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The Calkin Algebra

Definition (Calkin, 1941)

Let H be a (separable, infinite dimensional) Hilbert space, and denote
by K(H) the compact operators, and B(H) the bounded operators, on
H. The Calkin Algebrais C(H) =B(H)/K(H).
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o It is well-known that C(H) is the only proper closed two-sided
ideal in B(H).

@ So C(H) is simple.

o C(H) is a C*-algebra, and so admits a faithful representation on
some Hilbert space X (K cannot be separable). It was the first
C*-algebra which does not obviously arise as a subalgebra of
B(K). [Calkin proved this before the GNS theory was available!]
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The Calkin Algebra

Definition (Calkin, 1941)

Let H be a (separable, infinite dimensional) Hilbert space, and denote
by K(H) the compact operators, and B(H) the bounded operators, on
H. The Calkin Algebrais C(H) =B(H)/K(H).

o It is well-known that C(H) is the only proper closed two-sided
ideal in B(H).

@ So C(H) is simple.

o C(H) is a C*-algebra, and so admits a faithful representation on
some Hilbert space X (K cannot be separable). It was the first
C*-algebra which does not obviously arise as a subalgebra of
B(K). [Calkin proved this before the GNS theory was available!]

@ Does C(H) have outer automorphisms (not arising from a
unitary)? This is independent of ZFC.
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Reframe using multipliers

Given a (faithful Banach) C*-algebra A, and an ideal I <1 A, we say
that I is essential if a € A, al + Ia = {0} implies a = 0.
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Reframe using multipliers

Given a (faithful Banach) C*-algebra A, and an ideal I <1 A, we say
that I is essential if a € A, al + Ia = {0} implies a = 0.

The Multiplier Algebra of A, denoted M (A), is the largest C*-algebra
which contains A as an essential ideal.

More concretely, if A C B(H) then

MA) ={T e€B(H): Ta,aT € A(a € A)}.

We think of M (A) as being the “maximal unitisation” of A. For
example:

@ M(Cy(X)) = C(BpX) the Stone-Cech compactification of X.
o M(K(H))=B(H).
We call C(A) := M(A)/A the “Corona” of A.
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Asymptotic sequence algebras

Given a (Banach) C*-algebra A let cy(A) be the space of sequences
(@) in A with lim, ||a,| = 0, endowed with the pointwise algebra
operations:

(an)+(bn):(an+bn)) (an)(bn):(anbn)
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(@) in A with lim, ||a,| = 0, endowed with the pointwise algebra
operations:

(an) + (bn) = (an + bn)) (an)(bn) = (anbn)

The multiplier algebra of ¢y(A) is {*°(A), the space of all bounded
sequences.

Matthew Daws (UCLan) Ultrapowers Belfast, October 2019 4 /36



Asymptotic sequence algebras

Given a (Banach) C*-algebra A let cy(A) be the space of sequences
(an) in A with lim, ||a,| = 0, endowed with the pointwise algebra
operations:

(an) + (bn) = (an + bn)) (an)(bn) = (anbn)

The multiplier algebra of ¢y(A) is {*°(A), the space of all bounded
sequences.
The corona of cg(A4) is the “asymptotic sequence algebra”

Asy(A) =1*(A)/co(A).

(We can also let A vary, leading to Asy((A,)) =L°((4n))/co((Ar)).)
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Typical application

Here A, H, K are separable.

Theorem (Voiculescu)

Let AC B(H) and let m: A — B(K) be a non-degenerate
representation with mM(ANK(H)) ={0}. Then there s a sequence of
unitaries u, : H ® K — H with:

Q lim, ||a — un(a ® m(a))uy|| =0 for a € A;
(2) a—un(a@n(a))unelC( ) for a € A.

So id and id @7 are unitarily equivalent “in the limit”.
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Typical application continued

Let m: B(K) - C(K) = B(K)/K(K) be the quotient onto the Calkin
algebra.

Corollary

Let 1 and 1y be representations of A with
ker 71y = ker iy = ker 7ty = ker 7irs.

(That 1s, the images of 1y and Ty contain no non-zero compact
operators.)

Then there 1s a sequence of unitaries (u,) with
limy, ||71(a) — upma(a)us|| =0 for a € A.
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Abstract key idea

Let A, B be C*-algebras.

Definition

Two maps V,d : A — B are approzimately unitarily equivalent if
there is a sequence of unitaries (u,) in M (B) with

Id(a) —unP(a)ui| =0  (ac A).
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there is a sequence of unitaries (u,) in M (B) with

Id(a) —unP(a)ui| =0  (ac A).

o Let 1 : B — {*°(B) be the “diagonal embedding” which sends
b € B to the constant sequence (b).
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Abstract key idea

Let A, B be C*-algebras.

Definition

Two maps V,d : A — B are approzimately unitarily equivalent if
there is a sequence of unitaries (u,) in M (B) with

Id(a) —unP(a)ui| =0  (ac A).

o Let 1 : B — {*°(B) be the “diagonal embedding” which sends
b € B to the constant sequence (b).

@ The above definitions becomes that there is u € {*°(B) unitary
with tg(d(a)) —utg(P(b))u* € ¢g(B) for a € A.

@ Or equivalently tg(d(a)) = utg(b(b))u* in
Asy(B) =1{*°(B)/cg(B), for a € A.
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Slogan

Asy(A) is a construct to convert “approximate relations” into “exact
relations”.
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Slogan

Asy(A) is a construct to convert “approximate relations” into “exact
relations”.

Proposition (Gabe)

Two maps b, b : A — Asy(B) are approrzimately unitarily
equivalent if and only if they are unitarily equivalent.

Proof.
A “diagonal” argument. Ol
v
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A bit of set theory

A filter F on a set I is a non-empty collection of subsets of I with:
Q If A)Bc Fthen ANB e F;
© If Ac Fand A C B then B € F.
Q () ¢ F (this ensure F # 27).
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A bit of set theory

A filter F on a set I is a non-empty collection of subsets of I with:
Q If A)B € Fthen AN B ¢ F;

Q@ IfAc Fand AC B then B € F.
© 0 ¢ F (this ensure F # 27).

Example

The Fréchet Filter is the collection of all cofinite subsets of I; that is
A € F if and only if I \ A is finite.

Let F be the Fréchet Filter on N. Consider the condition on
(an) € {*°(A) that

Ve>0, {n:|a] <e}eF.
This is clearly equivalent to (a,) € co(A).
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Ultrafilters

The collection of filters on a set I is partially ordered by inclusions.

Zorn's Lemma ensures that there are maximal filters, which are called
ultrafilters.
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A filter U on I 1s an ultrafilter +f and only if for each A C I either
AcldorI\Acl.

o For example, for 7 € I the principle ultrafilter at 15 is
{ACT:19¢€ A}

@ Use Zorn’s Lemma to find a maximal filter which contains the
Fréchet Filter. This ultrafilter is not principle.
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Ultrafilters

The collection of filters on a set I is partially ordered by inclusions.
Zorn's Lemma ensures that there are maximal filters, which are called
ultrafilters.

Lemma

A filter U on I 1s an ultrafilter +f and only if for each A C I either
AclUd orI\NAclU.

o For example, for 7 € I the principle ultrafilter at 15 is
{ACT:19¢€ A}

@ Use Zorn’s Lemma to find a maximal filter which contains the
Fréchet Filter. This ultrafilter is not principle.

Fix an ultrafilter U. If (a;);cr is a bounded sequence in R then a
compactness argument shows that there is a (unique) ¢ € R such that

Ve>0, {t:la;—tl<elel.

Write £ = lim;_yy a;.
Belfast, October 2019  10/36



Ultrapowers

For any filter F define (A)r to be the quotient of {*°(A) by those
sequences (a,) with

Ve>0, {n:|an] <e}eF.
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Ultrapowers
For any filter F define (A)r to be the quotient of {*°(A) by those
sequences (a,) with

Ve>0, {n:|an] <e}eF.

Definition

Let U be a non-principle ultrafilter (on N). The wltrapower of a
Banach space B is (B)y.
Equivalently, this is {*°(E) with the semi-norm

= 1i .
[l (an)]] nlg;/,HanH

One can show that (E); is complete.
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Ultrapowers of Hilbert spaces

Consider defining a sesquilinear form on (H);; by

((an)l(bn)) = 11%(an|bn)

N

Matthew Daws (UCLan) Ultrapowers Belfast, October 2019 12 /36
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Consider defining a sesquilinear form on (H);; by

((an)l(bn)) = hnzl/{(anwn)

N

@ This is well-defined as if (a,) = 0 in the quotient (&);; then
lim,_y|an|| =0 and so lim,_y,(a,|b,) = 0 for any (b,).
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N
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Ultrapowers of Hilbert spaces

Consider defining a sesquilinear form on (H);; by

((an)|(bn)) - hnzl/{(anwn)

N

@ This is well-defined as if (a,) = 0 in the quotient (&);; then
lim,_y|an|| =0 and so lim,_y,(a,|b,) = 0 for any (b,).

o Clearly sesquilinear.

@ The induced seminorm is a norm, because of the norm on (H)y
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Ultrapowers of Hilbert spaces

Consider defining a sesquilinear form on (H);; by

((an)|(bn)) - hnzl/{(anwn)

N

@ This is well-defined as if (a,) = 0 in the quotient (&);; then
lim,_y|an|| =0 and so lim,_y,(a,|b,) = 0 for any (b,).

@ Clearly sesquilinear.
@ The induced seminorm is a norm, because of the norm on (H)y
@ So (H)y is a Hilbert space.

Contrast this Asy(H) ={*°(H)/co(H).
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Unital algebras

This is joint work with Bence Horvath. Fix a Banach algebra A.
Question

When is (A)y, or Asy(A), unital?
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o If A is unital, under the diagonal embedding A — (A4);, the unit
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This is joint work with Bence Horvath. Fix a Banach algebra A.
Question

When is (A)y, or Asy(A), unital?

o If A is unital, under the diagonal embedding A — (A4);, the unit
becomes a unit for Asy(A4).

@ Conversely, let e € Asy(A) be a unit for A. This has a
representative (e,) € {*°(A4), which satisfies

lim|le,an, — ay|| =0, lim|a,e,—ay|| =0 ((an) € L°(4)).
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Unital algebras

This is joint work with Bence Horvath. Fix a Banach algebra A.
Question

When is (A)y, or Asy(A), unital?

o If A is unital, under the diagonal embedding A — (A4);, the unit
becomes a unit for Asy(A4).

@ Conversely, let e € Asy(A) be a unit for A. This has a
representative (e,) € {*°(A4), which satisfies

lim|le,an, — ay|| =0, lim|a,e,—ay|| =0 ((an) € L°(4)).

@ By picking (a,) suitably, this shows that, for example,
limsup{||e,a —al|: a € 4, |la| < 1}=0.
n
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Unital algebras cont.

lirllnsup{||ena— al,||ae, —all: a € A,|la]| <1} =0.
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Unital algebras cont.
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e Extract a subsequence (e,) with ||e,a — al|, ||ae, — a| < %| al| for
ac A
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Unital algebras cont.

lirxlnsup{||ena— al,||ae, —all: a € A,|la]| <1} =0.

e Extract a subsequence (e,) with ||e,a — al|, ||ae, — a| < %| al| for
ac A

@ We can also arrange that e.g. ||en| < 2[/(an)|asy = K say.

° Thus ||6n - em” S Hen - enemH + ”enem - em” S K(% + %)
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Unital algebras cont.

lirlinsup{||ena— al,||ae, —all: a € A,|la]| <1} =0.

o Extract a subsequence (e,) with ||e,a — af, [laen, — a|| < La|| for
ac A

@ We can also arrange that e.g. ||en| < 2[/(an)|asy = K say.
© Thus |len —em| < [len — eneml|| + [[enem —en| < K(% + %)

@ So (e,) is Cauchy in A, so converges in A, say to e. Clearly e is a
unit.
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Unital algebras cont.

lirlinsup{||ena— al,||ae, —all: a € A,|la]| <1} =0.

o Extract a subsequence (e,) with ||e,a — af, [laen, — a|| < La|| for
acA

@ We can also arrange that e.g. ||en| < 2[/(an)|asy = K say.
© Thus |len —em| < [len — eneml|| + [[enem —en| < K(% + %)

@ So (e,) is Cauchy in A, so converges in A, say to e. Clearly e is a
unit.

The argument for an ultrapower is similar, just with more bookkeeping.
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Some model theory 1

[Health warning: I am not a model theorist!]
Classical model theory deals with “models” of theories in a formal
language.
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Some model theory 1

[Health warning: I am not a model theorist!]
Classical model theory deals with “models” of theories in a formal
language.

Example

What is a group? The “language” is usually taken to be the binary
product (_) x (_), the unary inverse (_)~!, and a distinguished constant
1.

A “formula” is constructed inductively using the language and first
order logic (so V, 3, and, or, not).

A “structure” is a set G with an “interpretation” of the product,
inverse and 1 (so just a binary map and a unary map, and a constant
1 € G). A formula may or may not be true in the structure.
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Some model theory 2

Example

The “theory” of groups is the usual group axioms:
Q VgVhVk, g x (h x k) = (g x h) x k;

Q@ Vg glxg=gxg =1

@ Vg, gxl=1xg=g.

A structure G that satisfies these axioms is indeed a group.
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There is a notion of ultrapower;
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Some model theory 2

Example

The “theory” of groups is the usual group axioms:
Q VgVhVk, g x (h x k) = (g x h) x k;

Q@ Vg glxg=gxg =1

@ Vg, gxl=1xg=g.

A structure G that satisfies these axioms is indeed a group.

There is a notion of ultrapower; Lo§’s Theorem then tells us that a

formula is true in an ultrapower if and only if it is true in the original
structure.
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Metric Model theory 1

Analysis is not a first-order theory; so model theory doesn’t apply,
right?
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Analysis is not a first-order theory; so model theory doesn’t apply,
right?
To get around this, one can consider “metric model theory”. The
language is now:

@ A collection of “domains” (which will be bounded subsets of a

metric space) and a privileged “relation” d (which will be the
metric);
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To get around this, one can consider “metric model theory”. The
language is now:

@ A collection of “domains” (which will be bounded subsets of a
metric space) and a privileged “relation” d (which will be the
metric);

e Functions (which will be uniformly continuous functions) together
with a uniform continuity modulus, one for each possible choice of
domain;
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Metric Model theory 1

Analysis is not a first-order theory; so model theory doesn’t apply,
right?

To get around this, one can consider “metric model theory”. The
language is now:

@ A collection of “domains” (which will be bounded subsets of a
metric space) and a privileged “relation” d (which will be the
metric);

e Functions (which will be uniformly continuous functions) together
with a uniform continuity modulus, one for each possible choice of
domain;

o Relations (uniformly continuous functions into a bounded subset
of the reals)
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Metric Model theory: C*-algebras

The language of C'*-algebras will be:
@ Domains B, which will be the ball of radius n € N, and metric
d(a,b) = [[a—b;
@ A constant (a constant function) 0 € By;

o For every A € C a function B, — B,, which will be scalar
multiplication;

@ A unary function *: B, — B, (which will be involution);

o Binary functions + and . (from suitable B,, to B,,) which will be
addition and multiplication.
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Metric Model theory: C*-algebras

The language of C'*-algebras will be:
@ Domains B, which will be the ball of radius n € N, and metric
d(a,b) = [[a—b;
@ A constant (a constant function) 0 € By;

o For every A € C a function B, — B,, which will be scalar
multiplication;

@ A unary function *: B, — B, (which will be involution);

o Binary functions + and . (from suitable B,, to B,,) which will be
addition and multiplication.
A “structure” is then just a metric space with subsets B, and
functions, which only need to satisfy that the functions have the
correct uniform continuity bounds.
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Metric Model theory: C*-algebras cont.

We can now write down the “axioms” to be a C*-algebra:
o Axioms to be a vector space over C;
@ To be a C-algebra;
o Axioms for the involution;
e d(z,y) =d(z —y,0) (we define ||z| = d(z,0)).
o [lzy[| < [lz[l[lyll and [|Az|[ = [Alll];
o [z*z|l = ||=|%

o Supa€B1 ||a’|| < 1.
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Metric Model theory: C*-algebras cont.

We can now write down the “axioms” to be a C*-algebra:
o Axioms to be a vector space over C;

@ To be a C-algebra;

o Axioms for the involution;

e d(z,y) =d(z —y,0) (we define ||z| = d(z,0)).
o |lzy| < |zlllly]l and [[Az]| = IAll|z];

o [z*z|l = ||=|%

o Supa€B1 ||a’|| < 1.

Where did sup come from? We cannot use first-order logic; the
formulas are built inductively using relations and functions from the
language, together with uniformly continuous functions on R”, and sup
and inf.
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Metric Model theory: C*-algebras cont.

These axioms are not enough to ensure that B; is equal to the ball
{aeA:|a] <1}
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Metric Model theory: C*-algebras cont.

These axioms are not enough to ensure that B; is equal to the ball
{a € A:|la]| < 1}. To get this, we have to play some tricks by forcing
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Metric Model theory: C*-algebras cont.

These axioms are not enough to ensure that B; is equal to the ball
{a € A:|la]| < 1}. To get this, we have to play some tricks by forcing
*-polynomials to have the correct domains and codomains: see Farah,
Hart, Sherman.

Can also perform another trick for a Banach space / algebra.

@ We can form ultrapowers; these agree with our previous notion.
o Lo§’s Theorem still holds.

So we can immediately show that (A); is unital if and only if A is
unital, right?
Well, we cannot quantify with 3 or V, so this cannot work:

dee A, Va € A, ea =ae = a.
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Back to unital algebras

Proposition
A Banach algebra A 1s unital if and only if

inf sup max(|lea — al|,||ae —al|) =0,
ech a€B;

where By 1s the unit ball of A.

Proof.
As before, extract a Cauchy sequence (e, ). Ol
v
Belfast, October 2019 21 /36




Back to unital algebras

Proposition
A Banach algebra A 1s unital if and only if

inf sup max(||ea — al|,||ae — a||) =0,
e€B; a€B;

where By 1s the unit ball of A.

Proof.
As before, extract a Cauchy sequence (e, ). Ol

We can then apply Lo§’s Theorem to this. Moral is that we don’t
actually gain much from the abstract theory: just the ultrafilter
bookkeeping is taken care of.
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Ring-theoretic infiniteness

Definition
p € A is an idempotent if p% = p.

Two idempotents p, g are equivalent, written p ~ q, if there are
a,b € A with p = ab and ¢ = ba.
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Ring-theoretic infiniteness

Definition

p € A is an idempotent if p? = p.

Two idempotents p, g are equivalent, written p ~ q, if there are
a,b € A with p = ab and ¢ = ba.

[If ¢ ~7,say ¢ = cd,r = dc, then p = p? = abab = agb = (ac)(db) and
(db)(ac) =dgc =dcdc =12 =rsop~r.]

Definition
Let A be a unital algebra. A is Dedekind finite if p ~ 1 implies p = 1. J
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For C*-algebras

For C'*-algebras:

e We typically only consider self-adjoint idempotents p = p* = p?,

called projections.
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For C*-algebras

For C'*-algebras:
e We typically only consider self-adjoint idempotents p = p* = p?,
called projections.

@ The equivalence we typically use is Murray—von Neumann
equivalence, which is that p = u*u and ¢ = uu™*. This implies
that u is a partial isometry. We write p = q.

These are actually the same concepts as we have defined.

o For any idempotent p there is a projection ¢ with p ~ ¢. In fact,
we can choose g with pg = q and gp = p.

o If p, g are projections with p ~ ¢ then also p ~ g¢.

@ Suppose A is a Dedekind-finite C'*-algebra. If p? = p ~ 1 then
there is a projection ¢ with g ~p,soalso g~1sog~1soqg=1.
Then 1 = q¢ = pg = p, so A is Dedekind-finite in our sense.
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For asymptotic sequence algebras

Theorem

Let A be a unital Banach algebra. If A 1s Dedekind-finite then so
15 Asy(A).
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For asymptotic sequence algebras

Theorem

Let A be a unital Banach algebra. If A 1s Dedekind-finite then so
15 Asy(A).

Proof.

Let p? = p ~ 1 in Asy(A). We need to show that p = 1.
Let (z,) € £>°(A) be a representative of p. Of course, (z,) will not be
an idempotent in general. Ol

v

Lemma
Let a € A with ||a®> — a|| =t < 1/4. There is p = p? with

lla —pll < fiay(#) = (llall + 3) (1 — 48)7/2 —1).

Further, if ab = ba then also pb = bp.

v
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The proof

1~p=7p?cAsy(A).
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The proof

1~p=7p?cAsy(A).

@ p = (z,) + co(A) so for large enough n, ||z2 — z,|| is small. So
there is p, = p2 close to z,.
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there is p, = p2 close to z,.

@ Then (p,,) is another representative of p, and now (p,) is an
idempotent in {*°(A).

@ As p ~ 1 there are a = (a,) and b = (b,) with
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1~p=7p?cAsy(A).
@ p = (z,) + co(A) so for large enough n, ||z2 — z,|| is small. So
there is p, = p2 close to z,.

@ Then (p,,) is another representative of p, and now (p,) is an
idempotent in {*°(A).

@ As p ~ 1 there are a = (a,) and b = (b,) with
(anby, — prn) € co(4) and (bra, — 1) € cp(A).

e So eventually u, = b,a, is invertible. Set g, = anu,, 1p,.
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The proof

1~p=7p?cAsy(A).

@ p = (z,) + co(A) so for large enough n, ||z2 — z,|| is small. So
there is p, = p2 close to z,.

@ Then (p,,) is another representative of p, and now (p,) is an
idempotent in {*°(A).

@ As p ~ 1 there are a = (a,) and b = (b,) with
(anbn — pn) € co(A) and (bpa, — 1) € cp(A).

o So eventually u, = b,a, is invertible. Set ¢, = anug 1p,.

e Then ¢2 = a,u, 'upu, b, = q, and g, ~ bpanu,* =150 A
Dedekind-finite implies g, = 1.
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The proof cont.

(anbn _pn) € CO(A) (bna'n - 1) € CO(A)-

We established that with u, = b,a, we have g, = a,u, b, =1
eventually.
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The proof cont.

(a'nbn _pn) € CO(A) (bna'n - 1) € CO(A)-

We established that with u, = b,a, we have g, = a,u, b, =1
eventually.
Now compute:

11— pnll = llgn — Pnll = l@nyu, ‘b, — @nbn|| + [[anbn — pul|
< |lanllllu,* = 1|[|bn]l + [|anbn — pall,

which is small for large n.
Thus (1 —p,) € cg(A) so p =1 in Asy(A4).
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The converse?

We could consider the ultrapower case, and try to use Lo§’s Theorem.
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The converse?

We could consider the ultrapower case, and try to use Lo§’s Theorem.
That A is Dedekind finite is the claim that

Va,be A, ab=1 — ba =1.

[Indeed, if ab = 1 then p = ba is an idempotent with p ~ 1. Conversely, if
p? =p~1then p = ba and 1 = ab for some a, b.]
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The converse?

We could consider the ultrapower case, and try to use Lo§’s Theorem.
That A is Dedekind finite is the claim that

Va,be A, ab=1 — ba =1.

[Indeed, if ab = 1 then p = ba is an idempotent with p ~ 1. Conversely, if
p? =p~1then p = ba and 1 = ab for some a, b.]

The problem is that we can only “quantify” over bounded balls, and
we cannot use V or = . So the analogy breaks a little. ..
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Dedekind-infinite

Definition

Say that A is Dedekind-infinite if it is not Dedekind-finite. Define

Cpi(A) =inf {|a||[|5] : a,b € A, ab=1,ba # 1}.

Set Cpi(A) = oo if A is Dedekind-finite.
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Dedekind-infinite

Definition
Say that A is Dedekind-infinite if it is not Dedekind-finite. Define

Cpi(A) =inf {|a||[|5] : a,b € A, ab=1,ba # 1}.

Set Cpi(A) = oo if A is Dedekind-finite.

Remark

Given such a,b set p = ba so p?> = p and hence p™ = p for all n,
and so either p =0 or ||p|| > 1. As1—p is also an idempotent,
also |1 —p| >1 (asp #1).
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Dedekind-infinite passes to sequence algebras

Theorem

Let (A,) be a sequence of unital Banach algebras with
Cpi(A,) < K for all n. Then Asy((A,)) 1s Dedekind-infinite.
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Dedekind-infinite passes to sequence algebras

Theorem

Let (A,) be a sequence of unital Banach algebras with
Cpi(A,) < K for all n. Then Asy((A,)) 1s Dedekind-infinite.

Proof.

Easy: for each n there is a “witness” a,b, =1, b,a, # 1 and
llax||||bn|| < K. By the remark, ||b,a, — 1|| > 1. Rescale so that

llan|l = ||bn]|- Then a = (a,),b = (b,) define classes in Asy((4,)) with
ab=1but (bpa, —1) & co((Ar)) so ba # 1. O

v
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For C*-algebras

Corollary

If A 1s a C*-algebra then A is Dedekind-finite if and only if
Asy(A) 1s.
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For C*-algebras

Corollary

If A 1s a C*-algebra then A is Dedekind-finite if and only if
Asy(A) 1s.

Proof.

We can use the C*-algebra form of Dedekind-finite, so we can assume
b = a* is a partial isometry. Thus, if A is Dedekind-infinite, then
Cpi(4) = 1. O

v
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Counter-example for Banach algebras

Maybe we have that A is Dedekind-finite, or Dp;(A) < K for some
absolute constant X (which is true for C*-algebras).
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Counter-example for Banach algebras

Maybe we have that A is Dedekind-finite, or Dp;(A) < K for some
absolute constant X (which is true for C*-algebras).

Of course not!

Our counter-example will be a weighted-semigroup algebra. Let C be
the bicyclic semigroup, so S has generators o, 3 with o3 =1 and no
other relations.

[So C is all reduced words which are of the form p"«™ with n,m € Z>o.

Exercise to the reader to work out the multiplication.
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Semigroup algebras

Let S be a semigroup.
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Semigroup algebras

Let S be a semigroup.

The (classical) semigroup algebra is €!(S), all families a = (as)ses of
complex numbers, with ||a| =}, |as| < co, and convolution product.
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Semigroup algebras

Let S be a semigroup.
The (classical) semigroup algebra is €!(S), all families a = (as)ses of
complex numbers, with ||a| =}, |as| < co, and convolution product.

Write a = ) | a;0, where (0,) the basis (in the Banach space sense) of
€1(8), and set

5 k8, =0y S0 akb= ( Yy asbt>res.
{s,teS:st=r}
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Weights

Definition
A weight on a semigroup is w: S — (0,00) with w(st) < w(s)w(t). J

We shall in fact use the rather trivial weights w,(s) =n for s # 1 and
ws(1) =1, for n € N. We shall in particular assume that w(s) > 1 for
all s.
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Weights

Definition
A weight on a semigroup is w: S — (0,00) with w(st) < w(s)w(t). }

We shall in fact use the rather trivial weights w,(s) =n for s # 1 and
ws(1) =1, for n € N. We shall in particular assume that w(s) > 1 for
all s.

The weighted semigroup algebra is (*(S,w), which is those a € ¢*(S)
with |la||w = ), las|w(s) < co. The condition on the weight ensures
that ¢'(S,w) is an algebra.

Proposition
Let a,b € (*(S,w) with ab =1 and ba # 1. Then

1.
lallus Nollw > 7 inf {w(s) : s #1}.
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The counter-example

So we consider A = {}(C,wy). Set a =84 and b =8 s0 ab =1 (as
afp =1) but ba = dpy # 1. Thus A is Dedekind-infinite.
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The counter-example

So we consider A = {}(C,wy). Set a =84 and b =8 s0 ab =1 (as
afp =1) but ba = dpy # 1. Thus A is Dedekind-infinite.

If a,b € A are arbitrary with ab = 1 and ba # 1, then by the
proposition,

n

1,
lallw, [[0]]w > 5mf{w(s) s £1) = 5

So Cpi(A) > n?/4 (and in fact we have equality).
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The counter-example

So we consider A = {}(C,wy). Set a =84 and b =8 s0 ab =1 (as
afp =1) but ba = dpy # 1. Thus A is Dedekind-infinite.
If a,b € A are arbitrary with ab = 1 and ba # 1, then by the
proposition,

1, n

e, lollu > 5 inf {w(s) s £ 1} = 7.

So Cpi(A) > n?/4 (and in fact we have equality).
In this way, we obtain a sequence of Dedekind-infinite Banach algebras
(Ay) such that Asy((A,)) (and ultraproducts) are Dedekind-finite.
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Forwards

We also look at:

@ Proper Infiniteness: there are p, ¢ € A idempotents which are
orthogonal (pg = gp =0) and p ~1,g ~ 1.
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definition, but is equivalent to) the group of invertible elements is
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The common theme is again norm-control, or lack thereof in the
Banach algebra setting.
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Forwards

We also look at:
@ Proper Infiniteness: there are p, ¢ € A idempotents which are
orthogonal (pg = gp =0) and p ~1,g ~ 1.
e Stable Rank One: (which has a complicated, but well-motivated,

definition, but is equivalent to) the group of invertible elements is
dense in A. (This implies being Dedekfind-finite).

The common theme is again norm-control, or lack thereof in the
Banach algebra setting.
There should be an arXiv preprint soon!

Matthew Daws (UCLan) Ultrapowers Belfast, October 2019 35 /36



Sources

o Ilijas Farah, “Combinatorial set theory of C*-algebras”, available
at Farah’s website, and forthcoming from Springer.

o Ilijas Farah, Bradd Hart, David Sherman, a series of papers
“Model theory of Operator algebras”.

o Ilijas Farah, Bradd Hart, Martino Lupini, Leonel Robert, Aaron
Tikuisis, Alessandro Vignati, and Wilhelm Winter, “Model theory
of nuclear C'*-algebras”, to appear in Memoirs of the AMS.
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