Quantum groups by way of Operator algebras

Matthew Daws

Leeds

April 2010

Matthew Daws (Leeds)

Quantum Groups

April 2010 1 / 18

< ロ > < 同 > < 回 > < 回 >

Well, it's a compact topological space G with the structure of a group such that the group action is jointly continuous, and the inverse is continuous.

It's a unital commutative C*-algebra A with a unital *-homomorphism $\Delta : A \rightarrow A \otimes_{\min} A$ which is:

• Co-associative, $(id \otimes \Delta)\Delta = (\Delta \otimes id)\Delta$

• "Cancellative", that is, the sets

 $\{(a \otimes 1)\Delta(b) : a, b \in A\}, \quad \{(1 \otimes a)\Delta(b) : a, b \in A\},\$

have dense linear span in $A \otimes_{\min} A$.

< ロ > < 同 > < 回 > < 回 >

Well, it's a compact topological space G with the structure of a group such that the group action is jointly continuous, and the inverse is continuous.

It's a unital commutative C*-algebra *A* with a unital *-homomorphism $\Delta : A \rightarrow A \otimes_{\min} A$ which is:

• Co-associative, $(id \otimes \Delta)\Delta = (\Delta \otimes id)\Delta$

• "Cancellative", that is, the sets

 $\{(a \otimes 1)\Delta(b) : a, b \in A\}, \{(1 \otimes a)\Delta(b) : a, b \in A\},\$

have dense linear span in $A \otimes_{\min} A$.

Well, it's a compact topological space G with the structure of a group such that the group action is jointly continuous, and the inverse is continuous.

It's a unital commutative C*-algebra *A* with a unital *-homomorphism $\Delta : A \rightarrow A \otimes_{\min} A$ which is:

• Co-associative, $(\mathsf{id} \otimes \Delta)\Delta = (\Delta \otimes \mathsf{id})\Delta$

• "Cancellative", that is, the sets

 $\{(a \otimes 1)\Delta(b) : a, b \in A\}, \{(1 \otimes a)\Delta(b) : a, b \in A\},\$

have dense linear span in $A \otimes_{\min} A$.

Well, it's a compact topological space G with the structure of a group such that the group action is jointly continuous, and the inverse is continuous.

It's a unital commutative C*-algebra *A* with a unital *-homomorphism $\Delta : A \rightarrow A \otimes_{\min} A$ which is:

• Co-associative, $(\mathsf{id} \otimes \Delta)\Delta = (\Delta \otimes \mathsf{id})\Delta$

• "Cancellative", that is, the sets

 $\{(a \otimes 1)\Delta(b) : a, b \in A\}, \{(1 \otimes a)\Delta(b) : a, b \in A\},\$

have dense linear span in $A \otimes_{\min} A$.

If G is a compact group, set

 $A = C(G) = \{$ continuous functions $G \to \mathbb{C}\},$

identify $A \otimes_{\min} A = C(G \times G)$, define

 $\Delta(f) \in C(G \times G), \quad \Delta(f) : (s,t) \mapsto f(st) \qquad (f \in C(G), s, t \in G).$

Finally observe that

 $(a \otimes 1)\Delta(b) : (s,t) \mapsto a(s)b(st),$

will separate the points of $G \times G$ (by varying *a* and *b*) so by Stone-Weierstrass,

 $lin\{(a \otimes 1)\Delta(b) : a, b \in A\}$

is a dense subalgebra of $\mathcal{C}(G imes G).$

< ロ > < 同 > < 回 > < 回 >

If G is a compact group, set

 $A = C(G) = \{$ continuous functions $G \to \mathbb{C} \},$

identify $A \otimes_{\min} A = C(G \times G)$, define

 $\Delta(f) \in \mathcal{C}(G \times G), \quad \Delta(f) : (s,t) \mapsto f(st) \qquad (f \in \mathcal{C}(G), s, t \in G).$

Finally observe that

 $(a \otimes 1)\Delta(b) : (s,t) \mapsto a(s)b(st),$

will separate the points of $G \times G$ (by varying *a* and *b*) so by Stone-Weierstrass,

```
lin\{(a \otimes 1) \Delta(b) : a, b \in A\}
```

is a dense subalgebra of $\mathcal{C}(G imes G)$.

If G is a compact group, set

 $A = C(G) = \{$ continuous functions $G \to \mathbb{C} \},$

identify $A \otimes_{\min} A = C(G \times G)$, define

 $\Delta(f) \in \mathcal{C}(G \times G), \quad \Delta(f) : (s,t) \mapsto f(st) \qquad (f \in \mathcal{C}(G), s, t \in G).$

Finally observe that

 $(a \otimes 1)\Delta(b) : (s,t) \mapsto a(s)b(st),$

will separate the points of $G \times G$ (by varying *a* and *b*) so by Stone-Weierstrass,

```
lin\{(a \otimes 1)\Delta(b) : a, b \in A\}
```

is a dense subalgebra of $\mathcal{C}(G imes G)$.

If G is a compact group, set

 $A = C(G) = \{$ continuous functions $G \to \mathbb{C} \},$

identify $A \otimes_{\min} A = C(G \times G)$, define

 $\Delta(f)\in \mathcal{C}(G\times G), \quad \Delta(f):(s,t)\mapsto f(st) \qquad (f\in \mathcal{C}(G),s,t\in G).$

Finally observe that

$$(a \otimes 1)\Delta(b) : (s,t) \mapsto a(s)b(st),$$

will separate the points of $G \times G$ (by varying *a* and *b*) so by Stone-Weierstrass,

$$lin\{(a \otimes 1)\Delta(b) : a, b \in A\}$$

is a dense subalgebra of $C(G \times G)$.

Gelfand-Naimark tells us that a unital commutative C*-algebra *A* has the form C(X) for some compact space *X*. So again $A \otimes_{\min} A = C(X \times X)$. Then $\Delta : C(X) \to C(X \times X)$ a unital *-homomorphism induces a continuous map $\theta : X \times X \to X$ such that

 $f(\theta(s,t)) = \Delta(f)(s,t)$ $(s,t \in X, f \in C(X)).$

 Δ co-associative implies that θ is associative, so X is a compact semigroup.

The cancellation rules for \triangle imply that X is cancellative, that is

$$st = rt \implies s = r, \quad ts = tr \implies s = r.$$

Exercise: A compact semigroup with cancellation is a compact group.

Gelfand-Naimark tells us that a unital commutative C*-algebra *A* has the form C(X) for some compact space *X*. So again $A \otimes_{\min} A = C(X \times X)$. Then $\Delta : C(X) \to C(X \times X)$ a unital *-homomorphism induces a continuous map $\theta : X \times X \to X$ such that

 $f(\theta(s,t)) = \Delta(f)(s,t)$ $(s,t \in X, f \in C(X)).$

 Δ co-associative implies that θ is associative, so X is a compact semigroup.

The cancellation rules for \triangle imply that X is cancellative, that is

$$st = rt \implies s = r, \quad ts = tr \implies s = r.$$

Exercise: A compact semigroup with cancellation is a compact group.

Gelfand-Naimark tells us that a unital commutative C*-algebra *A* has the form C(X) for some compact space *X*. So again $A \otimes_{\min} A = C(X \times X)$. Then $\Delta : C(X) \to C(X \times X)$ a unital *-homomorphism induces a continuous map $\theta : X \times X \to X$ such that

$$f(\theta(s,t)) = \Delta(f)(s,t)$$
 $(s,t \in X, f \in C(X)).$

 Δ co-associative implies that θ is associative, so X is a compact semigroup.

The cancellation rules for \triangle imply that X is cancellative, that is

$$st = rt \implies s = r, \quad ts = tr \implies s = r.$$

Exercise: A compact semigroup with cancellation is a compact group.

Gelfand-Naimark tells us that a unital commutative C*-algebra *A* has the form C(X) for some compact space *X*. So again $A \otimes_{\min} A = C(X \times X)$. Then $\Delta : C(X) \to C(X \times X)$ a unital *-homomorphism induces a continuous map $\theta : X \times X \to X$ such that

$$f(\theta(s,t)) = \Delta(f)(s,t)$$
 $(s,t \in X, f \in C(X)).$

 Δ co-associative implies that θ is associative, so *X* is a compact semigroup.

The cancellation rules for \triangle imply that X is cancellative, that is

$$st = rt \implies s = r, \quad ts = tr \implies s = r.$$

Exercise: A compact semigroup with cancellation is a compact group.

ヘロト ヘ回ト ヘヨト ヘヨト

Gelfand-Naimark tells us that a unital commutative C*-algebra *A* has the form C(X) for some compact space *X*. So again $A \otimes_{\min} A = C(X \times X)$. Then $\Delta : C(X) \to C(X \times X)$ a unital *-homomorphism induces a continuous map $\theta : X \times X \to X$ such that

$$f(\theta(s,t)) = \Delta(f)(s,t)$$
 $(s,t \in X, f \in C(X)).$

 Δ co-associative implies that θ is associative, so *X* is a compact semigroup.

The cancellation rules for Δ imply that X is cancellative, that is

$$st = rt \implies s = r, \quad ts = tr \implies s = r.$$

Exercise: A compact semigroup with cancellation is a compact group.

イロン 不得 とくほ とくほ とうほ

Gelfand-Naimark tells us that a unital commutative C*-algebra *A* has the form C(X) for some compact space *X*. So again $A \otimes_{\min} A = C(X \times X)$. Then $\Delta : C(X) \to C(X \times X)$ a unital *-homomorphism induces a continuous map $\theta : X \times X \to X$ such that

$$f(\theta(s,t)) = \Delta(f)(s,t)$$
 $(s,t \in X, f \in C(X)).$

 Δ co-associative implies that θ is associative, so *X* is a compact semigroup.

The cancellation rules for Δ imply that X is cancellative, that is

$$st = rt \implies s = r, \quad ts = tr \implies s = r.$$

Exercise: A compact semigroup with cancellation is a compact group.

Simply remove the word "commutative"!

For example, let Γ be a discrete group, and let Γ act on $\ell^2(\Gamma)$ by left translation:

$$\lambda(s)f:t\mapsto f(s^{-1}t)\qquad (s,t\in\Gamma,f\in\ell^2(\Gamma)).$$

Let $C_r^*(\Gamma)$ be the (reduced) group C*-algebra: that is, the norm closed algebra, acting on $\ell^2(\Gamma)$, generated by $\lambda(\Gamma)$. So $C_r^*(\Gamma)$ is commutative if and only if Γ is.

There is a *-homomorphism

$$\Delta: C_r^*(\Gamma) \to C_r^*(\Gamma) \otimes_{\min} C_r^*(\Gamma) = C_r^*(\Gamma \times \Gamma),$$

$$\Delta: \lambda(s) \mapsto \lambda(s) \otimes \lambda(s) = \lambda(s, s) \qquad (s \in \Gamma).$$

< ロ > < 同 > < 回 > < 回 >

Simply remove the word "commutative"!

For example, let Γ be a discrete group, and let Γ act on $\ell^2(\Gamma)$ by left translation:

$$\lambda(s)f: t \mapsto f(s^{-1}t) \qquad (s,t \in \Gamma, f \in \ell^2(\Gamma)).$$

Let $C_r^*(\Gamma)$ be the (reduced) group C*-algebra: that is, the norm closed algebra, acting on $\ell^2(\Gamma)$, generated by $\lambda(\Gamma)$. So $C_r^*(\Gamma)$ is commutative if and only if Γ is.

There is a *-homomorphism

$$\Delta: C_r^*(\Gamma) \to C_r^*(\Gamma) \otimes_{\min} C_r^*(\Gamma) = C_r^*(\Gamma \times \Gamma),$$

$$\Delta: \lambda(s) \mapsto \lambda(s) \otimes \lambda(s) = \lambda(s, s) \qquad (s \in \Gamma).$$

< ロ > < 同 > < 回 > < 回 >

Simply remove the word "commutative"!

For example, let Γ be a discrete group, and let Γ act on $\ell^2(\Gamma)$ by left translation:

$$\lambda(s)f: t \mapsto f(s^{-1}t) \qquad (s,t \in \Gamma, f \in \ell^2(\Gamma)).$$

Let $C_r^*(\Gamma)$ be the (reduced) group C*-algebra: that is, the norm closed algebra, acting on $\ell^2(\Gamma)$, generated by $\lambda(\Gamma)$. So $C_r^*(\Gamma)$ is commutative if and only if Γ is.

There is a *-homomorphism

$$\Delta: C_r^*(\Gamma) \to C_r^*(\Gamma) \otimes_{\min} C_r^*(\Gamma) = C_r^*(\Gamma \times \Gamma),$$

$$\Delta: \lambda(s) \mapsto \lambda(s) \otimes \lambda(s) = \lambda(s, s) \qquad (s \in \Gamma).$$

< 回 > < 三 > < 三 >

Simply remove the word "commutative"!

For example, let Γ be a discrete group, and let Γ act on $\ell^2(\Gamma)$ by left translation:

$$\lambda(s)f: t \mapsto f(s^{-1}t) \qquad (s,t \in \Gamma, f \in \ell^2(\Gamma)).$$

Let $C_r^*(\Gamma)$ be the (reduced) group C*-algebra: that is, the norm closed algebra, acting on $\ell^2(\Gamma)$, generated by $\lambda(\Gamma)$. So $C_r^*(\Gamma)$ is commutative if and only if Γ is.

There is a *-homomorphism

$$\Delta: C_r^*(\Gamma) \to C_r^*(\Gamma) \otimes_{\min} C_r^*(\Gamma) = C_r^*(\Gamma \times \Gamma),$$

$$\Delta: \lambda(s) \mapsto \lambda(s) \otimes \lambda(s) = \lambda(s,s) \qquad (s \in \Gamma).$$

Simply remove the word "commutative"!

For example, let Γ be a discrete group, and let Γ act on $\ell^2(\Gamma)$ by left translation:

$$\lambda(s)f: t \mapsto f(s^{-1}t) \qquad (s,t \in \Gamma, f \in \ell^2(\Gamma)).$$

Let $C_r^*(\Gamma)$ be the (reduced) group C*-algebra: that is, the norm closed algebra, acting on $\ell^2(\Gamma)$, generated by $\lambda(\Gamma)$. So $C_r^*(\Gamma)$ is commutative if and only if Γ is.

There is a *-homomorphism

$$\Delta: C_r^*(\Gamma) \to C_r^*(\Gamma) \otimes_{\min} C_r^*(\Gamma) = C_r^*(\Gamma \times \Gamma),$$

$$\Delta: \lambda(s) \mapsto \lambda(s) \otimes \lambda(s) = \lambda(s, s) \qquad (s \in \Gamma).$$

Hang on: we're saying that for *discrete* Γ , we have that $C_r^*(\Gamma)$ is a *compact* quantum group?

If Γ were abelian, then the fourier transform tells us that

 $C_r^*(\Gamma) \cong C(\widehat{\Gamma}),$

where $\hat{\Gamma}$ is the Pontryagin dual of Γ . As Γ is discrete, $\hat{\Gamma}$ is compact. As C(G) is our "commutative" base algebra, this terminology is forced upon us.

A (1) > A (2) > A (2)

Hang on: we're saying that for *discrete* Γ , we have that $C_r^*(\Gamma)$ is a *compact* quantum group?

If Γ were abelian, then the fourier transform tells us that

 $C_r^*(\Gamma) \cong C(\hat{\Gamma}),$

where $\hat{\Gamma}$ is the Pontryagin dual of Γ . As Γ is discrete, $\hat{\Gamma}$ is compact. As C(G) is our "commutative" base algebra, this terminology is forced upon us.

周レイモレイモ

Hang on: we're saying that for *discrete* Γ , we have that $C_r^*(\Gamma)$ is a *compact* quantum group?

If Γ were abelian, then the fourier transform tells us that

 $C_r^*(\Gamma) \cong C(\hat{\Gamma}),$

where $\hat{\Gamma}$ is the Pontryagin dual of Γ . As Γ is discrete, $\hat{\Gamma}$ is compact. As C(G) is our "commutative" base algebra, this terminology is force upon us.

周レイモレイモ

Hang on: we're saying that for *discrete* Γ , we have that $C_r^*(\Gamma)$ is a *compact* quantum group?

If Γ were abelian, then the fourier transform tells us that

 $C_r^*(\Gamma) \cong C(\hat{\Gamma}),$

where $\hat{\Gamma}$ is the Pontryagin dual of Γ . As Γ is discrete, $\hat{\Gamma}$ is compact. As C(G) is our "commutative" base algebra, this terminology is forced upon us.

{From Woronowicz in the C*-setting, but independently discovered by Soibelman and Vaksman}

C(SU(2)) is the (commutative) C*-algebra generated by a, b with

 $a^*a + b^*b = 1.$

 $aa^* + bb^* = 1$, $b^*b = bb^*$, ab = ba, $ab^* = b^*a$.

We introduce a real parameter $\mu \in [-1, 1] \setminus \{0\}$, and let $C(SU_{\mu}(2))$ be the (non-commutative) C*-algebra generated by *a*, *b* with

$$a^*a + b^*b = 1$$
, $aa^* + \mu^2 bb^* = 1$,
 $b^*b = bb^*$, $ab = \mu ba$, $ab^* = \mu b^*a$.

There exists a coproduct Δ with

$$\Delta(a) = a \otimes a - \mu b^* \otimes b, \quad \Delta(b) = b \otimes a + a^* \otimes b.$$

{From Woronowicz in the C*-setting, but independently discovered by Soibelman and Vaksman}

C(SU(2)) is the (commutative) C*-algebra generated by a, b with

$$a^*a + b^*b = 1.$$

 $aa^* + bb^* = 1, \quad b^*b = bb^*, \quad ab = ba, \quad ab^* = b^*a.$

We introduce a real parameter $\mu \in [-1, 1] \setminus \{0\}$, and let $C(SU_{\mu}(2))$ be the (non-commutative) C*-algebra generated by *a*, *b* with

$$a^*a + b^*b = 1$$
, $aa^* + \mu^2 bb^* = 1$,
 $b^*b = bb^*$, $ab = \mu ba$, $ab^* = \mu b^*a$.

There exists a coproduct Δ with

$$\Delta(a) = a \otimes a - \mu b^* \otimes b, \quad \Delta(b) = b \otimes a + a^* \otimes b.$$

{From Woronowicz in the C*-setting, but independently discovered by Soibelman and Vaksman}

C(SU(2)) is the (commutative) C*-algebra generated by a, b with

$$a^*a + b^*b = 1.$$

 $aa^* + bb^* = 1, \quad b^*b = bb^*, \quad ab = ba, \quad ab^* = b^*a.$

We introduce a real parameter $\mu \in [-1, 1] \setminus \{0\}$, and let $C(SU_{\mu}(2))$ be the (non-commutative) C*-algebra generated by *a*, *b* with

$$a^*a + b^*b = 1$$
, $aa^* + \mu^2 bb^* = 1$,
 $b^*b = bb^*$, $ab = \mu ba$, $ab^* = \mu b^*a$.

There exists a coproduct Δ with

 $\Delta(a) = a \otimes a - \mu b^* \otimes b, \quad \Delta(b) = b \otimes a + a^* \otimes b.$

{From Woronowicz in the C*-setting, but independently discovered by Soibelman and Vaksman}

C(SU(2)) is the (commutative) C*-algebra generated by a, b with

$$a^*a + b^*b = 1.$$

 $aa^* + bb^* = 1, \quad b^*b = bb^*, \quad ab = ba, \quad ab^* = b^*a.$

We introduce a real parameter $\mu \in [-1, 1] \setminus \{0\}$, and let $C(SU_{\mu}(2))$ be the (non-commutative) C*-algebra generated by *a*, *b* with

$$a^*a + b^*b = 1$$
, $aa^* + \mu^2 bb^* = 1$,
 $b^*b = bb^*$, $ab = \mu ba$, $ab^* = \mu b^*a$.

There exists a coproduct Δ with

$$\Delta(a) = a \otimes a - \mu b^* \otimes b, \quad \Delta(b) = b \otimes a + a^* \otimes b.$$

A (finite-dimensional) corepresentation of (A, Δ) is a matrix $u \in \mathbb{M}_n(A)$ with

$$\Delta(u_{ij}) = \sum_{k=1}^{n} u_{ik} \otimes u_{kj} \qquad (1 \leq i, j \leq n).$$

Let A = C(G), identify $M_n(A)$ with $A \otimes M_n = C(G, M_n)$.

- So *u* corresponds to some continuous function $\pi : G \rightarrow M_n$;
- So $\pi(s)_{ij} = u_{ij}(s)$ for $s \in G$.

Then

$$\left(\pi(s)\pi(t)\right)_{ij}=\sum_{k}\pi(s)_{ik}\pi(t)_{kj}=\Delta(u_{ij})(s,t)=\pi(st)_{ij}.$$

• Can reverse this; so corepresentations of *C*(*G*) correspond to representations of *G*.

A (finite-dimensional) corepresentation of (A, Δ) is a matrix $u \in \mathbb{M}_n(A)$ with

$$\Delta(u_{ij}) = \sum_{k=1}^{n} u_{ik} \otimes u_{kj} \qquad (1 \leq i, j \leq n).$$

Let A = C(G), identify $M_n(A)$ with $A \otimes M_n = C(G, M_n)$.

- So *u* corresponds to some continuous function $\pi : G \rightarrow M_n$;
- So $\pi(s)_{ij} = u_{ij}(s)$ for $s \in G$.

Then

$$\left(\pi(s)\pi(t)\right)_{ij}=\sum_{k}\pi(s)_{ik}\pi(t)_{kj}=\Delta(u_{ij})(s,t)=\pi(st)_{ij}.$$

• Can reverse this; so corepresentations of *C*(*G*) correspond to representations of *G*.

A (finite-dimensional) corepresentation of (A, Δ) is a matrix $u \in \mathbb{M}_n(A)$ with

$$\Delta(u_{ij}) = \sum_{k=1}^{n} u_{ik} \otimes u_{kj} \qquad (1 \leq i, j \leq n).$$

Let A = C(G), identify $M_n(A)$ with $A \otimes M_n = C(G, M_n)$.

So *u* corresponds to some continuous function π : G → M_n;
So π(s)_{ij} = u_{ij}(s) for s ∈ G.

Then

$$\left(\pi(s)\pi(t)\right)_{ij}=\sum_k \pi(s)_{ik}\pi(t)_{kj}=\Delta(u_{ij})(s,t)=\pi(st)_{ij}.$$

• Can reverse this; so corepresentations of *C*(*G*) correspond to representations of *G*.

イロト 不得 トイヨト イヨト

A (finite-dimensional) corepresentation of (A, Δ) is a matrix $u \in \mathbb{M}_n(A)$ with

$$\Delta(u_{ij}) = \sum_{k=1}^{n} u_{ik} \otimes u_{kj} \qquad (1 \leq i, j \leq n).$$

Let A = C(G), identify $M_n(A)$ with $A \otimes M_n = C(G, M_n)$.

• So *u* corresponds to some continuous function $\pi : G \rightarrow M_n$;

• So
$$\pi(s)_{ij} = u_{ij}(s)$$
 for $s \in G$.

Then

$$\left(\pi(s)\pi(t)\right)_{ij}=\sum_{k}\pi(s)_{ik}\pi(t)_{kj}=\Delta(u_{ij})(s,t)=\pi(st)_{ij}.$$

• Can reverse this; so corepresentations of *C*(*G*) correspond to representations of *G*.

A (finite-dimensional) corepresentation of (A, Δ) is a matrix $u \in \mathbb{M}_n(A)$ with

$$\Delta(u_{ij}) = \sum_{k=1}^{n} u_{ik} \otimes u_{kj} \qquad (1 \leq i, j \leq n).$$

Let A = C(G), identify $M_n(A)$ with $A \otimes M_n = C(G, M_n)$.

• So *u* corresponds to some continuous function $\pi : G \rightarrow M_n$;

• So
$$\pi(s)_{ij} = u_{ij}(s)$$
 for $s \in G$.

Then

$$\left(\pi(\boldsymbol{s})\pi(t)\right)_{ij} = \sum_{k} \pi(\boldsymbol{s})_{ik}\pi(t)_{kj} = \Delta(u_{ij})(\boldsymbol{s},t) = \pi(\boldsymbol{s}t)_{ij}.$$

• Can reverse this; so corepresentations of *C*(*G*) correspond to representations of *G*.

A (finite-dimensional) corepresentation of (A, Δ) is a matrix $u \in \mathbb{M}_n(A)$ with

$$\Delta(u_{ij}) = \sum_{k=1}^{n} u_{ik} \otimes u_{kj} \qquad (1 \leq i, j \leq n).$$

Let A = C(G), identify $M_n(A)$ with $A \otimes M_n = C(G, M_n)$.

• So *u* corresponds to some continuous function $\pi : G \rightarrow M_n$;

• So
$$\pi(s)_{ij} = u_{ij}(s)$$
 for $s \in G$.

Then

$$\left(\pi(\boldsymbol{s})\pi(t)\right)_{ij} = \sum_{k} \pi(\boldsymbol{s})_{ik}\pi(t)_{kj} = \Delta(u_{ij})(\boldsymbol{s},t) = \pi(\boldsymbol{s}t)_{ij}.$$

• Can reverse this; so corepresentations of *C*(*G*) correspond to representations of *G*.

Corepresentation theory cont.

Let (A, Δ) be any compact quantum group.

- All irreducible corepresentations of (A, Δ) are finite-dimensional.
- It's possible to show that any finite-dimensional corepresentation u is equivalent to a unitary corepresentation: u*u = uu* = In.
- There is a notion of infinite-dimensional corepresentation: but these split up into direct sums of irreducibles.
- There is a character theory for corepresentations.
- All of this completely generalises the theory for compact groups.

For SU(2), for each integer $n \ge 1$, there is precisely one (up to equivalence) irreducible representation on M_n , say u_{n-1} ; also

$$U_n \otimes U_m \cong U_{|m-n|} \oplus U_{|m-n|+2} \oplus \cdots \oplus U_{m+n}.$$

Exactly the same is true for $SU_{\mu}(2)$.

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

Corepresentation theory cont.

Let (A, Δ) be any compact quantum group.

- All irreducible corepresentations of (A, Δ) are finite-dimensional.
- It's possible to show that any finite-dimensional corepresentation u is equivalent to a unitary corepresentation: u*u = uu* = In.
- There is a notion of infinite-dimensional corepresentation: but these split up into direct sums of irreducibles.
- There is a character theory for corepresentations.
- All of this completely generalises the theory for compact groups.

For SU(2), for each integer $n \ge 1$, there is precisely one (up to equivalence) irreducible representation on M_n , say u_{n-1} ; also

$$U_n \otimes U_m \cong U_{|m-n|} \oplus U_{|m-n|+2} \oplus \cdots \oplus U_{m+n}.$$

Exactly the same is true for $SU_{\mu}(2)$.

< ロ > < 同 > < 回 > < 回 >

Let (A, Δ) be any compact quantum group.

- All irreducible corepresentations of (A, Δ) are finite-dimensional.
- It's possible to show that any finite-dimensional corepresentation u is *equivalent* to a unitary corepresentation: $u^*u = uu^* = I_n$.
- There is a notion of infinite-dimensional corepresentation: but these split up into direct sums of irreducibles.
- There is a character theory for corepresentations.
- All of this completely generalises the theory for compact groups.

For SU(2), for each integer $n \ge 1$, there is precisely one (up to equivalence) irreducible representation on M_n , say u_{n-1} ; also

$$U_n \otimes U_m \cong U_{|m-n|} \oplus U_{|m-n|+2} \oplus \cdots \oplus U_{m+n}.$$

Exactly the same is true for $SU_{\mu}(2)$.

< ロ > < 同 > < 回 > < 回 >

Let (A, Δ) be any compact quantum group.

- All irreducible corepresentations of (A, Δ) are finite-dimensional.
- It's possible to show that any finite-dimensional corepresentation u is *equivalent* to a unitary corepresentation: $u^*u = uu^* = I_n$.
- There is a notion of infinite-dimensional corepresentation: but these split up into direct sums of irreducibles.
- There is a character theory for corepresentations.
- All of this completely generalises the theory for compact groups.

For SU(2), for each integer $n \ge 1$, there is precisely one (up to equivalence) irreducible representation on M_n , say u_{n-1} ; also

$$U_n \otimes U_m \cong U_{|m-n|} \oplus U_{|m-n|+2} \oplus \cdots \oplus U_{m+n}.$$

Exactly the same is true for $SU_{\mu}(2)$.

イロト イヨト イヨト イヨト

Let (A, Δ) be any compact quantum group.

- All irreducible corepresentations of (A, Δ) are finite-dimensional.
- It's possible to show that any finite-dimensional corepresentation u is *equivalent* to a unitary corepresentation: $u^*u = uu^* = I_n$.
- There is a notion of infinite-dimensional corepresentation: but these split up into direct sums of irreducibles.
- There is a character theory for corepresentations.

• All of this completely generalises the theory for compact groups.

For SU(2), for each integer $n \ge 1$, there is precisely one (up to equivalence) irreducible representation on M_n , say u_{n-1} ; also

$$U_n \otimes U_m \cong U_{|m-n|} \oplus U_{|m-n|+2} \oplus \cdots \oplus U_{m+n}.$$

Exactly the same is true for $SU_{\mu}(2)$.

イロト イヨト イヨト イヨト

Let (A, Δ) be any compact quantum group.

- All irreducible corepresentations of (A, Δ) are finite-dimensional.
- It's possible to show that any finite-dimensional corepresentation u is *equivalent* to a unitary corepresentation: $u^*u = uu^* = I_n$.
- There is a notion of infinite-dimensional corepresentation: but these split up into direct sums of irreducibles.
- There is a character theory for corepresentations.
- All of this completely generalises the theory for compact groups.

For SU(2), for each integer $n \ge 1$, there is precisely one (up to equivalence) irreducible representation on M_n , say u_{n-1} ; also

$$U_n \otimes U_m \cong U_{|m-n|} \oplus U_{|m-n|+2} \oplus \cdots \oplus U_{m+n}.$$

Exactly the same is true for $SU_{\mu}(2)$.

・ロト ・ 四ト ・ ヨト ・ ヨト

Let (A, Δ) be any compact quantum group.

- All irreducible corepresentations of (A, Δ) are finite-dimensional.
- It's possible to show that any finite-dimensional corepresentation u is *equivalent* to a unitary corepresentation: $u^*u = uu^* = I_n$.
- There is a notion of infinite-dimensional corepresentation: but these split up into direct sums of irreducibles.
- There is a character theory for corepresentations.
- All of this completely generalises the theory for compact groups.

For SU(2), for each integer $n \ge 1$, there is precisely one (up to equivalence) irreducible representation on M_n , say u_{n-1} ; also

$$u_n \otimes u_m \cong u_{|m-n|} \oplus u_{|m-n|+2} \oplus \cdots \oplus u_{m+n}.$$

Exactly the same is true for $SU_{\mu}(2)$.

・ロト ・ 四ト ・ ヨト ・ ヨト

Let (A, Δ) be any compact quantum group.

- All irreducible corepresentations of (A, Δ) are finite-dimensional.
- It's possible to show that any finite-dimensional corepresentation u is *equivalent* to a unitary corepresentation: $u^*u = uu^* = I_n$.
- There is a notion of infinite-dimensional corepresentation: but these split up into direct sums of irreducibles.
- There is a character theory for corepresentations.
- All of this completely generalises the theory for compact groups.

For SU(2), for each integer $n \ge 1$, there is precisely one (up to equivalence) irreducible representation on M_n , say u_{n-1} ; also

$$u_n \otimes u_m \cong u_{|m-n|} \oplus u_{|m-n|+2} \oplus \cdots \oplus u_{m+n}.$$

Exactly the same is true for $SU_{\mu}(2)$.

Let A be the collection of matrix entries of all irreducible corepresentations of (A, Δ) .

- Then \mathcal{A} is a unital *-algebra.
- \mathcal{A} is norm-dense in A.
- Δ restricts to give a map $\mathcal{A} \to \mathcal{A} \otimes \mathcal{A}$ (algebraic tensor product).
- We can turn (\mathcal{A}, Δ) into a Hopf *-algebra:
- This means there exists a *counit* ε : A → C satisfying (id ⊗ε)Δ = (ε ⊗ id)Δ = id; and...
- There is an *antipode* $S : A \to A$ with $m(\operatorname{id} \otimes S)\Delta(a) = \epsilon(a)\mathbf{1} = m(S \otimes \operatorname{id})\Delta(a)$ for $a \in A$.
- Here $m: \mathcal{A} \otimes \mathcal{A} \rightarrow \mathcal{A}$ is the multiplication map.
- We don't have that $S^2 = id$, but that $S(S(a^*)^*) = a$ for $a \in A$.

Let A be the collection of matrix entries of all irreducible corepresentations of (A, Δ) .

- Then \mathcal{A} is a unital *-algebra.
- \mathcal{A} is norm-dense in \mathcal{A} .
- Δ restricts to give a map $\mathcal{A} \to \mathcal{A} \otimes \mathcal{A}$ (algebraic tensor product).
- We can turn (\mathcal{A}, Δ) into a Hopf *-algebra:
- This means there exists a *counit* ε : A → C satisfying (id ⊗ε)Δ = (ε ⊗ id)Δ = id; and...
- There is an *antipode* $S : A \to A$ with $m(\operatorname{id} \otimes S)\Delta(a) = \epsilon(a)\mathbf{1} = m(S \otimes \operatorname{id})\Delta(a)$ for $a \in A$.
- Here $m: \mathcal{A} \otimes \mathcal{A} \rightarrow \mathcal{A}$ is the multiplication map.
- We don't have that $S^2 = id$, but that $S(S(a^*)^*) = a$ for $a \in A$.

Let A be the collection of matrix entries of all irreducible corepresentations of (A, Δ) .

- Then \mathcal{A} is a unital *-algebra.
- \mathcal{A} is norm-dense in \mathcal{A} .
- Δ restricts to give a map $\mathcal{A} \to \mathcal{A} \otimes \mathcal{A}$ (algebraic tensor product).
- We can turn (\mathcal{A}, Δ) into a Hopf *-algebra:
- This means there exists a *counit* ε : A → C satisfying (id ⊗ε)Δ = (ε ⊗ id)Δ = id; and...
- There is an *antipode* $S : A \to A$ with $m(\operatorname{id} \otimes S)\Delta(a) = \epsilon(a)\mathbf{1} = m(S \otimes \operatorname{id})\Delta(a)$ for $a \in A$.
- Here $m: \mathcal{A} \otimes \mathcal{A} \rightarrow \mathcal{A}$ is the multiplication map.
- We don't have that $S^2 = id$, but that $S(S(a^*)^*) = a$ for $a \in A$.

Let A be the collection of matrix entries of all irreducible corepresentations of (A, Δ) .

- Then \mathcal{A} is a unital *-algebra.
- \mathcal{A} is norm-dense in \mathcal{A} .
- Δ restricts to give a map $\mathcal{A} \to \mathcal{A} \otimes \mathcal{A}$ (algebraic tensor product).
- We can turn (\mathcal{A}, Δ) into a Hopf *-algebra:
- This means there exists a *counit* ε : A → C satisfying (id ⊗ε)Δ = (ε ⊗ id)Δ = id; and...
- There is an *antipode* $S : A \to A$ with $m(\operatorname{id} \otimes S)\Delta(a) = \epsilon(a)\mathbf{1} = m(S \otimes \operatorname{id})\Delta(a)$ for $a \in A$.
- Here $m: \mathcal{A} \otimes \mathcal{A} \rightarrow \mathcal{A}$ is the multiplication map.
- We don't have that $S^2 = id$, but that $S(S(a^*)^*) = a$ for $a \in A$.

Let A be the collection of matrix entries of all irreducible corepresentations of (A, Δ) .

- Then \mathcal{A} is a unital *-algebra.
- \mathcal{A} is norm-dense in \mathcal{A} .
- Δ restricts to give a map $\mathcal{A} \to \mathcal{A} \otimes \mathcal{A}$ (algebraic tensor product).
- We can turn (\mathcal{A}, Δ) into a Hopf *-algebra:
- This means there exists a *counit* ε : A → C satisfying (id ⊗ε)Δ = (ε ⊗ id)Δ = id; and...
- There is an *antipode* $S : \mathcal{A} \to \mathcal{A}$ with $m(\operatorname{id} \otimes S) \Delta(a) = \epsilon(a) \mathbf{1} = m(S \otimes \operatorname{id}) \Delta(a)$ for $a \in \mathcal{A}$.
- Here $m: \mathcal{A} \otimes \mathcal{A} \rightarrow \mathcal{A}$ is the multiplication map.
- We don't have that $S^2 = id$, but that $S(S(a^*)^*) = a$ for $a \in A$.

Let A be the collection of matrix entries of all irreducible corepresentations of (A, Δ) .

- Then \mathcal{A} is a unital *-algebra.
- \mathcal{A} is norm-dense in \mathcal{A} .
- Δ restricts to give a map $\mathcal{A} \to \mathcal{A} \otimes \mathcal{A}$ (algebraic tensor product).
- We can turn (\mathcal{A}, Δ) into a Hopf *-algebra:
- This means there exists a *counit* ε : A → C satisfying (id ⊗ε)Δ = (ε ⊗ id)Δ = id; and...
- There is an *antipode* $S : \mathcal{A} \to \mathcal{A}$ with $m(\operatorname{id} \otimes S) \Delta(a) = \epsilon(a) 1 = m(S \otimes \operatorname{id}) \Delta(a)$ for $a \in \mathcal{A}$.
- Here $m: \mathcal{A} \otimes \mathcal{A} \rightarrow \mathcal{A}$ is the multiplication map.
- We don't have that $S^2 = id$, but that $S(S(a^*)^*) = a$ for $a \in A$.

Let A be the collection of matrix entries of all irreducible corepresentations of (A, Δ) .

- Then \mathcal{A} is a unital *-algebra.
- \mathcal{A} is norm-dense in \mathcal{A} .
- Δ restricts to give a map $\mathcal{A} \to \mathcal{A} \otimes \mathcal{A}$ (algebraic tensor product).
- We can turn (\mathcal{A}, Δ) into a Hopf *-algebra:
- This means there exists a *counit* ε : A → C satisfying (id ⊗ε)Δ = (ε ⊗ id)Δ = id; and...
- There is an *antipode* $S : A \to A$ with $m(\operatorname{id} \otimes S)\Delta(a) = \epsilon(a)\mathbf{1} = m(S \otimes \operatorname{id})\Delta(a)$ for $a \in A$.
- Here $m : \mathcal{A} \otimes \mathcal{A} \rightarrow \mathcal{A}$ is the multiplication map.
- We don't have that $S^2 = id$, but that $S(S(a^*)^*) = a$ for $a \in A$.

Let A be the collection of matrix entries of all irreducible corepresentations of (A, Δ) .

- Then \mathcal{A} is a unital *-algebra.
- \mathcal{A} is norm-dense in \mathcal{A} .
- Δ restricts to give a map $\mathcal{A} \to \mathcal{A} \otimes \mathcal{A}$ (algebraic tensor product).
- We can turn (\mathcal{A}, Δ) into a Hopf *-algebra:
- This means there exists a *counit* ε : A → C satisfying (id ⊗ε)Δ = (ε ⊗ id)Δ = id; and...
- There is an *antipode* $S : A \to A$ with $m(\operatorname{id} \otimes S)\Delta(a) = \epsilon(a)\mathbf{1} = m(S \otimes \operatorname{id})\Delta(a)$ for $a \in A$.
- Here $m : \mathcal{A} \otimes \mathcal{A} \rightarrow \mathcal{A}$ is the multiplication map.

• We don't have that $S^2 = id$, but that $S(S(a^*)^*) = a$ for $a \in A$.

イロト 不得 トイヨト イヨト ニヨー

Let A be the collection of matrix entries of all irreducible corepresentations of (A, Δ) .

- Then \mathcal{A} is a unital *-algebra.
- \mathcal{A} is norm-dense in \mathcal{A} .
- Δ restricts to give a map $\mathcal{A} \to \mathcal{A} \otimes \mathcal{A}$ (algebraic tensor product).
- We can turn (\mathcal{A}, Δ) into a Hopf *-algebra:
- This means there exists a *counit* ε : A → C satisfying (id ⊗ε)Δ = (ε ⊗ id)Δ = id; and...
- There is an *antipode* $S : A \to A$ with $m(\operatorname{id} \otimes S)\Delta(a) = \epsilon(a)\mathbf{1} = m(S \otimes \operatorname{id})\Delta(a)$ for $a \in A$.
- Here $m : \mathcal{A} \otimes \mathcal{A} \rightarrow \mathcal{A}$ is the multiplication map.
- We don't have that $S^2 = id$, but that $S(S(a^*)^*) = a$ for $a \in A$.

If *G* is a compact group, then C(G) is a sufficiently nice algebra that ϵ and *S* extend to bounded maps on C(G):

- $\epsilon(f) = f(e)$ where $e \in G$ is the group identity;
- $S(f): s \mapsto f(s^{-1})$ for $s \in G$.
- So the counit ϵ represents the group identity, and the antipode *S* represents the group inverse.
- Notice that for general (A, △), the multiplication map is unbounded, so it's not even clear what axioms the antipode should satisfy...
- So for this talk, I'll stick to algebras.

- 4 同 6 4 日 6 4 日 6

If *G* is a compact group, then C(G) is a sufficiently nice algebra that ϵ and *S* extend to bounded maps on C(G):

- $\epsilon(f) = f(e)$ where $e \in G$ is the group identity;
- $S(f) : s \mapsto f(s^{-1})$ for $s \in G$.
- So the counit ϵ represents the group identity, and the antipode *S* represents the group inverse.
- Notice that for general (A, △), the multiplication map is unbounded, so it's not even clear what axioms the antipode should satisfy...
- So for this talk, I'll stick to algebras.

- 4 週 ト 4 ヨ ト 4 ヨ ト

If *G* is a compact group, then C(G) is a sufficiently nice algebra that ϵ and *S* extend to bounded maps on C(G):

- $\epsilon(f) = f(e)$ where $e \in G$ is the group identity;
- $S(f): s \mapsto f(s^{-1})$ for $s \in G$.
- So the counit ϵ represents the group identity, and the antipode *S* represents the group inverse.
- Notice that for general (A, △), the multiplication map is unbounded, so it's not even clear what axioms the antipode should satisfy...
- So for this talk, I'll stick to algebras.

If *G* is a compact group, then C(G) is a sufficiently nice algebra that ϵ and *S* extend to bounded maps on C(G):

- $\epsilon(f) = f(e)$ where $e \in G$ is the group identity;
- $S(f): s \mapsto f(s^{-1})$ for $s \in G$.
- So the counit ϵ represents the group identity, and the antipode *S* represents the group inverse.
- Notice that for general (A, △), the multiplication map is unbounded, so it's not even clear what axioms the antipode should satisfy...
- So for this talk, I'll stick to algebras.

If *G* is a compact group, then C(G) is a sufficiently nice algebra that ϵ and *S* extend to bounded maps on C(G):

- $\epsilon(f) = f(e)$ where $e \in G$ is the group identity;
- $S(f): s \mapsto f(s^{-1})$ for $s \in G$.
- So the counit ϵ represents the group identity, and the antipode *S* represents the group inverse.
- Notice that for general (A, Δ), the multiplication map is unbounded, so it's not even clear what axioms the antipode should satisfy...
- So for this talk, I'll stick to algebras.

If *G* is a compact group, then C(G) is a sufficiently nice algebra that ϵ and *S* extend to bounded maps on C(G):

- $\epsilon(f) = f(e)$ where $e \in G$ is the group identity;
- $S(f): s \mapsto f(s^{-1})$ for $s \in G$.
- So the counit ϵ represents the group identity, and the antipode *S* represents the group inverse.
- Notice that for general (A, Δ), the multiplication map is unbounded, so it's not even clear what axioms the antipode should satisfy...
- So for this talk, I'll stick to algebras.

A (10) A (10)

So, a C*-algebraic compact quantum group (A, Δ) gives rise to a Hopf *-algebra (A, Δ) . Can we go the other way?

Theorem (Dijkhuizen and Koornwinder)

Given a Hopf *-algebra (\mathcal{A}, Δ) , the following are equivalent:

• A is given by a compact quantum group (A, Δ) ;

 A is spanned by the matrix entries of its finite-dimensional unitary corepresentations;

③ there is a functional $h : A \to \mathbb{C}$ which is positive ($h(a^*a) \ge 0$) and invariant ($(h \otimes id)\Delta(a) = h(a)1$).

However, the (A, Δ) occurring in (1) might not be unique. Also, the *h* occuring in (3) extends to *A*: for A = C(G), this is just the functional given by integrating against the Haar measure.

So, a C*-algebraic compact quantum group (A, Δ) gives rise to a Hopf *-algebra (A, Δ) . Can we go the other way?

Theorem (Dijkhuizen and Koornwinder)

Given a Hopf *-algebra (\mathcal{A}, Δ) , the following are equivalent:

- A is given by a compact quantum group (A, Δ) ;
- A is spanned by the matrix entries of its finite-dimensional unitary corepresentations;

③ there is a functional $h : A \to \mathbb{C}$ which is positive ($h(a^*a) \ge 0$) and invariant (($h \otimes id$) $\Delta(a) = h(a)$ 1).

However, the (A, Δ) occurring in (1) might not be unique. Also, the *h* occuring in (3) extends to *A*: for A = C(G), this is just the functional given by integrating against the Haar measure.

So, a C*-algebraic compact quantum group (A, Δ) gives rise to a Hopf *-algebra (A, Δ) . Can we go the other way?

Theorem (Dijkhuizen and Koornwinder)

Given a Hopf *-algebra (\mathcal{A}, Δ) , the following are equivalent:

- \mathcal{A} is given by a compact quantum group (\mathcal{A}, Δ) ;
- A is spanned by the matrix entries of its finite-dimensional unitary corepresentations;

③ there is a functional $h : A \to \mathbb{C}$ which is positive ($h(a^*a) \ge 0$) and invariant (($h \otimes id$) $\Delta(a) = h(a)$ 1).

However, the (A, Δ) occurring in (1) might not be unique. Also, the *h* occuring in (3) extends to *A*: for A = C(G), this is just the functional given by integrating against the Haar measure.

So, a C*-algebraic compact quantum group (A, Δ) gives rise to a Hopf *-algebra (A, Δ) . Can we go the other way?

Theorem (Dijkhuizen and Koornwinder)

Given a Hopf *-algebra (\mathcal{A}, Δ) , the following are equivalent:

- \mathcal{A} is given by a compact quantum group (\mathcal{A}, Δ) ;
- A is spanned by the matrix entries of its finite-dimensional unitary corepresentations;
- Solution there is a functional $h : A \to \mathbb{C}$ which is positive $(h(a^*a) \ge 0)$ and invariant $((h \otimes id)\Delta(a) = h(a)1)$.

However, the (A, Δ) occurring in (1) might not be unique. Also, the *h* occuring in (3) extends to *A*: for A = C(G), this is just the functional given by integrating against the Haar measure.

イロト 不得 トイヨト イヨト

So, a C*-algebraic compact quantum group (A, Δ) gives rise to a Hopf *-algebra (A, Δ) . Can we go the other way?

Theorem (Dijkhuizen and Koornwinder)

Given a Hopf *-algebra (\mathcal{A}, Δ) , the following are equivalent:

- \mathcal{A} is given by a compact quantum group (A, Δ) ;
- A is spanned by the matrix entries of its finite-dimensional unitary corepresentations;
- Solution there is a functional $h : A \to \mathbb{C}$ which is positive $(h(a^*a) \ge 0)$ and invariant $((h \otimes id)\Delta(a) = h(a)1)$.

However, the (A, Δ) occurring in (1) might not be unique. Also, the *h* occuring in (3) extends to *A*: for A = C(G), this is just the functional given by integrating against the Haar measure.

So, a C*-algebraic compact quantum group (A, Δ) gives rise to a Hopf *-algebra (A, Δ) . Can we go the other way?

Theorem (Dijkhuizen and Koornwinder)

Given a Hopf *-algebra (\mathcal{A}, Δ) , the following are equivalent:

- A is given by a compact quantum group (A, Δ) ;
- A is spanned by the matrix entries of its finite-dimensional unitary corepresentations;
- Solution there is a functional $h : A \to \mathbb{C}$ which is positive $(h(a^*a) \ge 0)$ and invariant $((h \otimes id)\Delta(a) = h(a)1)$.

However, the (A, Δ) occurring in (1) might not be unique. Also, the *h* occuring in (3) extends to *A*: for A = C(G), this is just the functional given by integrating against the Haar measure.

To handle the non-compact case (either algebraic, or in the C*-algebra language) we need to consider non-unital algebras.

- Let \mathcal{A} be an algebra;
- The multiplier algebra, M(A), is the largest unital algebra which contains A as an ideal, such that if x ∈ M(A), and axb = 0 for a, b ∈ A, then x = 0.
- For example, if A the algebra of finitely supported complex functions on G, then M(A) is the algebra of all complex functions on G.
- A homomorphism θ : A → M(B) is non-degenerate if lin{θ(a)b : a ∈ A, b ∈ B} and lin{bθ(a) : a ∈ A, b ∈ B} are equal to B
- Then θ has a unique extension to $M(\mathcal{A})$: we define $\theta(x)\theta(a)b = \theta(xa)b$ and $b\theta(a)\theta(x) = b\theta(ax)$ for $x \in M(\mathcal{A}), a \in \mathcal{A}, b \in \mathcal{B}$.

To handle the non-compact case (either algebraic, or in the C*-algebra language) we need to consider non-unital algebras.

• Let \mathcal{A} be an algebra;

- The multiplier algebra, M(A), is the largest unital algebra which contains A as an ideal, such that if x ∈ M(A), and axb = 0 for a, b ∈ A, then x = 0.
- For example, if A the algebra of finitely supported complex functions on G, then M(A) is the algebra of all complex functions on G.
- A homomorphism θ : A → M(B) is non-degenerate if lin{θ(a)b : a ∈ A, b ∈ B} and lin{bθ(a) : a ∈ A, b ∈ B} are equal to B
- Then θ has a unique extension to $M(\mathcal{A})$: we define $\theta(x)\theta(a)b = \theta(xa)b$ and $b\theta(a)\theta(x) = b\theta(ax)$ for $x \in M(\mathcal{A}), a \in \mathcal{A}, b \in \mathcal{B}$.

To handle the non-compact case (either algebraic, or in the C*-algebra language) we need to consider non-unital algebras.

- Let \mathcal{A} be an algebra;
- The multiplier algebra, M(A), is the largest unital algebra which contains A as an ideal, such that if x ∈ M(A), and axb = 0 for a, b ∈ A, then x = 0.
- For example, if A the algebra of finitely supported complex functions on G, then M(A) is the algebra of all complex functions on G.
- A homomorphism θ : A → M(B) is non-degenerate if lin{θ(a)b : a ∈ A, b ∈ B} and lin{bθ(a) : a ∈ A, b ∈ B} are equal to B
- Then θ has a unique extension to $M(\mathcal{A})$: we define $\theta(x)\theta(a)b = \theta(xa)b$ and $b\theta(a)\theta(x) = b\theta(ax)$ for $x \in M(\mathcal{A}), a \in \mathcal{A}, b \in \mathcal{B}$.

To handle the non-compact case (either algebraic, or in the C*-algebra language) we need to consider non-unital algebras.

- Let \mathcal{A} be an algebra;
- The multiplier algebra, M(A), is the largest unital algebra which contains A as an ideal, such that if x ∈ M(A), and axb = 0 for a, b ∈ A, then x = 0.
- For example, if A the algebra of finitely supported complex functions on G, then M(A) is the algebra of all complex functions on G.
- A homomorphism θ : A → M(B) is non-degenerate if lin{θ(a)b : a ∈ A, b ∈ B} and lin{bθ(a) : a ∈ A, b ∈ B} are equal to B
- Then θ has a unique extension to $M(\mathcal{A})$: we define $\theta(x)\theta(a)b = \theta(xa)b$ and $b\theta(a)\theta(x) = b\theta(ax)$ for $x \in M(\mathcal{A}), a \in \mathcal{A}, b \in \mathcal{B}$.

To handle the non-compact case (either algebraic, or in the C*-algebra language) we need to consider non-unital algebras.

- Let \mathcal{A} be an algebra;
- The multiplier algebra, M(A), is the largest unital algebra which contains A as an ideal, such that if x ∈ M(A), and axb = 0 for a, b ∈ A, then x = 0.
- For example, if A the algebra of finitely supported complex functions on G, then M(A) is the algebra of all complex functions on G.
- A homomorphism θ : A → M(B) is non-degenerate if lin{θ(a)b : a ∈ A, b ∈ B} and lin{bθ(a) : a ∈ A, b ∈ B} are equal to B
- Then θ has a unique extension to $M(\mathcal{A})$: we define $\theta(x)\theta(a)b = \theta(xa)b$ and $b\theta(a)\theta(x) = b\theta(ax)$ for $x \in M(\mathcal{A}), a \in \mathcal{A}, b \in \mathcal{B}$.

イロト 不得 トイヨト イヨト

To handle the non-compact case (either algebraic, or in the C*-algebra language) we need to consider non-unital algebras.

- Let \mathcal{A} be an algebra;
- The multiplier algebra, M(A), is the largest unital algebra which contains A as an ideal, such that if x ∈ M(A), and axb = 0 for a, b ∈ A, then x = 0.
- For example, if A the algebra of finitely supported complex functions on G, then M(A) is the algebra of all complex functions on G.
- A homomorphism θ : A → M(B) is non-degenerate if lin{θ(a)b : a ∈ A, b ∈ B} and lin{bθ(a) : a ∈ A, b ∈ B} are equal to B
- Then θ has a unique extension to $M(\mathcal{A})$: we define $\theta(x)\theta(a)b = \theta(xa)b$ and $b\theta(a)\theta(x) = b\theta(ax)$ for $x \in M(\mathcal{A}), a \in \mathcal{A}, b \in \mathcal{B}$.

Multiplier Hopf algebras

Let *G* be any group (without topology, but maybe infinite).

- Let *A* be the algebra of complex-valued, finitely supported functions on *G*, with the pointwise product;
- The coproduct ∆ should be as before: ∆(f)(s, t) = f(st); But this might not be finitely supported.
- However, $\Delta : \mathcal{A} \to \mathcal{M}(\mathcal{A} \otimes \mathcal{A})$ makes sense;
- Furthermore, $\Delta(a)(1 \otimes b)$ and $\Delta(a)(b \otimes 1)$ are members of $\mathcal{A} \otimes \mathcal{A}$.

A multiplier Hopf *-algebra is an *-algebra \mathcal{A} , a non-degenerate, coassociative, *-homomorphism $\Delta : \mathcal{A} \to \mathcal{M}(\mathcal{A} \otimes \mathcal{A})$ such that the maps

 $T_1: \mathcal{A} \otimes \mathcal{A} \to \mathcal{A} \otimes \mathcal{A}; \quad a \otimes b \mapsto \Delta(a)(1 \otimes b)$ $T_2: \mathcal{A} \otimes \mathcal{A} \to \mathcal{A} \otimes \mathcal{A}; \quad a \otimes b \mapsto \Delta(a)(b \otimes 1),$

are bijections. (A notion of "cancellation").

Multiplier Hopf algebras

Let *G* be any group (without topology, but maybe infinite).

- Let *A* be the algebra of complex-valued, finitely supported functions on *G*, with the pointwise product;
- The coproduct ∆ should be as before: ∆(f)(s, t) = f(st); But this might not be finitely supported.
- However, $\Delta : \mathcal{A} \to \mathcal{M}(\mathcal{A} \otimes \mathcal{A})$ makes sense;
- Furthermore, $\Delta(a)(1 \otimes b)$ and $\Delta(a)(b \otimes 1)$ are members of $\mathcal{A} \otimes \mathcal{A}$.

A multiplier Hopf *-algebra is an *-algebra \mathcal{A} , a non-degenerate, coassociative, *-homomorphism $\Delta : \mathcal{A} \to \mathcal{M}(\mathcal{A} \otimes \mathcal{A})$ such that the maps

 $T_1: \mathcal{A} \otimes \mathcal{A} \to \mathcal{A} \otimes \mathcal{A}; \quad a \otimes b \mapsto \Delta(a)(1 \otimes b)$ $T_2: \mathcal{A} \otimes \mathcal{A} \to \mathcal{A} \otimes \mathcal{A}; \quad a \otimes b \mapsto \Delta(a)(b \otimes 1),$

are bijections. (A notion of "cancellation").

Multiplier Hopf algebras

Let *G* be any group (without topology, but maybe infinite).

- Let *A* be the algebra of complex-valued, finitely supported functions on *G*, with the pointwise product;
- The coproduct Δ should be as before: Δ(f)(s, t) = f(st); But this might not be finitely supported.
- However, $\Delta : \mathcal{A} \to M(\mathcal{A} \otimes \mathcal{A})$ makes sense;
- Furthermore, $\Delta(a)(1 \otimes b)$ and $\Delta(a)(b \otimes 1)$ are members of $\mathcal{A} \otimes \mathcal{A}$.

A multiplier Hopf *-algebra is an *-algebra \mathcal{A} , a non-degenerate, coassociative, *-homomorphism $\Delta : \mathcal{A} \to \mathcal{M}(\mathcal{A} \otimes \mathcal{A})$ such that the maps

 $T_1: \mathcal{A} \otimes \mathcal{A} \to \mathcal{A} \otimes \mathcal{A}; \quad a \otimes b \mapsto \Delta(a)(1 \otimes b)$ $T_2: \mathcal{A} \otimes \mathcal{A} \to \mathcal{A} \otimes \mathcal{A}; \quad a \otimes b \mapsto \Delta(a)(b \otimes 1),$

are bijections. (A notion of "cancellation").

イロト 不得 トイヨト イヨト

Let *G* be any group (without topology, but maybe infinite).

- Let *A* be the algebra of complex-valued, finitely supported functions on *G*, with the pointwise product;
- The coproduct Δ should be as before: Δ(f)(s, t) = f(st); But this might not be finitely supported.
- However, $\Delta : \mathcal{A} \to M(\mathcal{A} \otimes \mathcal{A})$ makes sense;
- Furthermore, $\Delta(a)(1 \otimes b)$ and $\Delta(a)(b \otimes 1)$ are members of $\mathcal{A} \otimes \mathcal{A}$.

A multiplier Hopf *-algebra is an *-algebra \mathcal{A} , a non-degenerate, coassociative, *-homomorphism $\Delta : \mathcal{A} \to \mathcal{M}(\mathcal{A} \otimes \mathcal{A})$ such that the maps

 $T_1: \mathcal{A} \otimes \mathcal{A} \to \mathcal{A} \otimes \mathcal{A}; \quad a \otimes b \mapsto \Delta(a)(1 \otimes b)$ $T_2: \mathcal{A} \otimes \mathcal{A} \to \mathcal{A} \otimes \mathcal{A}; \quad a \otimes b \mapsto \Delta(a)(b \otimes 1),$

are bijections. (A notion of "cancellation").

Let *G* be any group (without topology, but maybe infinite).

- Let *A* be the algebra of complex-valued, finitely supported functions on *G*, with the pointwise product;
- The coproduct Δ should be as before: Δ(f)(s, t) = f(st); But this might not be finitely supported.
- However, $\Delta : \mathcal{A} \to M(\mathcal{A} \otimes \mathcal{A})$ makes sense;

• Furthermore, $\Delta(a)(1 \otimes b)$ and $\Delta(a)(b \otimes 1)$ are members of $\mathcal{A} \otimes \mathcal{A}$.

A multiplier Hopf *-algebra is an *-algebra \mathcal{A} , a non-degenerate, coassociative, *-homomorphism $\Delta : \mathcal{A} \to \mathcal{M}(\mathcal{A} \otimes \mathcal{A})$ such that the maps

 $T_1: \mathcal{A} \otimes \mathcal{A} \to \mathcal{A} \otimes \mathcal{A}; \quad a \otimes b \mapsto \Delta(a)(1 \otimes b)$ $T_2: \mathcal{A} \otimes \mathcal{A} \to \mathcal{A} \otimes \mathcal{A}; \quad a \otimes b \mapsto \Delta(a)(b \otimes 1),$

are bijections. (A notion of "cancellation").

Let *G* be any group (without topology, but maybe infinite).

- Let *A* be the algebra of complex-valued, finitely supported functions on *G*, with the pointwise product;
- The coproduct Δ should be as before: Δ(f)(s, t) = f(st); But this might not be finitely supported.
- However, $\Delta : \mathcal{A} \to \mathcal{M}(\mathcal{A} \otimes \mathcal{A})$ makes sense;
- Furthermore, $\Delta(a)(1 \otimes b)$ and $\Delta(a)(b \otimes 1)$ are members of $\mathcal{A} \otimes \mathcal{A}$.

A multiplier Hopf *-algebra is an *-algebra \mathcal{A} , a non-degenerate, coassociative, *-homomorphism $\Delta : \mathcal{A} \to \mathcal{M}(\mathcal{A} \otimes \mathcal{A})$ such that the maps

 $T_1: \mathcal{A} \otimes \mathcal{A} \to \mathcal{A} \otimes \mathcal{A}; \quad a \otimes b \mapsto \Delta(a)(1 \otimes b)$ $T_2: \mathcal{A} \otimes \mathcal{A} \to \mathcal{A} \otimes \mathcal{A}; \quad a \otimes b \mapsto \Delta(a)(b \otimes 1),$

are bijections. (A notion of "cancellation").

Let *G* be any group (without topology, but maybe infinite).

- Let A be the algebra of complex-valued, finitely supported functions on G, with the pointwise product;
- The coproduct Δ should be as before: Δ(f)(s, t) = f(st); But this might not be finitely supported.
- However, $\Delta : \mathcal{A} \to \mathcal{M}(\mathcal{A} \otimes \mathcal{A})$ makes sense;
- Furthermore, $\Delta(a)(1 \otimes b)$ and $\Delta(a)(b \otimes 1)$ are members of $\mathcal{A} \otimes \mathcal{A}$.

A multiplier Hopf *-algebra is an *-algebra \mathcal{A} , a non-degenerate, coassociative, *-homomorphism $\Delta : \mathcal{A} \to \mathcal{M}(\mathcal{A} \otimes \mathcal{A})$ such that the maps

$$\begin{array}{ll} T_1: \mathcal{A} \otimes \mathcal{A} \to \mathcal{A} \otimes \mathcal{A}; & a \otimes b \mapsto \Delta(a)(1 \otimes b) \\ T_2: \mathcal{A} \otimes \mathcal{A} \to \mathcal{A} \otimes \mathcal{A}; & a \otimes b \mapsto \Delta(a)(b \otimes 1), \end{array}$$

are bijections. (A notion of "cancellation").

Then we can *construct* a counit and an antipode with the same axioms as before.

- So a Hopf *-algebra is just a unital multiplier Hopf *-algebra.
- If a multiplier Hopf *-algebra has an invariant positive functional, then we have the notion of an *algebraic quantum group*.
- As for compact quantum groups, such algebras admit C*-algebraic completions, and the counit and anitpode, in some sense, extend to this C*-algebra. These C*-algebraic quantum groups fit into the framework of Locally Compact Quantum Groups in the sense of Kustermans and Vaes, and Masuda, Nakagami and Woronowicz; these have a vast amount of structure;
- Algebraic quantum groups also admit a duality theory: we can turn a subset of the dual A' into an algebra, with a coproduct, which becomes an algebraic quantum group in its own right, say Â. Then ≅ A.

Then we can *construct* a counit and an antipode with the same axioms as before.

• So a Hopf *-algebra is just a unital multiplier Hopf *-algebra.

- If a multiplier Hopf *-algebra has an invariant positive functional, then we have the notion of an *algebraic quantum group*.
- As for compact quantum groups, such algebras admit C*-algebraic completions, and the counit and anitpode, in some sense, extend to this C*-algebra. These C*-algebraic quantum groups fit into the framework of Locally Compact Quantum Groups in the sense of Kustermans and Vaes, and Masuda, Nakagami and Woronowicz; these have a vast amount of structure;
- Algebraic quantum groups also admit a duality theory: we can turn a subset of the dual A' into an algebra, with a coproduct, which becomes an algebraic quantum group in its own right, say Â. Then ≅ A.

Then we can *construct* a counit and an antipode with the same axioms as before.

- So a Hopf *-algebra is just a unital multiplier Hopf *-algebra.
- If a multiplier Hopf *-algebra has an invariant positive functional, then we have the notion of an *algebraic quantum group*.
- As for compact quantum groups, such algebras admit C*-algebraic completions, and the counit and anitpode, in some sense, extend to this C*-algebra. These C*-algebraic quantum groups fit into the framework of Locally Compact Quantum Groups in the sense of Kustermans and Vaes, and Masuda, Nakagami and Woronowicz; these have a vast amount of structure;
- Algebraic quantum groups also admit a duality theory: we can turn a subset of the dual A' into an algebra, with a coproduct, which becomes an algebraic quantum group in its own right, say Â. Then ≅ A.

Then we can *construct* a counit and an antipode with the same axioms as before.

- So a Hopf *-algebra is just a unital multiplier Hopf *-algebra.
- If a multiplier Hopf *-algebra has an invariant positive functional, then we have the notion of an *algebraic quantum group*.
- As for compact quantum groups, such algebras admit C*-algebraic completions, and the counit and anitpode, in some sense, extend to this C*-algebra. These C*-algebraic quantum groups fit into the framework of Locally Compact Quantum Groups in the sense of Kustermans and Vaes, and Masuda, Nakagami and Woronowicz; these have a vast amount of structure;
- Algebraic quantum groups also admit a duality theory: we can turn a subset of the dual A' into an algebra, with a coproduct, which becomes an algebraic quantum group in its own right, say Â. Then ≅ A.

Then we can *construct* a counit and an antipode with the same axioms as before.

- So a Hopf *-algebra is just a unital multiplier Hopf *-algebra.
- If a multiplier Hopf *-algebra has an invariant positive functional, then we have the notion of an *algebraic quantum group*.
- As for compact quantum groups, such algebras admit C*-algebraic completions, and the counit and anitpode, in some sense, extend to this C*-algebra. These C*-algebraic quantum groups fit into the framework of Locally Compact Quantum Groups in the sense of Kustermans and Vaes, and Masuda, Nakagami and Woronowicz; these have a vast amount of structure;
- Algebraic quantum groups also admit a duality theory: we can turn a subset of the dual A' into an algebra, with a coproduct, which becomes an algebraic quantum group in its own right, say Â. Then ≅ A.

Then we can *construct* a counit and an antipode with the same axioms as before.

- So a Hopf *-algebra is just a unital multiplier Hopf *-algebra.
- If a multiplier Hopf *-algebra has an invariant positive functional, then we have the notion of an *algebraic quantum group*.
- As for compact quantum groups, such algebras admit C*-algebraic completions, and the counit and anitpode, in some sense, extend to this C*-algebra. These C*-algebraic quantum groups fit into the framework of Locally Compact Quantum Groups in the sense of Kustermans and Vaes, and Masuda, Nakagami and Woronowicz; these have a vast amount of structure;
- Algebraic quantum groups also admit a duality theory: we can turn a subset of the dual A' into an algebra, with a coproduct, which becomes an algebraic quantum group in its own right, say Â. Then ≅ A.

Then we can *construct* a counit and an antipode with the same axioms as before.

- So a Hopf *-algebra is just a unital multiplier Hopf *-algebra.
- If a multiplier Hopf *-algebra has an invariant positive functional, then we have the notion of an *algebraic quantum group*.
- As for compact quantum groups, such algebras admit C*-algebraic completions, and the counit and anitpode, in some sense, extend to this C*-algebra. These C*-algebraic quantum groups fit into the framework of Locally Compact Quantum Groups in the sense of Kustermans and Vaes, and Masuda, Nakagami and Woronowicz; these have a vast amount of structure;
- Algebraic quantum groups also admit a duality theory: we can turn a subset of the dual A' into an algebra, with a coproduct, which becomes an algebraic quantum group in its own right, say Â. Then ≅ A.

Suppose we start with a multiplier bialgebra (\mathcal{A}, Δ) (so $\Delta : \mathcal{A} \to \mathcal{M}(\mathcal{A} \otimes \mathcal{A})$ is a non-degenerate coassociative homomorphism). Can we find a maximal (algebraic) compact quantum group in $\mathcal{M}(\mathcal{A})$?

- This is equivalent to the classical question of starting with a semigroup S and finding the maximal compact group G with a dense-range homomorphism $S \rightarrow G$.
- Soltan showed how to do this: one looks at the algebra generated by the matrix coefficients of certain unitary corepresentations of S;
- This is similar to the classical "Bohr compactification" construction: look at the finite-dimensional, unitary representations of *S*.

・ロト ・ 四ト ・ ヨト ・ ヨト

Suppose we start with a multiplier bialgebra (\mathcal{A}, Δ) (so $\Delta : \mathcal{A} \to \mathcal{M}(\mathcal{A} \otimes \mathcal{A})$ is a non-degenerate coassociative homomorphism). Can we find a maximal (algebraic) compact quantum group in $\mathcal{M}(\mathcal{A})$?

- This is equivalent to the classical question of starting with a semigroup *S* and finding the maximal compact group *G* with a dense-range homomorphism $S \rightarrow G$.
- Soltan showed how to do this: one looks at the algebra generated by the matrix coefficients of certain unitary corepresentations of S;
- This is similar to the classical "Bohr compactification" construction: look at the finite-dimensional, unitary representations of *S*.

・ロト ・ 四ト ・ ヨト ・ ヨト

Suppose we start with a multiplier bialgebra (\mathcal{A}, Δ) (so $\Delta : \mathcal{A} \to \mathcal{M}(\mathcal{A} \otimes \mathcal{A})$ is a non-degenerate coassociative homomorphism). Can we find a maximal (algebraic) compact quantum group in $\mathcal{M}(\mathcal{A})$?

- This is equivalent to the classical question of starting with a semigroup *S* and finding the maximal compact group *G* with a dense-range homomorphism $S \rightarrow G$.
- Soltan showed how to do this: one looks at the algebra generated by the matrix coefficients of certain unitary corepresentations of S;
- This is similar to the classical "Bohr compactification" construction: look at the finite-dimensional, unitary representations of *S*.

Suppose we start with a multiplier bialgebra (\mathcal{A}, Δ) (so $\Delta : \mathcal{A} \to \mathcal{M}(\mathcal{A} \otimes \mathcal{A})$ is a non-degenerate coassociative homomorphism). Can we find a maximal (algebraic) compact quantum group in $\mathcal{M}(\mathcal{A})$?

- This is equivalent to the classical question of starting with a semigroup *S* and finding the maximal compact group *G* with a dense-range homomorphism $S \rightarrow G$.
- Soltan showed how to do this: one looks at the algebra generated by the matrix coefficients of certain unitary corepresentations of S;
- This is similar to the classical "Bohr compactification" construction: look at the finite-dimensional, unitary representations of *S*.

・ロト ・四ト ・ヨト ・ヨト

However, if we start with a non-compact *group H*, then the construction is easier.

- We first form the maximal compact *semigroup G* which contains a dense-range homomorphic image of *H*;
- This is related to *almost periodic functions* on *H*;
- Then we lift the inverse from *H* to *G*, showing that *G* is a group.

Theorem

Let (\mathcal{A}, Δ) be a multiplier bialgebra. Then $M(\mathcal{A})$ contains a maximal unital algebra \mathcal{B} such that $\Delta(\mathcal{B}) \subseteq \mathcal{B} \otimes \mathcal{B}$. In fact, we have that $\mathcal{B} = \{x \in M(\mathcal{A}) : \Delta(x) \in M(\mathcal{A}) \otimes M(\mathcal{A})\}$. Furthermore, if \mathcal{A} is a multiplier Hopf *-algebra, then \mathcal{B} is automatically a Hopf *-algebra.

< ロ > < 同 > < 回 > < 回 >

However, if we start with a non-compact *group H*, then the construction is easier.

- We first form the maximal compact *semigroup G* which contains a dense-range homomorphic image of *H*;
- This is related to *almost periodic functions* on *H*;
- Then we lift the inverse from *H* to *G*, showing that *G* is a group.

Theorem

Let (\mathcal{A}, Δ) be a multiplier bialgebra. Then $M(\mathcal{A})$ contains a maximal unital algebra \mathcal{B} such that $\Delta(\mathcal{B}) \subseteq \mathcal{B} \otimes \mathcal{B}$. In fact, we have that $\mathcal{B} = \{x \in M(\mathcal{A}) : \Delta(x) \in M(\mathcal{A}) \otimes M(\mathcal{A})\}$. Furthermore, if \mathcal{A} is a multiplier Hopf *-algebra, then \mathcal{B} is automatically a Hopf *-algebra.

However, if we start with a non-compact *group H*, then the construction is easier.

- We first form the maximal compact *semigroup G* which contains a dense-range homomorphic image of *H*;
- This is related to *almost periodic functions* on *H*;

• Then we lift the inverse from *H* to *G*, showing that *G* is a group.

Theorem

Let (\mathcal{A}, Δ) be a multiplier bialgebra. Then $M(\mathcal{A})$ contains a maximal unital algebra \mathcal{B} such that $\Delta(\mathcal{B}) \subseteq \mathcal{B} \otimes \mathcal{B}$. In fact, we have that $\mathcal{B} = \{x \in M(\mathcal{A}) : \Delta(x) \in M(\mathcal{A}) \otimes M(\mathcal{A})\}$. Furthermore, if \mathcal{A} is a multiplier Hopf *-algebra, then \mathcal{B} is automatically a Hopf *-algebra.

However, if we start with a non-compact *group H*, then the construction is easier.

- We first form the maximal compact *semigroup G* which contains a dense-range homomorphic image of *H*;
- This is related to *almost periodic functions* on *H*;
- Then we lift the inverse from *H* to *G*, showing that *G* is a group.

Theorem

Let (\mathcal{A}, Δ) be a multiplier bialgebra. Then $M(\mathcal{A})$ contains a maximal unital algebra \mathcal{B} such that $\Delta(\mathcal{B}) \subseteq \mathcal{B} \otimes \mathcal{B}$. In fact, we have that $\mathcal{B} = \{x \in M(\mathcal{A}) : \Delta(x) \in M(\mathcal{A}) \otimes M(\mathcal{A})\}$. Furthermore, if \mathcal{A} is a multiplier Hopf *-algebra, then \mathcal{B} is automatically a Hopf *-algebra.

However, if we start with a non-compact *group H*, then the construction is easier.

- We first form the maximal compact *semigroup G* which contains a dense-range homomorphic image of *H*;
- This is related to *almost periodic functions* on *H*;
- Then we lift the inverse from *H* to *G*, showing that *G* is a group.

Theorem

Let (\mathcal{A}, Δ) be a multiplier bialgebra. Then $M(\mathcal{A})$ contains a maximal unital algebra \mathcal{B} such that $\Delta(\mathcal{B}) \subseteq \mathcal{B} \otimes \mathcal{B}$.

In fact, we have that $\mathcal{B} = \{x \in M(\mathcal{A}) : \Delta(x) \in M(\mathcal{A}) \otimes M(\mathcal{A})\}$. Furthermore, if \mathcal{A} is a multiplier Hopf *-algebra, then \mathcal{B} is automatically a Hopf *-algebra.

< ロ > < 同 > < 回 > < 回 >

However, if we start with a non-compact *group H*, then the construction is easier.

- We first form the maximal compact *semigroup G* which contains a dense-range homomorphic image of *H*;
- This is related to *almost periodic functions* on *H*;
- Then we lift the inverse from *H* to *G*, showing that *G* is a group.

Theorem

Let (\mathcal{A}, Δ) be a multiplier bialgebra. Then $M(\mathcal{A})$ contains a maximal unital algebra \mathcal{B} such that $\Delta(\mathcal{B}) \subseteq \mathcal{B} \otimes \mathcal{B}$. In fact, we have that $\mathcal{B} = \{x \in M(\mathcal{A}) : \Delta(x) \in M(\mathcal{A}) \otimes M(\mathcal{A})\}$. Furthermore, if \mathcal{A} is a multiplier Hopf *-algebra, then \mathcal{B} is automatically a Hopf *-algebra.

However, if we start with a non-compact *group H*, then the construction is easier.

- We first form the maximal compact *semigroup G* which contains a dense-range homomorphic image of *H*;
- This is related to *almost periodic functions* on *H*;
- Then we lift the inverse from *H* to *G*, showing that *G* is a group.

Theorem

Let (\mathcal{A}, Δ) be a multiplier bialgebra. Then $M(\mathcal{A})$ contains a maximal unital algebra \mathcal{B} such that $\Delta(\mathcal{B}) \subseteq \mathcal{B} \otimes \mathcal{B}$. In fact, we have that $\mathcal{B} = \{x \in M(\mathcal{A}) : \Delta(x) \in M(\mathcal{A}) \otimes M(\mathcal{A})\}$. Furthermore, if \mathcal{A} is a multiplier Hopf *-algebra, then \mathcal{B} is automatically a Hopf *-algebra.

イロト イ団ト イヨト イヨト

I'd really like to do this at the C*-algebra level:

- A C*-bialgebra is a C*-algebra A together with a non-degenerate coassociative homomorphism ∆ : A → M(A ⊗ A).
- Then M(A) contains a maximal unital C*-subalgebra B with $\Delta(B) \subseteq B \otimes B$.
- But we have no easy description of this *B*.
- What sort of "group structure" on (A, Δ) would ensure that (B, Δ) were a compact quantum group?
- For example, would like to show this if (*A*, △) is a Locally Compact Quantum Group.
- Currently looking at algebraic quantum groups: should be a useful bridge.

I'd really like to do this at the C*-algebra level:

- A C*-bialgebra is a C*-algebra A together with a non-degenerate coassociative homomorphism Δ : A → M(A ⊗ A).
- Then M(A) contains a maximal unital C*-subalgebra B with $\Delta(B) \subseteq B \otimes B$.
- But we have no easy description of this *B*.
- What sort of "group structure" on (A, Δ) would ensure that (B, Δ) were a compact quantum group?
- For example, would like to show this if (*A*, △) is a Locally Compact Quantum Group.
- Currently looking at algebraic quantum groups: should be a useful bridge.

・ロト ・ 四ト ・ ヨト ・ ヨト

I'd really like to do this at the C*-algebra level:

- A C*-bialgebra is a C*-algebra A together with a non-degenerate coassociative homomorphism Δ : A → M(A ⊗ A).
- Then M(A) contains a maximal unital C*-subalgebra B with $\Delta(B) \subseteq B \otimes B$.
- But we have no easy description of this *B*.
- What sort of "group structure" on (A, Δ) would ensure that (B, Δ) were a compact quantum group?
- For example, would like to show this if (*A*, △) is a Locally Compact Quantum Group.
- Currently looking at algebraic quantum groups: should be a useful bridge.

・ロト ・四ト ・ヨト ・ヨト

I'd really like to do this at the C*-algebra level:

- A C*-bialgebra is a C*-algebra A together with a non-degenerate coassociative homomorphism Δ : A → M(A ⊗ A).
- Then M(A) contains a maximal unital C*-subalgebra B with $\Delta(B) \subseteq B \otimes B$.
- But we have no easy description of this B.
- What sort of "group structure" on (A, △) would ensure that (B, △) were a compact quantum group?
- For example, would like to show this if (*A*, △) is a Locally Compact Quantum Group.
- Currently looking at algebraic quantum groups: should be a useful bridge.

I'd really like to do this at the C*-algebra level:

- A C*-bialgebra is a C*-algebra A together with a non-degenerate coassociative homomorphism Δ : A → M(A ⊗ A).
- Then M(A) contains a maximal unital C*-subalgebra B with $\Delta(B) \subseteq B \otimes B$.
- But we have no easy description of this *B*.
- What sort of "group structure" on (A, Δ) would ensure that (B, Δ) were a compact quantum group?
- For example, would like to show this if (*A*, △) is a Locally Compact Quantum Group.
- Currently looking at algebraic quantum groups: should be a useful bridge.

I'd really like to do this at the C*-algebra level:

- A C*-bialgebra is a C*-algebra A together with a non-degenerate coassociative homomorphism Δ : A → M(A ⊗ A).
- Then M(A) contains a maximal unital C*-subalgebra B with $\Delta(B) \subseteq B \otimes B$.
- But we have no easy description of this *B*.
- What sort of "group structure" on (A, Δ) would ensure that (B, Δ) were a compact quantum group?
- For example, would like to show this if (A, Δ) is a Locally Compact Quantum Group.
- Currently looking at algebraic quantum groups: should be a useful bridge.

I'd really like to do this at the C*-algebra level:

- A C*-bialgebra is a C*-algebra A together with a non-degenerate coassociative homomorphism Δ : A → M(A ⊗ A).
- Then M(A) contains a maximal unital C*-subalgebra B with $\Delta(B) \subseteq B \otimes B$.
- But we have no easy description of this *B*.
- What sort of "group structure" on (A, Δ) would ensure that (B, Δ) were a compact quantum group?
- For example, would like to show this if (A, Δ) is a Locally Compact Quantum Group.
- Currently looking at algebraic quantum groups: should be a useful bridge.