Asymptotic sequence algebras, and ultrapowers, of Banach algebras

Matthew Daws

UCLan

Belfast, October 2019

Matthew Daws (UCLan)

Ultrapowers

Belfast, October 2019 1 / 36

Definition (Calkin, 1941)

- It is well-known that K(H) is the only proper closed two-sided ideal in B(H).
- So $\mathcal{C}(H)$ is simple.
- C(H) is a C*-algebra, and so admits a faithful representation on some Hilbert space K (K cannot be separable). It was the first C*-algebra which does not obviously arise as a subalgebra of B(K). [Calkin proved this before the GNS theory was available!]
- Does $\mathcal{C}(H)$ have outer automorphisms (not arising from a unitary)? This is independent of ZFC.

Definition (Calkin, 1941)

- It is well-known that $\mathcal{K}(H)$ is the only proper closed two-sided ideal in $\mathcal{B}(H)$.
- So $\mathcal{C}(H)$ is simple.
- C(H) is a C*-algebra, and so admits a faithful representation on some Hilbert space K (K cannot be separable). It was the first C*-algebra which does not obviously arise as a subalgebra of B(K). [Calkin proved this before the GNS theory was available!]
- Does $\mathcal{C}(H)$ have outer automorphisms (not arising from a unitary)? This is independent of ZFC.

Definition (Calkin, 1941)

- It is well-known that K(H) is the only proper closed two-sided ideal in B(H).
- So $\mathcal{C}(H)$ is simple.
- C(H) is a C*-algebra, and so admits a faithful representation on some Hilbert space K (K cannot be separable). It was the first C*-algebra which does not obviously arise as a subalgebra of B(K). [Calkin proved this before the GNS theory was available!]
- Does $\mathcal{C}(H)$ have outer automorphisms (not arising from a unitary)? This is independent of ZFC.

Definition (Calkin, 1941)

- It is well-known that $\mathcal{K}(H)$ is the only proper closed two-sided ideal in $\mathcal{B}(H)$.
- So $\mathcal{C}(H)$ is simple.
- C(H) is a C*-algebra, and so admits a faithful representation on some Hilbert space K (K cannot be separable). It was the first C*-algebra which does not obviously arise as a subalgebra of B(K). [Calkin proved this before the GNS theory was available!]
- Does $\mathcal{C}(H)$ have outer automorphisms (not arising from a unitary)? This is independent of ZFC.

Given a (faithful Banach) C^* -algebra A, and an ideal $I \triangleleft A$, we say that I is essential if $a \in A$, $aI + Ia = \{0\}$ implies a = 0.

The Multiplier Algebra of A, denoted M(A), is the largest C^* -algebra which contains A as an essential ideal.

More concretely, if $A \subseteq \mathcal{B}(H)$ then

 $M(A) \cong \{T \in \mathcal{B}(H) : Ta, aT \in A \ (a \in A)\}.$

We think of M(A) as being the "maximal unitisation" of A. For example:

- $M(C_0(X)) = C(\beta X)$ the Stone-Čech compactification of X.
- $M(\mathcal{K}(H)) = \mathcal{B}(H).$

Given a (faithful Banach) C^* -algebra A, and an ideal $I \lhd A$, we say that I is *essential* if $a \in A$, $aI + Ia = \{0\}$ implies a = 0. The Multiplier Algebra of A, denoted M(A), is the largest C^* -algebra which contains A as an essential ideal.

More concretely, if $A \subseteq \mathcal{B}(H)$ then

 $M(A) \cong \{T \in \mathcal{B}(H) : Ta, aT \in A \ (a \in A)\}.$

We think of M(A) as being the "maximal unitisation" of A. For example:

- $M(C_0(X)) = C(\beta X)$ the Stone-Čech compactification of X.
- $M(\mathcal{K}(H)) = \mathcal{B}(H).$

Given a (faithful Banach) C^* -algebra A, and an ideal $I \triangleleft A$, we say that I is essential if $a \in A$, $aI + Ia = \{0\}$ implies a = 0. The Multiplier Algebra of A, denoted M(A), is the largest C^* -algebra which contains A as an essential ideal. More concretely, if $A \subseteq \mathcal{B}(H)$ then

$M(A) \cong \{T \in \mathcal{B}(H) : Ta, aT \in A \ (a \in A)\}.$

We think of M(A) as being the "maximal unitisation" of A. For example:

- $M(C_0(X)) = C(\beta X)$ the Stone-Čech compactification of X.
- $M(\mathcal{K}(H)) = \mathcal{B}(H).$

Given a (faithful Banach) C^* -algebra A, and an ideal $I \triangleleft A$, we say that I is essential if $a \in A$, $aI + Ia = \{0\}$ implies a = 0. The Multiplier Algebra of A, denoted M(A), is the largest C^* -algebra which contains A as an essential ideal. More concretely, if $A \subseteq \mathcal{B}(H)$ then

$$M(A) \cong \{T \in \mathcal{B}(H) : Ta, aT \in A \ (a \in A)\}.$$

We think of M(A) as being the "maximal unitisation" of A. For example:

- $M(C_0(X)) = C(\beta X)$ the Stone-Čech compactification of X.
- $M(\mathcal{K}(H)) = \mathcal{B}(H).$

Asymptotic sequence algebras

Given a (Banach) C^* -algebra A let $c_0(A)$ be the space of sequences (a_n) in A with $\lim_n ||a_n|| = 0$, endowed with the pointwise algebra operations:

$$(a_n) + (b_n) = (a_n + b_n), \qquad (a_n)(b_n) = (a_n b_n).$$

The multiplier algebra of $c_0(A)$ is $\ell^{\infty}(A)$, the space of all bounded sequences.

The corona of $c_0(A)$ is the "asymptotic sequence algebra"

$$\operatorname{Asy}(A) = \ell^{\infty}(A) / c_0(A).$$

(We can also let A vary, leading to $Asy((A_n)) = \ell^{\infty}((A_n))/c_0((A_n))$.)

Asymptotic sequence algebras

Given a (Banach) C^* -algebra A let $c_0(A)$ be the space of sequences (a_n) in A with $\lim_n ||a_n|| = 0$, endowed with the pointwise algebra operations:

$$(a_n) + (b_n) = (a_n + b_n), \qquad (a_n)(b_n) = (a_n b_n).$$

The multiplier algebra of $c_0(A)$ is $\ell^{\infty}(A)$, the space of all bounded sequences.

The corona of $c_0(A)$ is the "asymptotic sequence algebra"

$$\operatorname{Asy}(A) = \ell^{\infty}(A) / c_0(A).$$

(We can also let A vary, leading to $Asy((A_n)) = \ell^{\infty}((A_n))/c_0((A_n))$.)

Asymptotic sequence algebras

Given a (Banach) C^* -algebra A let $c_0(A)$ be the space of sequences (a_n) in A with $\lim_n ||a_n|| = 0$, endowed with the pointwise algebra operations:

$$(a_n) + (b_n) = (a_n + b_n), \qquad (a_n)(b_n) = (a_n b_n).$$

The multiplier algebra of $c_0(A)$ is $\ell^{\infty}(A)$, the space of all bounded sequences.

The corona of $c_0(A)$ is the "asymptotic sequence algebra"

$$\operatorname{Asy}(A) = \ell^{\infty}(A)/c_0(A).$$

(We can also let A vary, leading to $Asy((A_n)) = \ell^{\infty}((A_n))/c_0((A_n))$.)

Typical application

Here A, H, K are separable.

Theorem (Voiculescu)

Let $A \subseteq \mathcal{B}(H)$ and let $\pi : A \to \mathcal{B}(K)$ be a non-degenerate representation with $\pi(A \cap \mathcal{K}(H)) = \{0\}$. Then there is a sequence of unitaries $u_n : H \oplus K \to H$ with:

1
$$\lim_{n} ||a - u_{n}(a \oplus \pi(a))u_{n}^{*}|| = 0$$
 for $a \in A$;

$$a - u_n(a \oplus \pi(a))u_n^* \in \mathcal{K}(H) \text{ for } a \in A.$$

So id and id $\oplus \pi$ are unitarily equivalent "in the limit".

Typical application continued

Let $\pi: \mathcal{B}(K) \to \mathcal{C}(K) = \mathcal{B}(K)/\mathcal{K}(K)$ be the quotient onto the Calkin algebra.

Corollary

Let π_1 and π_2 be representations of A with

 $\ker \pi_1 = \ker \pi_2 = \ker \pi \pi_1 = \ker \pi \pi_2.$

(That is, the images of π_1 and π_2 contain no non-zero compact operators.) Then there is a sequence of unitaries (u_n) with $\lim_n \|\pi_1(a) - u_n \pi_2(a) u_n^*\| = 0$ for $a \in A$.

Let A, B be C^* -algebras.

Definition

$$|\phi(a)-u_n\psi(a)u_n^*\|\to 0$$
 $(a\in A).$

- Let ι_B: B → ℓ[∞](B) be the "diagonal embedding" which sends
 b ∈ B to the constant sequence (b).
- The above definitions becomes that there is $u \in \ell^{\infty}(B)$ unitary with $\iota_B(\phi(a)) u\iota_B(\psi(b))u^* \in c_0(B)$ for $a \in A$.
- Or equivalently $\iota_B(\phi(a)) = u\iota_B(\psi(b))u^*$ in Asy $(B) = \ell^{\infty}(B)/c_0(B)$, for $a \in A$.

Let A, B be C^* -algebras.

Definition

$$\|\phi(a)-u_n\psi(a)u_n^*\| \to 0 \qquad (a\in A).$$

- Let $\iota_B: B \to \ell^{\infty}(B)$ be the "diagonal embedding" which sends $b \in B$ to the constant sequence (b).
- The above definitions becomes that there is $u \in \ell^{\infty}(B)$ unitary with $\iota_B(\phi(a)) u\iota_B(\psi(b))u^* \in c_0(B)$ for $a \in A$.
- Or equivalently $\iota_B(\phi(a)) = u\iota_B(\psi(b))u^*$ in Asy $(B) = \ell^{\infty}(B)/c_0(B)$, for $a \in A$.

Let A, B be C^* -algebras.

Definition

$$\|\phi(a)-u_n\psi(a)u_n^*\| \to 0 \qquad (a\in A).$$

- Let ι_B: B → ℓ[∞](B) be the "diagonal embedding" which sends
 b ∈ B to the constant sequence (b).
- The above definitions becomes that there is $u \in \ell^{\infty}(B)$ unitary with $\iota_B(\phi(a)) u\iota_B(\psi(b))u^* \in c_0(B)$ for $a \in A$.
- Or equivalently $\iota_B(\phi(a)) = u\iota_B(\psi(b))u^*$ in Asy $(B) = \ell^{\infty}(B)/c_0(B)$, for $a \in A$.

Let A, B be C^* -algebras.

Definition

$$|\phi(a)-u_n\psi(a)u_n^*\|\to 0$$
 $(a\in A).$

- Let ι_B : B → ℓ[∞](B) be the "diagonal embedding" which sends
 b ∈ B to the constant sequence (b).
- The above definitions becomes that there is $u \in \ell^{\infty}(B)$ unitary with $\iota_B(\phi(a)) u\iota_B(\psi(b))u^* \in c_0(B)$ for $a \in A$.
- Or equivalently $\iota_B(\phi(a)) = u\iota_B(\psi(b))u^*$ in Asy $(B) = \ell^{\infty}(B)/c_0(B)$, for $a \in A$.

Slogan

$\operatorname{Asy}(A)$ is a construct to convert "approximate relations" into "exact relations".

Proposition (Gabe)

Two maps $\psi, \phi: A \to Asy(B)$ are approximately unitarily equivalent if and only if they are unitarily equivalent.

Proof.

A "diagonal" argument.

Slogan

 $\operatorname{Asy}(A)$ is a construct to convert "approximate relations" into "exact relations".

Proposition (Gabe)

Two maps $\psi, \phi: A \to Asy(B)$ are approximately unitarily equivalent if and only if they are unitarily equivalent.

Proof.

A "diagonal" argument.

A bit of set theory

A filter \mathcal{F} on a set I is a non-empty collection of subsets of I with:

- If $A, B \in \mathcal{F}$ then $A \cap B \in \mathcal{F}$;
- **2** If $A \in \mathcal{F}$ and $A \subseteq B$ then $B \in \mathcal{F}$.

Example

The *Fréchet Filter* is the collection of all cofinite subsets of I; that is $A \in \mathcal{F}$ if and only if $I \setminus A$ is finite.

Let $\mathcal F$ be the Fréchet Filter on $\mathbb N$. Consider the condition on $(a_n)\in\ell^\infty(A)$ that

$$orall \epsilon > 0, \quad \{n: \|a_n\| < \epsilon\} \in \mathcal{F}.$$

This is clearly equivalent to $(a_n) \in c_0(A)$.

A bit of set theory

A filter \mathcal{F} on a set I is a non-empty collection of subsets of I with:

- If $A, B \in \mathcal{F}$ then $A \cap B \in \mathcal{F}$;
- **2** If $A \in \mathcal{F}$ and $A \subseteq B$ then $B \in \mathcal{F}$.

Example

The *Fréchet Filter* is the collection of all cofinite subsets of I; that is $A \in \mathcal{F}$ if and only if $I \setminus A$ is finite.

Let $\mathcal F$ be the Fréchet Filter on $\mathbb N$. Consider the condition on $(a_n)\in\ell^\infty(A)$ that

 $\forall \epsilon > 0, \quad \{n : \|a_n\| < \epsilon\} \in \mathcal{F}.$

This is clearly equivalent to $(a_n) \in c_0(A)$.

A bit of set theory

A filter \mathcal{F} on a set I is a non-empty collection of subsets of I with:

- If $A, B \in \mathcal{F}$ then $A \cap B \in \mathcal{F}$;
- **2** If $A \in \mathcal{F}$ and $A \subseteq B$ then $B \in \mathcal{F}$.

Example

The *Fréchet Filter* is the collection of all cofinite subsets of I; that is $A \in \mathcal{F}$ if and only if $I \setminus A$ is finite.

Let $\mathcal F$ be the Fréchet Filter on $\mathbb N$. Consider the condition on $(a_n) \in \ell^\infty(A)$ that

$$\forall \epsilon > 0, \quad \{n : \|a_n\| < \epsilon\} \in \mathcal{F}.$$

This is clearly equivalent to $(a_n) \in c_0(A)$.

The collection of filters on a set I is partially ordered by inclusions. Zorn's Lemma ensures that there are maximal filters, which are called *ultrafilters*.

Lemma

A filter \mathcal{U} on I is an ultrafilter if and only if for each $A \subseteq I$ either $A \in \mathcal{U}$ or $I \setminus A \in \mathcal{U}$.

- For example, for $i_0 \in I$ the principle ultrafilter at i_0 is $\{A \subseteq I : i_0 \in A\}.$
- Use Zorn's Lemma to find a maximal filter which contains the Fréchet Filter. This ultrafilter is not principle.

Fix an ultrafilter \mathcal{U} . If $(a_i)_{i \in I}$ is a bounded sequence in \mathbb{R} then a compactness argument shows that there is a (unique) $t \in \mathbb{R}$ such that

 $\forall \epsilon > 0, \quad \{i : |a_i - t| < \epsilon\} \in \mathcal{U}.$

Write $t = \lim_{i \to \mathcal{U}} a_i$.

The collection of filters on a set I is partially ordered by inclusions. Zorn's Lemma ensures that there are maximal filters, which are called *ultrafilters*.

Lemma

A filter \mathcal{U} on I is an ultrafilter if and only if for each $A \subseteq I$ either $A \in \mathcal{U}$ or $I \setminus A \in \mathcal{U}$.

- For example, for $i_0 \in I$ the principle ultrafilter at i_0 is $\{A \subseteq I : i_0 \in A\}.$
- Use Zorn's Lemma to find a maximal filter which contains the Fréchet Filter. This ultrafilter is not principle.

Fix an ultrafilter \mathcal{U} . If $(a_i)_{i \in I}$ is a bounded sequence in \mathbb{R} then a compactness argument shows that there is a (unique) $t \in \mathbb{R}$ such that

 $\forall \epsilon > 0, \quad \{i : |a_i - t| < \epsilon\} \in \mathcal{U}.$

Write $t = \lim_{i \to \mathcal{U}} a_i$.

The collection of filters on a set I is partially ordered by inclusions. Zorn's Lemma ensures that there are maximal filters, which are called *ultrafilters*.

Lemma

A filter \mathcal{U} on I is an ultrafilter if and only if for each $A \subseteq I$ either $A \in \mathcal{U}$ or $I \setminus A \in \mathcal{U}$.

• For example, for $i_0 \in I$ the principle ultrafilter at i_0 is $\{A \subseteq I : i_0 \in A\}.$

• Use Zorn's Lemma to find a maximal filter which contains the Fréchet Filter. This ultrafilter is not principle.

Fix an ultrafilter \mathcal{U} . If $(a_i)_{i \in I}$ is a bounded sequence in \mathbb{R} then a compactness argument shows that there is a (unique) $t \in \mathbb{R}$ such that

 $\forall \epsilon > 0, \quad \{i : |a_i - t| < \epsilon\} \in \mathcal{U}.$

Write $t = \lim_{i \to \mathcal{U}} a_i$.

The collection of filters on a set I is partially ordered by inclusions. Zorn's Lemma ensures that there are maximal filters, which are called *ultrafilters*.

Lemma

A filter \mathcal{U} on I is an ultrafilter if and only if for each $A \subseteq I$ either $A \in \mathcal{U}$ or $I \setminus A \in \mathcal{U}$.

- For example, for $i_0 \in I$ the principle ultrafilter at i_0 is $\{A \subseteq I : i_0 \in A\}.$
- Use Zorn's Lemma to find a maximal filter which contains the Fréchet Filter. This ultrafilter is not principle.

Fix an ultrafilter \mathcal{U} . If $(a_i)_{i \in I}$ is a bounded sequence in \mathbb{R} then a compactness argument shows that there is a (unique) $t \in \mathbb{R}$ such that

 $\forall \epsilon > 0, \quad \{i : |a_i - t| < \epsilon\} \in \mathcal{U}.$

Write $t = \lim_{i \to \mathcal{U}} a_i$.

The collection of filters on a set I is partially ordered by inclusions. Zorn's Lemma ensures that there are maximal filters, which are called *ultrafilters*.

Lemma

A filter \mathcal{U} on I is an ultrafilter if and only if for each $A \subseteq I$ either $A \in \mathcal{U}$ or $I \setminus A \in \mathcal{U}$.

- For example, for $i_0 \in I$ the principle ultrafilter at i_0 is $\{A \subseteq I : i_0 \in A\}.$
- Use Zorn's Lemma to find a maximal filter which contains the Fréchet Filter. This ultrafilter is not principle.

Fix an ultrafilter \mathcal{U} . If $(a_i)_{i \in I}$ is a bounded sequence in \mathbb{R} then a compactness argument shows that there is a (unique) $t \in \mathbb{R}$ such that

$$orall \epsilon > 0, \quad \{i: |a_i - t| < \epsilon\} \in \mathcal{U}.$$

Write $t = \lim_{i \to \mathcal{U}} a_i$.

Ultrapowers

For any filter \mathcal{F} define $(A)_{\mathcal{F}}$ to be the quotient of $\ell^{\infty}(A)$ by those sequences (a_n) with

$$\forall \epsilon > 0, \quad \{n : \|a_n\| < \epsilon\} \in \mathcal{F}.$$

Definition

Let \mathcal{U} be a non-principle ultrafilter (on \mathbb{N}). The *ultrapower* of a Banach space E is $(E)_{\mathcal{U}}$. Equivalently, this is $\ell^{\infty}(E)$ with the semi-norm

$$\|(a_n)\| = \lim_{n \to \mathcal{U}} \|a_n\|.$$

One can show that $(E)_{\mathcal{U}}$ is complete.

Ultrapowers

For any filter \mathcal{F} define $(A)_{\mathcal{F}}$ to be the quotient of $\ell^{\infty}(A)$ by those sequences (a_n) with

$$\forall \epsilon > 0, \quad \{n : \|a_n\| < \epsilon\} \in \mathcal{F}.$$

Definition

Let \mathcal{U} be a non-principle ultrafilter (on \mathbb{N}). The *ultrapower* of a Banach space E is $(E)_{\mathcal{U}}$. Equivalently, this is $\ell^{\infty}(E)$ with the semi-norm

$$\|(a_n)\| = \lim_{n \to \mathcal{U}} \|a_n\|.$$

One can show that $(E)_{\mathcal{U}}$ is complete.

Consider defining a sesquilinear form on $(H)_{\mathcal{U}}$ by

$$((a_n)|(b_n)) = \lim_{n \to \mathcal{U}} (a_n|b_n).$$

- This is well-defined as if $(a_n) = 0$ in the quotient $(E)_{\mathcal{U}}$ then $\lim_{n \to \mathcal{U}} ||a_n|| = 0$ and so $\lim_{n \to \mathcal{U}} (a_n | b_n) = 0$ for any (b_n) .
- Clearly sesquilinear.
- The induced seminorm is a norm, because of the norm on $(H)_{\mathcal{U}}$
- So $(H)_{\mathcal{U}}$ is a Hilbert space.

Consider defining a sesquilinear form on $(H)_{\mathcal{U}}$ by

$$((a_n)|(b_n)) = \lim_{n \to \mathcal{U}} (a_n|b_n).$$

- This is well-defined as if $(a_n) = 0$ in the quotient $(E)_{\mathcal{U}}$ then $\lim_{n \to \mathcal{U}} ||a_n|| = 0$ and so $\lim_{n \to \mathcal{U}} (a_n | b_n) = 0$ for any (b_n) .
- Clearly sesquilinear.
- The induced seminorm is a norm, because of the norm on $(H)_{\mathcal{U}}$
- So $(H)_{\mathcal{U}}$ is a Hilbert space.

Consider defining a sesquilinear form on $(H)_{\mathcal{U}}$ by

$$((a_n)|(b_n)) = \lim_{n \to \mathcal{U}} (a_n|b_n).$$

- This is well-defined as if $(a_n) = 0$ in the quotient $(E)_{\mathcal{U}}$ then $\lim_{n \to \mathcal{U}} ||a_n|| = 0$ and so $\lim_{n \to \mathcal{U}} (a_n | b_n) = 0$ for any (b_n) .
- Clearly sesquilinear.

• The induced seminorm is a norm, because of the norm on $(H)_{\mathcal{U}}$

• So $(H)_{\mathcal{U}}$ is a Hilbert space.

Consider defining a sesquilinear form on $(H)_{\mathcal{U}}$ by

$$((a_n)|(b_n)) = \lim_{n \to \mathcal{U}} (a_n|b_n).$$

- This is well-defined as if $(a_n) = 0$ in the quotient $(E)_{\mathcal{U}}$ then $\lim_{n \to \mathcal{U}} ||a_n|| = 0$ and so $\lim_{n \to \mathcal{U}} (a_n | b_n) = 0$ for any (b_n) .
- Clearly sesquilinear.
- The induced seminorm is a norm, because of the norm on $(H)_{\mathcal{U}}$
- So $(H)_{\mathcal{U}}$ is a Hilbert space.

Consider defining a sesquilinear form on $(H)_{\mathcal{U}}$ by

$$((a_n)|(b_n)) = \lim_{n \to \mathcal{U}} (a_n|b_n).$$

- This is well-defined as if $(a_n) = 0$ in the quotient $(E)_{\mathcal{U}}$ then $\lim_{n \to \mathcal{U}} ||a_n|| = 0$ and so $\lim_{n \to \mathcal{U}} (a_n | b_n) = 0$ for any (b_n) .
- Clearly sesquilinear.
- The induced seminorm is a norm, because of the norm on $(H)_{\mathcal{U}}$
- So $(H)_{\mathcal{U}}$ is a Hilbert space.

Unital algebras

This is joint work with Bence Horváth. Fix a Banach algebra A.

Question

When is $(A)_{\mathcal{U}}$, or Asy(A), unital?

- If A is unital, under the diagonal embedding $A \to (A)_{\mathcal{U}}$, the unit becomes a unit for Asy(A).
- Conversely, let e ∈ Asy(A) be a unit for A. This has a representative (e_n) ∈ l[∞](A), which satisfies

$$\lim_{n} \|e_{n}a_{n} - a_{n}\| = 0, \quad \lim_{n} \|a_{n}e_{n} - a_{n}\| = 0 \qquad ((a_{n}) \in \ell^{\infty}(A)).$$

• By picking (a_n) suitably, this shows that, for example,

$$\lim_n \sup\{\|e_n a - a\|: a \in A, \|a\| \le 1\} = 0.$$
Unital algebras

Question

This is joint work with Bence Horváth. Fix a Banach algebra A.

When is $(A)_{\mathcal{U}}$, or Asy(A), unital?

- If A is unital, under the diagonal embedding $A \to (A)_{\mathcal{U}}$, the unit becomes a unit for Asy(A).
- Conversely, let e ∈ Asy(A) be a unit for A. This has a representative (e_n) ∈ l[∞](A), which satisfies

$$\lim_{n} \|e_{n}a_{n} - a_{n}\| = 0, \quad \lim_{n} \|a_{n}e_{n} - a_{n}\| = 0 \qquad ((a_{n}) \in \ell^{\infty}(A)).$$

• By picking (a_n) suitably, this shows that, for example,

$$\lim_n \sup\{\|e_n a - a\|: a \in A, \|a\| \le 1\} = 0.$$

Unital algebras

This is joint work with Bence Horváth. Fix a Banach algebra A.

Question When is $(A)_{\mathcal{U}}$, or Asy(A), unital?

- If A is unital, under the diagonal embedding $A \to (A)_{\mathcal{U}}$, the unit becomes a unit for Asy(A).
- Conversely, let e ∈ Asy(A) be a unit for A. This has a representative (e_n) ∈ ℓ[∞](A), which satisfies

$$\lim_{n} \|e_{n}a_{n}-a_{n}\|=0, \quad \lim_{n} \|a_{n}e_{n}-a_{n}\|=0 \qquad ((a_{n})\in \ell^{\infty}(A)).$$

• By picking (a_n) suitably, this shows that, for example,

$$\lim_n \sup\{\|e_n a - a\|: a \in A, \|a\| \le 1\} = 0.$$

Unital algebras

This is joint work with Bence Horváth. Fix a Banach algebra A.

Question

When is $(A)_{\mathcal{U}}$, or Asy(A), unital?

- If A is unital, under the diagonal embedding $A \to (A)_{\mathcal{U}}$, the unit becomes a unit for Asy(A).
- Conversely, let e ∈ Asy(A) be a unit for A. This has a representative (e_n) ∈ ℓ[∞](A), which satisfies

$$\lim_{n} \|e_{n}a_{n}-a_{n}\|=0, \quad \lim_{n} \|a_{n}e_{n}-a_{n}\|=0 \qquad ((a_{n})\in \ell^{\infty}(A)).$$

• By picking (a_n) suitably, this shows that, for example,

$$\lim_n \sup\{\|e_n a - a\|: a \in A, \|a\| \le 1\} = 0.$$

$\lim_n \sup\{\|e_n a - a\|, \|ae_n - a\|: a \in A, \|a\| \le 1\} = 0.$

- Extract a subsequence (e_n) with $||e_n a a||, ||ae_n a|| \le \frac{1}{n} ||a||$ for $a \in A$.
- We can also arrange that e.g. $\|e_n\| \leq 2\|(a_n)\|_{Asy} = K$ say.
- Thus $||e_n e_m|| \le ||e_n e_n e_m|| + ||e_n e_m e_m|| \le K(\frac{1}{m} + \frac{1}{n}).$
- So (e_n) is Cauchy in A, so converges in A, say to e. Clearly e is a unit.

$$\lim_n \sup\{\|e_n a - a\|, \|ae_n - a\|: a \in A, \|a\| \le 1\} = 0.$$

- Extract a subsequence (e_n) with $||e_na a||, ||ae_n a|| \le \frac{1}{n} ||a||$ for $a \in A$.
- We can also arrange that e.g. $\|e_n\| \leq 2\|(a_n)\|_{\operatorname{Asy}} = K$ say.
- Thus $||e_n e_m|| \le ||e_n e_n e_m|| + ||e_n e_m e_m|| \le K(\frac{1}{m} + \frac{1}{n}).$
- So (e_n) is Cauchy in A, so converges in A, say to e. Clearly e is a unit.

$$\lim_n \sup\{\|e_n a - a\|, \|ae_n - a\|: a \in A, \|a\| \le 1\} = 0.$$

- Extract a subsequence (e_n) with $||e_na a||, ||ae_n a|| \le \frac{1}{n} ||a||$ for $a \in A$.
- We can also arrange that e.g. $\|e_n\| \leq 2\|(a_n)\|_{Asy} = K$ say.
- Thus $||e_n e_m|| \le ||e_n e_n e_m|| + ||e_n e_m e_m|| \le K(\frac{1}{m} + \frac{1}{n}).$
- So (e_n) is Cauchy in A, so converges in A, say to e. Clearly e is a unit.

$$\lim_n \sup\{\|e_n a - a\|, \|ae_n - a\|: a \in A, \|a\| \le 1\} = 0.$$

- Extract a subsequence (e_n) with $||e_na a||, ||ae_n a|| \le \frac{1}{n} ||a||$ for $a \in A$.
- We can also arrange that e.g. $\|e_n\| \leq 2\|(a_n)\|_{Asy} = K$ say.
- Thus $||e_n e_m|| \le ||e_n e_n e_m|| + ||e_n e_m e_m|| \le K(\frac{1}{m} + \frac{1}{n}).$
- So (e_n) is Cauchy in A, so converges in A, say to e. Clearly e is a unit.

$$\lim_n \sup\{\|e_n a - a\|, \|ae_n - a\|: a \in A, \|a\| \le 1\} = 0.$$

- Extract a subsequence (e_n) with $||e_na a||, ||ae_n a|| \le \frac{1}{n} ||a||$ for $a \in A$.
- We can also arrange that e.g. $\|e_n\| \leq 2\|(a_n)\|_{\operatorname{Asy}} = K$ say.
- Thus $||e_n e_m|| \le ||e_n e_n e_m|| + ||e_n e_m e_m|| \le K(\frac{1}{m} + \frac{1}{n}).$
- So (e_n) is Cauchy in A, so converges in A, say to e. Clearly e is a unit.

$$\lim_n \sup\{\|e_n a - a\|, \|ae_n - a\|: a \in A, \|a\| \le 1\} = 0.$$

- Extract a subsequence (e_n) with $||e_na a||, ||ae_n a|| \le \frac{1}{n} ||a||$ for $a \in A$.
- We can also arrange that e.g. $\|e_n\| \leq 2\|(a_n)\|_{\operatorname{Asy}} = K$ say.
- Thus $||e_n e_m|| \le ||e_n e_n e_m|| + ||e_n e_m e_m|| \le K(\frac{1}{m} + \frac{1}{n}).$
- So (e_n) is Cauchy in A, so converges in A, say to e. Clearly e is a unit.

[Health warning: I am not a model theorist!] Classical model theory deals with "models" of theories in a formal language.

Example

What is a group? The "language" is usually taken to be the binary product (_) \times (_), the unary inverse (_)⁻¹, and a distinguished constant 1.

A "formula" is constructed inductively using the language and first order logic (so \forall, \exists , and, or, not).

A "structure" is a set G with an "interpretation" of the product, inverse and 1 (so just a binary map and a unary map, and a constant $1 \in G$). A formula may or may not be true in the structure.

[Health warning: I am not a model theorist!] Classical model theory deals with "models" of theories in a formal language.

Example

What is a group? The "language" is usually taken to be the binary product (_) \times (_), the unary inverse (_)⁻¹, and a distinguished constant 1.

A "formula" is constructed inductively using the language and first order logic (so \forall, \exists , and, or, not).

A "structure" is a set G with an "interpretation" of the product, inverse and 1 (so just a binary map and a unary map, and a constant $1 \in G$). A formula may or may not be true in the structure.

Example

The "theory" of groups is the usual group axioms:

2)
$$\forall g, \ g^{-1} imes g = g imes g^{-1} = 1;$$

A structure G that satisfies these axioms is indeed a group.

There is a notion of ultrapower; Los's Theorem then tells us that a formula is true in an ultrapower if and only if it is true in the original structure.

Example

The "theory" of groups is the usual group axioms:

2)
$$\forall g, \ g^{-1} imes g = g imes g^{-1} = 1;$$

A structure G that satisfies these axioms is indeed a group.

There is a notion of ultrapower; Los's Theorem then tells us that a formula is true in an ultrapower if and only if it is true in the original structure.

Example

The "theory" of groups is the usual group axioms:

A structure G that satisfies these axioms is indeed a group.

There is a notion of ultrapower; Los's Theorem then tells us that a formula is true in an ultrapower if and only if it is true in the original structure.

Analysis is not a first-order theory; so model theory doesn't apply, right?

- A collection of "domains" (which will be bounded subsets of a metric space) and a privileged "relation" d (which will be the metric);
- Functions (which will be uniformly continuous functions) together with a uniform continuity modulus, one for each possible choice of domain;
- Relations (uniformly continuous functions into a bounded subset of the reals)

Analysis is not a first-order theory; so model theory doesn't apply, right?

- A collection of "domains" (which will be bounded subsets of a metric space) and a privileged "relation" d (which will be the metric);
- Functions (which will be uniformly continuous functions) together with a uniform continuity modulus, one for each possible choice of domain;
- Relations (uniformly continuous functions into a bounded subset of the reals)

Analysis is not a first-order theory; so model theory doesn't apply, right?

- A collection of "domains" (which will be bounded subsets of a metric space) and a privileged "relation" d (which will be the metric);
- Functions (which will be uniformly continuous functions) together with a uniform continuity modulus, one for each possible choice of domain;
- Relations (uniformly continuous functions into a bounded subset of the reals)

Analysis is not a first-order theory; so model theory doesn't apply, right?

- A collection of "domains" (which will be bounded subsets of a metric space) and a privileged "relation" d (which will be the metric);
- Functions (which will be uniformly continuous functions) together with a uniform continuity modulus, one for each possible choice of domain;
- Relations (uniformly continuous functions into a bounded subset of the reals)

Analysis is not a first-order theory; so model theory doesn't apply, right?

- A collection of "domains" (which will be bounded subsets of a metric space) and a privileged "relation" d (which will be the metric);
- Functions (which will be uniformly continuous functions) together with a uniform continuity modulus, one for each possible choice of domain;
- Relations (uniformly continuous functions into a bounded subset of the reals)

The language of C^* -algebras will be:

- Domains B_n which will be the ball of radius $n \in \mathbb{N}$, and metric $d(a,b) = \|a b\|;$
- A constant (a constant function) $0 \in B_1$;
- For every $\lambda \in \mathbb{C}$ a function $B_n \to B_m$ which will be scalar multiplication;
- A unary function $*: B_n \to B_n$ (which will be involution);
- Binary functions + and . (from suitable B_n to B_m) which will be addition and multiplication.

A "structure" is then just a metric space with subsets B_n and functions, which only need to satisfy that the functions have the correct uniform continuity bounds.

The language of C^* -algebras will be:

- Domains B_n which will be the ball of radius $n \in \mathbb{N}$, and metric $d(a,b) = \|a b\|;$
- A constant (a constant function) $0 \in B_1$;
- For every $\lambda \in \mathbb{C}$ a function $B_n \to B_m$ which will be scalar multiplication;
- A unary function $*: B_n \to B_n$ (which will be involution);
- Binary functions + and . (from suitable B_n to B_m) which will be addition and multiplication.

A "structure" is then just a metric space with subsets B_n and functions, which only need to satisfy that the functions have the correct uniform continuity bounds.

We can now write down the "axioms" to be a C^* -algebra:

- Axioms to be a vector space over \mathbb{C} ;
- To be a C-algebra;
- Axioms for the involution;
- d(x,y) = d(x-y,0) (we define ||x|| = d(x,0)).
- $\|xy\| \le \|x\|\|y\|$ and $\|\lambda x\| = |\lambda|\|x\|;$
- $||x^*x|| = ||x||^2;$
- $\sup_{a\in B_1} \|a\| \leq 1.$

Where did sup come from? We cannot use first-order logic; the formulas are built inductively using relations and functions from the language, together with uniformly continuous functions on \mathbb{R}^n , and sup and inf.

We can now write down the "axioms" to be a C^* -algebra:

- Axioms to be a vector space over \mathbb{C} ;
- To be a C-algebra;
- Axioms for the involution;
- d(x,y) = d(x-y,0) (we define ||x|| = d(x,0)).
- $\|xy\| \le \|x\|\|y\|$ and $\|\lambda x\| = |\lambda|\|x\|;$
- $||x^*x|| = ||x||^2;$
- $\sup_{a\in B_1} \|a\| \leq 1.$

Where did sup come from? We cannot use first-order logic; the formulas are built inductively using relations and functions from the language, together with uniformly continuous functions on \mathbb{R}^n , and sup and inf.

These axioms are *not* enough to ensure that B_1 is equal to the ball $\{a \in A : ||a|| \le 1\}$. To get this, we have to play some tricks by forcing *-polynomials to have the correct domains and codomains: see Farah, Hart, Sherman.

Can also perform another trick for a Banach space / algebra.

- We can form ultrapowers; these agree with our previous notion.
- Loś's Theorem still holds.

So we can immediately show that $(A)_{\mathcal{U}}$ is unital if and only if A is unital, right?

Well, we cannot quantify with \exists or \forall , so this cannot work:

These axioms are *not* enough to ensure that B_1 is equal to the ball $\{a \in A : ||a|| \le 1\}$. To get this, we have to play some tricks by forcing *-polynomials to have the correct domains and codomains: see Farah, Hart, Sherman.

Can also perform another trick for a Banach space / algebra.

• We can form ultrapowers; these agree with our previous notion.

• Loś's Theorem still holds.

So we can immediately show that $(A)_{\mathcal{U}}$ is unital if and only if A is unital, right?

Well, we cannot quantify with \exists or \forall , so this cannot work:

These axioms are *not* enough to ensure that B_1 is equal to the ball $\{a \in A : ||a|| \le 1\}$. To get this, we have to play some tricks by forcing *-polynomials to have the correct domains and codomains: see Farah, Hart, Sherman.

Can also perform another trick for a Banach space / algebra.

• We can form ultrapowers; these agree with our previous notion.

• Loś's Theorem still holds.

So we can immediately show that $(A)_{\mathcal{U}}$ is unital if and only if A is unital, right?

Well, we cannot quantify with \exists or \forall , so this cannot work:

These axioms are *not* enough to ensure that B_1 is equal to the ball $\{a \in A : ||a|| \le 1\}$. To get this, we have to play some tricks by forcing *-polynomials to have the correct domains and codomains: see Farah, Hart, Sherman.

Can also perform another trick for a Banach space / algebra.

• We can form ultrapowers; these agree with our previous notion.

• Łoś's Theorem still holds.

So we can immediately show that $(A)_{\mathcal{U}}$ is unital if and only if A is unital, right?

Well, we cannot quantify with \exists or \forall , so this cannot work:

These axioms are *not* enough to ensure that B_1 is equal to the ball $\{a \in A : ||a|| \le 1\}$. To get this, we have to play some tricks by forcing *-polynomials to have the correct domains and codomains: see Farah, Hart, Sherman.

Can also perform another trick for a Banach space / algebra.

- We can form ultrapowers; these agree with our previous notion.
- Łoś's Theorem still holds.

So we can immediately show that $(A)_{\mathcal{U}}$ is unital if and only if A is unital, right?

Well, we cannot quantify with \exists or \forall , so this cannot work:

These axioms are *not* enough to ensure that B_1 is equal to the ball $\{a \in A : ||a|| \le 1\}$. To get this, we have to play some tricks by forcing *-polynomials to have the correct domains and codomains: see Farah, Hart, Sherman.

Can also perform another trick for a Banach space / algebra.

- We can form ultrapowers; these agree with our previous notion.
- Łoś's Theorem still holds.

So we can immediately show that $(A)_{\mathcal{U}}$ is unital if and only if A is unital, right?

Well, we cannot quantify with \exists or \forall , so this cannot work:

These axioms are *not* enough to ensure that B_1 is equal to the ball $\{a \in A : ||a|| \le 1\}$. To get this, we have to play some tricks by forcing *-polynomials to have the correct domains and codomains: see Farah, Hart, Sherman.

Can also perform another trick for a Banach space / algebra.

- We can form ultrapowers; these agree with our previous notion.
- Łoś's Theorem still holds.

So we can immediately show that $(A)_{\mathcal{U}}$ is unital if and only if A is unital, right?

Well, we cannot quantify with \exists or \forall , so this cannot work:

$$\exists e \in A, \ \forall a \in A, \ ea = ae = a.$$

Back to unital algebras

Proposition

A Banach algebra A is unital if and only if

$$\inf_{e\in B_1}\sup_{a\in B_1}\max(\|ea-a\|,\|ae-a\|)=0,$$

where B_1 is the unit ball of A.

Proof.

As before, extract a Cauchy sequence (e_n) .

We can then apply Los's Theorem to this. Moral is that we don't actually gain much from the abstract theory: just the ultrafilter bookkeeping is taken care of. Back to unital algebras

Proposition

A Banach algebra A is unital if and only if

$$\inf_{e \in B_1} \sup_{a \in B_1} \max(\|ea - a\|, \|ae - a\|) = 0,$$

where B_1 is the unit ball of A.

Proof.

As before, extract a Cauchy sequence (e_n) .

We can then apply Los's Theorem to this. Moral is that we don't actually gain much from the abstract theory: just the ultrafilter bookkeeping is taken care of.

Ring-theoretic infiniteness

Definition

 $p \in A$ is an *idempotent* if $p^2 = p$. Two idempotents p, q are *equivalent*, written $p \sim q$, if there are $a, b \in A$ with p = ab and q = ba.

 $[ext{If } q \sim r, ext{ say } q = cd, r = dc, ext{ then } p = p^2 = abab = aqb = (ac)(db) ext{ and } (db)(ac) = dqc = dcdc = r^2 = r ext{ so } p \sim r.]$

Definition

Let A be a unital algebra. A is Dedekind finite if $p \sim 1$ implies p = 1.

Ring-theoretic infiniteness

Definition

 $p \in A$ is an *idempotent* if $p^2 = p$. Two idempotents p, q are *equivalent*, written $p \sim q$, if there are $a, b \in A$ with p = ab and q = ba.

 $egin{aligned} & [ext{If } q \sim r, ext{ say } q = cd, r = dc, ext{ then } p = p^2 = abab = aqb = (ac)(db) ext{ and } (db)(ac) = dqc = dcdc = r^2 = r ext{ so } p \sim r. \end{bmatrix}$

Definition

Let A be a unital algebra. A is Dedekind finite if $p \sim 1$ implies p = 1.

Ring-theoretic infiniteness

Definition

 $p \in A$ is an *idempotent* if $p^2 = p$. Two idempotents p, q are *equivalent*, written $p \sim q$, if there are $a, b \in A$ with p = ab and q = ba.

Definition

Let A be a unital algebra. A is Dedekind finite if $p \sim 1$ implies p = 1.

For C^* -algebras

For C^* -algebras:

- We typically only consider self-adjoint idempotents $p = p^* = p^2$, called *projections*.
- The equivalence we typically use is Murray-von Neumann equivalence, which is that $p = u^*u$ and $q = uu^*$. This implies that u is a partial isometry. We write $p \approx q$.

These are actually the same concepts as we have defined.

- For any idempotent p there is a projection q with $p \sim q$. In fact, we can choose q with pq = q and qp = p.
- If p,q are projections with $p\sim q$ then also ppprox q.
- Suppose A is a Dedekind-finite C*-algebra. If p² = p ~ 1 then there is a projection q with q ~ p, so also q ~ 1 so q ≈ 1 so q = 1. Then 1 = q = pq = p, so A is Dedekind-finite in our sense.
For C^* -algebras:

- We typically only consider self-adjoint idempotents $p = p^* = p^2$, called *projections*.
- The equivalence we typically use is Murray-von Neumann equivalence, which is that $p = u^*u$ and $q = uu^*$. This implies that u is a partial isometry. We write $p \approx q$.

- For any idempotent p there is a projection q with $p \sim q$. In fact, we can choose q with pq = q and qp = p.
- If p,q are projections with $p\sim q$ then also ppprox q.
- Suppose A is a Dedekind-finite C*-algebra. If p² = p ~ 1 then there is a projection q with q ~ p, so also q ~ 1 so q ≈ 1 so q = 1. Then 1 = q = pq = p, so A is Dedekind-finite in our sense.

For C^* -algebras:

- We typically only consider self-adjoint idempotents $p = p^* = p^2$, called *projections*.
- The equivalence we typically use is Murray-von Neumann equivalence, which is that $p = u^*u$ and $q = uu^*$. This implies that u is a partial isometry. We write $p \approx q$.

- For any idempotent p there is a projection q with p ~ q. In fact, we can choose q with pq = q and qp = p.
- If p,q are projections with $p\sim q$ then also ppprox q.
- Suppose A is a Dedekind-finite C*-algebra. If p² = p ~ 1 then there is a projection q with q ~ p, so also q ~ 1 so q ≈ 1 so q = 1. Then 1 = q = pq = p, so A is Dedekind-finite in our sense.

For C^* -algebras:

- We typically only consider self-adjoint idempotents $p = p^* = p^2$, called *projections*.
- The equivalence we typically use is Murray-von Neumann equivalence, which is that $p = u^*u$ and $q = uu^*$. This implies that u is a partial isometry. We write $p \approx q$.

- For any idempotent p there is a projection q with p ~ q. In fact, we can choose q with pq = q and qp = p.
- If p,q are projections with $p\sim q$ then also ppprox q.
- Suppose A is a Dedekind-finite C*-algebra. If p² = p ~ 1 then there is a projection q with q ~ p, so also q ~ 1 so q ≈ 1 so q = 1. Then 1 = q = pq = p, so A is Dedekind-finite in our sense.

For C^* -algebras:

- We typically only consider self-adjoint idempotents $p = p^* = p^2$, called *projections*.
- The equivalence we typically use is Murray-von Neumann equivalence, which is that $p = u^*u$ and $q = uu^*$. This implies that u is a partial isometry. We write $p \approx q$.

- For any idempotent p there is a projection q with p ~ q. In fact, we can choose q with pq = q and qp = p.
- If p, q are projections with $p \sim q$ then also $p \approx q$.
- Suppose A is a Dedekind-finite C*-algebra. If p² = p ~ 1 then there is a projection q with q ~ p, so also q ~ 1 so q ≈ 1 so q = 1. Then 1 = q = pq = p, so A is Dedekind-finite in our sense.

For C^* -algebras:

- We typically only consider self-adjoint idempotents $p = p^* = p^2$, called *projections*.
- The equivalence we typically use is Murray-von Neumann equivalence, which is that $p = u^*u$ and $q = uu^*$. This implies that u is a partial isometry. We write $p \approx q$.

- For any idempotent p there is a projection q with p ~ q. In fact, we can choose q with pq = q and qp = p.
- If p, q are projections with $p \sim q$ then also $p \approx q$.
- Suppose A is a Dedekind-finite C*-algebra. If $p^2 = p \sim 1$ then there is a projection q with $q \sim p$, so also $q \sim 1$ so $q \approx 1$ so q = 1. Then 1 = q = pq = p, so A is Dedekind-finite in our sense.

Theorem

Let A be a unital Banach algebra. If A is Dedekind-finite then so is Asy(A).

Proof.

Let $p^2 = p \sim 1$ in Asy(A). We need to show that p = 1. Let $(x_n) \in \ell^{\infty}(A)$ be a representative of p. Of course, (x_n) will not be an idempotent in general.

Lemma

Let
$$a \in A$$
 with $\|a^2 - a\| = t < 1/4$. There is $p = p^2$ with

$$\|a-p\| \le f_{\|a\|}(t) = (\|a\| + \frac{1}{2})((1-4t)^{-1/2} - 1).$$

Theorem

Let A be a unital Banach algebra. If A is Dedekind-finite then so is Asy(A).

Proof.

Let $p^2 = p \sim 1$ in Asy(A). We need to show that p = 1. Let $(x_n) \in \ell^{\infty}(A)$ be a representative of p. Of course, (x_n) will not be an idempotent in general.

Lemma

Let
$$a \in A$$
 with $\|a^2 - a\| = t < 1/4$. There is $p = p^2$ with

$$\|a - p\| \le f_{\|a\|}(t) = (\|a\| + \frac{1}{2})((1 - 4t)^{-1/2} - 1).$$

Theorem

Let A be a unital Banach algebra. If A is Dedekind-finite then so is Asy(A).

Proof.

Let $p^2 = p \sim 1$ in Asy(A). We need to show that p = 1. Let $(x_n) \in \ell^{\infty}(A)$ be a representative of p. Of course, (x_n) will not be an idempotent in general.

Lemma

Let
$$a \in A$$
 with $\|a^2 - a\| = t < 1/4$. There is $p = p^2$ with

$$\|a-p\| \le f_{\|a\|}(t) = (\|a\| + \frac{1}{2})((1-4t)^{-1/2} - 1).$$

Theorem

Let A be a unital Banach algebra. If A is Dedekind-finite then so is Asy(A).

Proof.

Let $p^2 = p \sim 1$ in Asy(A). We need to show that p = 1. Let $(x_n) \in \ell^{\infty}(A)$ be a representative of p. Of course, (x_n) will not be an idempotent in general.

Lemma

Let
$$a \in A$$
 with $\|a^2 - a\| = t < 1/4$. There is $p = p^2$ with

$$\|a-p\| \leq f_{\|a\|}(t) = \left(\|a\| + \frac{1}{2}\right) \left((1-4t)^{-1/2} - 1\right).$$

$$1 \sim p = p^2 \in \operatorname{Asy}(A).$$

- $p = (x_n) + c_0(A)$ so for large enough n, $||x_n^2 x_n||$ is small. So there is $p_n = p_n^2$ close to x_n .
- Then (p_n) is another representative of p, and now (p_n) is an idempotent in ℓ[∞](A).
- As $p \sim 1$ there are $a = (a_n)$ and $b = (b_n)$ with $(a_n b_n p_n) \in c_0(A)$ and $(b_n a_n 1) \in c_0(A)$.
- So eventually $u_n = b_n a_n$ is invertible. Set $q_n = a_n u_n^{-1} b_n$.
- Then $q_n^2 = a_n u_n^{-1} u_n u_n^{-1} b_n = q_n$ and $q_n \sim b_n a_n u_n^{-1} = 1$ so A Dedekind-finite implies $q_n = 1$.

$$1 \sim p = p^2 \in \operatorname{Asy}(A).$$

- $p = (x_n) + c_0(A)$ so for large enough n, $||x_n^2 x_n||$ is small. So there is $p_n = p_n^2$ close to x_n .
- Then (p_n) is another representative of p, and now (p_n) is an idempotent in ℓ[∞](A).
- As $p \sim 1$ there are $a = (a_n)$ and $b = (b_n)$ with $(a_n b_n p_n) \in c_0(A)$ and $(b_n a_n 1) \in c_0(A)$.
- So eventually $u_n = b_n a_n$ is invertible. Set $q_n = a_n u_n^{-1} b_n$.
- Then $q_n^2 = a_n u_n^{-1} u_n u_n^{-1} b_n = q_n$ and $q_n \sim b_n a_n u_n^{-1} = 1$ so A Dedekind-finite implies $q_n = 1$.

$$1 \sim p = p^2 \in \operatorname{Asy}(A).$$

- $p = (x_n) + c_0(A)$ so for large enough n, $||x_n^2 x_n||$ is small. So there is $p_n = p_n^2$ close to x_n .
- Then (p_n) is another representative of p, and now (p_n) is an idempotent in ℓ[∞](A).
- As $p \sim 1$ there are $a = (a_n)$ and $b = (b_n)$ with $(a_n b_n p_n) \in c_0(A)$ and $(b_n a_n 1) \in c_0(A)$.
- So eventually $u_n = b_n a_n$ is invertible. Set $q_n = a_n u_n^{-1} b_n$.
- Then $q_n^2 = a_n u_n^{-1} u_n u_n^{-1} b_n = q_n$ and $q_n \sim b_n a_n u_n^{-1} = 1$ so A Dedekind-finite implies $q_n = 1$.

$$1 \sim p = p^2 \in \operatorname{Asy}(A).$$

- $p = (x_n) + c_0(A)$ so for large enough n, $||x_n^2 x_n||$ is small. So there is $p_n = p_n^2$ close to x_n .
- Then (p_n) is another representative of p, and now (p_n) is an idempotent in ℓ[∞](A).
- As $p \sim 1$ there are $a = (a_n)$ and $b = (b_n)$ with $(a_n b_n p_n) \in c_0(A)$ and $(b_n a_n 1) \in c_0(A)$.

• So eventually $u_n = b_n a_n$ is invertible. Set $q_n = a_n u_n^{-1} b_n$.

• Then $q_n^2 = a_n u_n^{-1} u_n u_n^{-1} b_n = q_n$ and $q_n \sim b_n a_n u_n^{-1} = 1$ so A Dedekind-finite implies $q_n = 1$.

$$1 \sim p = p^2 \in \operatorname{Asy}(A).$$

- $p = (x_n) + c_0(A)$ so for large enough n, $||x_n^2 x_n||$ is small. So there is $p_n = p_n^2$ close to x_n .
- Then (p_n) is another representative of p, and now (p_n) is an idempotent in ℓ[∞](A).
- As $p \sim 1$ there are $a = (a_n)$ and $b = (b_n)$ with $(a_n b_n p_n) \in c_0(A)$ and $(b_n a_n 1) \in c_0(A)$.
- So eventually $u_n = b_n a_n$ is invertible. Set $q_n = a_n u_n^{-1} b_n$.
- Then $q_n^2 = a_n u_n^{-1} u_n u_n^{-1} b_n = q_n$ and $q_n \sim b_n a_n u_n^{-1} = 1$ so A Dedekind-finite implies $q_n = 1$.

$$1 \sim p = p^2 \in \operatorname{Asy}(A).$$

- $p = (x_n) + c_0(A)$ so for large enough n, $||x_n^2 x_n||$ is small. So there is $p_n = p_n^2$ close to x_n .
- Then (p_n) is another representative of p, and now (p_n) is an idempotent in ℓ[∞](A).
- As $p \sim 1$ there are $a = (a_n)$ and $b = (b_n)$ with $(a_n b_n p_n) \in c_0(A)$ and $(b_n a_n 1) \in c_0(A)$.
- So eventually $u_n = b_n a_n$ is invertible. Set $q_n = a_n u_n^{-1} b_n$.
- Then $q_n^2 = a_n u_n^{-1} u_n u_n^{-1} b_n = q_n$ and $q_n \sim b_n a_n u_n^{-1} = 1$ so A Dedekind-finite implies $q_n = 1$.

The proof cont.

$$(a_nb_n-p_n)\in c_0(A) \qquad (b_na_n-1)\in c_0(A).$$

We established that with $u_n = b_n a_n$ we have $q_n = a_n u_n^{-1} b_n = 1$ eventually.

Now compute:

$$egin{aligned} \|1-p_n\| &= \|q_n-p_n\| = \|a_nu_n^{-1}b_n-a_nb_n\| + \|a_nb_n-p_n\| \ &\leq \|a_n\|\|u_n^{-1}-1\|\|b_n\| + \|a_nb_n-p_n\|, \end{aligned}$$

which is small for large n. Thus $(1-p_n) \in c_0(A)$ so p=1 in Asy(A).

The proof cont.

$$(a_n b_n - p_n) \in c_0(A)$$
 $(b_n a_n - 1) \in c_0(A).$

We established that with $u_n = b_n a_n$ we have $q_n = a_n u_n^{-1} b_n = 1$ eventually. Now compute:

$$egin{aligned} \|1-p_n\| &= \|q_n-p_n\| = \|a_nu_n^{-1}b_n-a_nb_n\|+\|a_nb_n-p_n\|\ &\leq \|a_n\|\|u_n^{-1}-1\|\|b_n\|+\|a_nb_n-p_n\|, \end{aligned}$$

which is small for large n. Thus $(1-p_n) \in c_0(A)$ so p = 1 in Asy(A).

The converse?

We could consider the ultrapower case, and try to use Los's Theorem. That A is Dedekind finite is the claim that

$$\forall a, b \in A, ab = 1 \implies ba = 1.$$

[Indeed, if ab = 1 then p = ba is an idempotent with $p \sim 1$. Conversely, if $p^2 = p \sim 1$ then p = ba and 1 = ab for some a, b.] The problem is that we can only "quantify" over bounded balls, and we cannot use \forall or \implies . So the analogy breaks a little... We could consider the ultrapower case, and try to use Los's Theorem. That A is Dedekind finite is the claim that

$$\forall a, b \in A, ab = 1 \implies ba = 1.$$

[Indeed, if ab = 1 then p = ba is an idempotent with $p \sim 1$. Conversely, if $p^2 = p \sim 1$ then p = ba and 1 = ab for some a, b.]

The problem is that we can only "quantify" over bounded balls, and we cannot use \forall or \implies . So the analogy breaks a little...

We could consider the ultrapower case, and try to use Los's Theorem. That A is Dedekind finite is the claim that

$$\forall a, b \in A, ab = 1 \implies ba = 1.$$

[Indeed, if ab = 1 then p = ba is an idempotent with $p \sim 1$. Conversely, if $p^2 = p \sim 1$ then p = ba and 1 = ab for some a, b.] The problem is that we can only "quantify" over bounded balls, and we cannot use \forall or \implies . So the analogy breaks a little...

Dedekind-infinite

Definition

Say that A is Dedekind-infinite if it is not Dedekind-finite. Define

$$C_{ ext{DI}}(A) = \inf \{ \|a\| \|b\| : a, b \in A, ab = 1, ba
eq 1 \}.$$

Set $C_{\mathrm{DI}}(A) = \infty$ if A is Dedekind-finite.

Remark

Given such a, b set p = ba so $p^2 = p$ and hence $p^n = p$ for all n, and so either p = 0 or $||p|| \ge 1$. As 1 - p is also an idempotent, also $||1 - p|| \ge 1$ (as $p \ne 1$).

Dedekind-infinite

Definition

Say that A is Dedekind-infinite if it is not Dedekind-finite. Define

$$C_{ ext{DI}}(A) = \inf \big\{ \|a\| \|b\| : a, b \in A, ab = 1, ba
eq 1 \big\}.$$

Set $C_{\mathrm{DI}}(A) = \infty$ if A is Dedekind-finite.

Remark

Given such a, b set p = ba so $p^2 = p$ and hence $p^n = p$ for all n, and so either p = 0 or $||p|| \ge 1$. As 1 - p is also an idempotent, also $||1 - p|| \ge 1$ (as $p \ne 1$).

Dedekind-infinite passes to sequence algebras

Theorem

Let (A_n) be a sequence of unital Banach algebras with $C_{DI}(A_n) \leq K$ for all n. Then $Asy((A_n))$ is Dedekind-infinite.

Proof.

Easy: for each n there is a "witness" $a_n b_n = 1, b_n a_n \neq 1$ and $||a_n|| ||b_n|| \leq K$. By the remark, $||b_n a_n - 1|| \geq 1$. Rescale so that $||a_n|| = ||b_n||$. Then $a = (a_n), b = (b_n)$ define classes in Asy $((A_n))$ with ab = 1 but $(b_n a_n - 1) \notin c_0((A_n))$ so $ba \neq 1$.

Dedekind-infinite passes to sequence algebras

Theorem

Let (A_n) be a sequence of unital Banach algebras with $C_{DI}(A_n) \leq K$ for all n. Then $Asy((A_n))$ is Dedekind-infinite.

Proof.

Easy: for each *n* there is a "witness" $a_n b_n = 1, b_n a_n \neq 1$ and $||a_n|| ||b_n|| \leq K$. By the remark, $||b_n a_n - 1|| \geq 1$. Rescale so that $||a_n|| = ||b_n||$. Then $a = (a_n), b = (b_n)$ define classes in Asy $((A_n))$ with ab = 1 but $(b_n a_n - 1) \notin c_0((A_n))$ so $ba \neq 1$.

Corollary

If A is a C^{*}-algebra then A is Dedekind-finite if and only if Asy(A) is.

Proof.

We can use the C^* -algebra form of Dedekind-finite, so we can assume $b = a^*$ is a partial isometry. Thus, if A is Dedekind-infinite, then $C_{\mathrm{DI}}(A) = 1.$

Corollary

If A is a C^* -algebra then A is Dedekind-finite if and only if Asy(A) is.

Proof.

We can use the C^* -algebra form of Dedekind-finite, so we can assume $b = a^*$ is a partial isometry. Thus, if A is Dedekind-infinite, then $C_{\text{DI}}(A) = 1$.

Counter-example for Banach algebras

Maybe we have that A is Dedekind-finite, or $D_{DI}(A) \leq K$ for some absolute constant K (which is true for C^* -algebras).

Of course not!

Our counter-example will be a *weighted-semigroup* algebra. Let C be the bicyclic semigroup, so S has generators α , β with $\alpha\beta = 1$ and no other relations.

[So C is all reduced words which are of the form $\beta^n \alpha^m$ with $n, m \in \mathbb{Z}_{\geq 0}$. Exercise to the reader to work out the multiplication.]

Counter-example for Banach algebras

Maybe we have that A is Dedekind-finite, or $D_{DI}(A) \leq K$ for some absolute constant K (which is true for C*-algebras). Of course not!

Our counter-example will be a *weighted-semigroup* algebra. Let C be the bicyclic semigroup, so S has generators α , β with $\alpha\beta = 1$ and no other relations.

[So C is all reduced words which are of the form $\beta^n \alpha^m$ with $n, m \in \mathbb{Z}_{\geq 0}$. Exercise to the reader to work out the multiplication.] Maybe we have that A is Dedekind-finite, or $D_{DI}(A) \leq K$ for some absolute constant K (which is true for C^* -algebras).

Of course not!

Our counter-example will be a *weighted-semigroup* algebra. Let C be the bicyclic semigroup, so S has generators α , β with $\alpha\beta = 1$ and no other relations.

[So C is all reduced words which are of the form $\beta^n \alpha^m$ with $n, m \in \mathbb{Z}_{\geq 0}$. Exercise to the reader to work out the multiplication.]

Semigroup algebras

Let S be a semigroup.

The (classical) semigroup algebra is $\ell^1(S)$, all families $a = (a_s)_{s \in S}$ of complex numbers, with $||a|| = \sum_s |a_s| < \infty$, and convolution product. Write $a = \sum_s a_s \delta_s$ where (δ_s) the basis (in the Banach space sense) of $\ell^1(S)$, and set

$$\delta_s * \delta_t = \delta_{st}$$
 so $a * b = \left(\sum_{\{s,t \in S: st = r\}} a_s b_t\right)_{r \in S}$

Semigroup algebras

Let S be a semigroup. The (classical) semigroup algebra is $\ell^1(S)$, all families $a = (a_s)_{s \in S}$ of complex numbers, with $||a|| = \sum_s |a_s| < \infty$, and convolution product. Write $a = \sum_s a_s \delta_s$ where (δ_s) the basis (in the Banach space sense) of $\ell^1(S)$, and set

$$\delta_s * \delta_t = \delta_{st}$$
 so $a * b = \left(\sum_{\{s,t \in S: st = r\}} a_s b_t\right)_{r \in S}$

Semigroup algebras

Let S be a semigroup. The (classical) semigroup algebra is $\ell^1(S)$, all families $a = (a_s)_{s \in S}$ of complex numbers, with $||a|| = \sum_s |a_s| < \infty$, and convolution product. Write $a = \sum_s a_s \delta_s$ where (δ_s) the basis (in the Banach space sense) of $\ell^1(S)$, and set

$$\delta_s * \delta_t = \delta_{st}$$
 so $a * b = \left(\sum_{\{s,t \in S: st = r\}} a_s b_t\right)_{r \in S}$

Weights

Definition

A weight on a semigroup is $\omega: S \to (0,\infty)$ with $\omega(st) \le \omega(s)\omega(t)$.

We shall in fact use the rather trivial weights $\omega_n(s) = n$ for $s \neq 1$ and $\omega_s(1) = 1$, for $n \in \mathbb{N}$. We shall in particular assume that $\omega(s) \ge 1$ for all s.

The weighted semigroup algebra is $\ell^1(S, \omega)$, which is those $a \in \ell^1(S)$ with $||a||_{\omega} = \sum_s |a_s|\omega(s) < \infty$. The condition on the weight ensures that $\ell^1(S, \omega)$ is an algebra.

Proposition

Let $a, b \in \ell^1(S, \omega)$ with ab = 1 and $ba \neq 1$. Then

$$\|a\|_w, \|b\|_w \ge rac{1}{2} \inf \big\{ \omega(s) : s
eq 1 \big\}.$$

Weights

Definition

A weight on a semigroup is $\omega: S \to (0,\infty)$ with $\omega(st) \le \omega(s)\omega(t)$.

We shall in fact use the rather trivial weights $\omega_n(s) = n$ for $s \neq 1$ and $\omega_s(1) = 1$, for $n \in \mathbb{N}$. We shall in particular assume that $\omega(s) \ge 1$ for all s.

The weighted semigroup algebra is $\ell^1(S, \omega)$, which is those $a \in \ell^1(S)$ with $||a||_{\omega} = \sum_s |a_s|\omega(s) < \infty$. The condition on the weight ensures that $\ell^1(S, \omega)$ is an algebra.

Proposition

Let $a, b \in \ell^1(S, \omega)$ with ab = 1 and $ba \neq 1$. Then

$$\|a\|_w, \|b\|_w \geq rac{1}{2} \infig\{\omega(s): s
eq 1ig\}.$$

Weights

Definition

A weight on a semigroup is $\omega: S \to (0,\infty)$ with $\omega(st) \le \omega(s)\omega(t)$.

We shall in fact use the rather trivial weights $\omega_n(s) = n$ for $s \neq 1$ and $\omega_s(1) = 1$, for $n \in \mathbb{N}$. We shall in particular assume that $\omega(s) \ge 1$ for all s.

The weighted semigroup algebra is $\ell^1(S, \omega)$, which is those $a \in \ell^1(S)$ with $||a||_{\omega} = \sum_s |a_s|\omega(s) < \infty$. The condition on the weight ensures that $\ell^1(S, \omega)$ is an algebra.

Proposition

Let
$$a, b \in \ell^1(S, \omega)$$
 with $ab = 1$ and $ba \neq 1$. Then

$$||a||_w, ||b||_w \ge \frac{1}{2} \inf \{\omega(s) : s \ne 1\}.$$

The counter-example

So we consider $A = \ell^1(C, \omega_n)$. Set $a = \delta_{\alpha}$ and $b = \delta_{\beta}$ so ab = 1 (as $\alpha\beta = 1$) but $ba = \delta_{\beta\alpha} \neq 1$. Thus A is Dedekind-infinite. If $a, b \in A$ are arbitrary with ab = 1 and $ba \neq 1$, then by the proposition,

$$\|a\|_w, \|b\|_w \ge rac{1}{2} \inf \left\{ \omega(s) : s \ne 1 \right\} = rac{n}{2}.$$

So $C_{\mathrm{DI}}(A) \geq n^2/4$ (and in fact we have equality). In this way, we obtain a sequence of Dedekind-infinite Banach algebras (A_n) such that $\mathrm{Asy}((A_n))$ (and ultraproducts) are Dedekind-finite.
The counter-example

So we consider $A = \ell^1(C, \omega_n)$. Set $a = \delta_{\alpha}$ and $b = \delta_{\beta}$ so ab = 1 (as $\alpha\beta = 1$) but $ba = \delta_{\beta\alpha} \neq 1$. Thus A is Dedekind-infinite. If $a, b \in A$ are arbitrary with ab = 1 and $ba \neq 1$, then by the proposition,

$$\|a\|_{w}, \|b\|_{w} \geq \frac{1}{2} \inf \{\omega(s) : s \neq 1\} = \frac{n}{2}.$$

So $C_{\mathrm{DI}}(A) \geq n^2/4$ (and in fact we have equality).

In this way, we obtain a sequence of Dedekind-infinite Banach algebras (A_n) such that $Asy((A_n))$ (and ultraproducts) are Dedekind-finite.

The counter-example

So we consider $A = \ell^1(C, \omega_n)$. Set $a = \delta_{\alpha}$ and $b = \delta_{\beta}$ so ab = 1 (as $\alpha\beta = 1$) but $ba = \delta_{\beta\alpha} \neq 1$. Thus A is Dedekind-infinite. If $a, b \in A$ are arbitrary with ab = 1 and $ba \neq 1$, then by the proposition,

$$\|a\|_{w}, \|b\|_{w} \geq \frac{1}{2} \inf \{\omega(s) : s \neq 1\} = \frac{n}{2}.$$

So $C_{\mathrm{DI}}(A) \geq n^2/4$ (and in fact we have equality). In this way, we obtain a sequence of Dedekind-infinite Banach algebras (A_n) such that $\mathrm{Asy}((A_n))$ (and ultraproducts) are Dedekind-finite.

We also look at:

- Proper Infiniteness: there are $p, q \in A$ idempotents which are orthogonal (pq = qp = 0) and $p \sim 1, q \sim 1$.
- Stable Rank One: (which has a complicated, but well-motivated, definition, but is equivalent to) the group of invertible elements is dense in A. (This implies being Dedekfind-finite).

The common theme is again norm-control, or lack thereof in the Banach algebra setting.

We also look at:

- Proper Infiniteness: there are $p, q \in A$ idempotents which are orthogonal (pq = qp = 0) and $p \sim 1, q \sim 1$.
- Stable Rank One: (which has a complicated, but well-motivated, definition, but is equivalent to) the group of invertible elements is dense in A. (This implies being Dedekfind-finite).

The common theme is again norm-control, or lack thereof in the Banach algebra setting.

We also look at:

- Proper Infiniteness: there are $p, q \in A$ idempotents which are orthogonal (pq = qp = 0) and $p \sim 1, q \sim 1$.
- Stable Rank One: (which has a complicated, but well-motivated, definition, but is equivalent to) the group of invertible elements is dense in A. (This implies being Dedekfind-finite).

The common theme is again norm-control, or lack thereof in the Banach algebra setting.

We also look at:

- Proper Infiniteness: there are $p,q \in A$ idempotents which are orthogonal (pq = qp = 0) and $p \sim 1, q \sim 1$.
- Stable Rank One: (which has a complicated, but well-motivated, definition, but is equivalent to) the group of invertible elements is dense in A. (This implies being Dedekfind-finite).

The common theme is again norm-control, or lack thereof in the Banach algebra setting.

Sources

- Ilijas Farah, "Combinatorial set theory of C^* -algebras", available at Farah's website, and forthcoming from Springer.
- Ilijas Farah, Bradd Hart, David Sherman, a series of papers "Model theory of Operator algebras".
- Ilijas Farah, Bradd Hart, Martino Lupini, Leonel Robert, Aaron Tikuisis, Alessandro Vignati, and Wilhelm Winter, "Model theory of nuclear C^* -algebras", to appear in Memoirs of the AMS.