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The Calkin Algebra

De�nition (Calkin, 1941)

Let H be a (separable, in�nite dimensional) Hilbert space, and denote

by K(H ) the compact operators, and B(H ) the bounded operators, on

H . The Calkin Algebra is C(H ) = B(H )/K(H ).

It is well-known that K(H ) is the only proper closed two-sided

ideal in B(H ).

So C(H ) is simple.

C(H ) is a C ∗-algebra, and so admits a faithful representation on

some Hilbert space K (K cannot be separable). It was the �rst

C ∗-algebra which does not obviously arise as a subalgebra of

B(K ). [Calkin proved this before the GNS theory was available!]

Does C(H ) have outer automorphisms (not arising from a

unitary)? This is independent of ZFC.
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Reframe using multipliers

Given a (faithful Banach) C ∗-algebra A, and an ideal I CA, we say

that I is essential if a ∈ A, aI + Ia = {0} implies a = 0.

The Multiplier Algebra of A, denoted M (A), is the largest C ∗-algebra

which contains A as an essential ideal.

More concretely, if A ⊆ B(H ) then

M (A) ∼= {T ∈ B(H ) : Ta , aT ∈ A (a ∈ A)}.

We think of M (A) as being the \maximal unitisation" of A. For

example:

M (C0(X )) = C (βX ) the Stone{�Cech compacti�cation of X .

M (K(H )) = B(H ).

We call C(A) := M (A)/A the \Corona" of A.
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Asymptotic sequence algebras

Given a (Banach) C ∗-algebra A let c0(A) be the space of sequences

(an) in A with limn ‖an‖ = 0, endowed with the pointwise algebra

operations:

(an) + (bn) = (an + bn), (an)(bn) = (anbn).

The multiplier algebra of c0(A) is `∞(A), the space of all bounded

sequences.

The corona of c0(A) is the \asymptotic sequence algebra"

Asy(A) = `∞(A)/c0(A).

(We can also let A vary, leading to Asy((An)) = `
∞((An))/c0((An)).)
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Typical application

Here A,H ,K are separable.

Theorem (Voiculescu)

Let A ⊆ B(H ) and let π : A→ B(K ) be a non-degenerate

representation with π(A ∩ K(H )) = {0}. Then there is a sequence of

unitaries un : H ⊕K → H with:

1 limn ‖a − un(a ⊕ π(a))u∗n‖ = 0 for a ∈ A;
2 a − un(a ⊕ π(a))u∗n ∈ K(H ) for a ∈ A.

So id and id⊕π are unitarily equivalent \in the limit".
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Typical application continued

Let π : B(K )→ C(K ) = B(K )/K(K ) be the quotient onto the Calkin

algebra.

Corollary

Let π1 and π2 be representations of A with

kerπ1 = kerπ2 = kerππ1 = kerππ2.

(That is, the images of π1 and π2 contain no non-zero compact

operators.)

Then there is a sequence of unitaries (un) with

limn ‖π1(a) − unπ2(a)u
∗
n‖ = 0 for a ∈ A.
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Abstract key idea

Let A,B be C ∗-algebras.

De�nition

Two maps ψ,φ : A→ B are approximately unitarily equivalent if

there is a sequence of unitaries (un) in M (B) with

‖φ(a) − unψ(a)u
∗
n‖→ 0 (a ∈ A).

Let ιB : B → `∞(B) be the \diagonal embedding" which sends

b ∈ B to the constant sequence (b).

The above de�nitions becomes that there is u ∈ `∞(B) unitary

with ιB (φ(a)) − uιB (ψ(b))u
∗ ∈ c0(B) for a ∈ A.

Or equivalently ιB (φ(a)) = uιB (ψ(b))u
∗ in

Asy(B) = `∞(B)/c0(B), for a ∈ A.
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Slogan

Asy(A) is a construct to convert \approximate relations" into \exact

relations".

Proposition (Gabe)

Two maps ψ,φ : A→ Asy(B) are approximately unitarily

equivalent if and only if they are unitarily equivalent.

Proof.

A \diagonal" argument.
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A bit of set theory

A �lter F on a set I is a non-empty collection of subsets of I with:

1 If A,B ∈ F then A ∩B ∈ F ;

2 If A ∈ F and A ⊆ B then B ∈ F .

3 ∅ 6∈ F (this ensure F 6= 2I ).

Example

The Fr�echet Filter is the collection of all co�nite subsets of I ; that is

A ∈ F if and only if I \A is �nite.

Let F be the Fr�echet Filter on N. Consider the condition on

(an) ∈ `∞(A) that

∀ ε > 0, {n : ‖an‖ < ε} ∈ F .

This is clearly equivalent to (an) ∈ c0(A).
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Ultra�lters
The collection of �lters on a set I is partially ordered by inclusions.

Zorn's Lemma ensures that there are maximal �lters, which are called

ultra�lters.

Lemma

A �lter U on I is an ultra�lter if and only if for each A ⊆ I either

A ∈ U or I \A ∈ U .

For example, for i0 ∈ I the principle ultra�lter at i0 is

{A ⊆ I : i0 ∈ A}.

Use Zorn's Lemma to �nd a maximal �lter which contains the

Fr�echet Filter. This ultra�lter is not principle.

Fix an ultra�lter U . If (ai )i∈I is a bounded sequence in R then a

compactness argument shows that there is a (unique) t ∈ R such that

∀ ε > 0, {i : |ai − t | < ε} ∈ U .

Write t = limi→U ai .
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Ultrapowers

For any �lter F de�ne (A)F to be the quotient of `∞(A) by those

sequences (an) with

∀ ε > 0, {n : ‖an‖ < ε} ∈ F .

De�nition

Let U be a non-principle ultra�lter (on N). The ultrapower of a

Banach space E is (E)U .

Equivalently, this is `∞(E) with the semi-norm

‖(an)‖ = lim
n→U ‖an‖.

One can show that (E)U is complete.
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Ultrapowers of Hilbert spaces

Consider de�ning a sesquilinear form on (H )U by(
(an)

∣∣(bn)) = lim
n→U(an |bn).

This is well-de�ned as if (an) = 0 in the quotient (E)U then

limn→U ‖an‖ = 0 and so limn→U (an |bn) = 0 for any (bn).

Clearly sesquilinear.

The induced seminorm is a norm, because of the norm on (H )U

So (H )U is a Hilbert space.

Contrast this Asy(H ) = `∞(H )/c0(H ).
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Unital algebras
This is joint work with Bence Horv�ath. Fix a Banach algebra A.

Question

When is (A)U , or Asy(A), unital?

If A is unital, under the diagonal embedding A→ (A)U , the unit

becomes a unit for Asy(A).

Conversely, let e ∈ Asy(A) be a unit for A. This has a

representative (en) ∈ `∞(A), which satis�es

lim
n
‖enan − an‖ = 0, lim

n
‖anen − an‖ = 0 ((an) ∈ `∞(A)).

By picking (an) suitably, this shows that, for example,

lim
n

sup{‖ena − a‖ : a ∈ A, ‖a‖ ≤ 1} = 0.
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When is (A)U , or Asy(A), unital?
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Unital algebras cont.

lim
n

sup{‖ena − a‖, ‖aen − a‖ : a ∈ A, ‖a‖ ≤ 1} = 0.

Extract a subsequence (en) with ‖ena − a‖, ‖aen − a‖ ≤ 1
n
‖a‖ for

a ∈ A.

We can also arrange that e.g. ‖en‖ ≤ 2‖(an)‖Asy = K say.

Thus ‖en − em‖ ≤ ‖en − enem‖+ ‖enem − em‖ ≤ K ( 1
m

+ 1
n
).

So (en) is Cauchy in A, so converges in A, say to e . Clearly e is a

unit.

The argument for an ultrapower is similar, just with more bookkeeping.
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Some model theory 1

[Health warning: I am not a model theorist!]

Classical model theory deals with \models" of theories in a formal

language.

Example

What is a group? The \language" is usually taken to be the binary

product ( )× ( ), the unary inverse ( )−1, and a distinguished constant

1.

A \formula" is constructed inductively using the language and �rst

order logic (so ∀, ∃, and, or, not).

A \structure" is a set G with an \interpretation" of the product,

inverse and 1 (so just a binary map and a unary map, and a constant

1 ∈ G). A formula may or may not be true in the structure.
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Some model theory 2

Example

The \theory" of groups is the usual group axioms:

1 ∀g∀h∀k , g × (h × k) = (g × h)× k ;

2 ∀g , g−1 × g = g × g−1 = 1;

3 ∀g , g × 1 = 1× g = g .

A structure G that satis�es these axioms is indeed a group.

There is a notion of ultrapower;  Lo�s's Theorem then tells us that a

formula is true in an ultrapower if and only if it is true in the original

structure.
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Metric Model theory 1

Analysis is not a �rst-order theory; so model theory doesn't apply,

right?

To get around this, one can consider \metric model theory". The

language is now:

A collection of \domains" (which will be bounded subsets of a

metric space) and a privileged \relation" d (which will be the

metric);

Functions (which will be uniformly continuous functions) together

with a uniform continuity modulus, one for each possible choice of

domain;

Relations (uniformly continuous functions into a bounded subset

of the reals)
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Metric Model theory: C ∗-algebras

The language of C ∗-algebras will be:

Domains Bn which will be the ball of radius n ∈ N, and metric

d(a , b) = ‖a − b‖;
A constant (a constant function) 0 ∈ B1;

For every λ ∈ C a function Bn → Bm which will be scalar

multiplication;

A unary function ∗ : Bn → Bn (which will be involution);

Binary functions + and . (from suitable Bn to Bm) which will be

addition and multiplication.

A \structure" is then just a metric space with subsets Bn and

functions, which only need to satisfy that the functions have the

correct uniform continuity bounds.
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Metric Model theory: C ∗-algebras cont.

We can now write down the \axioms" to be a C ∗-algebra:

Axioms to be a vector space over C;

To be a C-algebra;

Axioms for the involution;

d(x , y) = d(x − y , 0) (we de�ne ‖x‖ = d(x , 0)).

‖xy‖ ≤ ‖x‖‖y‖ and ‖λx‖ = |λ|‖x‖;
‖x ∗x‖ = ‖x‖2;
supa∈B1

‖a‖ ≤ 1.

Where did sup come from? We cannot use �rst-order logic; the

formulas are built inductively using relations and functions from the

language, together with uniformly continuous functions on Rn , and sup

and inf.
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Metric Model theory: C ∗-algebras cont.

These axioms are not enough to ensure that B1 is equal to the ball

{a ∈ A : ‖a‖ ≤ 1}. To get this, we have to play some tricks by forcing

∗-polynomials to have the correct domains and codomains: see Farah,

Hart, Sherman.

Can also perform another trick for a Banach space / algebra.

We can form ultrapowers; these agree with our previous notion.

 Lo�s's Theorem still holds.

So we can immediately show that (A)U is unital if and only if A is

unital, right?

Well, we cannot quantify with ∃ or ∀, so this cannot work:

∃ e ∈ A, ∀ a ∈ A, ea = ae = a .

Matthew Daws (UCLan) Ultrapowers Belfast, October 2019 20 / 36



Metric Model theory: C ∗-algebras cont.

These axioms are not enough to ensure that B1 is equal to the ball

{a ∈ A : ‖a‖ ≤ 1}. To get this, we have to play some tricks by forcing

∗-polynomials to have the correct domains and codomains: see Farah,

Hart, Sherman.

Can also perform another trick for a Banach space / algebra.

We can form ultrapowers; these agree with our previous notion.

 Lo�s's Theorem still holds.

So we can immediately show that (A)U is unital if and only if A is

unital, right?

Well, we cannot quantify with ∃ or ∀, so this cannot work:

∃ e ∈ A, ∀ a ∈ A, ea = ae = a .

Matthew Daws (UCLan) Ultrapowers Belfast, October 2019 20 / 36



Metric Model theory: C ∗-algebras cont.

These axioms are not enough to ensure that B1 is equal to the ball

{a ∈ A : ‖a‖ ≤ 1}. To get this, we have to play some tricks by forcing

∗-polynomials to have the correct domains and codomains: see Farah,

Hart, Sherman.

Can also perform another trick for a Banach space / algebra.

We can form ultrapowers; these agree with our previous notion.

 Lo�s's Theorem still holds.

So we can immediately show that (A)U is unital if and only if A is

unital, right?

Well, we cannot quantify with ∃ or ∀, so this cannot work:

∃ e ∈ A, ∀ a ∈ A, ea = ae = a .

Matthew Daws (UCLan) Ultrapowers Belfast, October 2019 20 / 36



Metric Model theory: C ∗-algebras cont.

These axioms are not enough to ensure that B1 is equal to the ball

{a ∈ A : ‖a‖ ≤ 1}. To get this, we have to play some tricks by forcing

∗-polynomials to have the correct domains and codomains: see Farah,

Hart, Sherman.

Can also perform another trick for a Banach space / algebra.

We can form ultrapowers; these agree with our previous notion.

 Lo�s's Theorem still holds.

So we can immediately show that (A)U is unital if and only if A is

unital, right?

Well, we cannot quantify with ∃ or ∀, so this cannot work:

∃ e ∈ A, ∀ a ∈ A, ea = ae = a .

Matthew Daws (UCLan) Ultrapowers Belfast, October 2019 20 / 36



Metric Model theory: C ∗-algebras cont.

These axioms are not enough to ensure that B1 is equal to the ball

{a ∈ A : ‖a‖ ≤ 1}. To get this, we have to play some tricks by forcing

∗-polynomials to have the correct domains and codomains: see Farah,

Hart, Sherman.

Can also perform another trick for a Banach space / algebra.

We can form ultrapowers; these agree with our previous notion.

 Lo�s's Theorem still holds.

So we can immediately show that (A)U is unital if and only if A is

unital, right?

Well, we cannot quantify with ∃ or ∀, so this cannot work:

∃ e ∈ A, ∀ a ∈ A, ea = ae = a .

Matthew Daws (UCLan) Ultrapowers Belfast, October 2019 20 / 36



Metric Model theory: C ∗-algebras cont.

These axioms are not enough to ensure that B1 is equal to the ball

{a ∈ A : ‖a‖ ≤ 1}. To get this, we have to play some tricks by forcing

∗-polynomials to have the correct domains and codomains: see Farah,

Hart, Sherman.

Can also perform another trick for a Banach space / algebra.

We can form ultrapowers; these agree with our previous notion.

 Lo�s's Theorem still holds.

So we can immediately show that (A)U is unital if and only if A is

unital, right?

Well, we cannot quantify with ∃ or ∀, so this cannot work:

∃ e ∈ A, ∀ a ∈ A, ea = ae = a .

Matthew Daws (UCLan) Ultrapowers Belfast, October 2019 20 / 36



Metric Model theory: C ∗-algebras cont.

These axioms are not enough to ensure that B1 is equal to the ball

{a ∈ A : ‖a‖ ≤ 1}. To get this, we have to play some tricks by forcing

∗-polynomials to have the correct domains and codomains: see Farah,

Hart, Sherman.

Can also perform another trick for a Banach space / algebra.

We can form ultrapowers; these agree with our previous notion.

 Lo�s's Theorem still holds.

So we can immediately show that (A)U is unital if and only if A is

unital, right?

Well, we cannot quantify with ∃ or ∀, so this cannot work:

∃ e ∈ A, ∀ a ∈ A, ea = ae = a .

Matthew Daws (UCLan) Ultrapowers Belfast, October 2019 20 / 36



Back to unital algebras

Proposition

A Banach algebra A is unital if and only if

inf
e∈B1

sup
a∈B1

max(‖ea − a‖, ‖ae − a‖) = 0,

where B1 is the unit ball of A.

Proof.

As before, extract a Cauchy sequence (en).

We can then apply  Lo�s's Theorem to this. Moral is that we don't

actually gain much from the abstract theory: just the ultra�lter

bookkeeping is taken care of.
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Ring-theoretic in�niteness

De�nition

p ∈ A is an idempotent if p2 = p.

Two idempotents p, q are equivalent, written p ∼ q , if there are

a , b ∈ A with p = ab and q = ba .

[If q ∼ r , say q = cd , r = dc, then p = p2 = abab = aqb = (ac)(db) and

(db)(ac) = dqc = dcdc = r2 = r so p ∼ r .]

De�nition

Let A be a unital algebra. A is Dedekind �nite if p ∼ 1 implies p = 1.
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For C ∗-algebras

For C ∗-algebras:

We typically only consider self-adjoint idempotents p = p∗ = p2,

called projections.

The equivalence we typically use is Murray{von Neumann

equivalence, which is that p = u∗u and q = uu∗. This implies

that u is a partial isometry. We write p ≈ q .

These are actually the same concepts as we have de�ned.

For any idempotent p there is a projection q with p ∼ q . In fact,

we can choose q with pq = q and qp = p.

If p, q are projections with p ∼ q then also p ≈ q .

Suppose A is a Dedekind-�nite C ∗-algebra. If p2 = p ∼ 1 then

there is a projection q with q ∼ p, so also q ∼ 1 so q ≈ 1 so q = 1.

Then 1 = q = pq = p, so A is Dedekind-�nite in our sense.
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For asymptotic sequence algebras

Theorem

Let A be a unital Banach algebra. If A is Dedekind-�nite then so

is Asy(A).

Proof.

Let p2 = p ∼ 1 in Asy(A). We need to show that p = 1.

Let (xn) ∈ `∞(A) be a representative of p. Of course, (xn) will not be

an idempotent in general.

Lemma

Let a ∈ A with ‖a2 − a‖ = t < 1/4. There is p = p2 with

‖a − p‖ ≤ f‖a‖(t) =
(
‖a‖+ 1

2

)(
(1 − 4t)−1/2 − 1

)
.

Further, if ab = ba then also pb = bp.
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The proof

1 ∼ p = p2 ∈ Asy(A).

p = (xn) + c0(A) so for large enough n , ‖x 2n − xn‖ is small. So

there is pn = p2n close to xn .

Then (pn) is another representative of p, and now (pn) is an

idempotent in `∞(A).

As p ∼ 1 there are a = (an) and b = (bn) with

(anbn − pn) ∈ c0(A) and (bnan − 1) ∈ c0(A).

So eventually un = bnan is invertible. Set qn = anu
−1
n bn .

Then q2n = anu
−1
n unu

−1
n bn = qn and qn ∼ bnanu

−1
n = 1 so A

Dedekind-�nite implies qn = 1.
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The proof cont.

(anbn − pn) ∈ c0(A) (bnan − 1) ∈ c0(A).

We established that with un = bnan we have qn = anu
−1
n bn = 1

eventually.

Now compute:

‖1 − pn‖ = ‖qn − pn‖ = ‖anu−1
n bn − anbn‖+ ‖anbn − pn‖

≤ ‖an‖‖u−1
n − 1‖‖bn‖+ ‖anbn − pn‖,

which is small for large n .

Thus (1 − pn) ∈ c0(A) so p = 1 in Asy(A).

Matthew Daws (UCLan) Ultrapowers Belfast, October 2019 26 / 36



The proof cont.

(anbn − pn) ∈ c0(A) (bnan − 1) ∈ c0(A).

We established that with un = bnan we have qn = anu
−1
n bn = 1

eventually.

Now compute:

‖1 − pn‖ = ‖qn − pn‖ = ‖anu−1
n bn − anbn‖+ ‖anbn − pn‖

≤ ‖an‖‖u−1
n − 1‖‖bn‖+ ‖anbn − pn‖,

which is small for large n .

Thus (1 − pn) ∈ c0(A) so p = 1 in Asy(A).

Matthew Daws (UCLan) Ultrapowers Belfast, October 2019 26 / 36



The converse?

We could consider the ultrapower case, and try to use  Lo�s's Theorem.

That A is Dedekind �nite is the claim that

∀ a , b ∈ A, ab = 1 =⇒ ba = 1.

[Indeed, if ab = 1 then p = ba is an idempotent with p ∼ 1. Conversely, if

p2 = p ∼ 1 then p = ba and 1 = ab for some a , b.]

The problem is that we can only \quantify" over bounded balls, and

we cannot use ∀ or =⇒ . So the analogy breaks a little. . .

Matthew Daws (UCLan) Ultrapowers Belfast, October 2019 27 / 36



The converse?

We could consider the ultrapower case, and try to use  Lo�s's Theorem.

That A is Dedekind �nite is the claim that

∀ a , b ∈ A, ab = 1 =⇒ ba = 1.

[Indeed, if ab = 1 then p = ba is an idempotent with p ∼ 1. Conversely, if

p2 = p ∼ 1 then p = ba and 1 = ab for some a , b.]

The problem is that we can only \quantify" over bounded balls, and

we cannot use ∀ or =⇒ . So the analogy breaks a little. . .

Matthew Daws (UCLan) Ultrapowers Belfast, October 2019 27 / 36



The converse?

We could consider the ultrapower case, and try to use  Lo�s's Theorem.

That A is Dedekind �nite is the claim that

∀ a , b ∈ A, ab = 1 =⇒ ba = 1.

[Indeed, if ab = 1 then p = ba is an idempotent with p ∼ 1. Conversely, if

p2 = p ∼ 1 then p = ba and 1 = ab for some a , b.]

The problem is that we can only \quantify" over bounded balls, and

we cannot use ∀ or =⇒ . So the analogy breaks a little. . .

Matthew Daws (UCLan) Ultrapowers Belfast, October 2019 27 / 36



Dedekind-in�nite

De�nition

Say that A is Dedekind-in�nite if it is not Dedekind-�nite. De�ne

CDI(A) = inf
{
‖a‖‖b‖ : a , b ∈ A, ab = 1, ba 6= 1

}
.

Set CDI(A) =∞ if A is Dedekind-�nite.

Remark

Given such a , b set p = ba so p2 = p and hence pn = p for all n,

and so either p = 0 or ‖p‖ ≥ 1. As 1 − p is also an idempotent,

also ‖1 − p‖ ≥ 1 (as p 6= 1).
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Dedekind-in�nite passes to sequence algebras

Theorem

Let (An) be a sequence of unital Banach algebras with

CDI(An) ≤ K for all n. Then Asy((An)) is Dedekind-in�nite.

Proof.

Easy: for each n there is a \witness" anbn = 1, bnan 6= 1 and

‖an‖‖bn‖ ≤ K . By the remark, ‖bnan − 1‖ ≥ 1. Rescale so that

‖an‖ = ‖bn‖. Then a = (an), b = (bn) de�ne classes in Asy((An)) with

ab = 1 but (bnan − 1) 6∈ c0((An)) so ba 6= 1.
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For C ∗-algebras

Corollary

If A is a C ∗-algebra then A is Dedekind-�nite if and only if

Asy(A) is.

Proof.

We can use the C ∗-algebra form of Dedekind-�nite, so we can assume

b = a∗ is a partial isometry. Thus, if A is Dedekind-in�nite, then

CDI(A) = 1.
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Counter-example for Banach algebras

Maybe we have that A is Dedekind-�nite, or DDI (A) ≤ K for some

absolute constant K (which is true for C ∗-algebras).

Of course not!

Our counter-example will be a weighted-semigroup algebra. Let C be

the bicyclic semigroup, so S has generators α,β with αβ = 1 and no

other relations.

[So C is all reduced words which are of the form βnαm with n ,m ∈ Z≥0.

Exercise to the reader to work out the multiplication.]
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Semigroup algebras

Let S be a semigroup.

The (classical) semigroup algebra is `1(S), all families a = (as)s∈S of

complex numbers, with ‖a‖ =
∑

s
|as | <∞, and convolution product.

Write a =
∑

s
asδs where (δs) the basis (in the Banach space sense) of

`1(S), and set

δs ∗ δt = δst so a ∗ b =
( ∑

{s ,t∈S :st=r }

asbt

)
r∈S
.
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Weights

De�nition

A weight on a semigroup is ω : S → (0,∞) with ω(st) ≤ ω(s)ω(t).

We shall in fact use the rather trivial weights ωn(s) = n for s 6= 1 and

ωs(1) = 1, for n ∈ N. We shall in particular assume that ω(s) ≥ 1 for

all s .

The weighted semigroup algebra is `1(S ,ω), which is those a ∈ `1(S)
with ‖a‖ω =

∑
s
|as |ω(s) <∞. The condition on the weight ensures

that `1(S ,ω) is an algebra.

Proposition

Let a , b ∈ `1(S ,ω) with ab = 1 and ba 6= 1. Then

‖a‖w , ‖b‖w ≥
1

2
inf
{
ω(s) : s 6= 1

}
.
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The counter-example

So we consider A = `1(C ,ωn). Set a = δα and b = δβ so ab = 1 (as

αβ = 1) but ba = δβα 6= 1. Thus A is Dedekind-in�nite.

If a , b ∈ A are arbitrary with ab = 1 and ba 6= 1, then by the

proposition,

‖a‖w , ‖b‖w ≥
1

2
inf
{
ω(s) : s 6= 1

}
=

n

2
.

So CDI(A) ≥ n2/4 (and in fact we have equality).

In this way, we obtain a sequence of Dedekind-in�nite Banach algebras

(An) such that Asy((An)) (and ultraproducts) are Dedekind-�nite.
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Forwards

We also look at:

Proper In�niteness: there are p, q ∈ A idempotents which are

orthogonal (pq = qp = 0) and p ∼ 1, q ∼ 1.

Stable Rank One: (which has a complicated, but well-motivated,

de�nition, but is equivalent to) the group of invertible elements is

dense in A. (This implies being Dedek�nd-�nite).

The common theme is again norm-control, or lack thereof in the

Banach algebra setting.

There should be an arXiv preprint soon!
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