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Multipliers

Suppose that A is an algebra: how might we embed A into a unital
algebra B?

Could use the unitisation: A⊕ C1.
Natural to ask that A is an ideal in B.
But we don’t want B to be too large: the natural condition is that A
should be essential in B: if I ⊆ B is an ideal then A ∩ I 6= {0}.
For faithful A, this is equivalent to: if b ∈ B and aba′ = 0 for all
a,a′ ∈ A, then b = 0.
Turns out there is a maximal such B, called the multiplier algebra
of A, written M(A). Maximal in the sense that if AE B, then
B → M(A). Clearly M(A) is unique.
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How to build M(A)

We define M(A) to be the collection of maps L,R : A→ A with

L(ab) = L(a)b, R(ab) = aR(b), aL(b) = R(a)b (a,b ∈ A).

If A is faithful (which we shall assume from now on) then we only
need the third condition.
M(A) is a vector space, and an algebra for the product
(L,R)(L′,R′) = (LL′,R′R).
Each a ∈ A defines a pair (La,Ra) ∈ M(A) by La(b) = ab and
Ra(b) = ba.
The homomorphism A→ M(A); a 7→ (La,Ra) identifies A with an
essential ideal in M(A).
If A is a Banach algebra, then natural to ask that L and R are
bounded; but this is automatic by using the Closed Graph
Theorem.
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Multipliers of C∗-algebras

Let A be a C∗-algebra acting non-degenerately on a Hilbert space H.
Then we have that

M(A) = {T ∈ B(H) : Ta,aT ∈ A (a ∈ A)}.

Each such T does define a multiplier in the previous sense: let
L(a) = Ta and R(a) = aT .
Conversely, a bounded approximate identity argument allows you
to build T ∈ B(H) given (L,R) ∈ M(A). Indeed, let T = lim L(eα),
in the weak operator topology, say.
If A = C0(X ) then M(A) = Cb(X ) = C(βX ), so M(A) is a
non-commutative Stone-Čech compactification.
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Locally compact groups

Let G be a locally compact group, equipped with a left invariant Haar
measure. Examples include:

Any discrete group with the counting measure.
Any compact group, where the Haar measure is normalised to be
a probability measure.
The real line R with Lebesgue measure.
Various non-compact Lie groups give interesting examples.
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Group algebras
Turn L1(G) into a Banach algebra by using the convolution product:

(f ∗ g)(s) =

∫
G

f (t)g(t−1s) dt .

We can also convolve finite measures.
Identify M(G) with C0(G)∗, then

〈µ ∗ λ,F 〉 =

∫ ∫
F (st) dµ(s) dλ(t) (µ, λ ∈ M(G),F ∈ C0(G)).

[Wendel] Then we have that

M(L1(G)) = M(G),

where for each (L,R) ∈ M(L1(G)), there exists µ ∈ M(G),

L(a) = µ ∗ a, R(a) = a ∗ µ (a ∈ L1(G)).
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Representing M(G)

This is an idea which goes back to [Young].

For 1 < p <∞, L1(G) acts by convolution on Lp(G).
We can extend this to a convolution action of M(G).
Let pn → 1, and let E =

⊕
n Lpn (G) (say in the `2 sense, so that E

is reflexive).
Then L1(G) and M(G) act on E .
Young observed that the resulting homomorphism
θ : L1(G)→ B(E) is an isometry.
The same is true for θ : M(G)→ B(E), which is also
weak∗-continuous (why I want E reflexive).
We actually get that

θ(M(G)) =
{

T ∈ B(E) : Tθ(f ), θ(f )T ∈ θ(L1(G)) (f ∈ L1(G))
}
.
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The Fourier transform

If G is abelian, then we have the dual group

Ĝ = {χ : G→ T a continuous homomorphism}.

Also we have the Fourier Transform

F : L1(G)→ C0(Ĝ) also L2(G) ∼= L2(Ĝ).

The image F(L1(G)) is the Fourier algebra A(Ĝ).
As L1(G) = L2(G) · L2(G) (pointwise product) we see that
A(Ĝ) = L2(G) ∗ L2(G) = L2(Ĝ) ∗ L2(Ĝ) (convolution).
F extends to M(G), and the image is B(Ĝ) ⊆ Cb(G), the
Fourier-Stieltjes algebra.
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Ĝ = {χ : G→ T a continuous homomorphism}.

Also we have the Fourier Transform
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Operator algebras

The Fourier transform similarly sets up isomorphisms

C0(G) ∼= C∗r (Ĝ) L∞(G) ∼= VN(Ĝ).

Let λ : G→ B(L2(G)) be the left-regular representation,

λ(s) : f 7→ g g(t) = f (s−1t) (f ∈ L2(G), s, t ∈ G).

Integrate this to get a homomorphism λ : L1(G)→ B(L2(G)).

C∗r (G) is the closure of λ(L1(G)).
VN(G) is the WOT closure of λ(L1(G)) (or of λ(G)).
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The Fourier algebra

For a general G, we could hence define A(G) to be:
the predual of VN(G).
Or A(G) = L2(G) ∗ L2(G).
We hope that these agree and that A(G) is an algebra for the
pointwise product.

Remember that a von Neumann algebra always has a predual: the
space of normal functionals.
As VN(G) ⊆ B(L2(G)), and B(L2(G)) is the dual of T (L2(G)), the
trace-class operators on L2(G), we have a quotient map

T (L2(G))� VN(G)∗.
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What is the Fourier algebra? [Eymard]
We do have that A(G) = VN(G)∗ = L2(G) ∗ L2(G) ⊆ C0(G):

(Big Machine⇒) VN(G) is in standard position, so any normal
functional ω on VN(G) is of the form ω = ωξ,η for some
ξ, η ∈ L2(G),

〈x , ω〉 =
(
x(ξ)

∣∣η) (x ∈ VN(G), ξ, η ∈ L2(G)).

As {λ(s) : s ∈ G} generates VN(G), for ω ∈ VN(G)∗, if we know
what 〈λ(s), ω〉 is for all s, then we know ω.
Observe that

〈λ(s), ωξ,η〉 =

∫
G
λ(s)(ξ)(t)η(t) dt =

∫
G
ξ(s−1t)η(t) dt

=

∫
G
η(t)ξ̌(t−1s) dt = (η ∗ ξ̌)(s).

Here η̌(s) = η(s−1) (so I lied in the first line!)
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Why an algebra? [Takesaki-Tatsumma]
There is a normal ∗-homomorphsm
∆ : VN(G)→ VN(G)⊗VN(G) = VN(G ×G) which satisfies

∆(λ(s)) = λ(s)⊗ λ(s) = λ(s, s).

As ∆ is normal, we get a (completely) contractive map
∆∗ : A(G)× A(G)→ A(G).
Turns out that ∆∗ is associative, because ∆ is coassociative.
This obviously induces the pointwise product on A(G), as for
ω, σ ∈ A(G) and s ∈ G,

(ωσ)(s) = 〈λ(s−1),∆∗(ω ⊗ σ)〉
= 〈λ(s−1, s−1), ω ⊗ σ〉 = ω(s)σ(s).

∆ exists as ∆(x) = W ∗(1⊗ x)W for some unitary
W ∈ B(L2(G ×G)); given by W ξ(s, t) = ξ(ts, t).
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Multipliers of the Fourier algebra

As A(G) is commutative, multipliers of A(G) are simply maps T on
A(G) with T (ab) = T (a)b.
As we consider A(G) ⊆ C0(G), we find that every T ∈ MA(G) is
given by some f ∈ Cb(G):

MA(G) = {f ∈ Cb(G) : fa ∈ A(G) (a ∈ A(G))}.

By duality, each T ∈ MA(G) induces a map T ∗ : VN(G)→ VN(G).
If this is completely bounded– that is gives uniformly (in n)
bounded maps 1⊗ T ∗ on Mn ⊗ VN(G)– then T ∈ McbA(G).
[Haagerup, DeCanniere] For f ∈ MA(G), we have that
f ∈ McbA(G) if and only if f ⊗ 1K ∈ MA(G × K ) for all compact K
(or just K = SU(2)).
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Properties of groups via multipliers

Lots of interesting properties of groups are related to how A(G) sits in
McbA(G):

A(G) has a bounded approximate identity if and only if G is
amenable.
If A(G) has an approximate identity, bounded in McbA(G), then G
is weakly amenable.
For example, this is true for SO(1,n) and SU(1,n).
Let ΛG be the minimal bounded (in McbA(G)) for such an
approximate identity.
[Cowling, Haagerup] Then, for G = Sp(1,n), then ΛG = 2n − 1.
[Ozawa] All hyperbolic groups are weakly amenable.

Matthew Daws (Leeds) Multipliers and non-commutative Lp spaces March 2010 14 / 23



Properties of groups via multipliers

Lots of interesting properties of groups are related to how A(G) sits in
McbA(G):

A(G) has a bounded approximate identity if and only if G is
amenable.
If A(G) has an approximate identity, bounded in McbA(G), then G
is weakly amenable.
For example, this is true for SO(1,n) and SU(1,n).
Let ΛG be the minimal bounded (in McbA(G)) for such an
approximate identity.
[Cowling, Haagerup] Then, for G = Sp(1,n), then ΛG = 2n − 1.
[Ozawa] All hyperbolic groups are weakly amenable.

Matthew Daws (Leeds) Multipliers and non-commutative Lp spaces March 2010 14 / 23



Properties of groups via multipliers

Lots of interesting properties of groups are related to how A(G) sits in
McbA(G):

A(G) has a bounded approximate identity if and only if G is
amenable.
If A(G) has an approximate identity, bounded in McbA(G), then G
is weakly amenable.
For example, this is true for SO(1,n) and SU(1,n).
Let ΛG be the minimal bounded (in McbA(G)) for such an
approximate identity.
[Cowling, Haagerup] Then, for G = Sp(1,n), then ΛG = 2n − 1.
[Ozawa] All hyperbolic groups are weakly amenable.

Matthew Daws (Leeds) Multipliers and non-commutative Lp spaces March 2010 14 / 23



Properties of groups via multipliers

Lots of interesting properties of groups are related to how A(G) sits in
McbA(G):

A(G) has a bounded approximate identity if and only if G is
amenable.
If A(G) has an approximate identity, bounded in McbA(G), then G
is weakly amenable.
For example, this is true for SO(1,n) and SU(1,n).
Let ΛG be the minimal bounded (in McbA(G)) for such an
approximate identity.
[Cowling, Haagerup] Then, for G = Sp(1,n), then ΛG = 2n − 1.
[Ozawa] All hyperbolic groups are weakly amenable.

Matthew Daws (Leeds) Multipliers and non-commutative Lp spaces March 2010 14 / 23



Properties of groups via multipliers

Lots of interesting properties of groups are related to how A(G) sits in
McbA(G):

A(G) has a bounded approximate identity if and only if G is
amenable.
If A(G) has an approximate identity, bounded in McbA(G), then G
is weakly amenable.
For example, this is true for SO(1,n) and SU(1,n).
Let ΛG be the minimal bounded (in McbA(G)) for such an
approximate identity.
[Cowling, Haagerup] Then, for G = Sp(1,n), then ΛG = 2n − 1.
[Ozawa] All hyperbolic groups are weakly amenable.

Matthew Daws (Leeds) Multipliers and non-commutative Lp spaces March 2010 14 / 23



Properties of groups via multipliers

Lots of interesting properties of groups are related to how A(G) sits in
McbA(G):

A(G) has a bounded approximate identity if and only if G is
amenable.
If A(G) has an approximate identity, bounded in McbA(G), then G
is weakly amenable.
For example, this is true for SO(1,n) and SU(1,n).
Let ΛG be the minimal bounded (in McbA(G)) for such an
approximate identity.
[Cowling, Haagerup] Then, for G = Sp(1,n), then ΛG = 2n − 1.
[Ozawa] All hyperbolic groups are weakly amenable.

Matthew Daws (Leeds) Multipliers and non-commutative Lp spaces March 2010 14 / 23



Properties of groups via multipliers

Lots of interesting properties of groups are related to how A(G) sits in
McbA(G):

A(G) has a bounded approximate identity if and only if G is
amenable.
If A(G) has an approximate identity, bounded in McbA(G), then G
is weakly amenable.
For example, this is true for SO(1,n) and SU(1,n).
Let ΛG be the minimal bounded (in McbA(G)) for such an
approximate identity.
[Cowling, Haagerup] Then, for G = Sp(1,n), then ΛG = 2n − 1.
[Ozawa] All hyperbolic groups are weakly amenable.

Matthew Daws (Leeds) Multipliers and non-commutative Lp spaces March 2010 14 / 23



Non-commutative Lp spaces

Want an abstract way to think about Lp(G):
We regard L∞ = L∞(G) and L1 = L1(G) as spaces of functions on
G, so it makes sense to talk about L∞ ∩ L1 and L∞ + L1.
We have inclusions L∞ ∩ L1 ⊆ Lp ⊆ L∞ + L1.
Let S = {x + iy : 0 ≤ x ≤ 1} and S0 be the interior;
Let F be the space of continuous functions f : S → L∞ + L1 which
are analytic on S0;
We further ensure that t 7→ f (it) is a member of C0(R,L∞) and
that t 7→ f (1 + it) is a member of C0(R,L1);
Norm F by ‖f‖ = max

(
‖f (it)‖∞, ‖f (1 + it)‖∞

)
.

Then the map F → Lp; f 7→ f (1/p) is a quotient map.

Matthew Daws (Leeds) Multipliers and non-commutative Lp spaces March 2010 15 / 23



Non-commutative Lp spaces

Want an abstract way to think about Lp(G):
We regard L∞ = L∞(G) and L1 = L1(G) as spaces of functions on
G, so it makes sense to talk about L∞ ∩ L1 and L∞ + L1.
We have inclusions L∞ ∩ L1 ⊆ Lp ⊆ L∞ + L1.
Let S = {x + iy : 0 ≤ x ≤ 1} and S0 be the interior;
Let F be the space of continuous functions f : S → L∞ + L1 which
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We further ensure that t 7→ f (it) is a member of C0(R,L∞) and
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Complex interpolation

We can apply this procedure to any pair of Banach spaces
(E0,E1).
Have to embed E0 and E1 into some Hausdorff topological vector
space X , which allows us to form E0 + E1 and E0 ∩ E1.
Let to Eθ = (E0,E1)[θ] = {f (θ) : f ∈ F}, for 0 ≤ θ ≤ 1;

Previously we had (L∞,L1)[1/p] = Lp.
(Riesz-Thorin) If T : E0 + E1 → E0 + E1 is linear, and restricts to
give maps E0 → E0 and E1 → E1, then

‖T : Eθ → Eθ‖ ≤ ‖T : E0 → E0‖1−θ‖T : E1 → E1‖θ.
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For the Fourier algebra

Suppose for the moment we have a way to make sense of
A(G) + VN(G).
Then we can form Lp(Ĝ) = (VN(G),A(G))[1/p].

If G is abelian, then Lp(Ĝ) is the Lp space of Ĝ.
For example, if G is compact, then

VN(G) =
∏
π∈Ĝ

Md(π), Lp(Ĝ) = `p −
⊕
π

d(π)1/pSp
d(π),

a direct sum of Schatten-classes.
Sp

d = Md with the norm ‖x‖ = trace(|x |p)1/p.
But, we want this to be an A(G) module: not obvious! (Need to
think about how irreducible representations tensor).
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Md(π), Lp(Ĝ) = `p −
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A hint from operator spaces

Using complex interpolation between a von Neumann algebra and its
predual is a well-known way to construct non-commutative Lp spaces.
See work of [Kosaki], [Terp] and [Izumi].

We eventually want to deal with the completely bounded case: we
want Lp(Ĝ) to be an operator space.
We also hope that L2(Ĝ) is a Hilbert space;
so it should be self-dual;
which means it should be Pisier’s operator Hilbert space.
This means we need to actually interpolate between A(G) and
VN(G)op: the algebra VN(G) with the opposite multiplication.
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We also hope that L2(Ĝ) is a Hilbert space;
so it should be self-dual;
which means it should be Pisier’s operator Hilbert space.
This means we need to actually interpolate between A(G) and
VN(G)op: the algebra VN(G) with the opposite multiplication.

Matthew Daws (Leeds) Multipliers and non-commutative Lp spaces March 2010 18 / 23



A hint from operator spaces

Using complex interpolation between a von Neumann algebra and its
predual is a well-known way to construct non-commutative Lp spaces.
See work of [Kosaki], [Terp] and [Izumi].

We eventually want to deal with the completely bounded case: we
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Using the right von Neumann algebra

As VN(G) is in standard position on L2(G), it follows that VN(G)op

is isomorphic to VN(G)′, the commutant of VN(G).
But this is VNr (G), the von Neumann algebra generated by the
right regular representation:

ρ(s) : ξ 7→ η, η(t) = ξ(ts)∇(s)1/2 (s, t ∈ G, ξ ∈ L2(G)).

Here ∇ is the modular function on G.
If we follow Terp, then we construct A(G) ∩ VNr (G) by identifying
a ∈ A(G) ∩ C00(G) with ρ(∇−1/2a) ∈ VNr (G).
By doing some work with left Hilbert algebras, we can show that
a ∈ A(G)∩VNr (G) if and only if convolution by ǎ on the right gives
a bounded map on L2(G).
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a bounded map on L2(G).

Matthew Daws (Leeds) Multipliers and non-commutative Lp spaces March 2010 19 / 23



Using the right von Neumann algebra

As VN(G) is in standard position on L2(G), it follows that VN(G)op

is isomorphic to VN(G)′, the commutant of VN(G).
But this is VNr (G), the von Neumann algebra generated by the
right regular representation:

ρ(s) : ξ 7→ η, η(t) = ξ(ts)∇(s)1/2 (s, t ∈ G, ξ ∈ L2(G)).

Here ∇ is the modular function on G.
If we follow Terp, then we construct A(G) ∩ VNr (G) by identifying
a ∈ A(G) ∩ C00(G) with ρ(∇−1/2a) ∈ VNr (G).
By doing some work with left Hilbert algebras, we can show that
a ∈ A(G)∩VNr (G) if and only if convolution by ǎ on the right gives
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Building Lp(Ĝ)

Once we have A(G) ∩ VNr (G), we can form A(G) + VNr (G)
(formally, this will be a subspace of the dual of A(G) ∩ VNr (G)).
We use complex interpolation: Lp(Ĝ) = (VNr (G),A(G))[1/p].
If G is abelian, then everything is commutative, and we really do
just recover Lp(Ĝ).
As A(G) ∩ VNr (G) is dense in Lp(Ĝ), we can view Lp(Ĝ) as an
abstract Banach space completion of some subspace (actually,
ideal) of A(G). So a function space.
Then the A(G) module action is just multiplication of functions!
This generalises work of [Forrest, Lee, Samei]: they have different
constructions for p > 2 and p < 2, but actually the spaces are
isomorphic to Lp(Ĝ) (just via “different” isomorphisms).

Matthew Daws (Leeds) Multipliers and non-commutative Lp spaces March 2010 20 / 23



Building Lp(Ĝ)
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abstract Banach space completion of some subspace (actually,
ideal) of A(G). So a function space.
Then the A(G) module action is just multiplication of functions!
This generalises work of [Forrest, Lee, Samei]: they have different
constructions for p > 2 and p < 2, but actually the spaces are
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isomorphic to Lp(Ĝ) (just via “different” isomorphisms).
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Representing multipliers

Similarly, MA(G) and McbA(G) act on Lp(Ĝ) by multiplication.
So let pn → 1, and let

E =
⊕

n

Lpn (Ĝ),

say in the `2 sense (so E is reflexive).
Thus E is an A(G) module and an MA(G) module.
The action of MA(G) is weak∗-continuous, and

MA(G) = {T ∈ B(E) : Ta,aT ∈ A(G) (a ∈ A(G))}.
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Representing cb multipliers

The actions of A(G) and McbA(G) on Lp(Ĝ) are completely
contractive.
We can give the `2-direct sum of operator spaces a natural
operator space structure ([Xu]: use interpolation again!)
So E becomes an operator space.
Then McbA(G) acts weak∗-continuously on E , and again

McbA(G) = {T ∈ CB(E) : Ta,aT ∈ A(G) (a ∈ A(G))}.

Notice that this is the same E , just with an operator space
structure; we still have

MA(G) = {T ∈ B(E) : Ta,aT ∈ A(G) (a ∈ A(G))}.
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Analogues of the Figa-Talamanca–Herz algebras

Recall that A(G) = L2(G) ∗ L2(G)̌ .
We could instead define Ap(G) = Lp(G) ∗ Lp′

(G)̌ , the
Figa-Talamanca–Herz algebra (where 1/p + 1/p′ = 1).
These have similar properties to A(G), although some results are
still conjecture: as working away from a Hilbert space can be
tricky.
We’ve developed a theory of Lp spaces “on the dual side”,
So we should have Ap(Ĝ) = Lp(Ĝ) · Lp′

(Ĝ) (roughly!)

Then A2(Ĝ) is isometrically isomorphic to L1(G), as we might
hope (as if G is abelian, this has to be true!)
I couldn’t decide if Ap(Ĝ) is always an algebra: it contains a dense
subalgebra.
See arXiv:0906.5128v2; to appear in Canad. J. Math.
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(Ĝ) (roughly!)
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Then A2(Ĝ) is isometrically isomorphic to L1(G), as we might
hope (as if G is abelian, this has to be true!)
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