains and codomains: see Farah, Hart, Sherman.
Can also perform another trick for a Banach space / algebra.

- We can form ultrapowers; these agree with our previous notion.
- £oś's Theorem still holds.

So we can immediately show that $(A)_{\mathcal{U}}$ is unital if and only if A is unital, right? Well, we cannot quantify with \exists or \forall, so this cannot work:

$$
\exists e \in A, \forall a \in A, \quad e a=a e=a .
$$

Metric Model theory: C^{*}-algebras cont.

These axioms are not enough to ensure that B_{1} is equal to the ball $\{a \in A:\|a\| \leq 1\}$. To get this, we have to play some tricks by forcing *-polynomials to have the correct domains and codomains: see Farah, Hart, Sherman.
Can also perform another trick for a Banach space / algebra.

- We can form ultrapowers; these agree with our previous notion.
- Łoś’s Theorem still holds.

So we can immediately show that $(A)_{\mathcal{U}}$ is unital if and only if A is unital, right? Well, we cannot quantify with \exists or \forall, so this cannot work:

$$
\exists e \in A, \forall a \in A, \quad e a=a e=a .
$$

Metric Model theory: C^{*}-algebras cont.

These axioms are not enough to ensure that B_{1} is equal to the ball $\{a \in A:\|a\| \leq 1\}$. To get this, we have to play some tricks by forcing *-polynomials to have the correct domains and codomains: see Farah, Hart, Sherman.
Can also perform another trick for a Banach space / algebra.

- We can form ultrapowers; these agree with our previous notion.
- Łoś’s Theorem still holds.

So we can immediately show that $(A)_{\mathcal{U}}$ is unital if and only if A is unital, right?
Well, we cannot quantify with \exists or \forall, so this cannot work:
\square

Metric Model theory: C^{*}-algebras cont.

These axioms are not enough to ensure that B_{1} is equal to the ball $\{a \in A:\|a\| \leq 1\}$. To get this, we have to play some tricks by forcing *-polynomials to have the correct domains and codomains: see Farah, Hart, Sherman.
Can also perform another trick for a Banach space / algebra.

- We can form ultrapowers; these agree with our previous notion.
- Łoś's Theorem still holds.

So we can immediately show that $(A)_{\mathcal{U}}$ is unital if and only if A is unital, right?
Well, we cannot quantify with \exists or \forall, so this cannot work:

$$
\exists e \in A, \forall a \in A, e a=a e=a
$$

Back to unital algebras

Proposition

A Banach algebra A is unital if and only if

$$
\inf _{e \in B_{1}} \sup _{a \in B_{1}} \max (\|e a-a\|,\|a e-a\|)=0,
$$

where B_{1} is the unit ball of A.

Proof.

As before, extract a Cauchy sequence $\left(e_{n}\right)$.

> We can then apply モos's Theorem to this. Moral is that we don't actually gain much from the abstract theory: just the ultrafilter bookkeeping is taken care of.

Back to unital algebras

$$
\begin{aligned}
& \text { Proposition } \\
& \text { A Banach algebra } A \text { is unital if and only if } \\
& \qquad \inf _{e \in B_{1}} \sup _{a \in B_{1}} \max (\|e a-a\|,\|a e-a\|)=0 \text {, } \\
& \text { where } B_{1} \text { is the unit ball of } A \text {. }
\end{aligned}
$$

Proof.

As before, extract a Cauchy sequence $\left(e_{n}\right)$.
We can then apply Łos's Theorem to this. Moral is that we don't actually gain much from the abstract theory: just the ultrafilter bookkeeping is taken care of.

Ring-theoretic infiniteness

Definition

$p \in A$ is an idempotent if $p^{2}=p$.
Two idempotents p, q are equivalent, written $p \sim q$, if there are $a, b \in A$ with $p=a b$ and $q=b a$.

Ring-theoretic infiniteness

Definition

$p \in A$ is an idempotent if $p^{2}=p$.
Two idempotents p, q are equivalent, written $p \sim q$, if there are $a, b \in A$ with $p=a b$ and $q=b a$.
[If $q \sim r$, say $q=c d, r=d c$, then $p=p^{2}=a b a b=a q b=(a c)(d b)$ and $(d b)(a c)=d q c=d c d c=r^{2}=r$ so $p \sim r$.]

Ring-theoretic infiniteness

Definition

$p \in A$ is an idempotent if $p^{2}=p$.
Two idempotents p, q are equivalent, written $p \sim q$, if there are $a, b \in A$ with $p=a b$ and $q=b a$.
[If $q \sim r$, say $q=c d, r=d c$, then $p=p^{2}=a b a b=a q b=(a c)(d b)$ and $(d b)(a c)=d q c=d c d c=r^{2}=r$ so $p \sim r$.]

Definition

Let A be a unital algebra. A is Dedekind finite if $p \sim 1$ implies $p=1$.

For C^{*}-algebras

For C^{*}-algebras:

- We typically only consider self-adjoint idempotents $p=p^{*}=p^{2}$, called projections.
- The equivalence we typically use is Murray-von Neumann equivalence, which is that $p=u^{*} u$ and $q=u u^{*}$. This implies that u is a partial isometry. We write $p \approx q$.

These are actually the same concepts as we have defined.

- For any idempotent p there is a projection q with $p \sim q$. In fact, we can choose q with $p q=q$ and $q p=p$.
- If p, q are projections with $p \sim q$ then also $p \approx q$.
- Suppose A is a Dedekind-finite C^{*}-algebra. If $p^{2}=p \sim 1$ then there is a projection q with $q \sim p$, so also $q \sim 1$ so $q \approx 1$ so $q=1$. Then $1=q=p q=p$, so A is Dedekind-finite in our sense.

For C^{*}-algebras

For C^{*}-algebras:

- We typically only consider self-adjoint idempotents $p=p^{*}=p^{2}$, called projections.
- The equivalence we typically use is Murray-von Neumann equivalence, which is that $p=u^{*} u$ and $q=u u^{*}$. This implies that u is a partial isometry. We write $p \approx q$.
These are actually the same concepts as we have defined.
- For any idempotent p there is a projection q with $p \sim q$. In fact, we can choose q with $p q=q$ and $q p=p$.
If p, q are projections with $p \sim q$ then also $p \approx q$.
- Suppose A is a Dedekind-finite C^{*}-algebra. If $p^{2}=p \sim 1$ then there is a projection q with $q \sim p$, so also $q \sim 1$ so $q \approx 1$ so $q=1$. Then $1=q=p q=p$, so A is Dedekind-finite in our sense.

For C^{*}-algebras

For C^{*}-algebras:

- We typically only consider self-adjoint idempotents $p=p^{*}=p^{2}$, called projections.
- The equivalence we typically use is Murray-von Neumann equivalence, which is that $p=u^{*} u$ and $q=u u^{*}$. This implies that u is a partial isometry. We write $p \approx q$.
These are actually the same concepts as we have defined.
- For any idempotent p there is a projection q with $p \sim q$. In fact, we can choose q with $p q=q$ and $q p=p$.
- If p, q are projections with $p \sim q$ then also $p \approx q$.
- Suppose A is a Dedekind-finite C^{*}-algebra. If $p^{2}=p \sim 1$ then there is a projection q with $q \sim p$, so also $q \sim 1$ so $q \approx 1$ so $q=1$. Then $1=q=p q=p$, so A is Dedekind-finite in our sense.

For C^{*}-algebras

For C^{*}-algebras:

- We typically only consider self-adjoint idempotents $p=p^{*}=p^{2}$, called projections.
- The equivalence we typically use is Murray-von Neumann equivalence, which is that $p=u^{*} u$ and $q=u u^{*}$. This implies that u is a partial isometry. We write $p \approx q$.
These are actually the same concepts as we have defined.
- For any idempotent p there is a projection q with $p \sim q$. In fact, we can choose q with $p q=q$ and $q p=p$.
- Suppose A is a Dedekind-finite C^{*}-algebra. If $p^{2}=p \sim 1$ then

For C^{*}-algebras

For C^{*}-algebras:

- We typically only consider self-adjoint idempotents $p=p^{*}=p^{2}$, called projections.
- The equivalence we typically use is Murray-von Neumann equivalence, which is that $p=u^{*} u$ and $q=u u^{*}$. This implies that u is a partial isometry. We write $p \approx q$.
These are actually the same concepts as we have defined.
- For any idempotent p there is a projection q with $p \sim q$. In fact, we can choose q with $p q=q$ and $q p=p$.
- If p, q are projections with $p \sim q$ then also $p \approx q$.

For C^{*}-algebras

For C^{*}-algebras:

- We typically only consider self-adjoint idempotents $p=p^{*}=p^{2}$, called projections.
- The equivalence we typically use is Murray-von Neumann equivalence, which is that $p=u^{*} u$ and $q=u u^{*}$. This implies that u is a partial isometry. We write $p \approx q$.
These are actually the same concepts as we have defined.
- For any idempotent p there is a projection q with $p \sim q$. In fact, we can choose q with $p q=q$ and $q p=p$.
- If p, q are projections with $p \sim q$ then also $p \approx q$.
- Suppose A is a Dedekind-finite C^{*}-algebra. If $p^{2}=p \sim 1$ then there is a projection q with $q \sim p$, so also $q \sim 1$ so $q \approx 1$ so $q=1$. Then $1=q=p q=p$, so A is Dedekind-finite in our sense.

For asymptotic sequence algebras

Theorem
Let A be a unital Banach algebra．If A is Dedekind－finite then so is $\operatorname{Asy}(A)$ ．

```
Proof
Let p
Let (xn) \in\ell⿱一𫝀口
an idempotent in general.
```

Lemma
T.et $a \in \Delta$ with $\left\|a^{2}-a\right\|=t<1 / 4$. There is $p=p^{2}$ with

$$
\|a-p\| \leq f_{\|a\|}(t)=\left(\|a\|+\frac{1}{2}\right)\left((1-4 t)^{-1 / 2}-1\right) .
$$

Further，if $a b=b a$ then also $p b=b p$ ．

For asymptotic sequence algebras

Theorem

Let A be a unital Banach algebra. If A is Dedekind-finite then so is $\operatorname{Asy}(A)$.

Proof.

Let $p^{2}=p \sim 1$ in $\operatorname{Asy}(A)$. We need to show that $p=1$.
Let $\left(x_{n}\right) \in \ell^{\infty}(A)$ be a representative of p. Of course, $\left(x_{n}\right)$ will not be an idempotent in general.

$$
\begin{aligned}
& \text { Lemma } \\
& \text { Let } a \in A \text { with }\left\|a^{2}-a\right\|=t<1 / 4 \text {. There is } p=p^{2} \text { with } \\
& \qquad\|a-p\| \leq f_{\|a\|}(t)=\left(\|a\|+\frac{1}{2}\right)\left((1-4 t)^{-1 / 2}-1\right) . \\
& \text { Further, if } a b=b a \text { then also } p b=b p \text {. }
\end{aligned}
$$

For asymptotic sequence algebras

Theorem

Let A be a unital Banach algebra. If A is Dedekind-finite then so is $\operatorname{Asy}(A)$.

```
Proof.
Let p
```



``` an idempotent in general.

\section*{For asymptotic sequence algebras}

\section*{Theorem}

Let \(A\) be a unital Banach algebra. If \(A\) is Dedekind-finite then so is \(\operatorname{Asy}(A)\).

\section*{Proof.}

Let \(p^{2}=p \sim 1\) in \(\operatorname{Asy}(A)\). We need to show that \(p=1\).
Let \(\left(x_{n}\right) \in \ell^{\infty}(A)\) be a representative of \(p\). Of course, \(\left(x_{n}\right)\) will not be an idempotent in general.

\section*{Lemma}

Let \(a \in A\) with \(\left\|a^{2}-a\right\|=t<1 / 4\). There is \(p=p^{2}\) with
\[
\|a-p\| \leq f_{\|a\|}(t)=\left(\|a\|+\frac{1}{2}\right)\left((1-4 t)^{-1 / 2}-1\right)
\]

Further, if \(a b=b a\) then also \(p b=b p\).

\section*{The proof}
\[
1 \sim p=p^{2} \in \operatorname{Asy}(A)
\]
- \(p=\left(x_{n}\right)+c_{0}(A)\) so for large enough \(n,\left\|x_{n}^{2}-x_{n}\right\|\) is small. So there is \(p_{n}=p_{n}^{2}\) close to \(x_{n}\).
- Then \(\left(p_{n}\right)\) is another representative of \(p\), and now \(\left(p_{n}\right)\) is an idempotent in \(\ell^{\infty}(A)\).
- As \(p \sim 1\) there are \(a=\left(a_{n}\right)\) and \(b=\left(b_{n}\right)\) with \(\left(a_{n} b_{n}-p_{n}\right) \in c_{0}(A)\) and \(\left(b_{n} a_{n}-1\right) \in c_{0}(A)\).
- So eventually \(u_{n}=b_{n} a_{n}\) is invertible. Set \(q_{n}=a_{n} u_{n}^{-1} b_{n}\).
- Then \(q_{n}^{2}=a_{n} u_{n}^{-1} u_{n} u_{n}^{-1} b_{n}=q_{n}\) and \(q_{n} \sim b_{n} a_{n} u_{n}^{-1}=1\) so \(A\) Dedekind-finite implies \(q_{n}=1\).

\section*{The proof}
\[
1 \sim p=p^{2} \in \operatorname{Asy}(A)
\]
- \(p=\left(x_{n}\right)+c_{0}(A)\) so for large enough \(n,\left\|x_{n}^{2}-x_{n}\right\|\) is small. So there is \(p_{n}=p_{n}^{2}\) close to \(x_{n}\).
- Then \(\left(p_{n}\right)\) is another representative of \(p\), and now \(\left(p_{n}\right)\) is an idempotent in \(\ell^{\infty}(A)\).
- As \(p \sim 1\) there are \(a=\left(a_{n}\right)\) and \(b=\left(b_{n}\right)\) with \(\left(a_{n} b_{n}-p_{n}\right) \in c_{0}(A)\) and \(\left(b_{n} a_{n}-1\right) \in c_{0}(A)\).
- So eventually \(u_{n}=b_{n} a_{n}\) is invertible. Set \(q_{n}=a_{n} u_{n}^{-1} b_{n}\).
 Dedekind-finite implies \(q_{n}=1\).

\section*{The proof}
\[
1 \sim p=p^{2} \in \operatorname{Asy}(A)
\]
- \(p=\left(x_{n}\right)+c_{0}(A)\) so for large enough \(n,\left\|x_{n}^{2}-x_{n}\right\|\) is small. So there is \(p_{n}=p_{n}^{2}\) close to \(x_{n}\).
- Then \(\left(p_{n}\right)\) is another representative of \(p\), and now \(\left(p_{n}\right)\) is an idempotent in \(\ell^{\infty}(A)\).
- As \(p \sim 1\) there are \(a=\left(a_{n}\right)\) and \(b=\left(b_{n}\right)\) with
\(\left(a_{n} b_{n}-p_{n}\right) \in c_{0}(A)\) and \(\left(b_{n} a_{n}-1\right) \in c_{0}(A)\).
- So eventually \(u_{n}=b_{n} a_{n}\) is invertible. Set \(a_{n}=a_{n} u_{n}^{1-1} b_{n}\).
- Then \(q_{n}^{2}=a_{n} u_{n}^{-1} u_{n} u_{n}^{-1} b_{n}=q_{n}\) and \(q_{n} \sim b_{n} a_{n} u_{n}^{-1}=1\) so \(A\) Dedekind-finite implies \(q_{n}=1\).

\section*{The proof}
\[
1 \sim p=p^{2} \in \operatorname{Asy}(A)
\]
- \(p=\left(x_{n}\right)+c_{0}(A)\) so for large enough \(n,\left\|x_{n}^{2}-x_{n}\right\|\) is small. So there is \(p_{n}=p_{n}^{2}\) close to \(x_{n}\).
- Then \(\left(p_{n}\right)\) is another representative of \(p\), and now \(\left(p_{n}\right)\) is an idempotent in \(\ell^{\infty}(A)\).
- As \(p \sim 1\) there are \(a=\left(a_{n}\right)\) and \(b=\left(b_{n}\right)\) with \(\left(a_{n} b_{n}-p_{n}\right) \in c_{0}(A)\) and \(\left(b_{n} a_{n}-1\right) \in c_{0}(A)\).
- So eventually \(u_{n}=b_{n} a_{n}\) is invertible. Set \(q_{n}=a_{n} u_{n}^{-1} b_{n}\). Dedekind-finite implies \(q_{n}=1\).

\section*{The proof}
\[
1 \sim p=p^{2} \in \operatorname{Asy}(A)
\]
- \(p=\left(x_{n}\right)+c_{0}(A)\) so for large enough \(n,\left\|x_{n}^{2}-x_{n}\right\|\) is small. So there is \(p_{n}=p_{n}^{2}\) close to \(x_{n}\).
- Then \(\left(p_{n}\right)\) is another representative of \(p\), and now \(\left(p_{n}\right)\) is an idempotent in \(\ell^{\infty}(A)\).
- As \(p \sim 1\) there are \(a=\left(a_{n}\right)\) and \(b=\left(b_{n}\right)\) with \(\left(a_{n} b_{n}-p_{n}\right) \in c_{0}(A)\) and \(\left(b_{n} a_{n}-1\right) \in c_{0}(A)\).
- So eventually \(u_{n}=b_{n} a_{n}\) is invertible. Set \(q_{n}=a_{n} u_{n}^{-1} b_{n}\). Dedekind-finite implies \(q_{n}=1\).

\section*{The proof}
\[
1 \sim p=p^{2} \in \operatorname{Asy}(A)
\]
- \(p=\left(x_{n}\right)+c_{0}(A)\) so for large enough \(n,\left\|x_{n}^{2}-x_{n}\right\|\) is small. So there is \(p_{n}=p_{n}^{2}\) close to \(x_{n}\).
- Then \(\left(p_{n}\right)\) is another representative of \(p\), and now \(\left(p_{n}\right)\) is an idempotent in \(\ell^{\infty}(A)\).
- As \(p \sim 1\) there are \(a=\left(a_{n}\right)\) and \(b=\left(b_{n}\right)\) with \(\left(a_{n} b_{n}-p_{n}\right) \in c_{0}(A)\) and \(\left(b_{n} a_{n}-1\right) \in c_{0}(A)\).
- So eventually \(u_{n}=b_{n} a_{n}\) is invertible. Set \(q_{n}=a_{n} u_{n}^{-1} b_{n}\).
- Then \(q_{n}^{2}=a_{n} u_{n}^{-1} u_{n} u_{n}^{-1} b_{n}=q_{n}\) and \(q_{n} \sim b_{n} a_{n} u_{n}^{-1}=1\) so \(A\) Dedekind-finite implies \(q_{n}=1\).

\section*{The proof cont.}
\[
\left(a_{n} b_{n}-p_{n}\right) \in c_{0}(A) \quad\left(b_{n} a_{n}-1\right) \in c_{0}(A)
\]

We established that with \(u_{n}=b_{n} a_{n}\) we have \(q_{n}=a_{n} u_{n}^{-1} b_{n}=1\) eventually.
Now compute:

which is small for large \(n\).
Thus \(\left(1-p_{n}\right) \in c_{0}(A)\) so \(p:=1\) in \(\operatorname{Asy}(A)\).

\section*{The proof cont.}
\[
\left(a_{n} b_{n}-p_{n}\right) \in c_{0}(A) \quad\left(b_{n} a_{n}-1\right) \in c_{0}(A)
\]

We established that with \(u_{n}=b_{n} a_{n}\) we have \(q_{n}=a_{n} u_{n}^{-1} b_{n}=1\) eventually.
Now compute:
\[
\begin{aligned}
\left\|1-p_{n}\right\| & =\left\|q_{n}-p_{n}\right\|=\left\|a_{n} u_{n}^{-1} b_{n}-a_{n} b_{n}\right\|+\left\|a_{n} b_{n}-p_{n}\right\| \\
& \leq\left\|a_{n}\right\|\left\|u_{n}^{-1}-1\right\|\left\|b_{n}\right\|+\left\|a_{n} b_{n}-p_{n}\right\|,
\end{aligned}
\]
which is small for large \(n\).
Thus \(\left(1-p_{n}\right) \in c_{0}(A)\) so \(p=1\) in \(\operatorname{Asy}(A)\).

\section*{The converse?}

We could consider the ultrapower case, and try to use Łoś's Theorem.
That \(A\) is Dedekind finite is the claim that
\[
\forall a, b \in A, a b=1 \Longrightarrow b a=1 .
\]
[Indeed, if \(a b=1\) then \(p=b a\) is an idempotent with \(p \sim 1\). Conversely, if \(p^{2}=p \sim 1\) then \(p=b a\) and \(1=a b\) for some \(a, b\).]
The problem is that we can only "quantify" over bounded balls, and we cannot use \(\forall\) or \(\Longrightarrow\). So the analogy breaks a little.

\section*{The converse?}

We could consider the ultrapower case, and try to use Łos's Theorem. That \(A\) is Dedekind finite is the claim that
\[
\forall a, b \in A, a b=1 \Longrightarrow b a=1
\]
[Indeed, if \(a b=1\) then \(p=b a\) is an idempotent with \(p \sim 1\). Conversely, if \(p^{2}=p \sim 1\) then \(p=b a\) and \(1=a b\) for some \(a, b\).]
The problem is that we can only "quantify" over bounded balls, and we cannot use \(\forall\) or \(\Longrightarrow\). So the analogy breaks a little.

\section*{The converse?}

We could consider the ultrapower case, and try to use Łoś's Theorem. That \(A\) is Dedekind finite is the claim that
\[
\forall a, b \in A, a b=1 \Longrightarrow b a=1
\]
[Indeed, if \(a b=1\) then \(p=b a\) is an idempotent with \(p \sim 1\). Conversely, if \(p^{2}=p \sim 1\) then \(p=b a\) and \(1=a b\) for some \(a, b\).]
The problem is that we can only "quantify" over bounded balls, and we cannot use \(\forall\) or \(\Longrightarrow\). So the analogy breaks a little...

\section*{Dedekind-infinite}

\section*{Definition}

Say that \(A\) is Dedekind-infinite if it is not Dedekind-finite. Define
\[
C_{\text {DI }}(A)=\inf \{\|a\|\|b\|: a, b \in A, a b=1, b a \neq 1\}
\]

Set \(C_{\mathrm{DI}}(A)=\infty\) if \(A\) is Dedekind-finite.


\section*{Dedekind-infinite}

\section*{Definition}

Say that \(A\) is Dedekind-infinite if it is not Dedekind-finite. Define
\[
C_{\mathrm{DI}}(A)=\inf \{\|a\|\|b\|: a, b \in A, a b=1, b a \neq 1\}
\]

Set \(C_{\mathrm{DI}}(A)=\infty\) if \(A\) is Dedekind-finite.

\section*{Remark}

Given such \(a, b\) set \(p=b a\) so \(p^{2}=p\) and hence \(p^{n}=p\) for all \(n\), and so either \(p=0\) or \(\|p\| \geq 1\). As \(1-p\) is also an idempotent, also \(\|1-p\| \geq 1(\) as \(p \neq 1)\).

\section*{Dedekind-infinite passes to sequence algebras}

\section*{Theorem}

Let \(\left(A_{n}\right)\) be a sequence of unital Banach algebras with \(C_{D I}\left(A_{n}\right) \leq K\) for all \(n\). Then \(\operatorname{Asy}\left(\left(A_{n}\right)\right)\) is Dedekind-infinite.


\section*{Dedekind-infinite passes to sequence algebras}

\section*{Theorem}

Let \(\left(A_{n}\right)\) be a sequence of unital Banach algebras with \(C_{D I}\left(A_{n}\right) \leq K\) for all \(n\). Then \(\operatorname{Asy}\left(\left(A_{n}\right)\right)\) is Dedekind-infinite.

\section*{Proof.}

Easy: for each \(n\) there is a "witness" \(a_{n} b_{n}=1, b_{n} a_{n} \neq 1\) and \(\left\|a_{n}\right\|\left\|b_{n}\right\| \leq K\). By the remark, \(\left\|b_{n} a_{n}-1\right\| \geq 1\). Rescale so that \(\left\|a_{n}\right\|=\left\|b_{n}\right\|\). Then \(a=\left(a_{n}\right), b=\left(b_{n}\right)\) define classes in Asy \(\left(\left(A_{n}\right)\right)\) with \(a b=1\) but \(\left(b_{n} a_{n}-1\right) \notin c_{0}\left(\left(A_{n}\right)\right)\) so \(b a \neq 1\).

\section*{For \(C^{*}\)-algebras}

\section*{Corollary}

If \(A\) is a \(C^{*}\)-algebra then \(A\) is Dedekind-finite if and only if \(\operatorname{Asy}(A)\) is.
\(\square\)

\section*{For \(C^{*}\)-algebras}

\section*{Corollary}

If \(A\) is a \(C^{*}\)-algebra then \(A\) is Dedekind-finite if and only if Asy \((A)\) is.

\section*{Proof.}

We can use the \(C^{*}\)-algebra form of Dedekind-finite, so we can assume \(b=a^{*}\) is a partial isometry. Thus, if \(A\) is Dedekind-infinite, then \(C_{\text {DI }}(A)=1\).

\section*{Counter-example for Banach algebras}

Maybe we have that \(A\) is Dedekind-finite, or \(D_{\mathrm{D} I}(A) \leq K\) for some absolute constant \(K\) (which is true for \(C^{*}\)-algebras).

Our counter-example will be a weighted-semigroup algebra. Let \(C\) be the bicvclic semigroup, so \(S\) has generators \(\alpha, \beta\) with \(\alpha \beta=1\) and no other relations.
[So \(C\) is all reduced words which are of the form \(\beta^{n} \alpha^{m}\) with \(n, m \in \mathbb{Z}_{>0}\). Exercise to the reader to work out the multiplication.

\section*{Counter-example for Banach algebras}
```

Maybe we have that A is Dedekind-finite, or }\mp@subsup{D}{\textrm{D}I}{}(A)\leqK for som absolute constant K (which is true for C^{*}-algebras). Of course not!
Our counter-example will be a weighted-semigroup algebra. Let C be the bicyclic semigroup, so S has generators α, β with $\alpha \beta=1$ and no other relations.
[So C is all reduced words which are of the form $\beta^{n} \alpha^{m}$ with $n, m \in \mathbb{Z}>0$. Exercise to the reader to work out the multiplication.]

```

\section*{Counter-example for Banach algebras}

Maybe we have that \(A\) is Dedekind-finite, or \(D_{\mathrm{DI}}(A) \leq K\) for some absolute constant \(K\) (which is true for \(C^{*}\)-algebras).
Of course not!
Our counter-example will be a weighted-semigroup algebra. Let \(C\) be the bicyclic semigroup, so \(S\) has generators \(\alpha, \beta\) with \(\alpha \beta=1\) and no other relations.
[So \(C\) is all reduced words which are of the form \(\beta^{n} \alpha^{m}\) with \(n, m \in \mathbb{Z}_{\geq 0}\). Exercise to the reader to work out the multiplication.]

\section*{Semigroup algebras}

Let \(S\) be a semigroup.
The (classical) semigroup algebra is \(\ell^{1}(S)\), all families \(a=\left(a_{s}\right)_{s \in S}\) of complex numbers, with \(\|a\|=\sum_{s}\left|a_{s}\right|<\infty\), and convolution product. Write \(a=\sum_{s} a_{s} \delta_{s}\) where \(\left(\delta_{s}\right)\) the basis (in the Banach space sense) of \(\ell^{1}(S)\), and set
\[
\delta_{s} * \delta_{t}=\delta_{s t} \quad \text { so } \quad a * b=\left(\sum_{\{s, t \in S: s t=r\}} a_{s} b_{t}\right)_{r \in S}
\]

\section*{Semigroup algebras}

Let \(S\) be a semigroup.
The (classical) semigroup algebra is \(\ell^{1}(S)\), all families \(a=\left(a_{s}\right)_{s \in S}\) of complex numbers, with \(\|a\|=\sum_{s}\left|a_{s}\right|<\infty\), and convolution product. Write \(a=\sum_{s} a_{s} \delta_{s}\) where \(\left(\delta_{s}\right)\) the basis (in the Banach space sense) of

\section*{Semigroup algebras}

Let \(S\) be a semigroup.
The (classical) semigroup algebra is \(\ell^{1}(S)\), all families \(a=\left(a_{s}\right)_{s \in S}\) of complex numbers, with \(\|a\|=\sum_{s}\left|a_{s}\right|<\infty\), and convolution product. Write \(a=\sum_{s} a_{s} \delta_{s}\) where ( \(\delta_{s}\) ) the basis (in the Banach space sense) of \(\ell^{1}(S)\), and set
\[
\delta_{s} * \delta_{t}=\delta_{s t} \quad \text { so } \quad a * b=\left(\sum_{\{s, t \in S: s t=r\}} a_{s} b_{t}\right)_{r \in S} .
\]

\section*{Weights}

\section*{Definition}

A weight on a semigroup is \(\omega: S \rightarrow(0, \infty)\) with \(\omega(s t) \leq \omega(s) \omega(t)\).
We shall in fact use the rather trivial weights \(\omega_{n}(s)=n\) for \(s \neq 1\) and \(\omega_{s}(1)=1\), for \(n \in \mathbb{N}\). We shall in particular assume that \(\omega(s) \geq 1\) for all \(s\).

\(\square\)
Let, \(a, b \in \ell^{1}(S, \omega)\) with \(a b=1\) and \(b a \neq 1\). Then

\section*{Weights}

\section*{Definition}

A weight on a semigroup is \(\omega: S \rightarrow(0, \infty)\) with \(\omega(s t) \leq \omega(s) \omega(t)\).
We shall in fact use the rather trivial weights \(\omega_{n}(s)=n\) for \(s \neq 1\) and \(\omega_{s}(1)=1\), for \(n \in \mathbb{N}\). We shall in particular assume that \(\omega(s) \geq 1\) for all \(s\).
The weighted semigroup algebra is \(\ell^{1}(S, \omega)\), which is those \(a \in \ell^{1}(S)\) with \(\|a\|_{\omega}=\sum_{s}\left|a_{s}\right| \omega(s)<\infty\). The condition on the weight ensures that \(\ell^{1}(S, \omega)\) is an algebra.

Let \(a, b \in \ell^{1}(S, \omega)\) with \(a b=1\) and \(b a \neq 1\). Then

\section*{Weights}

\section*{Definition}

A weight on a semigroup is \(\omega: S \rightarrow(0, \infty)\) with \(\omega(s t) \leq \omega(s) \omega(t)\).
We shall in fact use the rather trivial weights \(\omega_{n}(s)=n\) for \(s \neq 1\) and \(\omega_{s}(1)=1\), for \(n \in \mathbb{N}\). We shall in particular assume that \(\omega(s) \geq 1\) for all \(s\).
The weighted semigroup algebra is \(\ell^{1}(S, \omega)\), which is those \(a \in \ell^{1}(S)\) with \(\|a\|_{\omega}=\sum_{s}\left|a_{s}\right| \omega(s)<\infty\). The condition on the weight ensures that \(\ell^{1}(S, \omega)\) is an algebra.

\section*{Proposition}

Let \(a, b \in \ell^{1}(S, \omega)\) with \(a b=1\) and \(b a \neq 1\). Then
\[
\|a\|_{w},\|b\|_{w} \geq \frac{1}{2} \inf \{\omega(s): s \neq 1\}
\]

\section*{The counter-example}

So we consider \(A=\ell^{1}\left(C, \omega_{n}\right)\). Set \(a=\delta_{\alpha}\) and \(b=\delta_{\beta}\) so \(a b=1\) (as \(\alpha \beta=1\) ) but \(b a=\delta_{\beta \alpha} \neq 1\). Thus \(A\) is Dedekind-infinite. If \(a, b \in A\) are arbitrary with \(a b=1\) and \(b a \neq 1\), then by the proposition,


> So \(C_{D I}(A) \geq n^{2} / 4\) (and in fact we have equality).
> In this way, we obtain a sequence of Dedekind-infinite Banach algebras \(\left(A_{n}\right)\) such that Asy \(\left(\left(A_{n}\right)\right)\) (and ultraproducts) are Dedekind-finite.

\section*{The counter-example}

So we consider \(A=\ell^{1}\left(C, \omega_{n}\right)\). Set \(a=\delta_{\alpha}\) and \(b=\delta_{\beta}\) so \(a b=1\) (as \(\alpha \beta=1\) ) but \(b a=\delta_{\beta \alpha} \neq 1\). Thus \(A\) is Dedekind-infinite. If \(a, b \in A\) are arbitrary with \(a b=1\) and \(b a \neq 1\), then by the proposition,
\[
\|a\|_{w},\|b\|_{w} \geq \frac{1}{2} \inf \{\omega(s): s \neq 1\}=\frac{n}{2}
\]

So \(C_{D I}(A) \geq n^{2} / 4\) (and in fact we have equality).

\section*{The counter-example}

So we consider \(A=\ell^{1}\left(C, \omega_{n}\right)\). Set \(a=\delta_{\alpha}\) and \(b=\delta_{\beta}\) so \(a b=1\) (as \(\alpha \beta=1\) ) but \(b a=\delta_{\beta \alpha} \neq 1\). Thus \(A\) is Dedekind-infinite. If \(a, b \in A\) are arbitrary with \(a b=1\) and \(b a \neq 1\), then by the proposition,
\[
\|a\|_{w},\|b\|_{w} \geq \frac{1}{2} \inf \{\omega(s): s \neq 1\}=\frac{n}{2}
\]

So \(C_{\text {DI }}(A) \geq n^{2} / 4\) (and in fact we have equality).
In this way, we obtain a sequence of Dedekind-infinite Banach algebras \(\left(A_{n}\right)\) such that Asy \(\left(\left(A_{n}\right)\right)\) (and ultraproducts) are Dedekind-finite.

\section*{Forwards}

We also look at:
- Proper Infiniteness: there are \(p, q \in A\) idempotents which are orthogonal ( \(p q=q p=0\) ) and \(p \sim 1, q \sim 1\).
- Stable Rank One: (which has a complicated, but well-motivated, definition, but is equivalent to) the group of invertible elements is dense in \(A\). (This implies being Dedekfind-finite).

The common theme is again norm-control, or lack thereof in the Banach algebra setting.
There should be an arXiv preprint soon!

\section*{Forwards}

We also look at:
- Proper Infiniteness: there are \(p, q \in A\) idempotents which are orthogonal ( \(p q=q p=0\) ) and \(p \sim 1, q \sim 1\).
- Stable Rank One: (which has a complicated, but well-motivated, definition, but is equivalent to) the group of invertible elements is dense in \(A\). (This implies being Dedekfind-finite).
The common theme is again norm-control, or lack thereof in the
Banach algebra setting.
There should be an arXiv preprint soon!

\section*{Forwards}

We also look at:
- Proper Infiniteness: there are \(p, q \in A\) idempotents which are orthogonal ( \(p q=q p=0\) ) and \(p \sim 1, q \sim 1\).
- Stable Rank One: (which has a complicated, but well-motivated, definition, but is equivalent to) the group of invertible elements is dense in \(A\). (This implies being Dedekfind-finite).
The common theme is again norm-control, or lack thereof in the Banach algebra setting.

\section*{Forwards}

We also look at:
- Proper Infiniteness: there are \(p, q \in A\) idempotents which are orthogonal ( \(p q=q p=0\) ) and \(p \sim 1, q \sim 1\).
- Stable Rank One: (which has a complicated, but well-motivated, definition, but is equivalent to) the group of invertible elements is dense in \(A\). (This implies being Dedekfind-finite).
The common theme is again norm-control, or lack thereof in the Banach algebra setting.
There should be an arXiv preprint soon!

\section*{Sources}
- Ilijas Farah, "Combinatorial set theory of \(C^{*}\)-algebras", available at Farah's website, and forthcoming from Springer.
- Ilijas Farah, Bradd Hart, David Sherman, a series of papers "Model theory of Operator algebras".
- Ilijas Farah, Bradd Hart, Martino Lupini, Leonel Robert, Aaron Tikuisis, Alessandro Vignati, and Wilhelm Winter, "Model theory of nuclear \(C^{*}\)-algebras", to appear in Memoirs of the AMS.```

