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Gelfand duality

Theorem

Any commutative C*-algebra A has the form Cy(X) where X is a locally
compact Hausdorff space, isomorphic to the character space of A.

If X, Y are compact, then there is a bijection between continuous maps
X — Y and unital x-homomorphisms C(Y) — C(X).

f:X—-Y < 6:C(Y)—C(X);a— aof.

What if X, Y are only locally compact? That a— ao f maps Cy(Y) to
Co(X) corresponds to f being “proper”.
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Locally compact case

Let CP°(X) be the bounded continuous functions on X. Then f: X — Y
induces a x-homomorphism 6 : Cy(Y) — C?(X);a+ ao .

Not every x-homomorphism arises in this way: an arbitrary

6 : Co(Y) — CP(X) gives a continuous map f : X — Y to the
one-point compactification of Y.

To single out those maps which “never take the value oo” you need to
look at “non-degenerate x-homomorphisms”:

lin{é(a)b: ac Co(Y),be Co(X)} = Co(X).

Then we get:

The category of com-
anti mutative  C*-algebras

>

isomorphic | and non-degenerate

x-homomorphisms

The category of locally
compact spaces with
continuous maps
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Multiplier algebras

The multiplier algebra of a C*-algebra A is the largest C*-algebra B
which contains A as a two-sided ideal, in an “essential” way:

Forbe B, ab=ba=0 (acA) = b=0.

Write M(A) for the multiplier algebra (there are various constructions).
@ If A= Cy(X) then M(A) = C?(X).

@ If A= IC(H), compact operators on a Hilbert space, then
M(A) = B(H), all operators on a Hilbert space.

A x-homomorphism 6 : A — M(B) is non-degenerate when
lin{6(a)b:ac A,be B} =B.

Then 6 extends to a x-homomorphism M(A) — M(B) and in this way
we can compose two non-degenerate x-homomorphisms, and get
another non-degenerate x-homomorphism.
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Intuition

@ We say that a “morphism” (a la Woronowicz) A — Bis a
non-degenerate x-homomorphism 6 : A — M(B).

@ Intuition: “This corresponds to a continuous function from the
non-commutative space of B to the non-commutative space of A”
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Application: Quantum semigroups

Let S be a locally compact semigroup: so we have a continuous
multiplication S x S — S which is associative.

~ A Cy(S) — CP(S x S); A(a)(s,t) = a(st).

That multiplication is associative corresponds to A being
“coassociative” (A ® 1)A = (1 ® A)A,

(A ®)A(a)(s, t,r) = A(a)(st, r) = a((st)r),
(t@ A)A(a)(s, t,r) = A(a)(s, tr) = a(s(tr)).

A “quantum semigroup” is simply a C*-algebra A together with a
non-degenerate x-homomorphism A : A — M(A® A) which is
coassociative.
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Application: Compact case

If S is compact, don’t need to worry about multiplier algebras:
A=C(S)andA:A— AR A
Then introduce the “quantum cancellation conditions”:

lin{A(a)(b®1):a,be A} =lin{A(a)1®b):a,be A} =Ax A

As the objects on the left are x-subalgebras of C(S x S),
Stone—Weierstrass says that the first condition holds if, given

(s, t) # (s, 1)

da,be C(S), A(a)(b® 1)(s,t) # A(a)(b® 1)(s/, 1)
& Ja,be C(S), a(st)b(s) # a(s't')b(s).

Clearly this holds if s # &', or if s = &', st # st’. So the conditions are
equivalent to

st=st = t="Vt, ts=ts = t="t.
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Application: Compact groups

Folklore

Let S be a compact semigroup with cancellation (st = st’ or ts = t's
implies t = t'.) Then S is a compact group.

Fun exercise: Do this when S is finite. Then “topologize” your proof.

Definition (Woronowicz)

A compact quantum group is a unital C*-algebra A with a
coassociative x-homomorphism A : A — A® A, with

lin{A(a)(b®1):a,be A} =lin{A(a)1®b):a,be A} =Ax A
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Group C*-algebras
For example, let I be a discrete group, and let I act on ¢2(I") by left
translation:

AS)f:t— f(s7t) (s, teTl,fe ).

Let C;(I') be the (reduced) group C*-algebra: that is, the norm closed
algebra, acting on ¢2(I"), generated by A(I). So C:(I) is commutative if
and only if I" is.

There is a x-homomorphism

A CH(T) — C(T) @min CF (),
A \(S) — A(S) @ A(S) (sel).
Cancellation is clear:

lin{A(a)(b® 1)} = lin{(A(s) @ A(S))(\(t) ® 1)}
= lin{\(st) @ A(s)} = lin{A\(r) ® \(s)}.
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Corepresentation theory

A (finite-dimensional) corepresentation of (A, A) is a matrix u € Mj,(A)
with

n
Aluj) =) uk®ug  (1<ij<n).
k=1

Let A = C(G), identify Ma(A) with A® M, = C(G, My).

@ So u corresponds to some continuous function 7 : G — M.
@ So 7(s); = uj(s) for s € G.
@ Then

(n(s)(t); = S w(S)hw(t)g = D(uy)(s. 1) = n(st)y.

k

@ Can reverse this; so corepresentations of C(G) correspond to
representations of G.
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Corepresentation theory cont.

Let (A, A) be any compact quantum group.

@ All irreducible corepresentations of (A, A) are finite-dimensional.

@ It's possible to show that any finite-dimensional corepresentation u
IS equivalent to a unitary corepresentation: u*u = uu* = I,.

@ There is a notion of infinite-dimensional corepresentation: but
these split up into direct sums of irreducibles.

@ There is a character theory for corepresentations.
@ All of this completely generalises the theory for compact groups.
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Contragradient (co)representations

Definition
Let u = (u;) € Mp(A) be a corepresentation of (A, A). The
contragradient to u is U = (uj).

That A is a x-homomorphism shows that

A(U,j A(U,j Z Uy @ Uk/ ZU,-k ® Ugj-
k

@ This is not the adjoint of the matrix u; instead we take the
entry-by-entry adjoint.

@ If A= C(G) then u corresponds to = : G — M. Then this
corresponds to the usual contragradient representation, assuming
7 IS unitary.

Matthew Daws (Leeds) Quantum Groups October 2012 12/24



ls the contragradient unitary?

@ If A= C(G) then everything is commutative, and u is unitary if u is.
@ But in general, it’s not even clear that u is an invertible element of
the algebra M,(A), even if u is unitary.

The general theory of compact quantum groups tells us that if u is
unitary and irreducible, then u is similar to an irreducible unitary
corepresentation.

Corollary

Let A be the linear span of elements u; € A where u is a unitary
corepresentation. The A is a dense x-subalgebra of A.

So there is T € M, such that T~'GT is unitary. If we take the polar
decomposition T = F'/2U, then if we are only interested in the unitary
equivalence class of T~'uT, then only F = T*T is of interest.
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Automorphisms

So u unitary corepresentation implies there is positive invertible F with
F~1/2GF/2 unitary.
Theorem

For each z € C there is a character f, : A — C given by
fo(uj) = tr(F)—Z/Z(F—Z)ij.

Here F—“ is formed by a functional calculus argument.

Theorem
For each z, w € C there is an automorphism p; ,, of A given by

pzw(Up) =Y fu(Ui) U fz(up).
kI
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Example application. ..

There always exists a “Haar state”, a state ¢ on A such that

(p@)A(a) = (1@ p)A(a) = ¢(a)l.

If A= C(G) then ¢ is “integrate against the Haar measure”.
In general ¢ is not a trace, but if we set o, = pj; ;; on A then:

@ for each t € R, o; is x-automorphism and so extends to A; it leaves
@ invariant.

@ for a, b € A we have that

p(ab) = p(bo_i(a)) (a,be A).

@ This means that ¢ is a KMS state.

Moral: we can see an analytic property from von Neumann algebra
theory in the corepresentation theory of (A, A).
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Counter-example (Brown; Wang—Woronowicz)

Let n € N (e.g. n = 2). Let A be the universal C*-algebra generated by
elements (uj);;_ subject to the relations which turn u = (uj) € Mu(A)
into a unitary.

Define A: A— A Aby
n
A(uy) = Z Uik @ Ugj.
k=1

(This exists, by universality, because right hand side is a unitary
element of M,(A ® A)).

If (A, A) were a compact quantum group, then u would be, in
particular, invertible. This is not the case...
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Continued. ..

=0 0) 2=(10) = o) =7

Then set
a b 0
U/ = C d O - Mzn-
0 0 hbyga

Then ' is unitary, so by universality, there is a x-homomorphism
7 : A — M such that

TR AQM, — My @ My 2 Moy,  (m@ N(u)=U'.

Then calculation shows that if u is invertible, then_U is as well,
because (r @ /)(U~ ') would be the inverse. But ¢/ is not invertible.
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Interpretation

If Sis a semigroup, and 7 : S — M, is a unitary representation, then =
induces a (semi)group homomorphism S — U,.

@ Get a x-homomorphism 0 : C(U,) — C®(S) with
(0 ®0)Ay, = Agh.

@ ‘Think about it’ to see that B = 6(C(U,)) is the unital
C*-subalgebra of C°(S) generated by the elements vy, where u is
the corepresentation associated to .

So this doesn’t work for Quantum Semigroups: we just constructed

(A, A) and a unitary corepresentation u such that the C*-algebra
generated by the elements vy, in this case all of A, was not a (Compact
Quantum) Group.

Theorem (Sottan, Woronowicz)

Let (A, A) be a quantum semigroup, let u be a corepresentation, and
suppose that also u is invertible. If B is the C*-algebra generated by
the uj in M(A), then (B, A|g) is a compact quantum group.

v
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Sottan’s Quantum Bohr Compactification

Theorem

Let bA be the union of all such B. Then (bA, Alya) is @ compact
quantum group.

This compact quantum group is maximal:

S— =K ~ A=Cy(S) (D, Ap)

AN ™~ |

bS bA = C(bS)

So this gives a “quantum Bohr compactification”.

Problem
How do you actually test if u invertible? J

Matthew Daws (Leeds) Quantum Groups October 2012 19/24

Locally compact quantum groups

If Ais a non-unital C*-algebra, and A : A— M(A® A) a coassociative
non-degenerate x-homomorphism, then seemingly it is not enough to

ask just for “cancellation”, but also to assume the existence of suitable
generalisations of the left/right Haar measure.

@ However, once this is done, one gets a very satisfactory theory
(Kustermans—Vaes).

@ In particular, given (A, A) we can form the “dual” quantum group
(A, A) which generalises Pontryagin duality.

A=Cy(G) = A=C(G).

o We have A — A.

@ A discrete quantum group is the dual of a compact quantum
group. So ¢y(IN) for discrete I', or C*(G) for compact G.
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Compactifications of discrete quantum groups

Theorem (D., following Sottan)

Let (A, A) be a discrete quantum group, and let u be a
finite-dimensional unitary corepresentation of (A, A). Then u is
automatically invertible.

Sketch proof.

|ldea of Vaes, as used by Sottan shows that it's enough to consider a
“quotient” quantum group of (A, A) which is of “Kac type”. This means
that the antipode, the map which represents the group inverse, is
bounded. H

v

Theorem (D.)

For a Kac algebra (A, A), we have that bA is the closure of the set of
elements x € M(A) with A(x) a finite-rank tensor.
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Links with Banach algebras

Given a Banach algebra 2(, we turn 2(* into an 2l bimodule via:

<a a2 b> - <:LL7 ba>? <:UJ - a, b> - <,LL, ab> (37 be QLMUJ < 22[*)

For u € 2 let
LMZQ[—>Ql*, ar— p-a.
Definition
We say that i is almost periodic if L,, is a compact operator. J

If A = L'(G) for a locally compact group G, then 2* = L>°(G), and the
collection of almost periodic elements coincides with (the image of)
bCo(G) inside C?(G) C L=(G).
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Stronger form of “compact”
Definition
For a Banach algebra A, say that u € 2* is “strongly almost periodic” if

there is a sequence (T,) of finite-rank right module maps 2 — 2* such
that ||L, — Tp|| — O.

v

So “compact” becomes “approximated by finite-ranks” (which for L'(G)
is no change); and we also impose an “algebra” condition.

For a locally compact quantum group (A, A), there is a Banach algebra
L'(A):

A= Cy(G) = L'(A)=LY(G), A=C;(G) = L'(A)=AG).
Then L'(A)* = L°°(A) a von Neumann algebra which contains M(A),
and hence A.

Theorem

If (A, A) is a Kac algebra, then bA is precisely the collection of strongly
almost periodic elements of L1 (A)*.
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Future work

These techniques rely strongly on the fact that for a Kac algebra, the
antipode S is bounded.

Claim

Let u € Mp(A) be a corepresentation. If we know that u; € D(S), then
uis invertible.

Claim

Let x € L'(A)* be strongly almost periodic. If we know that x € D(S),
then x € bA.

When D(S) = L'(A)*, as in the Kac case, we're done.
General problem: D(S) is a bit mysterious.
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