Compactifications of quantum groups

Matthew Daws

Leeds

October 2012

Matthew Daws (Leeds)

Quantum Groups

October 2012 1 / 24

Gelfand duality

Theorem

Any commutative C^* -algebra A has the form $C_0(X)$ where X is a locally compact Hausdorff space, isomorphic to the character space of A.

If *X*, *Y* are compact, then there is a bijection between continuous maps $X \rightarrow Y$ and unital *-homomorphisms $C(Y) \rightarrow C(X)$.

 $f: X \to Y \quad \leftrightarrow \quad \theta: C(Y) \to C(X); a \mapsto a \circ f.$

What if *X*, *Y* are only locally compact? That $a \mapsto a \circ f$ maps $C_0(Y)$ to $C_0(X)$ corresponds to *f* being "proper".

Locally compact case

Let $C^{b}(X)$ be the bounded continuous functions on X. Then $f : X \to Y$ induces a *-homomorphism $\theta : C_{0}(Y) \to C^{b}(X)$; $a \mapsto a \circ f$. Not every *-homomorphism arises in this way: an arbitrary $\theta : C_{0}(Y) \to C^{b}(X)$ gives a continuous map $f : X \to Y_{\infty}$ to the one-point compactification of Y.

To single out those maps which "never take the value ∞ " you need to look at "non-degenerate *-homomorphisms":

$$\overline{\text{lin}}\big\{\theta(a)b: a\in C_0(Y), b\in C_0(X)\big\}=C_0(X).$$

Then we get:

The category of locally compact spaces with continuous maps]	The category of com-
	$\stackrel{anti}{\longleftrightarrow}$ isomorphic	mutative C*-algebras
		and non-degenerate
		*-homomorphisms

Matthew Daws (Leeds)

Quantum Groups

October 2012 3 / 24

Multiplier algebras

The *multiplier algebra* of a C*-algebra A is the largest C*-algebra B which contains A as a two-sided ideal, in an "essential" way:

For
$$b \in B$$
, $ab = ba = 0$ $(a \in A) \implies b = 0$.

Write M(A) for the multiplier algebra (there are various constructions).

- If $A = C_0(X)$ then $M(A) = C^b(X)$.
- If A = K(H), compact operators on a Hilbert space, then M(A) = B(H), all operators on a Hilbert space.

A *-homomorphism $\theta : A \rightarrow M(B)$ is non-degenerate when

$$\overline{\mathsf{lin}}\{ heta(a)b:a\in A,b\in B\}=B.$$

Then θ extends to a *-homomorphism $M(A) \rightarrow M(B)$ and in this way we can compose two non-degenerate *-homomorphisms, and get another non-degenerate *-homomorphism.

Intuition

- We say that a "morphism" (a la Woronowicz) $A \rightarrow B$ is a non-degenerate *-homomorphism $\theta : A \rightarrow M(B)$.
- Intuition: "This corresponds to a continuous function from the non-commutative space of *B* to the non-commutative space of *A*."

Matthew Daws (Leeds)

Quantum Groups

October 2012 5 / 24

Application: Quantum semigroups

Let S be a locally compact semigroup: so we have a continuous multiplication $S \times S \rightarrow S$ which is associative.

$$\rightsquigarrow \quad \Delta: C_0(S) \to C^b(S \times S); \ \Delta(a)(s,t) = a(st).$$

That multiplication is associative corresponds to Δ being "coassociative": $(\Delta \otimes \iota)\Delta = (\iota \otimes \Delta)\Delta$,

$$(\Delta \otimes \iota)\Delta(a)(s,t,r) = \Delta(a)(st,r) = a((st)r),$$

 $(\iota \otimes \Delta)\Delta(a)(s,t,r) = \Delta(a)(s,tr) = a(s(tr)).$

A "quantum semigroup" is simply a C*-algebra A together with a non-degenerate *-homomorphism $\Delta : A \rightarrow M(A \otimes A)$ which is coassociative.

Application: Compact case

If *S* is compact, don't need to worry about multiplier algebras: A = C(S) and $\Delta : A \rightarrow A \otimes A$.

Then introduce the "quantum cancellation conditions":

$$\overline{\text{lin}}\big\{\Delta(a)(b\otimes 1): a, b\in A\big\} = \overline{\text{lin}}\big\{\Delta(a)(1\otimes b): a, b\in A\big\} = A\otimes A.$$

As the objects on the left are *-subalgebras of $C(S \times S)$, Stone–Weierstrass says that the first condition holds if, given $(s, t) \neq (s', t')$

$$\exists a, b \in C(S), \ \Delta(a)(b \otimes 1)(s, t) \neq \Delta(a)(b \otimes 1)(s', t') \\ \Leftrightarrow \exists a, b \in C(S), \ a(st)b(s) \neq a(s't')b(s').$$

Clearly this holds if $s \neq s'$, or if $s = s', st \neq st'$. So the conditions are equivalent to

$$st = st' \implies t = t', \qquad ts = t's \implies t = t'.$$

```
Matthew Daws (Leeds)
```

Quantum Groups

October 2012 7 / 24

Application: Compact groups

Folklore

Let *S* be a compact semigroup with cancellation (st = st' or ts = t's implies t = t'.) Then *S* is a compact group.

Fun exercise: Do this when S is finite. Then "topologize" your proof.

Definition (Woronowicz)

A compact quantum group is a unital C*-algebra A with a coassociative *-homomorphism $\Delta : A \rightarrow A \otimes A$, with

 $\overline{\text{lin}}\{\Delta(a)(b\otimes 1): a, b\in A\} = \overline{\text{lin}}\{\Delta(a)(1\otimes b): a, b\in A\} = A\otimes A.$

Group C*-algebras

For example, let Γ be a discrete group, and let Γ act on $\ell^2(\Gamma)$ by left translation:

$$\lambda(s)f: t \mapsto f(s^{-1}t) \qquad (s,t \in \Gamma, f \in \ell^2(\Gamma)).$$

Let $C_r^*(\Gamma)$ be the (reduced) group C*-algebra: that is, the norm closed algebra, acting on $\ell^2(\Gamma)$, generated by $\lambda(\Gamma)$. So $C_r^*(\Gamma)$ is commutative if and only if Γ is.

There is a *-homomorphism

$$egin{aligned} &\Delta: \mathit{C}^*_r(\Gamma)
ightarrow \mathit{C}^*_r(\Gamma) \otimes_{\min} \mathit{C}^*_r(\Gamma), \ &\Delta: \lambda(\mathit{s}) \mapsto \lambda(\mathit{s}) \otimes \lambda(\mathit{s}) \qquad (\mathit{s} \in \Gamma). \end{aligned}$$

Cancellation is clear:

$$lin\{\Delta(a)(b \otimes 1)\} = lin\{(\lambda(s) \otimes \lambda(s))(\lambda(t) \otimes 1)\}$$
$$= lin\{\lambda(st) \otimes \lambda(s)\} = lin\{\lambda(r) \otimes \lambda(s)\}.$$

Matthew Daws (Leeds)

Quantum Groups

October 2012 9 / 24

Corepresentation theory

A (finite-dimensional) corepresentation of (A, Δ) is a matrix $u \in \mathbb{M}_n(A)$ with

$$\Delta(u_{ij}) = \sum_{k=1}^{n} u_{ik} \otimes u_{kj} \qquad (1 \leq i, j \leq n).$$

Let A = C(G), identify $M_n(A)$ with $A \otimes M_n = C(G, M_n)$.

- So *u* corresponds to some continuous function $\pi : G \to M_n$.
- So $\pi(s)_{ij} = u_{ij}(s)$ for $s \in G$.

Then

$$(\pi(s)\pi(t))_{ij} = \sum_k \pi(s)_{ik}\pi(t)_{kj} = \Delta(u_{ij})(s,t) = \pi(st)_{ij}.$$

• Can reverse this; so corepresentations of *C*(*G*) correspond to representations of *G*.

Corepresentation theory cont.

Let (A, Δ) be any compact quantum group.

- All irreducible corepresentations of (A, Δ) are finite-dimensional.
- It's possible to show that any finite-dimensional corepresentation u is *equivalent* to a unitary corepresentation: $u^*u = uu^* = I_n$.
- There is a notion of infinite-dimensional corepresentation: but these split up into direct sums of irreducibles.
- There is a character theory for corepresentations.
- All of this completely generalises the theory for compact groups.

Matthew Daws (Leeds)

Quantum Groups

October 2012 11 / 24

Contragradient (co)representations

Definition

Let $u = (u_{ij}) \in \mathbb{M}_n(A)$ be a corepresentation of (A, Δ) . The contragradient to u is $\overline{u} = (u_{ij}^*)$.

That Δ is a *-homomorphism shows that

$$\Delta(\overline{u}_{ij}) = \Delta(u_{ij})^* = \sum_k u_{ik}^* \otimes u_{kj}^* = \sum_k \overline{u}_{ik} \otimes \overline{u}_{kj}.$$

- This is *not* the adjoint of the matrix *u*; instead we take the entry-by-entry adjoint.
- If A = C(G) then u corresponds to π : G → M_n. Then this corresponds to the usual contragradient representation, assuming π is unitary.

Is the contragradient unitary?

- If A = C(G) then everything is commutative, and \overline{u} is unitary if u is.
- But in general, it's not even clear that \overline{u} is an invertible element of the algebra $\mathbb{M}_n(A)$, even if *u* is unitary.

The general theory of compact quantum groups tells us that if u is unitary and irreducible, then \overline{u} is similar to an irreducible unitary corepresentation.

Corollary

Let A be the linear span of elements $u_{ij} \in A$ where u is a unitary corepresentation. The A is a dense *-subalgebra of A.

So there is $T \in \mathbb{M}_n$ such that $T^{-1}\overline{u}T$ is unitary. If we take the polar decomposition $T = F^{1/2}U$, then if we are only interested in the *unitary* equivalence class of $T^{-1}\overline{u}T$, then only $F = T^*T$ is of interest.

Matthew Daws (Leeds)

Quantum Groups

October 2012 13 / 24

Automorphisms

So *u* unitary corepresentation implies there is positive invertible *F* with $F^{-1/2}\overline{u}F^{1/2}$ unitary.

Theorem For each $z \in \mathbb{C}$ there is a character $f_z : \mathcal{A} \to \mathbb{C}$ given by $f_z(u_{ij}) = \operatorname{tr}(F)^{-z/2} (F^{-z})_{ij}.$

Here F^{-z} is formed by a functional calculus argument.

Theorem

For each $z, w \in \mathbb{C}$ there is an automorphism $\rho_{z,w}$ of \mathcal{A} given by

$$\rho_{z,w}(u_{ij}) = \sum_{k,l} f_w(u_{ik}) u_{kl} f_z(u_{lj}).$$

Example application...

There always exists a "Haar state", a state φ on A such that

$$(\varphi \otimes \iota)\Delta(a) = (\iota \otimes \varphi)\Delta(a) = \varphi(a)$$
1.

If A = C(G) then φ is "integrate against the Haar measure".

In general φ is not a trace, but if we set $\sigma_z = \rho_{iz,iz}$ on \mathcal{A} then:

- for each $t \in \mathbb{R}$, σ_t is *-automorphism and so extends to A; it leaves φ invariant.
- for $a, b \in \mathcal{A}$ we have that

$$\varphi(ab) = \varphi(b\sigma_{-i}(a))$$
 $(a, b \in A).$

• This means that φ is a KMS state.

Moral: we can see an analytic property from von Neumann algebra theory in the corepresentation theory of (A, Δ) .

Counter-example (Brown; Wang–Woronowicz)

Let $n \in \mathbb{N}$ (e.g. n = 2). Let A be the universal C*-algebra generated by elements $(u_{ij})_{i,j=1}^n$ subject to the relations which turn $u = (u_{ij}) \in \mathbb{M}_n(A)$ into a unitary. Define $\Delta : A \to A \otimes A$ by

$$\Delta(u_{ij}) = \sum_{k=1}^n u_{ik} \otimes u_{kj}.$$

(This exists, by universality, because right hand side is a unitary element of $\mathbb{M}_n(A \otimes A)$).

If (A, Δ) were a compact quantum group, then \overline{u} would be, in particular, invertible. This is not the case...

Continued...

$$a = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}, \quad b = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}, \quad c = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}, \quad d = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}.$$

Then set

$$u'=egin{pmatrix} a&b&0\c&d&0\0&0&l_{2n-4} \end{pmatrix}\in\mathbb{M}_{2n}.$$

Then u' is unitary, so by universality, there is a *-homomorphism $\pi : A \to \mathbb{M}_2$ such that

$$\pi \otimes I : A \otimes \mathbb{M}_n \to \mathbb{M}_2 \otimes \mathbb{M}_n \cong \mathbb{M}_{2n}; \quad (\pi \otimes I)(u) = u'.$$

Then calculation shows that if \overline{u} is invertible, then $\overline{u'}$ is as well, because $(\pi \otimes I)(\overline{u}^{-1})$ would be the inverse. But $\overline{u'}$ is not invertible.

Matthew Daws (Leeds)

Quantum Groups

October 2012 17 / 24

Interpretation

If *S* is a semigroup, and $\pi : S \to \mathbb{M}_n$ is a unitary representation, then π induces a (semi)group homomorphism $S \to U_n$.

- Get a *-homomorphism $\theta : C(U_n) \to C^b(S)$ with $(\theta \otimes \theta) \Delta_{U_n} = \Delta_S \theta$.
- 'Think about it' to see that B = θ(C(U_n)) is the unital C*-subalgebra of C^b(S) generated by the elements u_{ij}, where u is the corepresentation associated to π.

So this doesn't work for Quantum Semigroups: we just constructed (A, Δ) and a unitary corepresentation u such that the C*-algebra generated by the elements u_{ij} , in this case all of A, was not a (Compact Quantum) Group.

Theorem (Sołtan, Woronowicz)

Let (A, Δ) be a quantum semigroup, let u be a corepresentation, and suppose that also \overline{u} is invertible. If B is the C^* -algebra generated by the u_{ij} in M(A), then $(B, \Delta|_B)$ is a compact quantum group.

Matthew Daws (Leeds)

Sołtan's Quantum Bohr Compactification

Theorem

Let $\mathfrak{b}A$ be the union of all such B. Then $(\mathfrak{b}A, \Delta|_{\mathfrak{b}A})$ is a compact quantum group.

This compact quantum group is maximal:

So this gives a "quantum Bohr compactification".

Locally compact quantum groups

If *A* is a non-unital C*-algebra, and $\Delta : A \to M(A \otimes A)$ a coassociative non-degenerate *-homomorphism, then seemingly it is not enough to ask just for "cancellation", but also to *assume* the existence of suitable generalisations of the left/right Haar measure.

- However, once this is done, one gets a very satisfactory theory (Kustermans–Vaes).
- In particular, given (A, Δ) we can form the "dual" quantum group (Â, Â) which generalises Pontryagin duality.

$$A = C_0(G) \implies \hat{A} = C_r^*(G).$$

- We have $\hat{\hat{A}} = A$.
- A *discrete* quantum group is the dual of a compact quantum group. So $c_0(\Gamma)$ for discrete Γ , or $C^*(G)$ for compact G.

Compactifications of discrete quantum groups

Theorem (D., following Sołtan)

Let (A, Δ) be a discrete quantum group, and let u be a finite-dimensional unitary corepresentation of (A, Δ) . Then \overline{u} is automatically invertible.

Sketch proof.

Idea of Vaes, as used by Sołtan shows that it's enough to consider a "quotient" quantum group of (A, Δ) which is of "Kac type". This means that the antipode, the map which represents the group inverse, is bounded.

Theorem (D.)

For a Kac algebra (A, Δ) , we have that bA is the closure of the set of elements $x \in M(A)$ with $\Delta(x)$ a finite-rank tensor.

```
Matthew Daws (Leeds)
```

Quantum Groups

October 2012 21 / 24

Links with Banach algebras

Given a Banach algebra \mathfrak{A} , we turn \mathfrak{A}^* into an \mathfrak{A} bimodule via:

$$\langle \pmb{a} \cdot \mu, \pmb{b}
angle = \langle \mu, \pmb{b} \pmb{a}
angle, \quad \langle \mu \cdot \pmb{a}, \pmb{b}
angle = \langle \mu, \pmb{a} \pmb{b}
angle \qquad (\pmb{a}, \pmb{b} \in \mathfrak{A}, \mu \in \mathfrak{A}^*).$$

For $\mu \in \mathfrak{A}$ let

$$L_{\mu}: \mathfrak{A} \to \mathfrak{A}^*, \ \boldsymbol{a} \mapsto \mu \cdot \boldsymbol{a}.$$

Definition

We say that μ is *almost periodic* if L_{μ} is a compact operator.

If $\mathfrak{A} = L^1(G)$ for a locally compact group G, then $\mathfrak{A}^* = L^\infty(G)$, and the collection of almost periodic elements coincides with (the image of) $\mathfrak{b}C_0(G)$ inside $C^b(G) \subseteq L^\infty(G)$.

Stronger form of "compact"

Definition

For a Banach algebra \mathfrak{A} , say that $\mu \in \mathfrak{A}^*$ is "strongly almost periodic" if there is a sequence (T_n) of finite-rank right module maps $\mathfrak{A} \to \mathfrak{A}^*$ such that $||L_{\mu} - T_n|| \to 0$.

So "compact" becomes "approximated by finite-ranks" (which for $L^1(G)$ is no change); and we also impose an "algebra" condition.

For a locally compact quantum group (A, Δ) , there is a Banach algebra $L^1(A)$:

$$A = C_0(G) \implies L^1(A) = L^1(G), \quad A = C_r^*(G) \implies L^1(A) = A(G).$$

Then $L^1(A)^* = L^{\infty}(A)$ a von Neumann algebra which contains M(A), and hence A.

Theorem

If (A, Δ) is a Kac algebra, then bA is precisely the collection of strongly almost periodic elements of $L^1(A)^*$.

Quantum Groups

October 2012 23 / 24

Future work

These techniques rely strongly on the fact that for a Kac algebra, the antipode S is bounded.

Claim

Let $u \in \mathbb{M}_n(A)$ be a corepresentation. If we know that $u_{ij}^* \in D(S)$, then \overline{u} is invertible.

Claim

Let $x \in L^1(A)^*$ be strongly almost periodic. If we know that $x \in D(S)$, then $x \in \mathfrak{b}A$.

When $D(S) = L^1(A)^*$, as in the Kac case, we're done. General problem: D(S) is a bit mysterious.