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What is a compact group?

Well, it’s a compact topological space G with the structure of a group
such that the group action is jointly continuous, and the inverse is
continuous.

It’s a unital commutative C∗-algebra A with a unital ∗-homomorphism
∆ : A→ A⊗min A which is:

Co-associative, (id⊗∆)∆ = (∆⊗ id)∆

“Cancellative”, that is, the sets

{(a⊗ 1)∆(b) : a,b ∈ A}, {(1⊗ a)∆(b) : a,b ∈ A},

have dense linear span in A⊗min A.
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Equivalence, easy direction
If G is a compact group, set

A = C(G) = {continuous functions G→ C},

identify A⊗min A = C(G ×G), define

∆(f ) ∈ C(G ×G), ∆(f ) : (s, t) 7→ f (st) (f ∈ C(G), s, t ∈ G).

Finally observe that

(a⊗ 1)∆(b) : (s, t) 7→ a(s)b(st),

will separate the points of G ×G (by varying a and b) so by
Stone-Weierstrass,

lin{(a⊗ 1)∆(b) : a,b ∈ A}

is a dense subalgebra of C(G ×G).
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Equivalence, hard direction

Gelfand-Naimark tells us that a unital commutative C∗-algebra A has
the form C(X ) for some compact space X . So again
A⊗min A = C(X × X ). Then ∆ : C(X )→ C(X × X ) a unital
∗-homomorphism induces a continuous map θ : X × X → X such that

f (θ(s, t)) = ∆(f )(s, t) (s, t ∈ X , f ∈ C(X )).

∆ co-associative implies that θ is associative, so X is a compact
semigroup.
The cancellation rules for ∆ imply that X is cancellative, that is

st = rt =⇒ s = r , ts = tr =⇒ s = r .

Exercise: A compact semigroup with cancellation is a compact group.
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Compact quantum groups

Simply remove the word “commutative”!
For example, let Γ be a discrete group, and let Γ act on `2(Γ) by left
translation:

λ(s)f : t 7→ f (s−1t) (s, t ∈ Γ, f ∈ `2(Γ)).

Let C∗r (Γ) be the (reduced) group C∗-algebra: that is, the norm closed
algebra, acting on `2(Γ), generated by λ(Γ). So C∗r (Γ) is commutative if
and only if Γ is.
There is a ∗-homomorphism

∆ : C∗r (Γ)→ C∗r (Γ)⊗min C∗r (Γ) = C∗r (Γ× Γ),

∆ : λ(s) 7→ λ(s)⊗ λ(s) = λ(s, s) (s ∈ Γ).

Matthew Daws (Leeds) Quantum Groups April 2010 5 / 18



Compact quantum groups

Simply remove the word “commutative”!
For example, let Γ be a discrete group, and let Γ act on `2(Γ) by left
translation:

λ(s)f : t 7→ f (s−1t) (s, t ∈ Γ, f ∈ `2(Γ)).

Let C∗r (Γ) be the (reduced) group C∗-algebra: that is, the norm closed
algebra, acting on `2(Γ), generated by λ(Γ). So C∗r (Γ) is commutative if
and only if Γ is.
There is a ∗-homomorphism

∆ : C∗r (Γ)→ C∗r (Γ)⊗min C∗r (Γ) = C∗r (Γ× Γ),

∆ : λ(s) 7→ λ(s)⊗ λ(s) = λ(s, s) (s ∈ Γ).

Matthew Daws (Leeds) Quantum Groups April 2010 5 / 18



Compact quantum groups

Simply remove the word “commutative”!
For example, let Γ be a discrete group, and let Γ act on `2(Γ) by left
translation:

λ(s)f : t 7→ f (s−1t) (s, t ∈ Γ, f ∈ `2(Γ)).

Let C∗r (Γ) be the (reduced) group C∗-algebra: that is, the norm closed
algebra, acting on `2(Γ), generated by λ(Γ). So C∗r (Γ) is commutative if
and only if Γ is.
There is a ∗-homomorphism

∆ : C∗r (Γ)→ C∗r (Γ)⊗min C∗r (Γ) = C∗r (Γ× Γ),

∆ : λ(s) 7→ λ(s)⊗ λ(s) = λ(s, s) (s ∈ Γ).

Matthew Daws (Leeds) Quantum Groups April 2010 5 / 18



Compact quantum groups

Simply remove the word “commutative”!
For example, let Γ be a discrete group, and let Γ act on `2(Γ) by left
translation:

λ(s)f : t 7→ f (s−1t) (s, t ∈ Γ, f ∈ `2(Γ)).

Let C∗r (Γ) be the (reduced) group C∗-algebra: that is, the norm closed
algebra, acting on `2(Γ), generated by λ(Γ). So C∗r (Γ) is commutative if
and only if Γ is.
There is a ∗-homomorphism

∆ : C∗r (Γ)→ C∗r (Γ)⊗min C∗r (Γ) = C∗r (Γ× Γ),

∆ : λ(s) 7→ λ(s)⊗ λ(s) = λ(s, s) (s ∈ Γ).

Matthew Daws (Leeds) Quantum Groups April 2010 5 / 18



Compact quantum groups

Simply remove the word “commutative”!
For example, let Γ be a discrete group, and let Γ act on `2(Γ) by left
translation:

λ(s)f : t 7→ f (s−1t) (s, t ∈ Γ, f ∈ `2(Γ)).

Let C∗r (Γ) be the (reduced) group C∗-algebra: that is, the norm closed
algebra, acting on `2(Γ), generated by λ(Γ). So C∗r (Γ) is commutative if
and only if Γ is.
There is a ∗-homomorphism

∆ : C∗r (Γ)→ C∗r (Γ)⊗min C∗r (Γ) = C∗r (Γ× Γ),

∆ : λ(s) 7→ λ(s)⊗ λ(s) = λ(s, s) (s ∈ Γ).

Matthew Daws (Leeds) Quantum Groups April 2010 5 / 18



Compact or Discrete?

Hang on: we’re saying that for discrete Γ, we have that C∗r (Γ) is a
compact quantum group?
If Γ were abelian, then the fourier transform tells us that

C∗r (Γ) ∼= C(Γ̂),

where Γ̂ is the Pontryagin dual of Γ. As Γ is discrete, Γ̂ is compact.
As C(G) is our “commutative” base algebra, this terminology is forced
upon us.
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Twisted SU(2)

{From Woronowicz in the C∗-setting, but independently discovered by Soibelman and
Vaksman}
C(SU(2)) is the (commutative) C∗-algebra generated by a,b with

a∗a + b∗b = 1.
aa∗ + bb∗ = 1, b∗b = bb∗, ab = ba, ab∗ = b∗a.

We introduce a real parameter µ ∈ [−1,1] \ {0}, and let C(SUµ(2)) be
the (non-commutative) C∗-algebra generated by a,b with

a∗a + b∗b = 1, aa∗ + µ2bb∗ = 1,
b∗b = bb∗, ab = µba, ab∗ = µb∗a.

There exists a coproduct ∆ with

∆(a) = a⊗ a− µb∗ ⊗ b, ∆(b) = b ⊗ a + a∗ ⊗ b.
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Corepresentation theory
A (finite-dimensional) corepresentation of (A,∆) is a matrix u ∈Mn(A)
with

∆(uij) =
n∑

k=1

uik ⊗ ukj (1 ≤ i , j ≤ n).

Let A = C(G), identify Mn(A) with A⊗Mn = C(G,Mn).

So u corresponds to some continuous function π : G→ Mn;
So π(s)ij = uij(s) for s ∈ G.
Then (

π(s)π(t)
)

ij =
∑

k

π(s)ikπ(t)kj = ∆(uij)(s, t) = π(st)ij .

Can reverse this; so corepresentations of C(G) correspond to
representations of G.
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Corepresentation theory cont.

Let (A,∆) be any compact quantum group.

All irreducible corepresentations of (A,∆) are finite-dimensional.
It’s possible to show that any finite-dimensional corepresentation u
is equivalent to a unitary corepresentation: u∗u = uu∗ = In.
There is a notion of infinite-dimensional corepresentation: but
these split up into direct sums of irreducibles.
There is a character theory for corepresentations.
All of this completely generalises the theory for compact groups.

For SU(2), for each integer n ≥ 1, there is precisely one (up to
equivalence) irreducible representation on Mn, say un−1; also

un ⊗ um ∼= u|m−n| ⊕ u|m−n|+2 ⊕ · · · ⊕ um+n.

Exactly the same is true for SUµ(2).
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Links with algebra

Let A be the collection of matrix entries of all irreducible
corepresentations of (A,∆).

Then A is a unital ∗-algebra.
A is norm-dense in A.
∆ restricts to give a map A → A⊗A (algebraic tensor product).
We can turn (A,∆) into a Hopf ∗-algebra:
This means there exists a counit ε : A → C satisfying
(id⊗ε)∆ = (ε⊗ id)∆ = id; and. . .
There is an antipode S : A → A with
m(id⊗S)∆(a) = ε(a)1 = m(S ⊗ id)∆(a) for a ∈ A.
Here m : A⊗A → A is the multiplication map.
We don’t have that S2 = id, but that S(S(a∗)∗) = a for a ∈ A.
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Back to C(G)

If G is a compact group, then C(G) is a sufficiently nice algebra that ε
and S extend to bounded maps on C(G):

ε(f ) = f (e) where e ∈ G is the group identity;
S(f ) : s 7→ f (s−1) for s ∈ G.
So the counit ε represents the group identity, and the antipode S
represents the group inverse.
Notice that for general (A,∆), the multiplication map is
unbounded, so it’s not even clear what axioms the antipode
should satisfy. . .
So for this talk, I’ll stick to algebras.
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Compact Quantum Group algebras

So, a C∗-algebraic compact quantum group (A,∆) gives rise to a Hopf
∗-algebra (A,∆). Can we go the other way?

Theorem (Dijkhuizen and Koornwinder)
Given a Hopf ∗-algebra (A,∆), the following are equivalent:

1 A is given by a compact quantum group (A,∆);
2 A is spanned by the matrix entries of its finite-dimensional unitary

corepresentations;
3 there is a functional h : A → C which is positive (h(a∗a) ≥ 0) and

invariant ((h ⊗ id)∆(a) = h(a)1).

However, the (A,∆) occurring in (1) might not be unique. Also, the h
occuring in (3) extends to A: for A = C(G), this is just the functional
given by integrating against the Haar measure.
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Multiplier algebras
To handle the non-compact case (either algebraic, or in the C∗-algebra
language) we need to consider non-unital algebras.

Let A be an algebra;
The multiplier algebra, M(A), is the largest unital algebra which
contains A as an ideal, such that if x ∈ M(A), and axb = 0 for
a,b ∈ A, then x = 0.
For example, if A the algebra of finitely supported complex
functions on G, then M(A) is the algebra of all complex functions
on G.
A homomorphism θ : A → M(B) is non-degenerate if
lin{θ(a)b : a ∈ A,b ∈ B} and lin{bθ(a) : a ∈ A,b ∈ B} are equal
to B
Then θ has a unique extension to M(A): we define
θ(x)θ(a)b = θ(xa)b and bθ(a)θ(x) = bθ(ax) for
x ∈ M(A),a ∈ A,b ∈ B.
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Multiplier Hopf algebras
Let G be any group (without topology, but maybe infinite).

Let A be the algebra of complex-valued, finitely supported
functions on G, with the pointwise product;
The coproduct ∆ should be as before: ∆(f )(s, t) = f (st); But this
might not be finitely supported.
However, ∆ : A → M(A⊗A) makes sense;
Furthermore, ∆(a)(1⊗ b) and ∆(a)(b⊗ 1) are members of A⊗A.

A multiplier Hopf ∗-algebra is an ∗-algebra A, a non-degenerate,
coassociative, ∗-homomorphism ∆ : A → M(A⊗A) such that the
maps

T1 : A⊗A → A⊗A; a⊗ b 7→ ∆(a)(1⊗ b)

T2 : A⊗A → A⊗A; a⊗ b 7→ ∆(a)(b ⊗ 1),

are bijections. (A notion of “cancellation”).
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Multiplier Hopf algebras (cont)
Then we can construct a counit and an antipode with the same axioms
as before.

So a Hopf ∗-algebra is just a unital multiplier Hopf ∗-algebra.
If a multiplier Hopf ∗-algebra has an invariant positive functional,
then we have the notion of an algebraic quantum group.
As for compact quantum groups, such algebras admit
C∗-algebraic completions, and the counit and anitpode, in some
sense, extend to this C∗-algebra. These C∗-algebraic quantum
groups fit into the framework of Locally Compact Quantum Groups
in the sense of Kustermans and Vaes, and Masuda, Nakagami
and Woronowicz; these have a vast amount of structure;
Algebraic quantum groups also admit a duality theory: we can
turn a subset of the dual A′ into an algebra, with a coproduct,
which becomes an algebraic quantum group in its own right, say
Â. Then ˆ̂A ∼= A.
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Â. Then ˆ̂A ∼= A.

Matthew Daws (Leeds) Quantum Groups April 2010 15 / 18



Multiplier Hopf algebras (cont)
Then we can construct a counit and an antipode with the same axioms
as before.

So a Hopf ∗-algebra is just a unital multiplier Hopf ∗-algebra.
If a multiplier Hopf ∗-algebra has an invariant positive functional,
then we have the notion of an algebraic quantum group.
As for compact quantum groups, such algebras admit
C∗-algebraic completions, and the counit and anitpode, in some
sense, extend to this C∗-algebra. These C∗-algebraic quantum
groups fit into the framework of Locally Compact Quantum Groups
in the sense of Kustermans and Vaes, and Masuda, Nakagami
and Woronowicz; these have a vast amount of structure;
Algebraic quantum groups also admit a duality theory: we can
turn a subset of the dual A′ into an algebra, with a coproduct,
which becomes an algebraic quantum group in its own right, say
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Compactifications

Suppose we start with a multiplier bialgebra (A,∆) (so
∆ : A → M(A⊗A) is a non-degenerate coassociative
homomorphism). Can we find a maximal (algebraic) compact quantum
group in M(A)?

This is equivalent to the classical question of starting with a
semigroup S and finding the maximal compact group G with a
dense-range homomorphism S → G.
Soltan showed how to do this: one looks at the algebra generated
by the matrix coefficients of certain unitary corepresentations of S;
This is similar to the classical “Bohr compactification” construction:
look at the finite-dimensional, unitary representations of S.
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From semigroups to groups

However, if we start with a non-compact group H, then the
construction is easier.

We first form the maximal compact semigroup G which contains a
dense-range homomorphic image of H;
This is related to almost periodic functions on H;
Then we lift the inverse from H to G, showing that G is a group.

Theorem
Let (A,∆) be a multiplier bialgebra. Then M(A) contains a maximal
unital algebra B such that ∆(B) ⊆ B ⊗ B.
In fact, we have that B = {x ∈ M(A) : ∆(x) ∈ M(A)⊗M(A)}.
Furthermore, if A is a multiplier Hopf ∗-algebra, then B is automatically
a Hopf ∗-algebra.
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Future work

I’d really like to do this at the C∗-algebra level:

A C∗-bialgebra is a C∗-algebra A together with a non-degenerate
coassociative homomorphism ∆ : A→ M(A⊗ A).
Then M(A) contains a maximal unital C∗-subalgebra B with
∆(B) ⊆ B ⊗ B.
But we have no easy description of this B.
What sort of “group structure” on (A,∆) would ensure that (B,∆)
were a compact quantum group?
For example, would like to show this if (A,∆) is a Locally Compact
Quantum Group.
Currently looking at algebraic quantum groups: should be a useful
bridge.
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