Multipliers of the Fourier algebra and non-commutative *L^p* spaces

Matthew Daws

Leeds

March 2010

Matthew Daws (Leeds)

Multipliers and non-commutative L^p spaces

March 2010 1 / 23

< 6 k

Suppose that *A* is an algebra: how might we embed *A* into a unital algebra *B*?

- Could use the unitisation: $A \oplus \mathbb{C}1$.
- Natural to ask that A is an *ideal* in B.
- But we don't want B to be too large: the natural condition is that A should be *essential* in B: if I ⊆ B is an ideal then A ∩ I ≠ {0}.
- For *faithful A*, this is equivalent to: if $b \in B$ and aba' = 0 for all $a, a' \in A$, then b = 0.
- Turns out there is a maximal such *B*, called the *multiplier algebra* of *A*, written *M*(*A*). Maximal in the sense that if *A* ⊴ *B*, then *B* → *M*(*A*). Clearly *M*(*A*) is unique.

< ロ > < 同 > < 回 > < 回 >

Suppose that *A* is an algebra: how might we embed *A* into a unital algebra *B*?

- Could use the unitisation: $A \oplus \mathbb{C}1$.
- Natural to ask that A is an *ideal* in B.
- But we don't want *B* to be too large: the natural condition is that *A* should be *essential* in *B*: if $I \subseteq B$ is an ideal then $A \cap I \neq \{0\}$.
- For *faithful A*, this is equivalent to: if $b \in B$ and aba' = 0 for all $a, a' \in A$, then b = 0.
- Turns out there is a maximal such *B*, called the *multiplier algebra* of *A*, written *M*(*A*). Maximal in the sense that if *A* ⊴ *B*, then *B* → *M*(*A*). Clearly *M*(*A*) is unique.

< ロ > < 同 > < 回 > < 回 >

Suppose that *A* is an algebra: how might we embed *A* into a unital algebra *B*?

- Could use the unitisation: $A \oplus \mathbb{C}1$.
- Natural to ask that A is an *ideal* in B.
- But we don't want B to be too large: the natural condition is that A should be *essential* in B: if I ⊆ B is an ideal then A ∩ I ≠ {0}.
- For faithful A, this is equivalent to: if $b \in B$ and aba' = 0 for all $a, a' \in A$, then b = 0.
- Turns out there is a maximal such *B*, called the *multiplier algebra* of *A*, written *M*(*A*). Maximal in the sense that if *A* ⊆ *B*, then *B* → *M*(*A*). Clearly *M*(*A*) is unique.

Suppose that *A* is an algebra: how might we embed *A* into a unital algebra *B*?

- Could use the unitisation: $A \oplus \mathbb{C}1$.
- Natural to ask that A is an *ideal* in B.
- But we don't want B to be too large: the natural condition is that A should be *essential* in B: if I ⊆ B is an ideal then A ∩ I ≠ {0}.
- For *faithful A*, this is equivalent to: if $b \in B$ and aba' = 0 for all $a, a' \in A$, then b = 0.
- Turns out there is a maximal such *B*, called the *multiplier algebra* of *A*, written *M*(*A*). Maximal in the sense that if *A* ⊴ *B*, then *B* → *M*(*A*). Clearly *M*(*A*) is unique.

Suppose that *A* is an algebra: how might we embed *A* into a unital algebra *B*?

- Could use the unitisation: $A \oplus \mathbb{C}1$.
- Natural to ask that A is an *ideal* in B.
- But we don't want B to be too large: the natural condition is that A should be *essential* in B: if I ⊆ B is an ideal then A ∩ I ≠ {0}.
- For *faithful A*, this is equivalent to: if $b \in B$ and aba' = 0 for all $a, a' \in A$, then b = 0.
- Turns out there is a maximal such *B*, called the *multiplier algebra* of *A*, written M(A). Maximal in the sense that if $A \leq B$, then $B \rightarrow M(A)$. Clearly M(A) is unique.

A (10) A (10) A (10) A

We define M(A) to be the collection of maps $L, R : A \rightarrow A$ with

 $L(ab) = L(a)b, \quad R(ab) = aR(b), \quad aL(b) = R(a)b \qquad (a, b \in A).$

- If *A* is faithful (which we shall assume from now on) then we only need the third condition.
- M(A) is a vector space, and an algebra for the product (L, R)(L', R') = (LL', R'R).
- Each $a \in A$ defines a pair $(L_a, R_a) \in M(A)$ by $L_a(b) = ab$ and $R_a(b) = ba$.
- The homomorphism $A \to M(A)$; $a \mapsto (L_a, R_a)$ identifies A with an essential ideal in M(A).
- If *A* is a Banach algebra, then natural to ask that *L* and *R* are bounded; but this is automatic by using the Closed Graph Theorem.

We define M(A) to be the collection of maps $L, R : A \rightarrow A$ with

 $L(ab) = L(a)b, \quad R(ab) = aR(b), \quad aL(b) = R(a)b \quad (a, b \in A).$

- If *A* is faithful (which we shall assume from now on) then we only need the third condition.
- M(A) is a vector space, and an algebra for the product (L, R)(L', R') = (LL', R'R).
- Each $a \in A$ defines a pair $(L_a, R_a) \in M(A)$ by $L_a(b) = ab$ and $R_a(b) = ba$.
- The homomorphism $A \to M(A)$; $a \mapsto (L_a, R_a)$ identifies A with an essential ideal in M(A).
- If *A* is a Banach algebra, then natural to ask that *L* and *R* are bounded; but this is automatic by using the Closed Graph Theorem.

We define M(A) to be the collection of maps $L, R : A \rightarrow A$ with

 $L(ab) = L(a)b, \quad R(ab) = aR(b), \quad aL(b) = R(a)b \quad (a, b \in A).$

- If *A* is faithful (which we shall assume from now on) then we only need the third condition.
- M(A) is a vector space, and an algebra for the product (L, R)(L', R') = (LL', R'R).
- Each $a \in A$ defines a pair $(L_a, R_a) \in M(A)$ by $L_a(b) = ab$ and $R_a(b) = ba$.
- The homomorphism $A \to M(A)$; $a \mapsto (L_a, R_a)$ identifies A with an essential ideal in M(A).
- If *A* is a Banach algebra, then natural to ask that *L* and *R* are bounded; but this is automatic by using the Closed Graph Theorem.

We define M(A) to be the collection of maps $L, R : A \rightarrow A$ with

 $L(ab) = L(a)b, \quad R(ab) = aR(b), \quad aL(b) = R(a)b \quad (a, b \in A).$

- If *A* is faithful (which we shall assume from now on) then we only need the third condition.
- M(A) is a vector space, and an algebra for the product (L, R)(L', R') = (LL', R'R).
- Each $a \in A$ defines a pair $(L_a, R_a) \in M(A)$ by $L_a(b) = ab$ and $R_a(b) = ba$.
- The homomorphism $A \to M(A)$; $a \mapsto (L_a, R_a)$ identifies A with an essential ideal in M(A).
- If *A* is a Banach algebra, then natural to ask that *L* and *R* are bounded; but this is automatic by using the Closed Graph Theorem.

We define M(A) to be the collection of maps $L, R : A \rightarrow A$ with

 $L(ab) = L(a)b, \quad R(ab) = aR(b), \quad aL(b) = R(a)b \quad (a, b \in A).$

- If *A* is faithful (which we shall assume from now on) then we only need the third condition.
- M(A) is a vector space, and an algebra for the product (L, R)(L', R') = (LL', R'R).
- Each $a \in A$ defines a pair $(L_a, R_a) \in M(A)$ by $L_a(b) = ab$ and $R_a(b) = ba$.
- The homomorphism $A \to M(A)$; $a \mapsto (L_a, R_a)$ identifies A with an essential ideal in M(A).
- If *A* is a Banach algebra, then natural to ask that *L* and *R* are bounded; but this is automatic by using the Closed Graph Theorem.

We define M(A) to be the collection of maps $L, R : A \rightarrow A$ with

 $L(ab) = L(a)b, \quad R(ab) = aR(b), \quad aL(b) = R(a)b \quad (a, b \in A).$

- If *A* is faithful (which we shall assume from now on) then we only need the third condition.
- M(A) is a vector space, and an algebra for the product (L, R)(L', R') = (LL', R'R).
- Each $a \in A$ defines a pair $(L_a, R_a) \in M(A)$ by $L_a(b) = ab$ and $R_a(b) = ba$.
- The homomorphism $A \to M(A)$; $a \mapsto (L_a, R_a)$ identifies A with an essential ideal in M(A).
- If *A* is a Banach algebra, then natural to ask that *L* and *R* are bounded; but this is automatic by using the Closed Graph Theorem.

Let A be a C*-algebra acting non-degenerately on a Hilbert space H. Then we have that

$$M(A) = \{T \in \mathcal{B}(H) : Ta, aT \in A \ (a \in A)\}.$$

- Each such *T* does define a multiplier in the previous sense: let L(a) = Ta and R(a) = aT.
- Conversely, a bounded approximate identity argument allows you to build *T* ∈ B(*H*) given (*L*, *R*) ∈ M(*A*). Indeed, let *T* = lim *L*(*e*_α), in the weak operator topology, say.
- If $A = C_0(X)$ then $M(A) = C^b(X) = C(\beta X)$, so M(A) is a non-commutative Stone-Čech compactification.

< ロ > < 同 > < 回 > < 回 >

Let A be a C*-algebra acting non-degenerately on a Hilbert space H. Then we have that

$$M(A) = \{T \in \mathcal{B}(H) : Ta, aT \in A \ (a \in A)\}.$$

- Each such *T* does define a multiplier in the previous sense: let L(a) = Ta and R(a) = aT.
- Conversely, a bounded approximate identity argument allows you to build $T \in \mathcal{B}(H)$ given $(L, R) \in M(A)$. Indeed, let $T = \lim L(e_{\alpha})$, in the weak operator topology, say.
- If A = C₀(X) then M(A) = C^b(X) = C(βX), so M(A) is a non-commutative Stone-Čech compactification.

Let A be a C*-algebra acting non-degenerately on a Hilbert space H. Then we have that

$$M(A) = \{T \in \mathcal{B}(H) : Ta, aT \in A \ (a \in A)\}.$$

- Each such *T* does define a multiplier in the previous sense: let L(a) = Ta and R(a) = aT.
- Conversely, a bounded approximate identity argument allows you to build *T* ∈ B(*H*) given (*L*, *R*) ∈ M(*A*). Indeed, let *T* = lim *L*(*e*_α), in the weak operator topology, say.
- If A = C₀(X) then M(A) = C^b(X) = C(βX), so M(A) is a non-commutative Stone-Čech compactification.

イロト 不得 トイヨト イヨト

Let A be a C*-algebra acting non-degenerately on a Hilbert space H. Then we have that

$$M(A) = \{T \in \mathcal{B}(H) : Ta, aT \in A \ (a \in A)\}.$$

- Each such *T* does define a multiplier in the previous sense: let L(a) = Ta and R(a) = aT.
- Conversely, a bounded approximate identity argument allows you to build *T* ∈ B(*H*) given (*L*, *R*) ∈ M(*A*). Indeed, let *T* = lim *L*(*e*_α), in the weak operator topology, say.
- If A = C₀(X) then M(A) = C^b(X) = C(βX), so M(A) is a non-commutative Stone-Čech compactification.

イロト 不得 トイヨト イヨト

Let A be a C*-algebra acting non-degenerately on a Hilbert space H. Then we have that

$$M(A) = \{T \in \mathcal{B}(H) : Ta, aT \in A \ (a \in A)\}.$$

- Each such *T* does define a multiplier in the previous sense: let L(a) = Ta and R(a) = aT.
- Conversely, a bounded approximate identity argument allows you to build *T* ∈ B(*H*) given (*L*, *R*) ∈ M(*A*). Indeed, let *T* = lim *L*(*e*_α), in the weak operator topology, say.
- If A = C₀(X) then M(A) = C^b(X) = C(βX), so M(A) is a non-commutative Stone-Čech compactification.

Let G be a locally compact group, equipped with a left invariant Haar measure. Examples include:

- Any discrete group with the counting measure.
- Any *compact* group, where the Haar measure is normalised to be a probability measure.
- The real line \mathbb{R} with Lebesgue measure.
- Various non-compact Lie groups give interesting examples.

A (10) A (10)

Let G be a locally compact group, equipped with a left invariant Haar measure. Examples include:

- Any discrete group with the counting measure.
- Any *compact* group, where the Haar measure is normalised to be a probability measure.
- The real line \mathbb{R} with Lebesgue measure.
- Various non-compact Lie groups give interesting examples.

Let *G* be a locally compact group, equipped with a left invariant Haar measure. Examples include:

- Any *discrete* group with the counting measure.
- Any compact group, where the Haar measure is normalised to be a probability measure.
- The real line \mathbb{R} with Lebesgue measure.
- Various non-compact Lie groups give interesting examples.

Let *G* be a locally compact group, equipped with a left invariant Haar measure. Examples include:

- Any *discrete* group with the counting measure.
- Any compact group, where the Haar measure is normalised to be a probability measure.
- The real line \mathbb{R} with Lebesgue measure.
- Various non-compact Lie groups give interesting examples.

Let G be a locally compact group, equipped with a left invariant Haar measure. Examples include:

- Any *discrete* group with the counting measure.
- Any compact group, where the Haar measure is normalised to be a probability measure.
- The real line \mathbb{R} with Lebesgue measure.
- Various non-compact Lie groups give interesting examples.

Group algebras Turn $L^1(G)$ into a Banach algebra by using the convolution product:

$$(f*g)(s) = \int_G f(t)g(t^{-1}s) dt.$$

• We can also convolve finite measures.

• Identify M(G) with $C_0(G)^*$, then

$$\langle \mu * \lambda, F
angle = \int \int F(st) \ d\mu(s) \ d\lambda(t) \qquad (\mu, \lambda \in M(G), F \in C_0(G)).$$

• [Wendel] Then we have that

$$M(L^1(G))=M(G),$$

where for each $(L, R) \in M(L^1(G))$, there exists $\mu \in M(G)$,

$$L(a) = \mu * a, \quad R(a) = a * \mu \qquad (a \in L^1(G)).$$

4 D K 4 B K 4 B K 4

Group algebras

Turn $L^{1}(G)$ into a Banach algebra by using the convolution product:

$$(f*g)(s) = \int_G f(t)g(t^{-1}s) dt.$$

• We can also convolve finite measures.

• Identify M(G) with $C_0(G)^*$, then

$$\langle \mu * \lambda, F
angle = \int \int F(st) \ d\mu(s) \ d\lambda(t) \qquad (\mu, \lambda \in M(G), F \in \mathcal{C}_0(G)).$$

• [Wendel] Then we have that

$$M(L^1(G))=M(G),$$

where for each $(L, R) \in M(L^1(G))$, there exists $\mu \in M(G)$,

$$L(a) = \mu * a, \quad R(a) = a * \mu \qquad (a \in L^1(G)).$$

4 D K 4 B K 4 B K 4

Group algebras

Turn $L^{1}(G)$ into a Banach algebra by using the convolution product:

$$(f*g)(s) = \int_G f(t)g(t^{-1}s) dt.$$

- We can also convolve finite measures.
- Identify M(G) with $C_0(G)^*$, then

$$\langle \mu * \lambda, F \rangle = \int \int F(st) \ d\mu(s) \ d\lambda(t) \qquad (\mu, \lambda \in M(G), F \in C_0(G)).$$

• [Wendel] Then we have that

$$M(L^1(G))=M(G),$$

where for each $(L, R) \in M(L^1(G))$, there exists $\mu \in M(G)$,

$$L(a) = \mu * a, \quad R(a) = a * \mu \qquad (a \in L^1(G)).$$

Group algebras

Turn $L^{1}(G)$ into a Banach algebra by using the convolution product:

$$(f*g)(s) = \int_G f(t)g(t^{-1}s) dt.$$

- We can also convolve finite measures.
- Identify M(G) with $C_0(G)^*$, then

$$\langle \mu * \lambda, F \rangle = \int \int F(st) \ d\mu(s) \ d\lambda(t) \qquad (\mu, \lambda \in M(G), F \in C_0(G)).$$

• [Wendel] Then we have that

$$M(L^1(G))=M(G),$$

where for each $(L, R) \in M(L^1(G))$, there exists $\mu \in M(G)$,

$$L(a) = \mu * a, \quad R(a) = a * \mu \qquad (a \in L^1(G)).$$

This is an idea which goes back to [Young].

- For $1 , <math>L^1(G)$ acts by convolution on $L^p(G)$.
- We can extend this to a convolution action of M(G).
- Let $p_n \to 1$, and let $E = \bigoplus_n L^{p_n}(G)$ (say in the ℓ^2 sense, so that *E* is reflexive).
- Then $L^1(G)$ and M(G) act on E.
- Young observed that the resulting homomorphism $\theta: L^1(G) \to \mathcal{B}(E)$ is an isometry.
- The same is true for θ : M(G) → B(E), which is also weak*-continuous (why I want E reflexive).
- We actually get that

$heta(M(G)) = \{T \in \mathcal{B}(E) : T heta(f), heta(f)T \in heta(L^1(G)) \ (f \in L^1(G))\}.$

This is an idea which goes back to [Young].

- For $1 , <math>L^1(G)$ acts by convolution on $L^p(G)$.
- We can extend this to a convolution action of M(G).
- Let $p_n \to 1$, and let $E = \bigoplus_n L^{p_n}(G)$ (say in the ℓ^2 sense, so that *E* is reflexive).
- Then $L^1(G)$ and M(G) act on E.
- Young observed that the resulting homomorphism $\theta: L^1(G) \to \mathcal{B}(E)$ is an isometry.
- The same is true for θ : M(G) → B(E), which is also weak*-continuous (why I want E reflexive).
- We actually get that

$heta(M(G)) = \{T \in \mathcal{B}(E) : T heta(f), heta(f)T \in heta(L^1(G)) \ (f \in L^1(G))\}.$

This is an idea which goes back to [Young].

- For $1 , <math>L^1(G)$ acts by convolution on $L^p(G)$.
- We can extend this to a convolution action of M(G).
- Let $p_n \to 1$, and let $E = \bigoplus_n L^{p_n}(G)$ (say in the ℓ^2 sense, so that E is reflexive).
- Then $L^1(G)$ and M(G) act on E.
- Young observed that the resulting homomorphism $\theta: L^1(G) \to \mathcal{B}(E)$ is an isometry.
- The same is true for θ : M(G) → B(E), which is also weak*-continuous (why I want E reflexive).
- We actually get that

$heta(M(G)) = \{T \in \mathcal{B}(E) : T heta(f), heta(f)T \in heta(L^1(G)) \ (f \in L^1(G))\}.$

This is an idea which goes back to [Young].

- For $1 , <math>L^1(G)$ acts by convolution on $L^p(G)$.
- We can extend this to a convolution action of M(G).
- Let $p_n \to 1$, and let $E = \bigoplus_n L^{p_n}(G)$ (say in the ℓ^2 sense, so that E is reflexive).
- Then $L^1(G)$ and M(G) act on E.
- Young observed that the resulting homomorphism $\theta: L^1(G) \to \mathcal{B}(E)$ is an isometry.
- The same is true for θ : M(G) → B(E), which is also weak*-continuous (why I want E reflexive).
- We actually get that

$heta(M(G)) = ig\{ T \in \mathcal{B}(E) : T heta(f), heta(f)T \in heta(L^1(G)) \ (f \in L^1(G)) ig\}.$

This is an idea which goes back to [Young].

- For $1 , <math>L^1(G)$ acts by convolution on $L^p(G)$.
- We can extend this to a convolution action of M(G).
- Let $p_n \to 1$, and let $E = \bigoplus_n L^{p_n}(G)$ (say in the ℓ^2 sense, so that E is reflexive).
- Then $L^1(G)$ and M(G) act on E.
- Young observed that the resulting homomorphism $\theta: L^1(G) \to \mathcal{B}(E)$ is an isometry.
- The same is true for θ : M(G) → B(E), which is also weak*-continuous (why I want E reflexive).
- We actually get that

$heta(M(G)) = \{T \in \mathcal{B}(E) : T heta(f), heta(f)T \in heta(L^1(G)) \ (f \in L^1(G))\}.$

This is an idea which goes back to [Young].

- For $1 , <math>L^1(G)$ acts by convolution on $L^p(G)$.
- We can extend this to a convolution action of M(G).
- Let $p_n \to 1$, and let $E = \bigoplus_n L^{p_n}(G)$ (say in the ℓ^2 sense, so that E is reflexive).
- Then $L^1(G)$ and M(G) act on E.
- Young observed that the resulting homomorphism $\theta: L^1(G) \to \mathcal{B}(E)$ is an isometry.
- The same is true for θ : M(G) → B(E), which is also weak*-continuous (why I want E reflexive).

We actually get that

$\theta(M(G)) = \big\{ T \in \mathcal{B}(E) : T\theta(f), \theta(f)T \in \theta(L^1(G)) \ (f \in L^1(G)) \big\}.$

This is an idea which goes back to [Young].

- For $1 , <math>L^1(G)$ acts by convolution on $L^p(G)$.
- We can extend this to a convolution action of M(G).
- Let $p_n \to 1$, and let $E = \bigoplus_n L^{p_n}(G)$ (say in the ℓ^2 sense, so that E is reflexive).
- Then $L^1(G)$ and M(G) act on E.
- Young observed that the resulting homomorphism $\theta: L^1(G) \to \mathcal{B}(E)$ is an isometry.
- The same is true for θ : M(G) → B(E), which is also weak*-continuous (why I want E reflexive).
- We actually get that

 $\theta(M(G)) = \left\{ T \in \mathcal{B}(E) : T\theta(f), \theta(f)T \in \theta(L^1(G)) \ (f \in L^1(G)) \right\}.$

The Fourier transform

If G is abelian, then we have the dual group

 $\hat{G} = \{ \chi : G \to \mathbb{T} \text{ a continuous homomorphism} \}.$

Also we have the Fourier Transform

 $\mathcal{F}: L^1(G) \to C_0(\hat{G}) \quad \text{also} \quad L^2(G) \cong L^2(\hat{G}).$

- The image $\mathcal{F}(L^1(G))$ is the *Fourier algebra* $A(\hat{G})$.
- As $L^1(G) = L^2(G) \cdot L^2(G)$ (pointwise product) we see that $A(\hat{G}) = L^2(G) * L^2(G) = L^2(\hat{G}) * L^2(\hat{G})$ (convolution).
- *F* extends to *M*(*G*), and the image is *B*(*Ĝ*) ⊆ *C^b*(*G*), the *Fourier-Stieltjes algebra*.

The Fourier transform

If G is abelian, then we have the dual group

 $\hat{G} = \{\chi : G \to \mathbb{T} \text{ a continuous homomorphism} \}.$

Also we have the Fourier Transform

 $\mathcal{F}: L^1(G) \to C_0(\hat{G}) \quad \text{also} \quad L^2(G) \cong L^2(\hat{G}).$

• The image $\mathcal{F}(L^1(G))$ is the *Fourier algebra* $A(\hat{G})$.

- As $L^1(G) = L^2(G) \cdot L^2(G)$ (pointwise product) we see that $A(\hat{G}) = L^2(G) * L^2(G) = L^2(\hat{G}) * L^2(\hat{G})$ (convolution).
- *F* extends to *M*(*G*), and the image is *B*(*Ĝ*) ⊆ *C^b*(*G*), the *Fourier-Stieltjes algebra*.

The Fourier transform

If G is abelian, then we have the dual group

 $\hat{G} = \{\chi : G \to \mathbb{T} \text{ a continuous homomorphism} \}.$

Also we have the Fourier Transform

$$\mathcal{F}: L^1(G) \to C_0(\hat{G}) \quad \text{also} \quad L^2(G) \cong L^2(\hat{G}).$$

• The image $\mathcal{F}(L^1(G))$ is the Fourier algebra $A(\hat{G})$.

- As $L^1(G) = L^2(G) \cdot L^2(G)$ (pointwise product) we see that $A(\hat{G}) = L^2(G) * L^2(G) = L^2(\hat{G}) * L^2(\hat{G})$ (convolution).
- *F* extends to *M*(*G*), and the image is *B*(*Ĝ*) ⊆ *C^b*(*G*), the *Fourier-Stieltjes algebra*.

不同 いくきいくき

The Fourier transform

If G is abelian, then we have the dual group

 $\hat{G} = \{\chi : G \to \mathbb{T} \text{ a continuous homomorphism} \}.$

Also we have the Fourier Transform

$$\mathcal{F}: L^1(G) o C_0(\hat{G}) \quad ext{also} \quad L^2(G) \cong L^2(\hat{G}).$$

- The image $\mathcal{F}(L^1(G))$ is the Fourier algebra $A(\hat{G})$.
- As $L^1(G) = L^2(G) \cdot L^2(G)$ (pointwise product) we see that $A(\hat{G}) = L^2(G) * L^2(G) = L^2(\hat{G}) * L^2(\hat{G})$ (convolution).
- \mathcal{F} extends to M(G), and the image is $B(\hat{G}) \subseteq C^{b}(G)$, the *Fourier-Stieltjes algebra*.

・ ロ ト ・ 同 ト ・ 目 ト ・ 目 ト

The Fourier transform

If G is abelian, then we have the dual group

 $\hat{G} = \{\chi : G \to \mathbb{T} \text{ a continuous homomorphism} \}.$

Also we have the Fourier Transform

$$\mathcal{F}: L^1(G) o C_0(\hat{G}) \quad ext{also} \quad L^2(G) \cong L^2(\hat{G}).$$

- The image $\mathcal{F}(L^1(G))$ is the Fourier algebra $A(\hat{G})$.
- As $L^1(G) = L^2(G) \cdot L^2(G)$ (pointwise product) we see that $A(\hat{G}) = L^2(G) * L^2(G) = L^2(\hat{G}) * L^2(\hat{G})$ (convolution).
- *F* extends to *M*(*G*), and the image is *B*(*Ĝ*) ⊆ *C^b*(*G*), the *Fourier-Stieltjes algebra*.

4 **A** N A **B** N A **B** N

Operator algebras

The Fourier transform similarly sets up isomorphisms

$$C_0(G) \cong C_r^*(\hat{G}) \qquad L^\infty(G) \cong VN(\hat{G}).$$

Let $\lambda : G \to \mathcal{B}(L^2(G))$ be the *left-regular representation*,

$$\lambda(s): f \mapsto g \qquad g(t) = f(s^{-1}t) \qquad (f \in L^2(G), s, t \in G).$$

Integrate this to get a homomorphism $\lambda : L^1(G) \to \mathcal{B}(L^2(G))$.

C^{*}_r(G) is the closure of λ(L¹(G)).
VN(G) is the WOT closure of λ(L¹(G)) (or of λ(G)).

4 D K 4 B K 4 B K 4

Operator algebras

The Fourier transform similarly sets up isomorphisms

$$C_0(G) \cong C_r^*(\hat{G}) \qquad L^\infty(G) \cong VN(\hat{G}).$$

Let $\lambda : G \to \mathcal{B}(L^2(G))$ be the *left-regular representation*,

$$\lambda(s): f \mapsto g \qquad g(t) = f(s^{-1}t) \qquad (f \in L^2(G), s, t \in G).$$

Integrate this to get a homomorphism $\lambda : L^1(G) \to \mathcal{B}(L^2(G))$.

- $C_r^*(G)$ is the closure of $\lambda(L^1(G))$.
- VN(G) is the WOT closure of $\lambda(L^1(G))$ (or of $\lambda(G)$).

4 D K 4 B K 4 B K 4

Operator algebras

The Fourier transform similarly sets up isomorphisms

$$C_0(G) \cong C_r^*(\hat{G}) \qquad L^\infty(G) \cong VN(\hat{G}).$$

Let $\lambda : G \to \mathcal{B}(L^2(G))$ be the *left-regular representation*,

$$\lambda(s): f \mapsto g \qquad g(t) = f(s^{-1}t) \qquad (f \in L^2(G), s, t \in G).$$

Integrate this to get a homomorphism $\lambda : L^1(G) \to \mathcal{B}(L^2(G))$.

- $C_r^*(G)$ is the closure of $\lambda(L^1(G))$.
- VN(G) is the WOT closure of $\lambda(L^1(G))$ (or of $\lambda(G)$).

For a general G, we could hence define A(G) to be:

- the predual of VN(G).
- Or $A(G) = L^2(G) * L^2(G)$.
- We *hope* that these agree and that *A*(*G*) is an algebra for the pointwise product.

Remember that a von Neumann algebra always has a *predual*: the space of normal functionals.

As $VN(G) \subseteq \mathcal{B}(L^2(G))$, and $\mathcal{B}(L^2(G))$ is the dual of $\mathcal{T}(L^2(G))$, the trace-class operators on $L^2(G)$, we have a quotient map

 $\mathcal{T}(L^2(G)) \twoheadrightarrow VN(G)_*.$

For a general G, we could hence define A(G) to be:

• the predual of VN(G).

- Or $A(G) = L^2(G) * L^2(G)$.
- We *hope* that these agree and that *A*(*G*) is an algebra for the pointwise product.

Remember that a von Neumann algebra always has a *predual*: the space of normal functionals.

As $VN(G) \subseteq \mathcal{B}(L^2(G))$, and $\mathcal{B}(L^2(G))$ is the dual of $\mathcal{T}(L^2(G))$, the trace-class operators on $L^2(G)$, we have a quotient map

 $\mathcal{T}(L^2(G)) \twoheadrightarrow VN(G)_*.$

For a general G, we could hence define A(G) to be:

- the predual of VN(G).
- Or $A(G) = L^2(G) * L^2(G)$.
- We *hope* that these agree and that *A*(*G*) is an algebra for the pointwise product.

Remember that a von Neumann algebra always has a *predual*: the space of normal functionals.

As $VN(G) \subseteq \mathcal{B}(L^2(G))$, and $\mathcal{B}(L^2(G))$ is the dual of $\mathcal{T}(L^2(G))$, the trace-class operators on $L^2(G)$, we have a quotient map

 $\mathcal{T}(L^2(G)) \twoheadrightarrow VN(G)_*.$

< ロ > < 同 > < 回 > < 回 >

For a general G, we could hence define A(G) to be:

- the predual of VN(G).
- Or $A(G) = L^2(G) * L^2(G)$.
- We *hope* that these agree and that *A*(*G*) is an algebra for the pointwise product.

Remember that a von Neumann algebra always has a *predual*: the space of normal functionals.

As $VN(G) \subseteq \mathcal{B}(L^2(G))$, and $\mathcal{B}(L^2(G))$ is the dual of $\mathcal{T}(L^2(G))$, the trace-class operators on $L^2(G)$, we have a quotient map

 $\mathcal{T}(L^2(G)) \twoheadrightarrow VN(G)_*.$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

For a general G, we could hence define A(G) to be:

- the predual of VN(G).
- Or $A(G) = L^2(G) * L^2(G)$.
- We *hope* that these agree and that *A*(*G*) is an algebra for the pointwise product.

Remember that a von Neumann algebra always has a *predual*: the space of normal functionals.

As $VN(G) \subseteq \mathcal{B}(L^2(G))$, and $\mathcal{B}(L^2(G))$ is the dual of $\mathcal{T}(L^2(G))$, the trace-class operators on $L^2(G)$, we have a quotient map

 $\mathcal{T}(L^2(G)) \twoheadrightarrow VN(G)_*.$

< 日 > < 同 > < 回 > < 回 > < □ > <

For a general G, we could hence define A(G) to be:

- the predual of VN(G).
- Or $A(G) = L^2(G) * L^2(G)$.
- We *hope* that these agree and that *A*(*G*) is an algebra for the pointwise product.

Remember that a von Neumann algebra always has a *predual*: the space of normal functionals.

As $VN(G) \subseteq \mathcal{B}(L^2(G))$, and $\mathcal{B}(L^2(G))$ is the dual of $\mathcal{T}(L^2(G))$, the trace-class operators on $L^2(G)$, we have a quotient map

$$\mathcal{T}(L^2(G)) \twoheadrightarrow VN(G)_*.$$

A B K A B K

What is the Fourier algebra? [Eymard] We do have that $A(G) = VN(G)_* = L^2(G) * L^2(G) \subseteq C_0(G)$:

(Big Machine ⇒) VN(G) is in standard position, so any normal functional ω on VN(G) is of the form ω = ω_{ξ,η} for some ξ, η ∈ L²(G),

 $\langle x,\omega\rangle = (x(\xi)|\eta) \qquad (x \in VN(G), \xi, \eta \in L^2(G)).$

- As {λ(s) : s ∈ G} generates VN(G), for ω ∈ VN(G)_{*}, if we know what ⟨λ(s), ω⟩ is for all s, then we know ω.
- Observe that

$$\begin{split} \langle \lambda(\boldsymbol{s}), \omega_{\xi,\eta} \rangle &= \int_{G} \lambda(\boldsymbol{s})(\xi)(t) \overline{\eta(t)} \ dt = \int_{G} \xi(\boldsymbol{s}^{-1}t) \overline{\eta(t)} \ dt \\ &= \int_{G} \overline{\eta(t)} \check{\xi}(t^{-1}\boldsymbol{s}) \ dt = (\overline{\eta} * \check{\xi})(\boldsymbol{s}). \end{split}$$

• Here $\check{\eta}(s) = \eta(s^{-1})$ (so I lied in the first line!)

What is the Fourier algebra? [Eymard]

We do have that $A(G) = VN(G)_* = L^2(G) * L^2(G) \subseteq C_0(G)$:

(Big Machine ⇒) VN(G) is in standard position, so any normal functional ω on VN(G) is of the form ω = ω_{ξ,η} for some ξ, η ∈ L²(G),

 $\langle \mathbf{x},\omega\rangle = (\mathbf{x}(\xi)|\eta) \qquad (\mathbf{x}\in VN(G), \xi,\eta\in L^2(G)).$

As {λ(s) : s ∈ G} generates VN(G), for ω ∈ VN(G)_{*}, if we know what ⟨λ(s), ω⟩ is for all s, then we know ω.

Observe that

$$\langle \lambda(\boldsymbol{s}), \omega_{\xi,\eta} \rangle = \int_{\boldsymbol{G}} \lambda(\boldsymbol{s})(\xi)(t) \overline{\eta(t)} \, dt = \int_{\boldsymbol{G}} \xi(\boldsymbol{s}^{-1}t) \overline{\eta(t)} \, dt \\ = \int_{\boldsymbol{G}} \overline{\eta(t)} \check{\xi}(t^{-1}\boldsymbol{s}) \, dt = (\overline{\eta} * \check{\xi})(\boldsymbol{s}).$$

• Here $\check{\eta}(s) = \eta(s^{-1})$ (so I lied in the first line!)

What is the Fourier algebra? [Eymard]

We do have that $A(G) = VN(G)_* = L^2(G) * L^2(G) \subseteq C_0(G)$:

• (Big Machine \Rightarrow) VN(G) is in *standard position*, so any normal functional ω on VN(G) is of the form $\omega = \omega_{\xi,\eta}$ for some $\xi, \eta \in L^2(G)$,

 $\langle \mathbf{x},\omega\rangle = (\mathbf{x}(\xi)|\eta) \qquad (\mathbf{x}\in VN(G), \xi,\eta\in L^2(G)).$

As {λ(s) : s ∈ G} generates VN(G), for ω ∈ VN(G)_{*}, if we know what ⟨λ(s), ω⟩ is for all s, then we know ω.

Observe that

$$\langle \lambda(\boldsymbol{s}), \omega_{\xi,\eta} \rangle = \int_{\boldsymbol{G}} \lambda(\boldsymbol{s})(\xi)(t) \overline{\eta(t)} \, dt = \int_{\boldsymbol{G}} \xi(\boldsymbol{s}^{-1}t) \overline{\eta(t)} \, dt \\ = \int_{\boldsymbol{G}} \overline{\eta(t)} \check{\xi}(t^{-1}\boldsymbol{s}) \, dt = (\overline{\eta} * \check{\xi})(\boldsymbol{s}).$$

• Here $\check{\eta}(s) = \eta(s^{-1})$ (so I lied in the first line!)

What is the Fourier algebra? [Eymard]

We do have that $A(G) = VN(G)_* = L^2(G) * L^2(G) \subseteq C_0(G)$:

• (Big Machine \Rightarrow) VN(G) is in *standard position*, so any normal functional ω on VN(G) is of the form $\omega = \omega_{\xi,\eta}$ for some $\xi, \eta \in L^2(G)$,

$$\langle \mathbf{x},\omega\rangle = (\mathbf{x}(\xi)|\eta) \qquad (\mathbf{x}\in VN(G), \xi,\eta\in L^2(G)).$$

- As {λ(s) : s ∈ G} generates VN(G), for ω ∈ VN(G)_{*}, if we know what ⟨λ(s), ω⟩ is for all s, then we know ω.
- Observe that

$$\begin{split} \langle \lambda(\boldsymbol{s}), \omega_{\xi,\eta} \rangle &= \int_{\boldsymbol{G}} \lambda(\boldsymbol{s})(\xi)(t) \overline{\eta(t)} \ \boldsymbol{d}t = \int_{\boldsymbol{G}} \xi(\boldsymbol{s}^{-1}t) \overline{\eta(t)} \ \boldsymbol{d}t \\ &= \int_{\boldsymbol{G}} \overline{\eta(t)} \check{\xi}(t^{-1}\boldsymbol{s}) \ \boldsymbol{d}t = (\overline{\eta} * \check{\xi})(\boldsymbol{s}). \end{split}$$

• Here $\check{\eta}(s) = \eta(s^{-1})$ (so I lied in the first line!)

There is a normal *-homomorphsm $\Delta: VN(G) \rightarrow VN(G) \otimes VN(G) = VN(G \times G)$ which satisfies

$$\Delta(\lambda(\boldsymbol{s})) = \lambda(\boldsymbol{s}) \otimes \lambda(\boldsymbol{s}) = \lambda(\boldsymbol{s}, \boldsymbol{s}).$$

- As Δ is normal, we get a (completely) contractive map $\Delta_* : A(G) \times A(G) \rightarrow A(G)$.
- Turns out that Δ_* is associative, because Δ is *coassociative*.
- This obviously induces the pointwise product on A(G), as for ω, σ ∈ A(G) and s ∈ G,

$$\begin{aligned} (\omega\sigma)(\boldsymbol{s}) &= \langle \lambda(\boldsymbol{s}^{-1}), \Delta_*(\omega\otimes\sigma) \rangle \\ &= \langle \lambda(\boldsymbol{s}^{-1}, \boldsymbol{s}^{-1}), \omega\otimes\sigma \rangle = \omega(\boldsymbol{s})\sigma(\boldsymbol{s}). \end{aligned}$$

• Δ exists as $\Delta(x) = W^*(1 \otimes x)W$ for some unitary $W \in \mathcal{B}(L^2(G \times G))$; given by $W\xi(s, t) = \xi(ts, t)$.

・ ロ ト ・ 同 ト ・ 目 ト ・ 目 ト

There is a normal *-homomorphsm $\Delta: VN(G) \rightarrow VN(G) \overline{\otimes} VN(G) = VN(G \times G)$ which satisfies

$$\Delta(\lambda(s)) = \lambda(s) \otimes \lambda(s) = \lambda(s, s).$$

- As Δ is normal, we get a (completely) contractive map $\Delta_* : A(G) \times A(G) \rightarrow A(G)$.
- Turns out that Δ_* is associative, because Δ is *coassociative*.
- This obviously induces the pointwise product on A(G), as for ω, σ ∈ A(G) and s ∈ G,

$$\begin{aligned} (\omega\sigma)(\boldsymbol{s}) &= \langle \lambda(\boldsymbol{s}^{-1}), \Delta_*(\omega\otimes\sigma) \rangle \\ &= \langle \lambda(\boldsymbol{s}^{-1}, \boldsymbol{s}^{-1}), \omega\otimes\sigma \rangle = \omega(\boldsymbol{s})\sigma(\boldsymbol{s}). \end{aligned}$$

• Δ exists as $\Delta(x) = W^*(1 \otimes x)W$ for some unitary $W \in \mathcal{B}(L^2(G \times G))$; given by $W\xi(s, t) = \xi(ts, t)$.

- ロ ト - (理 ト - (ヨ ト - (ヨ ト -

There is a normal *-homomorphsm $\Delta: VN(G) \rightarrow VN(G) \overline{\otimes} VN(G) = VN(G \times G)$ which satisfies

$$\Delta(\lambda(s)) = \lambda(s) \otimes \lambda(s) = \lambda(s, s).$$

- As Δ is normal, we get a (completely) contractive map $\Delta_* : A(G) \times A(G) \rightarrow A(G)$.
- Turns out that Δ_* is associative, because Δ is *coassociative*.
- This obviously induces the pointwise product on A(G), as for ω, σ ∈ A(G) and s ∈ G,

$$(\omega\sigma)(s) = \langle \lambda(s^{-1}), \Delta_*(\omega \otimes \sigma) \rangle$$

= $\langle \lambda(s^{-1}, s^{-1}), \omega \otimes \sigma \rangle = \omega(s)\sigma(s).$

• Δ exists as $\Delta(x) = W^*(1 \otimes x)W$ for some unitary $W \in \mathcal{B}(L^2(G \times G))$; given by $W\xi(s, t) = \xi(ts, t)$.

There is a normal *-homomorphsm $\Delta: VN(G) \rightarrow VN(G) \overline{\otimes} VN(G) = VN(G \times G)$ which satisfies

$$\Delta(\lambda(s)) = \lambda(s) \otimes \lambda(s) = \lambda(s, s).$$

- As Δ is normal, we get a (completely) contractive map $\Delta_* : A(G) \times A(G) \rightarrow A(G)$.
- Turns out that Δ_* is associative, because Δ is *coassociative*.
- This obviously induces the pointwise product on A(G), as for ω, σ ∈ A(G) and s ∈ G,

$$egin{aligned} & (\omega\sigma)(m{s}) = \langle \lambda(m{s}^{-1}), \Delta_*(\omega\otimes\sigma)
angle \ & = \langle \lambda(m{s}^{-1}, m{s}^{-1}), \omega\otimes\sigma
angle = \omega(m{s})\sigma(m{s}). \end{aligned}$$

• Δ exists as $\Delta(x) = W^*(1 \otimes x)W$ for some unitary $W \in \mathcal{B}(L^2(G \times G))$; given by $W\xi(s, t) = \xi(ts, t)$.

There is a normal *-homomorphsm $\Delta: VN(G) \rightarrow VN(G) \overline{\otimes} VN(G) = VN(G \times G)$ which satisfies

$$\Delta(\lambda(s)) = \lambda(s) \otimes \lambda(s) = \lambda(s, s).$$

- As Δ is normal, we get a (completely) contractive map $\Delta_* : A(G) \times A(G) \rightarrow A(G)$.
- Turns out that Δ_* is associative, because Δ is *coassociative*.
- This obviously induces the pointwise product on A(G), as for ω, σ ∈ A(G) and s ∈ G,

$$egin{aligned} & (\omega\sigma)(m{s}) = \langle \lambda(m{s}^{-1}), \Delta_*(\omega\otimes\sigma)
angle \ & = \langle \lambda(m{s}^{-1}, m{s}^{-1}), \omega\otimes\sigma
angle = \omega(m{s})\sigma(m{s}). \end{aligned}$$

• Δ exists as $\Delta(x) = W^*(1 \otimes x)W$ for some unitary $W \in \mathcal{B}(L^2(G \times G))$; given by $W\xi(s, t) = \xi(ts, t)$.

- As A(G) is commutative, multipliers of A(G) are simply maps T on A(G) with T(ab) = T(a)b.
- As we consider A(G) ⊆ C₀(G), we find that every T ∈ MA(G) is given by some f ∈ C^b(G):

 $MA(G) = \{ f \in C^b(G) : fa \in A(G) \ (a \in A(G)) \}.$

- By duality, each $T \in MA(G)$ induces a map $T^* : VN(G) \rightarrow VN(G)$.
- If this is *completely bounded* that is gives uniformly (in *n*) bounded maps 1 ⊗ *T*^{*} on M_n ⊗ *VN*(*G*)– then *T* ∈ M_{cb}A(*G*).
- [Haagerup, DeCanniere] For f ∈ MA(G), we have that f ∈ M_{cb}A(G) if and only if f ⊗ 1_K ∈ MA(G × K) for all compact K (or just K = SU(2)).

- As A(G) is commutative, multipliers of A(G) are simply maps T on A(G) with T(ab) = T(a)b.
- As we consider A(G) ⊆ C₀(G), we find that every T ∈ MA(G) is given by some f ∈ C^b(G):

$MA(G) = \{f \in C^b(G) : fa \in A(G) \ (a \in A(G))\}.$

- By duality, each $T \in MA(G)$ induces a map $T^* : VN(G) \rightarrow VN(G)$.
- If this is *completely bounded* that is gives uniformly (in *n*) bounded maps 1 ⊗ *T*^{*} on M_n ⊗ *VN*(*G*)– then *T* ∈ M_{cb}A(*G*).
- [Haagerup, DeCanniere] For $f \in MA(G)$, we have that $f \in M_{cb}A(G)$ if and only if $f \otimes 1_K \in MA(G \times K)$ for all compact K (or just K = SU(2)).

イロト 不得 トイヨト イヨト

- As A(G) is commutative, multipliers of A(G) are simply maps T on A(G) with T(ab) = T(a)b.
- As we consider A(G) ⊆ C₀(G), we find that every T ∈ MA(G) is given by some f ∈ C^b(G):

$$MA(G) = \{f \in C^b(G) : fa \in A(G) \ (a \in A(G))\}.$$

- By duality, each $T \in MA(G)$ induces a map $T^* : VN(G) \rightarrow VN(G)$.
- If this is *completely bounded* that is gives uniformly (in *n*) bounded maps 1 ⊗ *T*^{*} on M_n ⊗ *VN*(*G*)– then *T* ∈ M_{cb}A(*G*).
- [Haagerup, DeCanniere] For $f \in MA(G)$, we have that $f \in M_{cb}A(G)$ if and only if $f \otimes 1_K \in MA(G \times K)$ for all compact K (or just K = SU(2)).

- As A(G) is commutative, multipliers of A(G) are simply maps T on A(G) with T(ab) = T(a)b.
- As we consider A(G) ⊆ C₀(G), we find that every T ∈ MA(G) is given by some f ∈ C^b(G):

$$MA(G) = \{f \in C^b(G) : fa \in A(G) \ (a \in A(G))\}.$$

- By duality, each $T \in MA(G)$ induces a map $T^* : VN(G) \rightarrow VN(G)$.
- If this is *completely bounded* that is gives uniformly (in *n*) bounded maps 1 ⊗ *T*^{*} on M_n ⊗ *VN*(*G*)– then *T* ∈ M_{cb}A(*G*).
- [Haagerup, DeCanniere] For $f \in MA(G)$, we have that $f \in M_{cb}A(G)$ if and only if $f \otimes 1_K \in MA(G \times K)$ for all compact K (or just K = SU(2)).

- As A(G) is commutative, multipliers of A(G) are simply maps T on A(G) with T(ab) = T(a)b.
- As we consider A(G) ⊆ C₀(G), we find that every T ∈ MA(G) is given by some f ∈ C^b(G):

$$MA(G) = \{f \in C^b(G) : fa \in A(G) \ (a \in A(G))\}.$$

- By duality, each $T \in MA(G)$ induces a map $T^* : VN(G) \rightarrow VN(G)$.
- If this is *completely bounded* that is gives uniformly (in *n*) bounded maps 1 ⊗ *T*^{*} on M_n ⊗ *VN*(*G*)– then *T* ∈ M_{cb}A(*G*).
- [Haagerup, DeCanniere] For $f \in MA(G)$, we have that $f \in M_{cb}A(G)$ if and only if $f \otimes 1_K \in MA(G \times K)$ for all compact K (or just K = SU(2)).

Lots of interesting properties of groups are related to how A(G) sits in $M_{cb}A(G)$:

- *A*(*G*) has a bounded approximate identity if and only if *G* is amenable.
- If *A*(*G*) has an approximate identity, bounded in *M_{cb}A*(*G*), then *G* is *weakly amenable*.
- For example, this is true for SO(1, n) and SU(1, n).
- Let ∧_G be the minimal bounded (in M_{cb}A(G)) for such an approximate identity.
- [Cowling, Haagerup] Then, for G = Sp(1, n), then $\Lambda_G = 2n 1$.
- [Ozawa] All hyperbolic groups are weakly amenable.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Lots of interesting properties of groups are related to how A(G) sits in $M_{cb}A(G)$:

- *A*(*G*) has a bounded approximate identity if and only if *G* is amenable.
- If A(G) has an approximate identity, bounded in M_{cb}A(G), then G is weakly amenable.
- For example, this is true for SO(1, n) and SU(1, n).
- Let ∧_G be the minimal bounded (in M_{cb}A(G)) for such an approximate identity.
- [Cowling, Haagerup] Then, for G = Sp(1, n), then $\Lambda_G = 2n 1$.
- [Ozawa] All hyperbolic groups are weakly amenable.

Lots of interesting properties of groups are related to how A(G) sits in $M_{cb}A(G)$:

- *A*(*G*) has a bounded approximate identity if and only if *G* is amenable.
- If A(G) has an approximate identity, bounded in M_{cb}A(G), then G is weakly amenable.
- For example, this is true for SO(1, n) and SU(1, n).
- Let Λ_G be the minimal bounded (in M_{cb}A(G)) for such an approximate identity.
- [Cowling, Haagerup] Then, for G = Sp(1, n), then $\Lambda_G = 2n 1$.
- [Ozawa] All hyperbolic groups are weakly amenable.

Lots of interesting properties of groups are related to how A(G) sits in $M_{cb}A(G)$:

- *A*(*G*) has a bounded approximate identity if and only if *G* is amenable.
- If A(G) has an approximate identity, bounded in M_{cb}A(G), then G is weakly amenable.
- For example, this is true for SO(1, n) and SU(1, n).
- Let ∧_G be the minimal bounded (in M_{cb}A(G)) for such an approximate identity.
- [Cowling, Haagerup] Then, for G = Sp(1, n), then $\Lambda_G = 2n 1$.
- [Ozawa] All hyperbolic groups are weakly amenable.

Lots of interesting properties of groups are related to how A(G) sits in $M_{cb}A(G)$:

- *A*(*G*) has a bounded approximate identity if and only if *G* is amenable.
- If A(G) has an approximate identity, bounded in M_{cb}A(G), then G is weakly amenable.
- For example, this is true for SO(1, n) and SU(1, n).
- Let Λ_G be the minimal bounded (in M_{cb}A(G)) for such an approximate identity.
- [Cowling, Haagerup] Then, for G = Sp(1, n), then $\Lambda_G = 2n 1$.
- [Ozawa] All hyperbolic groups are weakly amenable.

Lots of interesting properties of groups are related to how A(G) sits in $M_{cb}A(G)$:

- *A*(*G*) has a bounded approximate identity if and only if *G* is amenable.
- If A(G) has an approximate identity, bounded in M_{cb}A(G), then G is weakly amenable.
- For example, this is true for SO(1, n) and SU(1, n).
- Let Λ_G be the minimal bounded (in M_{cb}A(G)) for such an approximate identity.
- [Cowling, Haagerup] Then, for G = Sp(1, n), then $\Lambda_G = 2n 1$.
- [Ozawa] All hyperbolic groups are weakly amenable.

Lots of interesting properties of groups are related to how A(G) sits in $M_{cb}A(G)$:

- *A*(*G*) has a bounded approximate identity if and only if *G* is amenable.
- If A(G) has an approximate identity, bounded in M_{cb}A(G), then G is weakly amenable.
- For example, this is true for SO(1, n) and SU(1, n).
- Let Λ_G be the minimal bounded (in M_{cb}A(G)) for such an approximate identity.
- [Cowling, Haagerup] Then, for G = Sp(1, n), then $\Lambda_G = 2n 1$.
- [Ozawa] All hyperbolic groups are weakly amenable.

Want an abstract way to think about $L^{p}(G)$:

- We regard L[∞] = L[∞](G) and L¹ = L¹(G) as spaces of functions on G, so it makes sense to talk about L[∞] ∩ L¹ and L[∞] + L¹.
- We have inclusions $L^{\infty} \cap L^1 \subseteq L^p \subseteq L^{\infty} + L^1$.
- Let $S = \{x + iy : 0 \le x \le 1\}$ and S_0 be the interior;
- Let *F* be the space of continuous functions *f* : *S* → *L*[∞] + *L*¹ which are analytic on *S*₀;
- We further ensure that t → f(it) is a member of C₀(ℝ, L[∞]) and that t → f(1 + it) is a member of C₀(ℝ, L¹);
- Norm \mathcal{F} by $||f|| = \max(||f(it)||_{\infty}, ||f(1+it)||_{\infty}).$
- Then the map $\mathcal{F} \to L^p$; $f \mapsto f(1/p)$ is a quotient map.

Want an abstract way to think about $L^{p}(G)$:

- We regard L[∞] = L[∞](G) and L¹ = L¹(G) as spaces of functions on G, so it makes sense to talk about L[∞] ∩ L¹ and L[∞] + L¹.
- We have inclusions $L^{\infty} \cap L^1 \subseteq L^p \subseteq L^{\infty} + L^1$.
- Let $S = \{x + iy : 0 \le x \le 1\}$ and S_0 be the interior;
- Let *F* be the space of continuous functions *f* : *S* → *L*[∞] + *L*¹ which are analytic on *S*₀;
- We further ensure that t → f(it) is a member of C₀(ℝ, L[∞]) and that t → f(1 + it) is a member of C₀(ℝ, L¹);
- Norm \mathcal{F} by $||f|| = \max(||f(it)||_{\infty}, ||f(1+it)||_{\infty}).$
- Then the map $\mathcal{F} \to L^p$; $f \mapsto f(1/p)$ is a quotient map.

Want an abstract way to think about $L^{p}(G)$:

- We regard L[∞] = L[∞](G) and L¹ = L¹(G) as spaces of functions on G, so it makes sense to talk about L[∞] ∩ L¹ and L[∞] + L¹.
- We have inclusions $L^{\infty} \cap L^1 \subseteq L^p \subseteq L^{\infty} + L^1$.
- Let $S = \{x + iy : 0 \le x \le 1\}$ and S_0 be the interior;
- Let *F* be the space of continuous functions *f* : *S* → *L*[∞] + *L*¹ which are analytic on *S*₀;
- We further ensure that t → f(it) is a member of C₀(ℝ, L[∞]) and that t → f(1 + it) is a member of C₀(ℝ, L¹);
- Norm \mathcal{F} by $||f|| = \max(||f(it)||_{\infty}, ||f(1+it)||_{\infty}).$
- Then the map $\mathcal{F} \to L^p$; $f \mapsto f(1/p)$ is a quotient map.

Want an abstract way to think about $L^{p}(G)$:

- We regard L[∞] = L[∞](G) and L¹ = L¹(G) as spaces of functions on G, so it makes sense to talk about L[∞] ∩ L¹ and L[∞] + L¹.
- We have inclusions $L^{\infty} \cap L^1 \subseteq L^p \subseteq L^{\infty} + L^1$.
- Let $S = \{x + iy : 0 \le x \le 1\}$ and S_0 be the interior;
- Let *F* be the space of continuous functions *f* : *S* → *L*[∞] + *L*¹ which are analytic on *S*₀;
- We further ensure that t → f(it) is a member of C₀(ℝ, L[∞]) and that t → f(1 + it) is a member of C₀(ℝ, L¹);
- Norm \mathcal{F} by $||f|| = \max(||f(it)||_{\infty}, ||f(1+it)||_{\infty}).$
- Then the map $\mathcal{F} \to L^p$; $f \mapsto f(1/p)$ is a quotient map.

Non-commutative *L^p* spaces

Want an abstract way to think about $L^{p}(G)$:

- We regard L[∞] = L[∞](G) and L¹ = L¹(G) as spaces of functions on G, so it makes sense to talk about L[∞] ∩ L¹ and L[∞] + L¹.
- We have inclusions $L^{\infty} \cap L^1 \subseteq L^p \subseteq L^{\infty} + L^1$.
- Let $S = \{x + iy : 0 \le x \le 1\}$ and S_0 be the interior;
- Let *F* be the space of continuous functions *f* : *S* → *L*[∞] + *L*¹ which are analytic on *S*₀;
- We further ensure that t → f(it) is a member of C₀(ℝ, L[∞]) and that t → f(1 + it) is a member of C₀(ℝ, L¹);
- Norm \mathcal{F} by $||f|| = \max(||f(it)||_{\infty}, ||f(1+it)||_{\infty}).$
- Then the map $\mathcal{F} \to L^p$; $f \mapsto f(1/p)$ is a quotient map.

Non-commutative *L^p* spaces

Want an abstract way to think about $L^{p}(G)$:

- We regard L[∞] = L[∞](G) and L¹ = L¹(G) as spaces of functions on G, so it makes sense to talk about L[∞] ∩ L¹ and L[∞] + L¹.
- We have inclusions $L^{\infty} \cap L^1 \subseteq L^p \subseteq L^{\infty} + L^1$.
- Let $S = \{x + iy : 0 \le x \le 1\}$ and S_0 be the interior;
- Let *F* be the space of continuous functions *f* : *S* → *L*[∞] + *L*¹ which are analytic on *S*₀;
- We further ensure that t → f(it) is a member of C₀(ℝ, L[∞]) and that t → f(1 + it) is a member of C₀(ℝ, L¹);
- Norm \mathcal{F} by $||f|| = \max(||f(it)||_{\infty}, ||f(1+it)||_{\infty}).$

• Then the map $\mathcal{F} \to L^p$; $f \mapsto f(1/p)$ is a quotient map.

Non-commutative L^p spaces

Want an abstract way to think about $L^{p}(G)$:

- We regard L[∞] = L[∞](G) and L¹ = L¹(G) as spaces of functions on G, so it makes sense to talk about L[∞] ∩ L¹ and L[∞] + L¹.
- We have inclusions $L^{\infty} \cap L^1 \subseteq L^p \subseteq L^{\infty} + L^1$.
- Let $S = \{x + iy : 0 \le x \le 1\}$ and S_0 be the interior;
- Let *F* be the space of continuous functions *f* : *S* → *L*[∞] + *L*¹ which are analytic on *S*₀;
- We further ensure that t → f(it) is a member of C₀(ℝ, L[∞]) and that t → f(1 + it) is a member of C₀(ℝ, L¹);
- Norm \mathcal{F} by $||f|| = \max(||f(it)||_{\infty}, ||f(1+it)||_{\infty}).$
- Then the map $\mathcal{F} \to L^p$; $f \mapsto f(1/p)$ is a quotient map.

• We can apply this procedure to any pair of Banach spaces (*E*₀, *E*₁).

- Have to embed E_0 and E_1 into some Hausdorff topological vector space *X*, which allows us to form $E_0 + E_1$ and $E_0 \cap E_1$.
- Let to $E_{\theta} = (E_0, E_1)_{[\theta]} = \{f(\theta) : f \in \mathcal{F}\}$, for $0 \le \theta \le 1$;
- Previously we had $(L^{\infty}, L^1)_{[1/p]} = L^p$.
- (Riesz-Thorin) If $T : E_0 + E_1 \rightarrow E_0 + E_1$ is linear, and restricts to give maps $E_0 \rightarrow E_0$ and $E_1 \rightarrow E_1$, then

$$\|T:E_{\theta}\rightarrow E_{\theta}\|\leq \|T:E_{0}\rightarrow E_{0}\|^{1-\theta}\|T:E_{1}\rightarrow E_{1}\|^{\theta}.$$

イロト イポト イラト イラト

- We can apply this procedure to any pair of Banach spaces (*E*₀, *E*₁).
- Have to embed *E*₀ and *E*₁ into some Hausdorff topological vector space *X*, which allows us to form *E*₀ + *E*₁ and *E*₀ ∩ *E*₁.
- Let to $E_{\theta} = (E_0, E_1)_{[\theta]} = \{f(\theta) : f \in \mathcal{F}\}$, for $0 \le \theta \le 1$;
- Previously we had $(L^{\infty}, L^1)_{[1/p]} = L^p$.
- (Riesz-Thorin) If $T : E_0 + E_1 \rightarrow E_0 + E_1$ is linear, and restricts to give maps $E_0 \rightarrow E_0$ and $E_1 \rightarrow E_1$, then

$$\|T:E_{\theta}\rightarrow E_{\theta}\|\leq \|T:E_{0}\rightarrow E_{0}\|^{1-\theta}\|T:E_{1}\rightarrow E_{1}\|^{\theta}.$$

4 D N 4 B N 4 B N 4 B N

- We can apply this procedure to any pair of Banach spaces (*E*₀, *E*₁).
- Have to embed *E*₀ and *E*₁ into some Hausdorff topological vector space *X*, which allows us to form *E*₀ + *E*₁ and *E*₀ ∩ *E*₁.
- Let to $E_{\theta} = (E_0, E_1)_{[\theta]} = \{f(\theta) : f \in \mathcal{F}\}$, for $0 \le \theta \le 1$;
- Previously we had $(L^{\infty}, L^1)_{[1/p]} = L^p$.
- (Riesz-Thorin) If $T : E_0 + E_1 \rightarrow E_0 + E_1$ is linear, and restricts to give maps $E_0 \rightarrow E_0$ and $E_1 \rightarrow E_1$, then

$$\|T:E_{\theta}\rightarrow E_{\theta}\|\leq \|T:E_{0}\rightarrow E_{0}\|^{1-\theta}\|T:E_{1}\rightarrow E_{1}\|^{\theta}.$$

イロト イポト イモト イモト 一日

- We can apply this procedure to any pair of Banach spaces (*E*₀, *E*₁).
- Have to embed *E*₀ and *E*₁ into some Hausdorff topological vector space *X*, which allows us to form *E*₀ + *E*₁ and *E*₀ ∩ *E*₁.
- Let to $E_{\theta} = (E_0, E_1)_{[\theta]} = \{f(\theta) : f \in \mathcal{F}\}$, for $0 \le \theta \le 1$;
- Previously we had $(L^{\infty}, L^1)_{[1/\rho]} = L^{\rho}$.
- (Riesz-Thorin) If $T : E_0 + E_1 \rightarrow E_0 + E_1$ is linear, and restricts to give maps $E_0 \rightarrow E_0$ and $E_1 \rightarrow E_1$, then

$$\|T:E_{\theta}\rightarrow E_{\theta}\|\leq \|T:E_{0}\rightarrow E_{0}\|^{1-\theta}\|T:E_{1}\rightarrow E_{1}\|^{\theta}.$$

- We can apply this procedure to any pair of Banach spaces (*E*₀, *E*₁).
- Have to embed *E*₀ and *E*₁ into some Hausdorff topological vector space *X*, which allows us to form *E*₀ + *E*₁ and *E*₀ ∩ *E*₁.
- Let to $E_{\theta} = (E_0, E_1)_{[\theta]} = \{f(\theta) : f \in \mathcal{F}\}$, for $0 \le \theta \le 1$;
- Previously we had $(L^{\infty}, L^1)_{[1/p]} = L^p$.
- (Riesz-Thorin) If $T : E_0 + E_1 \rightarrow E_0 + E_1$ is linear, and restricts to give maps $E_0 \rightarrow E_0$ and $E_1 \rightarrow E_1$, then

$$\|T:E_{\theta}\rightarrow E_{\theta}\|\leq \|T:E_{0}\rightarrow E_{0}\|^{1-\theta}\|T:E_{1}\rightarrow E_{1}\|^{\theta}.$$

- Suppose for the moment we have a way to make sense of A(G) + VN(G).
- Then we can form $L^{p}(\hat{G}) = (VN(G), A(G))_{[1/p]}$.
- If G is abelian, then $L^{p}(\hat{G})$ is the L^{p} space of \hat{G} .
- For example, if G is compact, then

$$VN(G) = \prod_{\pi \in \hat{G}} \mathbb{M}_{d(\pi)}, \quad L^p(\hat{G}) = \ell^p - \bigoplus_{\pi} d(\pi)^{1/p} S^p_{d(\pi)},$$

a direct sum of Schatten-classes.

- $S_d^p = \mathbb{M}_d$ with the norm $||x|| = \operatorname{trace}(|x|^p)^{1/p}$.
- But, we want this to be an *A*(*G*) module: not obvious! (Need to think about how irreducible representations tensor).

周レイモレイモ

- Suppose for the moment we have a way to make sense of A(G) + VN(G).
- Then we can form $L^p(\hat{G}) = (VN(G), A(G))_{[1/p]}$.
- If G is abelian, then $L^{p}(\hat{G})$ is the L^{p} space of \hat{G} .
- For example, if G is compact, then

$$VN(G) = \prod_{\pi \in \hat{G}} \mathbb{M}_{d(\pi)}, \quad L^p(\hat{G}) = \ell^p - \bigoplus_{\pi} d(\pi)^{1/p} S^p_{d(\pi)},$$

a direct sum of Schatten-classes.

- $S_d^p = \mathbb{M}_d$ with the norm $||x|| = \operatorname{trace}(|x|^p)^{1/p}$.
- But, we want this to be an *A*(*G*) module: not obvious! (Need to think about how irreducible representations tensor).

A (1) > A (2) > A (2)

- Suppose for the moment we have a way to make sense of A(G) + VN(G).
- Then we can form $L^{p}(\hat{G}) = (VN(G), A(G))_{[1/p]}$.
- If G is abelian, then $L^{p}(\hat{G})$ is the L^{p} space of \hat{G} .
- For example, if G is compact, then

$$VN(G) = \prod_{\pi \in \hat{G}} \mathbb{M}_{d(\pi)}, \quad L^p(\hat{G}) = \ell^p - \bigoplus_{\pi} d(\pi)^{1/p} S^p_{d(\pi)},$$

a direct sum of Schatten-classes.

- $S_d^p = \mathbb{M}_d$ with the norm $||x|| = \operatorname{trace}(|x|^p)^{1/p}$.
- But, we want this to be an *A*(*G*) module: not obvious! (Need to think about how irreducible representations tensor).

A (1) > A (2) > A (2)

- Suppose for the moment we have a way to make sense of A(G) + VN(G).
- Then we can form $L^{p}(\hat{G}) = (VN(G), A(G))_{[1/p]}$.
- If G is abelian, then $L^{p}(\hat{G})$ is the L^{p} space of \hat{G} .
- For example, if G is compact, then

$$\mathcal{VN}(G) = \prod_{\pi \in \hat{G}} \mathbb{M}_{d(\pi)}, \quad L^p(\hat{G}) = \ell^p - \bigoplus_{\pi} d(\pi)^{1/p} \mathcal{S}^p_{d(\pi)},$$

a direct sum of Schatten-classes.

- $S_d^p = \mathbb{M}_d$ with the norm $||x|| = \text{trace}(|x|^p)^{1/p}$.
- But, we want this to be an *A*(*G*) module: not obvious! (Need to think about how irreducible representations tensor).

イベト イモト イモト

- Suppose for the moment we have a way to make sense of A(G) + VN(G).
- Then we can form $L^p(\hat{G}) = (VN(G), A(G))_{[1/p]}$.
- If G is abelian, then $L^{p}(\hat{G})$ is the L^{p} space of \hat{G} .
- For example, if G is compact, then

$$\mathcal{VN}(G) = \prod_{\pi \in \hat{G}} \mathbb{M}_{d(\pi)}, \quad L^p(\hat{G}) = \ell^p - \bigoplus_{\pi} d(\pi)^{1/p} \mathcal{S}^p_{d(\pi)},$$

a direct sum of Schatten-classes.

- $S_d^p = \mathbb{M}_d$ with the norm $||x|| = \operatorname{trace}(|x|^p)^{1/p}$.
- But, we want this to be an *A*(*G*) module: not obvious! (Need to think about how irreducible representations tensor).

< 回 > < 三 > < 三 >

- Suppose for the moment we have a way to make sense of A(G) + VN(G).
- Then we can form $L^p(\hat{G}) = (VN(G), A(G))_{[1/p]}$.
- If G is abelian, then $L^{p}(\hat{G})$ is the L^{p} space of \hat{G} .
- For example, if G is compact, then

$$VN(G) = \prod_{\pi \in \hat{G}} \mathbb{M}_{d(\pi)}, \quad L^p(\hat{G}) = \ell^p - \bigoplus_{\pi} d(\pi)^{1/p} \mathcal{S}^p_{d(\pi)},$$

a direct sum of Schatten-classes.

- $S_d^p = \mathbb{M}_d$ with the norm $||x|| = \operatorname{trace}(|x|^p)^{1/p}$.
- But, we want this to be an *A*(*G*) module: not obvious! (Need to think about how irreducible representations tensor).

Using complex interpolation between a von Neumann algebra and its predual is a well-known way to construct non-commutative L^{ρ} spaces. See work of [Kosaki], [Terp] and [Izumi].

- We eventually want to deal with the completely bounded case: we want L^p(Ĝ) to be an operator space.
- We also hope that $L^2(\hat{G})$ is a Hilbert space;
- so it should be *self-dual*;
- which means it should be Pisier's operator Hilbert space.
- This means we need to actually interpolate between A(G) and $VN(G)^{\text{op}}$: the algebra VN(G) with the opposite multiplication.

A B F A B F

Using complex interpolation between a von Neumann algebra and its predual is a well-known way to construct non-commutative L^{ρ} spaces. See work of [Kosaki], [Terp] and [Izumi].

- We eventually want to deal with the completely bounded case: we want L^p(Ĝ) to be an operator space.
- We also hope that $L^2(\hat{G})$ is a Hilbert space;
- so it should be *self-dual*;
- which means it should be Pisier's operator Hilbert space.
- This means we need to actually interpolate between A(G) and $VN(G)^{\text{op}}$: the algebra VN(G) with the opposite multiplication.

Using complex interpolation between a von Neumann algebra and its predual is a well-known way to construct non-commutative L^{p} spaces. See work of [Kosaki], [Terp] and [Izumi].

- We eventually want to deal with the completely bounded case: we want L^p(Ĝ) to be an operator space.
- We also hope that $L^2(\hat{G})$ is a Hilbert space;
- so it should be *self-dual*;
- which means it should be Pisier's operator Hilbert space.
- This means we need to actually interpolate between A(G) and $VN(G)^{\text{op}}$: the algebra VN(G) with the opposite multiplication.

Using complex interpolation between a von Neumann algebra and its predual is a well-known way to construct non-commutative L^{p} spaces. See work of [Kosaki], [Terp] and [Izumi].

- We eventually want to deal with the completely bounded case: we want L^p(Ĝ) to be an operator space.
- We also hope that $L^2(\hat{G})$ is a Hilbert space;
- so it should be *self-dual*;
- which means it should be Pisier's operator Hilbert space.
- This means we need to actually interpolate between A(G) and $VN(G)^{\text{op}}$: the algebra VN(G) with the opposite multiplication.

Using complex interpolation between a von Neumann algebra and its predual is a well-known way to construct non-commutative L^{ρ} spaces. See work of [Kosaki], [Terp] and [Izumi].

- We eventually want to deal with the completely bounded case: we want L^p(Ĝ) to be an operator space.
- We also hope that $L^2(\hat{G})$ is a Hilbert space;
- so it should be *self-dual*;
- which means it should be Pisier's operator Hilbert space.
- This means we need to actually interpolate between A(G) and $VN(G)^{\text{op}}$: the algebra VN(G) with the opposite multiplication.

Using complex interpolation between a von Neumann algebra and its predual is a well-known way to construct non-commutative L^{ρ} spaces. See work of [Kosaki], [Terp] and [Izumi].

- We eventually want to deal with the completely bounded case: we want L^p(Ĝ) to be an operator space.
- We also hope that $L^2(\hat{G})$ is a Hilbert space;
- so it should be *self-dual*;
- which means it should be Pisier's operator Hilbert space.
- This means we need to actually interpolate between A(G) and $VN(G)^{\text{op}}$: the algebra VN(G) with the opposite multiplication.

4 E N 4 E N

- As VN(G) is in standard position on L²(G), it follows that VN(G)^{op} is isomorphic to VN(G)', the commutant of VN(G).
- But this is *VN_r(G)*, the von Neumann algebra generated by the right regular representation:

 $\rho(s): \xi \mapsto \eta, \quad \eta(t) = \xi(ts) \nabla(s)^{1/2} \qquad (s, t \in G, \xi \in L^2(G)).$

Here ∇ is the modular function on *G*.

- If we follow Terp, then we construct $A(G) \cap VN_r(G)$ by identifying $a \in A(G) \cap C_{00}(G)$ with $\rho(\nabla^{-1/2}a) \in VN_r(G)$.
- By doing some work with left Hilbert algebras, we can show that $a \in A(G) \cap VN_r(G)$ if and only if convolution by \check{a} on the right gives a bounded map on $L^2(G)$.

- As VN(G) is in standard position on L²(G), it follows that VN(G)^{op} is isomorphic to VN(G)', the commutant of VN(G).
- But this is *VN_r(G)*, the von Neumann algebra generated by the right regular representation:

$$ho(\boldsymbol{s}): \boldsymbol{\xi} \mapsto \eta, \quad \eta(t) = \boldsymbol{\xi}(t\boldsymbol{s}) \nabla(\boldsymbol{s})^{1/2} \qquad (\boldsymbol{s}, t \in \boldsymbol{G}, \boldsymbol{\xi} \in L^2(\boldsymbol{G})).$$

Here ∇ is the modular function on *G*.

- If we follow Terp, then we construct A(G) ∩ VN_r(G) by identifying a ∈ A(G) ∩ C₀₀(G) with ρ(∇^{-1/2}a) ∈ VN_r(G).
- By doing some work with left Hilbert algebras, we can show that $a \in A(G) \cap VN_r(G)$ if and only if convolution by \check{a} on the right gives a bounded map on $L^2(G)$.

- As VN(G) is in standard position on L²(G), it follows that VN(G)^{op} is isomorphic to VN(G)', the commutant of VN(G).
- But this is *VN_r(G)*, the von Neumann algebra generated by the right regular representation:

$$ho(\boldsymbol{s}): \boldsymbol{\xi} \mapsto \eta, \quad \eta(t) = \boldsymbol{\xi}(t\boldsymbol{s}) \nabla(\boldsymbol{s})^{1/2} \qquad (\boldsymbol{s}, t \in \boldsymbol{G}, \boldsymbol{\xi} \in L^2(\boldsymbol{G})).$$

Here ∇ is the modular function on *G*.

- If we follow Terp, then we construct A(G) ∩ VN_r(G) by identifying a ∈ A(G) ∩ C₀₀(G) with ρ(∇^{-1/2}a) ∈ VN_r(G).
- By doing some work with left Hilbert algebras, we can show that $a \in A(G) \cap VN_r(G)$ if and only if convolution by \check{a} on the right gives a bounded map on $L^2(G)$.

- As VN(G) is in standard position on L²(G), it follows that VN(G)^{op} is isomorphic to VN(G)', the commutant of VN(G).
- But this is *VN_r(G)*, the von Neumann algebra generated by the right regular representation:

$$ho(\boldsymbol{s}): \xi \mapsto \eta, \quad \eta(t) = \xi(t\boldsymbol{s})
abla(\boldsymbol{s})^{1/2} \qquad (\boldsymbol{s}, t \in \boldsymbol{G}, \xi \in L^2(\boldsymbol{G})).$$

Here ∇ is the modular function on *G*.

- If we follow Terp, then we construct A(G) ∩ VN_r(G) by identifying a ∈ A(G) ∩ C₀₀(G) with ρ(∇^{-1/2}a) ∈ VN_r(G).
- By doing some work with left Hilbert algebras, we can show that $a \in A(G) \cap VN_r(G)$ if and only if convolution by \check{a} on the right gives a bounded map on $L^2(G)$.

- Once we have $A(G) \cap VN_r(G)$, we can form $A(G) + VN_r(G)$ (formally, this will be a subspace of the dual of $A(G) \cap VN_r(G)$).
- We use complex interpolation: $L^{p}(\hat{G}) = (VN_{r}(G), A(G))_{[1/p]}$.
- If G is abelian, then everything is commutative, and we really do just recover L^p(Ĝ).
- As A(G) ∩ VN_r(G) is dense in L^p(Ĝ), we can view L^p(Ĝ) as an abstract Banach space completion of some subspace (actually, ideal) of A(G). So a *function space*.
- Then the *A*(*G*) module action is just multiplication of functions!
- This generalises work of [Forrest, Lee, Samei]: they have different constructions for p > 2 and p < 2, but actually the spaces are isomorphic to L^p(Ĝ) (just via "different" isomorphisms).

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

- Once we have $A(G) \cap VN_r(G)$, we can form $A(G) + VN_r(G)$ (formally, this will be a subspace of the dual of $A(G) \cap VN_r(G)$).
- We use complex interpolation: $L^{p}(\hat{G}) = (VN_{r}(G), A(G))_{[1/p]}$.
- If G is abelian, then everything is commutative, and we really do just recover L^p(Ĝ).
- As A(G) ∩ VN_r(G) is dense in L^p(Ĝ), we can view L^p(Ĝ) as an abstract Banach space completion of some subspace (actually, ideal) of A(G). So a *function space*.
- Then the *A*(*G*) module action is just multiplication of functions!
- This generalises work of [Forrest, Lee, Samei]: they have different constructions for p > 2 and p < 2, but actually the spaces are isomorphic to L^p(Ĝ) (just via "different" isomorphisms).

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

- Once we have $A(G) \cap VN_r(G)$, we can form $A(G) + VN_r(G)$ (formally, this will be a subspace of the dual of $A(G) \cap VN_r(G)$).
- We use complex interpolation: $L^{p}(\hat{G}) = (VN_{r}(G), A(G))_{[1/p]}$.
- If G is abelian, then everything is commutative, and we really do just recover L^p(Ĝ).
- As A(G) ∩ VN_r(G) is dense in L^p(Ĝ), we can view L^p(Ĝ) as an abstract Banach space completion of some subspace (actually, ideal) of A(G). So a *function space*.
- Then the *A*(*G*) module action is just multiplication of functions!
- This generalises work of [Forrest, Lee, Samei]: they have different constructions for p > 2 and p < 2, but actually the spaces are isomorphic to L^p(Ĝ) (just via "different" isomorphisms).

- Once we have $A(G) \cap VN_r(G)$, we can form $A(G) + VN_r(G)$ (formally, this will be a subspace of the dual of $A(G) \cap VN_r(G)$).
- We use complex interpolation: $L^{p}(\hat{G}) = (VN_{r}(G), A(G))_{[1/p]}$.
- If G is abelian, then everything is commutative, and we really do just recover L^p(Ĝ).
- As A(G) ∩ VN_r(G) is dense in L^p(Ĝ), we can view L^p(Ĝ) as an abstract Banach space completion of some subspace (actually, ideal) of A(G). So a *function space*.
- Then the *A*(*G*) module action is just multiplication of functions!
- This generalises work of [Forrest, Lee, Samei]: they have different constructions for p > 2 and p < 2, but actually the spaces are isomorphic to L^p(Ĝ) (just via "different" isomorphisms).

イロト 不得 トイヨト イヨト

- Once we have $A(G) \cap VN_r(G)$, we can form $A(G) + VN_r(G)$ (formally, this will be a subspace of the dual of $A(G) \cap VN_r(G)$).
- We use complex interpolation: $L^{p}(\hat{G}) = (VN_{r}(G), A(G))_{[1/p]}$.
- If G is abelian, then everything is commutative, and we really do just recover L^p(Ĝ).
- As A(G) ∩ VN_r(G) is dense in L^p(Ĝ), we can view L^p(Ĝ) as an abstract Banach space completion of some subspace (actually, ideal) of A(G). So a *function space*.
- Then the *A*(*G*) module action is just multiplication of functions!
- This generalises work of [Forrest, Lee, Samei]: they have different constructions for p > 2 and p < 2, but actually the spaces are isomorphic to L^p(Ĝ) (just via "different" isomorphisms).

- Once we have $A(G) \cap VN_r(G)$, we can form $A(G) + VN_r(G)$ (formally, this will be a subspace of the dual of $A(G) \cap VN_r(G)$).
- We use complex interpolation: $L^{p}(\hat{G}) = (VN_{r}(G), A(G))_{[1/p]}$.
- If G is abelian, then everything is commutative, and we really do just recover L^p(Ĝ).
- As A(G) ∩ VN_r(G) is dense in L^p(Ĝ), we can view L^p(Ĝ) as an abstract Banach space completion of some subspace (actually, ideal) of A(G). So a *function space*.
- Then the A(G) module action is just multiplication of functions!
- This generalises work of [Forrest, Lee, Samei]: they have different constructions for p > 2 and p < 2, but actually the spaces are isomorphic to $L^{p}(\hat{G})$ (just via "different" isomorphisms).

Similarly, *MA*(*G*) and *M_{cb}A*(*G*) act on *L^p*(*G*) by multiplication.
So let *p_n* → 1, and let

$$E=\bigoplus_n L^{p_n}(\hat{G}),$$

say in the ℓ^2 sense (so *E* is reflexive).

- Thus *E* is an A(G) module and an MA(G) module.
- The action of *MA*(*G*) is weak*-continuous, and

 $MA(G) = \{T \in \mathcal{B}(E) : Ta, aT \in A(G) \ (a \in A(G))\}.$

4 **A N A B N A**

- Similarly, MA(G) and $M_{cb}A(G)$ act on $L^{p}(\hat{G})$ by multiplication.
- So let $p_n \rightarrow 1$, and let

$$\mathsf{E}=\bigoplus_n L^{p_n}(\hat{G}),$$

say in the ℓ^2 sense (so *E* is reflexive).

- Thus *E* is an *A*(*G*) module and an *MA*(*G*) module.
- The action of *MA*(*G*) is weak*-continuous, and

 $MA(G) = \{T \in \mathcal{B}(E) : Ta, aT \in A(G) \ (a \in A(G))\}.$

- Similarly, MA(G) and $M_{cb}A(G)$ act on $L^{p}(\hat{G})$ by multiplication.
- So let $p_n \rightarrow 1$, and let

$$\mathsf{E}=\bigoplus_n L^{p_n}(\hat{G}),$$

say in the ℓ^2 sense (so *E* is reflexive).

- Thus *E* is an A(G) module and an MA(G) module.
- The action of *MA*(*G*) is weak*-continuous, and

 $MA(G) = \{T \in \mathcal{B}(E) : Ta, aT \in A(G) \ (a \in A(G))\}.$

- Similarly, MA(G) and $M_{cb}A(G)$ act on $L^{p}(\hat{G})$ by multiplication.
- So let $p_n \rightarrow 1$, and let

$$\mathsf{E}=\bigoplus_n L^{p_n}(\hat{G}),$$

say in the ℓ^2 sense (so *E* is reflexive).

- Thus *E* is an A(G) module and an MA(G) module.
- The action of *MA*(*G*) is weak*-continuous, and

$$MA(G) = \{T \in \mathcal{B}(E) : Ta, aT \in A(G) (a \in A(G))\}.$$

- The actions of *A*(*G*) and *M*_{cb}*A*(*G*) on *L*^p(*Ĝ*) are completely contractive.
- We can give the l²-direct sum of operator spaces a natural operator space structure ([Xu]: use interpolation again!)
- So E becomes an operator space.
- Then *M_{cb}A*(*G*) acts weak*-continuously on *E*, and again

 $M_{cb}A(G) = \{T \in \mathcal{CB}(E) : Ta, aT \in A(G) \ (a \in A(G))\}.$

• Notice that this is the *same E*, just with an operator space structure; we still have

 $MA(G) = \{T \in \mathcal{B}(E) : Ta, aT \in A(G) \ (a \in A(G))\}.$

- The actions of A(G) and M_{cb}A(G) on L^p(Ĝ) are completely contractive.
- We can give the l²-direct sum of operator spaces a natural operator space structure ([Xu]: use interpolation again!)
- So E becomes an operator space.
- Then *M_{cb}A*(*G*) acts weak*-continuously on *E*, and again

 $M_{cb}A(G) = \{T \in \mathcal{CB}(E) : Ta, aT \in A(G) \ (a \in A(G))\}.$

• Notice that this is the *same E*, just with an operator space structure; we still have

 $MA(G) = \{T \in \mathcal{B}(E) : Ta, aT \in A(G) \ (a \in A(G))\}.$

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

- The actions of A(G) and M_{cb}A(G) on L^p(Ĝ) are completely contractive.
- We can give the l²-direct sum of operator spaces a natural operator space structure ([Xu]: use interpolation again!)
- So E becomes an operator space.
- Then *M_{cb}A*(*G*) acts weak*-continuously on *E*, and again

 $M_{cb}A(G) = \{T \in \mathcal{CB}(E) : Ta, aT \in A(G) \ (a \in A(G))\}.$

• Notice that this is the *same E*, just with an operator space structure; we still have

 $MA(G) = \{T \in \mathcal{B}(E) : Ta, aT \in A(G) \ (a \in A(G))\}.$

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

- The actions of A(G) and M_{cb}A(G) on L^p(Ĝ) are completely contractive.
- We can give the l²-direct sum of operator spaces a natural operator space structure ([Xu]: use interpolation again!)
- So E becomes an operator space.
- Then $M_{cb}A(G)$ acts weak*-continuously on E, and again

 $M_{cb}A(G) = \{T \in \mathcal{CB}(E) : Ta, aT \in A(G) \ (a \in A(G))\}.$

• Notice that this is the *same E*, just with an operator space structure; we still have

 $MA(G) = \{T \in \mathcal{B}(E) : Ta, aT \in A(G) \ (a \in A(G))\}.$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

- The actions of A(G) and M_{cb}A(G) on L^p(Ĝ) are completely contractive.
- We can give the l²-direct sum of operator spaces a natural operator space structure ([Xu]: use interpolation again!)
- So E becomes an operator space.
- Then $M_{cb}A(G)$ acts weak*-continuously on E, and again

$$M_{cb}A(G) = \{T \in \mathcal{CB}(E) : Ta, aT \in A(G) \ (a \in A(G))\}.$$

• Notice that this is the *same E*, just with an operator space structure; we still have

$$MA(G) = \{T \in \mathcal{B}(E) : Ta, aT \in A(G) \ (a \in A(G))\}.$$

• Recall that $A(G) = L^2(G) * L^2(G)^{\check{}}$.

- We could instead define $A_p(G) = L^p(G) * L^{p'}(G)$, the Figa-Talamanca–Herz algebra (where 1/p + 1/p' = 1).
- These have similar properties to *A*(*G*), although some results are still conjecture: as working away from a Hilbert space can be tricky.
- We've developed a theory of L^p spaces "on the dual side",
- So we should have $A_p(\hat{G}) = L^p(\hat{G}) \cdot L^{p'}(\hat{G})$ (roughly!)
- Then A₂(Ĝ) is isometrically isomorphic to L¹(G), as we might hope (as if G is abelian, this has to be true!)
- I couldn't decide if A_ρ(Ĝ) is always an algebra: it contains a dense subalgebra.
- See arXiv:0906.5128v2; to appear in Canad. J. Math.

- Recall that $A(G) = L^2(G) * L^2(G)^{\check{}}$.
- We could instead define $A_p(G) = L^p(G) * L^{p'}(G)$, the Figa-Talamanca–Herz algebra (where 1/p + 1/p' = 1).
- These have similar properties to *A*(*G*), although some results are still conjecture: as working away from a Hilbert space can be tricky.
- We've developed a theory of L^p spaces "on the dual side",
- So we should have $A_p(\hat{G}) = L^p(\hat{G}) \cdot L^{p'}(\hat{G})$ (roughly!)
- Then A₂(Ĝ) is isometrically isomorphic to L¹(G), as we might hope (as if G is abelian, this has to be true!)
- I couldn't decide if A_ρ(Ĝ) is always an algebra: it contains a dense subalgebra.
- See arXiv:0906.5128v2; to appear in Canad. J. Math.

- Recall that $A(G) = L^2(G) * L^2(G)^{\check{}}$.
- We could instead define $A_p(G) = L^p(G) * L^{p'}(G)$, the Figa-Talamanca–Herz algebra (where 1/p + 1/p' = 1).
- These have similar properties to *A*(*G*), although some results are still conjecture: as working away from a Hilbert space can be tricky.
- We've developed a theory of L^p spaces "on the dual side",
- So we should have $A_p(\hat{G}) = L^p(\hat{G}) \cdot L^{p'}(\hat{G})$ (roughly!)
- Then A₂(Ĝ) is isometrically isomorphic to L¹(G), as we might hope (as if G is abelian, this has to be true!)
- I couldn't decide if A_ρ(Ĝ) is always an algebra: it contains a dense subalgebra.
- See arXiv:0906.5128v2; to appear in Canad. J. Math.

< 日 > < 同 > < 回 > < 回 > < 回 > <

- Recall that $A(G) = L^2(G) * L^2(G)^{\check{}}$.
- We could instead define $A_p(G) = L^p(G) * L^{p'}(G)$, the Figa-Talamanca–Herz algebra (where 1/p + 1/p' = 1).
- These have similar properties to *A*(*G*), although some results are still conjecture: as working away from a Hilbert space can be tricky.
- We've developed a theory of L^p spaces "on the dual side",
- So we should have $A_p(\hat{G}) = L^p(\hat{G}) \cdot L^{p'}(\hat{G})$ (roughly!)
- Then A₂(Ĝ) is isometrically isomorphic to L¹(G), as we might hope (as if G is abelian, this has to be true!)
- I couldn't decide if A_ρ(Ĝ) is always an algebra: it contains a dense subalgebra.
- See arXiv:0906.5128v2; to appear in Canad. J. Math.

< 日 > < 同 > < 回 > < 回 > < 回 > <

- Recall that $A(G) = L^2(G) * L^2(G)^{\check{}}$.
- We could instead define $A_p(G) = L^p(G) * L^{p'}(G)$, the Figa-Talamanca–Herz algebra (where 1/p + 1/p' = 1).
- These have similar properties to *A*(*G*), although some results are still conjecture: as working away from a Hilbert space can be tricky.
- We've developed a theory of L^p spaces "on the dual side",
- So we should have $A_p(\hat{G}) = L^p(\hat{G}) \cdot L^{p'}(\hat{G})$ (roughly!)
- Then A₂(Ĝ) is isometrically isomorphic to L¹(G), as we might hope (as if G is abelian, this has to be true!)
- I couldn't decide if A_ρ(Ĝ) is always an algebra: it contains a dense subalgebra.
- See arXiv:0906.5128v2; to appear in Canad. J. Math.

イロト 不得 トイヨト イヨト

- Recall that $A(G) = L^2(G) * L^2(G)^{\check{}}$.
- We could instead define $A_p(G) = L^p(G) * L^{p'}(G)$, the Figa-Talamanca–Herz algebra (where 1/p + 1/p' = 1).
- These have similar properties to *A*(*G*), although some results are still conjecture: as working away from a Hilbert space can be tricky.
- We've developed a theory of L^p spaces "on the dual side",
- So we should have $A_p(\hat{G}) = L^p(\hat{G}) \cdot L^{p'}(\hat{G})$ (roughly!)
- Then A₂(Ĝ) is isometrically isomorphic to L¹(G), as we might hope (as if G is abelian, this has to be true!)
- I couldn't decide if A_ρ(Ĝ) is always an algebra: it contains a dense subalgebra.
- See arXiv:0906.5128v2; to appear in Canad. J. Math.

- Recall that $A(G) = L^2(G) * L^2(G)^{\check{}}$.
- We could instead define $A_p(G) = L^p(G) * L^{p'}(G)$, the Figa-Talamanca–Herz algebra (where 1/p + 1/p' = 1).
- These have similar properties to *A*(*G*), although some results are still conjecture: as working away from a Hilbert space can be tricky.
- We've developed a theory of L^p spaces "on the dual side",
- So we should have $A_p(\hat{G}) = L^p(\hat{G}) \cdot L^{p'}(\hat{G})$ (roughly!)
- Then A₂(Ĝ) is isometrically isomorphic to L¹(G), as we might hope (as if G is abelian, this has to be true!)
- I couldn't decide if A_ρ(Ĝ) is always an algebra: it contains a dense subalgebra.
- See arXiv:0906.5128v2; to appear in Canad. J. Math.

- Recall that $A(G) = L^2(G) * L^2(G)^{\check{}}$.
- We could instead define $A_p(G) = L^p(G) * L^{p'}(G)$, the Figa-Talamanca–Herz algebra (where 1/p + 1/p' = 1).
- These have similar properties to *A*(*G*), although some results are still conjecture: as working away from a Hilbert space can be tricky.
- We've developed a theory of L^p spaces "on the dual side",
- So we should have $A_p(\hat{G}) = L^p(\hat{G}) \cdot L^{p'}(\hat{G})$ (roughly!)
- Then A₂(Ĝ) is isometrically isomorphic to L¹(G), as we might hope (as if G is abelian, this has to be true!)
- I couldn't decide if A_ρ(Ĝ) is always an algebra: it contains a dense subalgebra.
- See arXiv:0906.5128v2; to appear in Canad. J. Math.