Multipliers of the Fourier algebra and non-commutative L^{p} spaces

Matthew Daws

Leeds
March 2010

Multipliers

Suppose that A is an algebra: how might we embed A into a unital algebra B ?

- Could use the unitisation: $A \oplus \mathbb{C} 1$.
- Natural to ask that A is an ideal in B.
- But we don't want B to be too large: the natural condition is that A should be essential in B : if $I \subseteq B$ is an ideal then $A \cap I \neq\{0\}$.
- For faithful A, this is equivalent to: if $b \in B$ and $a b a^{\prime}=0$ for all $a, a^{\prime} \in A$, then $b=0$.
- Turns out there is a maximal such B, called the multiplier algebra of A, written $M(A)$. Maximal in the sense that if $A \unlhd B$, then $B \rightarrow M(A)$. Clearly $M(A)$ is unique.

Multipliers

Suppose that A is an algebra: how might we embed A into a unital algebra B ?

- Could use the unitisation: $\boldsymbol{A} \oplus \mathbb{C} 1$.
- Natural to ask that A is an ideal in B.
- But we don't want B to be too large: the natural condition is that A should be essential in B : if $I \subseteq B$ is an ideal then $A \cap I \neq\{0\}$.
- For faithful A this is equivalent to: if $b \in B$ and aba' $=0$ for all $a, a^{\prime} \in A$, then $b=0$.
- Turns out there is a maximal such B, called the multiplier algebra of A, written $M(A)$. Maximal in the sense that if $A \unlhd B$, then $B \rightarrow M(A)$. Clearly $M(A)$ is unique.

Multipliers

Suppose that A is an algebra: how might we embed A into a unital algebra B ?

- Could use the unitisation: $\boldsymbol{A} \oplus \mathbb{C} 1$.
- Natural to ask that A is an ideal in B.
- But we don't want B to be too large: the natural condition is that A should be essential in B : if $I \subseteq B$ is an ideal then $A \cap I \neq\{0\}$. $a, a^{\prime} \in A$, then $b=0$.
- Turns out there is a maximal such B, called the multiplier algebra of A, written $M(A)$. Maximal in the sense that if $A \unlhd B$, then $B \rightarrow M(A)$. Clearly $M(A)$ is unique.

Multipliers

Suppose that A is an algebra: how might we embed A into a unital algebra B ?

- Could use the unitisation: $\boldsymbol{A} \oplus \mathbb{C} 1$.
- Natural to ask that A is an ideal in B.
- But we don't want B to be too large: the natural condition is that A should be essential in B : if $I \subseteq B$ is an ideal then $A \cap I \neq\{0\}$.
- For faithful A, this is equivalent to: if $b \in B$ and $a b a^{\prime}=0$ for all $a, a^{\prime} \in A$, then $b=0$.
of A, written $M(A)$. Maximal in the sense that if $A \unlhd B$, then $B \rightarrow M(A)$. Clearly $M(A)$ is unique.

Multipliers

Suppose that A is an algebra: how might we embed A into a unital algebra B ?

- Could use the unitisation: $\boldsymbol{A} \oplus \mathbb{C} 1$.
- Natural to ask that A is an ideal in B.
- But we don't want B to be too large: the natural condition is that A should be essential in B : if $I \subseteq B$ is an ideal then $A \cap I \neq\{0\}$.
- For faithful A, this is equivalent to: if $b \in B$ and $a b a^{\prime}=0$ for all $a, a^{\prime} \in A$, then $b=0$.
- Turns out there is a maximal such B, called the multiplier algebra of A, written $M(A)$. Maximal in the sense that if $A \unlhd B$, then $B \rightarrow M(A)$. Clearly $M(A)$ is unique.

How to build $M(A)$

We define $M(A)$ to be the collection of maps $L, R: A \rightarrow A$ with

$$
L(a b)=L(a) b, \quad R(a b)=a R(b), \quad a L(b)=R(a) b \quad(a, b \in A) .
$$

- If A is faithful (which we shall assume from now on) then we only need the third condition.
- $M(A)$ is a vector space, and an algebra for the product
$(L, R)\left(L^{\prime}, R^{\prime}\right)=\left(L L^{\prime}, R^{\prime} R\right)$.
- Each $\boldsymbol{a} \in A$ defines a pair $\left(L_{a}, R_{a}\right) \in M(A)$ by $L_{a}(b)=a b$ and $R_{a}(b)=b a$.
- The homomorphism $A \rightarrow M(A) ; a \mapsto\left(L_{a}, R_{a}\right)$ identifies A with an essential ideal in $M(A)$.
- If A is a Banach algebra, then natural to ask that L and R are bounded; but this is automatic by using the Closed Graph
Theorem.

How to build $M(A)$

We define $M(A)$ to be the collection of maps $L, R: A \rightarrow A$ with

$$
L(a b)=L(a) b, \quad R(a b)=a R(b), \quad a L(b)=R(a) b \quad(a, b \in A) .
$$

- If A is faithful (which we shall assume from now on) then we only need the third condition.
- $M(A)$ is a vector space, and an algebra for the product
$(L, R)\left(L^{\prime}, R^{\prime}\right)=\left(L L^{\prime}, R^{\prime} R\right)$.
- Each $\boldsymbol{a} \in A$ defines a pair $\left(L_{a}, R_{a}\right) \in M(A)$ by $L_{a}(b)=a b$ and $R_{a}(b)=b a$.
- The homomorphism $A \rightarrow M(A)$; $a \mapsto\left(L_{a}, R_{a}\right)$ identifies A with an essential ideal in $M(A)$.
- If A is a Banach algebra, then natural to ask that L and R are bounded; but this is automatic by using the Closed Graph
Theorem.

How to build $M(A)$

We define $M(A)$ to be the collection of maps $L, R: A \rightarrow A$ with

$$
L(a b)=L(a) b, \quad R(a b)=a R(b), \quad a L(b)=R(a) b \quad(a, b \in A) .
$$

- If A is faithful (which we shall assume from now on) then we only need the third condition.
- $M(A)$ is a vector space, and an algebra for the product $(L, R)\left(L^{\prime}, R^{\prime}\right)=\left(L L^{\prime}, R^{\prime} R\right)$.
$R_{a}(b)=b a$.
essential ideal in $M(A)$.
- If A is a Banach algebra, then natural to ask that L and R are bounded; but this is automatic by using the Closed Graph
Theorem.

How to build $M(A)$

We define $M(A)$ to be the collection of maps $L, R: A \rightarrow A$ with

$$
L(a b)=L(a) b, \quad R(a b)=a R(b), \quad a L(b)=R(a) b \quad(a, b \in A) .
$$

- If A is faithful (which we shall assume from now on) then we only need the third condition.
- $M(A)$ is a vector space, and an algebra for the product $(L, R)\left(L^{\prime}, R^{\prime}\right)=\left(L L^{\prime}, R^{\prime} R\right)$.
- Each $a \in A$ defines a pair $\left(L_{a}, R_{a}\right) \in M(A)$ by $L_{a}(b)=a b$ and $R_{a}(b)=b a$.
essential ideal in $M(A)$.
- If A is a Banach algebra, then natural to ask that L and R are bounded; but this is automatic by using the Closed Graph
Theorem.

How to build $M(A)$

We define $M(A)$ to be the collection of maps $L, R: A \rightarrow A$ with

$$
L(a b)=L(a) b, \quad R(a b)=a R(b), \quad a L(b)=R(a) b \quad(a, b \in A) .
$$

- If A is faithful (which we shall assume from now on) then we only need the third condition.
- $M(A)$ is a vector space, and an algebra for the product $(L, R)\left(L^{\prime}, R^{\prime}\right)=\left(L L^{\prime}, R^{\prime} R\right)$.
- Each $a \in A$ defines a pair $\left(L_{a}, R_{a}\right) \in M(A)$ by $L_{a}(b)=a b$ and $R_{a}(b)=b a$.
- The homomorphism $A \rightarrow M(A) ; a \mapsto\left(L_{\mathrm{a}}, R_{\mathrm{a}}\right)$ identifies A with an essential ideal in $M(A)$.

How to build $M(A)$

We define $M(A)$ to be the collection of maps $L, R: A \rightarrow A$ with

$$
L(a b)=L(a) b, \quad R(a b)=a R(b), \quad a L(b)=R(a) b \quad(a, b \in A)
$$

- If A is faithful (which we shall assume from now on) then we only need the third condition.
- $M(A)$ is a vector space, and an algebra for the product $(L, R)\left(L^{\prime}, R^{\prime}\right)=\left(L L^{\prime}, R^{\prime} R\right)$.
- Each $a \in A$ defines a pair $\left(L_{a}, R_{a}\right) \in M(A)$ by $L_{a}(b)=a b$ and $R_{a}(b)=b a$.
- The homomorphism $A \rightarrow M(A) ; a \mapsto\left(L_{a}, R_{a}\right)$ identifies A with an essential ideal in $M(A)$.
- If A is a Banach algebra, then natural to ask that L and R are bounded; but this is automatic by using the Closed Graph Theorem.

Multipliers of C*-algebras

Let A be a C^{*}-algebra acting non-degenerately on a Hilbert space H. Then we have that

$$
M(A)=\{T \in \mathcal{B}(H): T a, a T \in A(a \in A)\}
$$

- Each such T does define a multiplier in the previous sense: let $L(a)=T a$ and $R(a)=a T$.
- Conversely, a bounded approximate identity argument allows you to build $T \in \mathcal{B}(H)$ given $(L, R) \in M(A)$. Indeed, let $T=\lim L\left(e_{\alpha}\right)$, in the weak operator topology, say.
- If $A=C_{0}(X)$ then $M(A)=C^{b}(X)=C(\beta X)$, so $M(A)$ is a non-commutative Stone-Čech compactification.

Multipliers of C*-algebras

Let A be a C^{*}-algebra acting non-degenerately on a Hilbert space H. Then we have that

$$
M(A)=\{T \in \mathcal{B}(H): T a, a T \in A(a \in A)\}
$$

- Each such T does define a multiplier in the previous sense: let $L(a)=T a$ and $R(a)=a T$.
- Conversely, a bounded approximate identity argument allows you in the weak operator topology, say. non-commutative Stone-Cech compactification.

Multipliers of C*-algebras

Let A be a C^{*}-algebra acting non-degenerately on a Hilbert space H. Then we have that

$$
M(A)=\{T \in \mathcal{B}(H): T a, a T \in A(a \in A)\}
$$

- Each such T does define a multiplier in the previous sense: let $L(a)=T a$ and $R(a)=a T$.
- Conversely, a bounded approximate identity argument allows you to build $T \in \mathcal{B}(H)$ given $(L, R) \in M(A)$.
- If $A=C_{0}(X)$ then $M(A)=C^{b}(X)=C(\beta X)$, so $M(A)$ is a non-commutative Stone-Čech compactification.

Multipliers of C*-algebras

Let A be a C^{*}-algebra acting non-degenerately on a Hilbert space H. Then we have that

$$
M(A)=\{T \in \mathcal{B}(H): T a, a T \in A(a \in A)\}
$$

- Each such T does define a multiplier in the previous sense: let $L(a)=T a$ and $R(a)=a T$.
- Conversely, a bounded approximate identity argument allows you to build $T \in \mathcal{B}(H)$ given $(L, R) \in M(A)$. Indeed, let $T=\lim L\left(e_{\alpha}\right)$, in the weak operator topology, say.
non-commutative Stone-Čech compactification.

Multipliers of C*-algebras

Let A be a C^{*}-algebra acting non-degenerately on a Hilbert space H. Then we have that

$$
M(A)=\{T \in \mathcal{B}(H): T a, a T \in A(a \in A)\}
$$

- Each such T does define a multiplier in the previous sense: let $L(a)=T a$ and $R(a)=a T$.
- Conversely, a bounded approximate identity argument allows you to build $T \in \mathcal{B}(H)$ given $(L, R) \in M(A)$. Indeed, let $T=\lim L\left(e_{\alpha}\right)$, in the weak operator topology, say.
- If $A=C_{0}(X)$ then $M(A)=C^{b}(X)=C(\beta X)$, so $M(A)$ is a non-commutative Stone-Čech compactification.

Locally compact groups

Let G be a locally compact group, equipped with a left invariant Haar measure. Examples include:

- Any discrete group with the counting measure.
- Any compact group, where the Haar measure is normalised to be a probability measure.
- The real line \mathbb{R} with Lebesgue measure.
- Various non-compact Lie groups give interesting examples.

Locally compact groups

Let G be a locally compact group, equipped with a left invariant Haar measure. Examples include:

- Any discrete group with the counting measure.
- Any compact group, where the Haar measure is normalised to be a probability measure.
- The real line \mathbb{R} with Lebesgue measure.
- Various non-compact Lie groups give interesting examples.

Locally compact groups

Let G be a locally compact group, equipped with a left invariant Haar measure. Examples include:

- Any discrete group with the counting measure.
- Any compact group, where the Haar measure is normalised to be a probability measure.
- The real line \mathbb{R} with Lebesgue measure.
- Various non-compact Lie groups give interesting examples.

Locally compact groups

Let G be a locally compact group, equipped with a left invariant Haar measure. Examples include:

- Any discrete group with the counting measure.
- Any compact group, where the Haar measure is normalised to be a probability measure.
- The real line \mathbb{R} with Lebesgue measure.
- Various non-compact Lie groups give interesting examples.

Locally compact groups

Let G be a locally compact group, equipped with a left invariant Haar measure. Examples include:

- Any discrete group with the counting measure.
- Any compact group, where the Haar measure is normalised to be a probability measure.
- The real line \mathbb{R} with Lebesgue measure.
- Various non-compact Lie groups give interesting examples.

Group algebras

Turn $L^{1}(G)$ into a Banach algebra by using the convolution product:

$$
(f * g)(s)=\int_{G} f(t) g\left(t^{-1} s\right) d t
$$

- We can also convolve finite measures.
- Identify $M(G)$ with $C_{0}(G)^{*}$, then
$\langle\mu * \lambda, F\rangle=\iint F(s t) d \mu(s) d \lambda(t) \quad\left(\mu, \lambda \in M(G), F \in C_{0}(G)\right)$.
- [Wendel] Then we have that

$$
M^{\prime}\left(L^{1}(G)\right)=M(G)
$$

where for each $(L, R) \in M\left(L^{1}(G)\right)$, there exists $\mu \in M(G)$,

Group algebras

Turn $L^{1}(G)$ into a Banach algebra by using the convolution product:

$$
(f * g)(s)=\int_{G} f(t) g\left(t^{-1} s\right) d t
$$

- We can also convolve finite measures.
- Identify $M(G)$ with $C_{0}(G)^{*}$, then

- [Wendel] Then we have that

$$
\left.M M^{\left(L^{1}\right.}(G)\right)=M(G)
$$

where for each $(L, R) \in M\left(L^{1}(G)\right)$, there exists $\mu \in M(G)$, $L^{\prime}(a)=\mu * a, \quad R^{\prime}(a)=a * \mu \quad\left(a \in L^{1}(G)\right)$

Group algebras

Turn $L^{1}(G)$ into a Banach algebra by using the convolution product:

$$
(f * g)(s)=\int_{G} f(t) g\left(t^{-1} s\right) d t
$$

- We can also convolve finite measures.
- Identify $M(G)$ with $C_{0}(G)^{*}$, then
$\langle\mu * \lambda, F\rangle=\iint F(s t) d \mu(s) d \lambda(t) \quad\left(\mu, \lambda \in M(G), F \in C_{0}(G)\right)$.
- [Wendel] Then we have that

$$
M\left(L^{1}(G)\right)=M(G)
$$

where for each $(L, R) \in M\left(L^{1}(G)\right)$, there exists $\mu \in M(G)$, $L(a)=\mu * a, \quad n(a)=a * \mu \quad\left(a \in L^{1}(G)\right)$

Group algebras

Turn $L^{1}(G)$ into a Banach algebra by using the convolution product:

$$
(f * g)(s)=\int_{G} f(t) g\left(t^{-1} s\right) d t
$$

- We can also convolve finite measures.
- Identify $M(G)$ with $C_{0}(G)^{*}$, then

$$
\langle\mu * \lambda, F\rangle=\iint F(s t) d \mu(s) d \lambda(t) \quad\left(\mu, \lambda \in M(G), F \in C_{0}(G)\right) .
$$

- [Wendel] Then we have that

$$
M\left(L^{1}(G)\right)=M(G),
$$

where for each $(L, R) \in M\left(L^{1}(G)\right)$, there exists $\mu \in M(G)$,

$$
L(a)=\mu * a, \quad R(a)=a * \mu \quad\left(a \in L^{1}(G)\right) .
$$

Representing $M(G)$

This is an idea which goes back to [Young].

- For $1<p<\infty, L^{1}(G)$ acts by convolution on $L^{p}(G)$.
- We can extend this to a convolution action of $M(G)$.
- Let $p_{n} \rightarrow 1$, and let $E=\oplus_{n} L^{D_{n}}(G)$ (say in the ℓ^{2} sense, so that E is reflexive).
- Then $L^{1}(G)$ and $M(G)$ act on E.
- Young observed that the resulting homomorphism $\theta: L^{1}(G) \rightarrow \mathcal{B}(E)$ is an isometry.
- The same is true for $\theta: M(G) \rightarrow \mathcal{B}(E)$, which is also weak*-continuous (why I want E reflexive).
- We actually get that

$$
\theta(M(G))=\left\{T \in \mathcal{B}(E): T \theta(f), \theta(f) T \in \theta\left(L^{1}(G)\right)\left(f \in L^{1}(G)\right)\right\} .
$$

Representing $M(G)$

This is an idea which goes back to [Young].

- For $1<p<\infty, L^{1}(G)$ acts by convolution on $L^{p}(G)$.
- We can extend this to a convolution action of $M(G)$.
- Let $p_{n} \rightarrow 1$, and let $E=\oplus_{n} L^{D_{n}}(G)$ (say in the ℓ^{2} sense, so that E is reflexive).
- Then $L^{1}(G)$ and $M(G)$ act on E.
- Young observed that the resulting homomorphism $\theta: L^{1}(G) \rightarrow \mathcal{B}(E)$ is an isometry.
- The same is true for $\theta: M(G) \rightarrow \mathcal{B}(E)$, which is also weak*-continuous (why I want E reflexive).
- We actually get that

$$
\theta(M(G))=\left\{T \in \mathcal{B}(E): T \theta(f), \theta(f) T \in \theta\left(L^{1}(G)\right)\left(f \in L^{1}(G)\right)\right\} .
$$

Representing $M(G)$

This is an idea which goes back to [Young].

- For $1<p<\infty, L^{1}(G)$ acts by convolution on $L^{p}(G)$.
- We can extend this to a convolution action of $M(G)$.
- Let $p_{n} \rightarrow 1$, and let $E=\oplus_{n} L^{L_{n}}(G)$ (say in the ℓ^{2} sense, so that E is reflexive).
- Then $L^{1}(G)$ and $M(G)$ act on E.
- Young observed that the resulting homomorphism $\theta: L^{1}(G) \rightarrow \mathcal{B}(E)$ is an isometry.
- The same is true for $\theta: M(G) \rightarrow B(E)$, which is also weak*-continuous (why I want E reflexive).
- We actually get that

Representing $M(G)$

This is an idea which goes back to [Young].

- For $1<p<\infty, L^{1}(G)$ acts by convolution on $L^{p}(G)$.
- We can extend this to a convolution action of $M(G)$.
- Let $p_{n} \rightarrow 1$, and let $E=\oplus_{n} L^{L_{n}}(G)$ (say in the ℓ^{2} sense, so that E is reflexive).
- Then $L^{1}(G)$ and $M(G)$ act on E.
- Young observed that the resulting homomorphism $\theta: L^{1}(G) \rightarrow \mathcal{B}(E)$ is an isometry.
- The same is true for $\theta: M(G) \rightarrow \mathcal{B}(E)$, which is also weak*-continuous (why I want E reflexive).
- We actually get that

Representing $M(G)$

This is an idea which goes back to [Young].

- For $1<p<\infty, L^{1}(G)$ acts by convolution on $L^{p}(G)$.
- We can extend this to a convolution action of $M(G)$.
- Let $p_{n} \rightarrow 1$, and let $E=\oplus_{n} L^{L_{n}}(G)$ (say in the ℓ^{2} sense, so that E is reflexive).
- Then $L^{1}(G)$ and $M(G)$ act on E.
- Young observed that the resulting homomorphism $\theta: L^{1}(G) \rightarrow \mathcal{B}(E)$ is an isometry.
- The same is true for $\theta: M(G) \rightarrow \mathcal{B}(E)$, which is also weak*-continuous (why I want E reflexive).
- We actually get that

Representing $M(G)$

This is an idea which goes back to [Young].

- For $1<p<\infty, L^{1}(G)$ acts by convolution on $L^{p}(G)$.
- We can extend this to a convolution action of $M(G)$.
- Let $p_{n} \rightarrow 1$, and let $E=\oplus_{n} L^{L_{n}}(G)$ (say in the ℓ^{2} sense, so that E is reflexive).
- Then $L^{1}(G)$ and $M(G)$ act on E.
- Young observed that the resulting homomorphism $\theta: L^{1}(G) \rightarrow \mathcal{B}(E)$ is an isometry.
- The same is true for $\theta: M(G) \rightarrow \mathcal{B}(E)$, which is also weak*-continuous (why I want E reflexive).

Representing $M(G)$

This is an idea which goes back to [Young].

- For $1<p<\infty, L^{1}(G)$ acts by convolution on $L^{p}(G)$.
- We can extend this to a convolution action of $M(G)$.
- Let $p_{n} \rightarrow 1$, and let $E=\bigoplus_{n} L^{p_{n}}(G)$ (say in the ℓ^{2} sense, so that E is reflexive).
- Then $L^{1}(G)$ and $M(G)$ act on E.
- Young observed that the resulting homomorphism $\theta: L^{1}(G) \rightarrow \mathcal{B}(E)$ is an isometry.
- The same is true for $\theta: M(G) \rightarrow \mathcal{B}(E)$, which is also weak*-continuous (why I want E reflexive).
- We actually get that

$$
\theta(M(G))=\left\{T \in \mathcal{B}(E): T \theta(f), \theta(f) T \in \theta\left(L^{1}(G)\right)\left(f \in L^{1}(G)\right)\right\}
$$

The Fourier transform

If G is abelian, then we have the dual group

$$
\hat{G}=\{\chi: G \rightarrow \mathbb{T} \text { a continuous homomorphism }\}
$$

Also we have the Fourier Transform

$$
\mathcal{F}: L^{1}(G) \rightarrow C_{0}(\hat{G}) \quad \text { also } \quad L^{2}(G) \cong L^{2}(\hat{G})
$$

- The image $\mathcal{F}\left(L^{1}(G)\right)$ is the Fourier algebra $A(\hat{G})$.
- As $L^{1}(G)=L^{2}(G) \cdot L^{2}(G)$ (pointwise product) we see that $A(\hat{G})=L^{2}(G) * L^{2}(G)=L^{2}(\hat{G}) * L^{2}(\hat{G})$ (convolution).
- \mathcal{F} extends to $M(G)$, and the image is $B(\hat{G}) \subseteq C^{b}(G)$, the Fourier-Stieltjes algebra.

The Fourier transform

If G is abelian, then we have the dual group

$$
\hat{G}=\{\chi: G \rightarrow \mathbb{T} \text { a continuous homomorphism }\} .
$$

Also we have the Fourier Transform

$$
\mathcal{F}: L^{1}(G) \rightarrow C_{0}(\hat{G}) \quad \text { also } \quad L^{2}(G) \cong L^{2}(\hat{G})
$$

- The image $\mathcal{F}\left(L^{1}(G)\right)$ is the Fourier algebra $A(\hat{G})$.
- As $L^{1}(G)=L^{2}(G) \cdot L^{2}(G)$ (pointwise product) we see that $A(\hat{G})=L^{2}(G) * L^{2}(G)=L^{2}(\hat{G}) * L^{2}(\hat{G})$ (convolution).
- \mathcal{F} extends to $M(G)$, and the image is $B(\hat{G}) \subseteq C^{b}(G)$, the Fourier-Stieltjes algebra.

The Fourier transform

If G is abelian, then we have the dual group

$$
\hat{G}=\{\chi: G \rightarrow \mathbb{T} \text { a continuous homomorphism }\} .
$$

Also we have the Fourier Transform

$$
\mathcal{F}: L^{1}(G) \rightarrow C_{0}(\hat{G}) \quad \text { also } \quad L^{2}(G) \cong L^{2}(\hat{G})
$$

- The image $\mathcal{F}\left(L^{1}(G)\right)$ is the Fourier algebra $A(\hat{G})$.
- As $L^{1}(G)=L^{2}(G) \cdot L^{2}(G)$ (pointwise product) we see that
- \mathcal{F} extends to $M(G)$, and the image is $B(\hat{G}) \subseteq C^{b}(G)$, the Fourier-Stieltjes algebra.

The Fourier transform

If G is abelian, then we have the dual group

$$
\hat{G}=\{\chi: G \rightarrow \mathbb{T} \text { a continuous homomorphism }\} .
$$

Also we have the Fourier Transform

$$
\mathcal{F}: L^{1}(G) \rightarrow C_{0}(\hat{G}) \quad \text { also } \quad L^{2}(G) \cong L^{2}(\hat{G}) .
$$

- The image $\mathcal{F}\left(L^{1}(G)\right)$ is the Fourier algebra $A(\hat{G})$.
- As $L^{1}(G)=L^{2}(G) \cdot L^{2}(G)$ (pointwise product) we see that $A(\hat{G})=L^{2}(G) * L^{2}(G)=L^{2}(\hat{G}) * L^{2}(\hat{G})$ (convolution).

The Fourier transform

If G is abelian, then we have the dual group

$$
\hat{G}=\{\chi: G \rightarrow \mathbb{T} \text { a continuous homomorphism }\} .
$$

Also we have the Fourier Transform

$$
\mathcal{F}: L^{1}(G) \rightarrow C_{0}(\hat{G}) \quad \text { also } \quad L^{2}(G) \cong L^{2}(\hat{G}) .
$$

- The image $\mathcal{F}\left(L^{1}(G)\right)$ is the Fourier algebra $A(\hat{G})$.
- As $L^{1}(G)=L^{2}(G) \cdot L^{2}(G)$ (pointwise product) we see that $A(\hat{G})=L^{2}(G) * L^{2}(G)=L^{2}(\hat{G}) * L^{2}(\hat{G})$ (convolution).
- \mathcal{F} extends to $M(G)$, and the image is $B(\hat{G}) \subseteq C^{b}(G)$, the Fourier-Stieltjes algebra.

Operator algebras

The Fourier transform similarly sets up isomorphisms

$$
C_{0}(G) \cong C_{r}^{*}(\hat{G}) \quad L^{\infty}(G) \cong V N(\hat{G})
$$

Let $\lambda: G \rightarrow \mathcal{B}\left(L^{2}(G)\right)$ be the left-regular representation,

$$
\lambda(s): f \mapsto g \quad g(t)=f\left(s^{-1} t\right) \quad\left(f \in L^{2}(G), s, t \in G\right)
$$

Integrate this to get a homomorphism $\lambda: L^{1}(G) \rightarrow \mathcal{B}\left(L^{2}(G)\right)$.

- $C_{r}^{*}(G)$ is the closure of $\lambda\left(L^{1}(G)\right)$.
- $\operatorname{VN}(G)$ is the WOT closure of $\lambda\left(L^{1}(G)\right.$) (or of $\lambda(G)$).

Operator algebras

The Fourier transform similarly sets up isomorphisms

$$
C_{0}(G) \cong C_{r}^{*}(\hat{G}) \quad L^{\infty}(G) \cong V N(\hat{G})
$$

Let $\lambda: G \rightarrow \mathcal{B}\left(L^{2}(G)\right)$ be the left-regular representation,

$$
\lambda(s): f \mapsto g \quad g(t)=f\left(s^{-1} t\right) \quad\left(f \in L^{2}(G), s, t \in G\right)
$$

Integrate this to get a homomorphism $\lambda: L^{1}(G) \rightarrow \mathcal{B}\left(L^{2}(G)\right)$.

- $C_{r}^{*}(G)$ is the closure of $\lambda\left(L^{1}(G)\right)$.

Operator algebras

The Fourier transform similarly sets up isomorphisms

$$
C_{0}(G) \cong C_{r}^{*}(\hat{G}) \quad L^{\infty}(G) \cong V N(\hat{G})
$$

Let $\lambda: G \rightarrow \mathcal{B}\left(L^{2}(G)\right)$ be the left-regular representation,

$$
\lambda(s): f \mapsto g \quad g(t)=f\left(s^{-1} t\right) \quad\left(f \in L^{2}(G), s, t \in G\right)
$$

Integrate this to get a homomorphism $\lambda: L^{1}(G) \rightarrow \mathcal{B}\left(L^{2}(G)\right)$.

- $C_{r}^{*}(G)$ is the closure of $\lambda\left(L^{1}(G)\right)$.
- $V N(G)$ is the WOT closure of $\lambda\left(L^{1}(G)\right.$) (or of $\lambda(G)$).

The Fourier algebra

For a general G, we could hence define $A(G)$ to be:

- the predual of $V N(G)$.
- $\operatorname{Or} A(G)=L^{2}(G) * L^{2}(G)$.
- We hope that these agree and that $A(G)$ is an algebra for the pointwise product.
Remember that a von Neumann algebra always has a predual: the space of normal functionals.
As $V N(G) \subseteq B\left(L^{2}(G)\right)$, and $B\left(L^{2}(G)\right)$ is the dual of $\mathcal{T}\left(L^{2}(G)\right)$, the trace-class operators on $L^{2}(G)$, we have a quotient map

$$
\mathcal{T}\left(L^{2}(G)\right) \rightarrow V N(G)_{*}
$$

The Fourier algebra

For a general G, we could hence define $A(G)$ to be:

- the predual of $V N(G)$.
- $\operatorname{Or} A(G)=L^{2}(G) * L^{2}(G)$.
- We hope that these agree and that $A(G)$ is an algebra for the pointwise product.
Remember that a von Neumann algebra always has a predual: the space of normal functionals.
As $V N(G) \subseteq \mathcal{B}\left(L^{2}(G)\right)$, and $\mathcal{B}\left(L^{2}(G)\right)$ is the dual of $\mathcal{T}\left(L^{2}(G)\right)$, the trace-class operators on $L^{2}(G)$, we have a quotient map

$$
\mathcal{T}\left(L^{2}(G)\right) \rightarrow V N(G)_{*}
$$

The Fourier algebra

For a general G, we could hence define $A(G)$ to be:

- the predual of $V N(G)$.
- $\operatorname{Or} A(G)=L^{2}(G) * L^{2}(G)$.
- We hope that these agree and that $A(G)$ is an algebra for the pointwise product.
Remember that a von Neumann algebra always has a predual: the space of normal functionals.
As $V N(G) \subseteq \mathcal{B}\left(L^{2}(G)\right)$, and $\mathcal{B}\left(L^{2}(G)\right)$ is the dual of $\mathcal{T}\left(L^{2}(G)\right)$, the trace-class operators on $L^{2}(G)$, we have a quotient map

The Fourier algebra

For a general G, we could hence define $A(G)$ to be:

- the predual of $V N(G)$.
- $\operatorname{Or} A(G)=L^{2}(G) * L^{2}(G)$.
- We hope that these agree and that $A(G)$ is an algebra for the pointwise product.
Remember that a von Neumann algebra always has a predual: the space of normal functionals.
As $V N(G) \subseteq \mathcal{B}\left(L^{2}(G)\right)$, and $\mathcal{B}\left(L^{2}(G)\right)$ is the dual of $\mathcal{T}\left(L^{2}(G)\right)$, the trace-class operators on $L^{2}(G)$, we have a quotient map
$\mathcal{T}\left(L^{2}(G)\right) \rightarrow V N(G)_{*}$

The Fourier algebra

For a general G, we could hence define $A(G)$ to be:

- the predual of $V N(G)$.
- $\operatorname{Or} A(G)=L^{2}(G) * L^{2}(G)$.
- We hope that these agree and that $A(G)$ is an algebra for the pointwise product.
Remember that a von Neumann algebra always has a predual: the space of normal functionals.
As $V N(G) \subseteq B\left(L^{2}(G)\right)$, and $B\left(L^{2}(G)\right)$ is the dual of $I\left(L^{2}(G)\right)$, the
$\mathcal{T}\left(L^{2}(G)\right) \rightarrow V N(G)_{*}$

The Fourier algebra

For a general G, we could hence define $A(G)$ to be:

- the predual of $V N(G)$.
- $\operatorname{Or} A(G)=L^{2}(G) * L^{2}(G)$.
- We hope that these agree and that $A(G)$ is an algebra for the pointwise product.
Remember that a von Neumann algebra always has a predual: the space of normal functionals.
As $V N(G) \subseteq \mathcal{B}\left(L^{2}(G)\right)$, and $\mathcal{B}\left(L^{2}(G)\right)$ is the dual of $\mathcal{T}\left(L^{2}(G)\right)$, the trace-class operators on $L^{2}(G)$, we have a quotient map

$$
\mathcal{T}\left(L^{2}(G)\right) \rightarrow V N(G)_{*} .
$$

What is the Fourier algebra? [Eymard]
We do have that $A(G)=V N(G)_{*}=L^{2}(G) * L^{2}(G) \subseteq C_{0}(G)$:

- (Big Machine \Rightarrow) $V N(G)$ is in standard position, so any normal functional ω on $\operatorname{VN}(G)$ is of the form $\omega=\omega_{\xi, \eta}$ for some $\xi, \eta \in L^{2}(G)$,

$$
\langle x, \omega\rangle=(x(\xi) \mid \eta) \quad\left(x \in V N(G), \xi, \eta \in L^{2}(G)\right)
$$

- As $\{\lambda(s): s \in G\}$ generates $V N(G)$, for $\omega \in V N(G)_{*}$, if we know what $\langle\lambda(s), \omega\rangle$ is for all s, then we know ω.
- Observe that

$$
\begin{aligned}
\left\langle\lambda(s), \omega_{\xi, \eta}\right\rangle & =\int_{G} \lambda(s)(\xi)(t) \overline{\eta(t)} d t=\int_{G} \xi\left(s^{-1} t\right) \overline{\eta(t)} d t \\
& =\int_{G} \overline{\eta(t) \check{\xi}\left(t^{-1} s\right) d t=(\bar{\eta} * \check{\xi})(s) .}
\end{aligned}
$$

- Here $\check{\eta}(s)=\eta\left(s^{-1}\right)$ (so I lied in the first line!)

What is the Fourier algebra? [Eymard]
We do have that $A(G)=V N(G)_{*}=L^{2}(G) * L^{2}(G) \subseteq C_{0}(G)$:

- (Big Machine \Rightarrow) $V N(G)$ is in standard position, so any normal functional ω on $\operatorname{VN}(G)$ is of the form $\omega=\omega_{\xi, \eta}$ for some $\xi, \eta \in L^{2}(G)$,

$$
\langle x, \omega\rangle=(x(\xi) \mid \eta) \quad\left(x \in V N(G), \xi, \eta \in L^{2}(G)\right)
$$

As $\{\lambda(s): s \in G\}$ generates $V N(G)$, for $\omega \in V N(G)_{*}$, if we know what $\langle\lambda(s), \omega\rangle$ is for all s, then we know ω.

- Observe that

- Here $\check{\eta}(s)=\eta\left(s^{-1}\right)$ (so I lied in the first line!)

What is the Fourier algebra? [Eymard]

We do have that $A(G)=V N(G)_{*}=L^{2}(G) * L^{2}(G) \subseteq C_{0}(G)$:

- (Big Machine $\Rightarrow) V N(G)$ is in standard position, so any normal functional ω on $V N(G)$ is of the form $\omega=\omega_{\xi, \eta}$ for some $\xi, \eta \in L^{2}(G)$,

$$
\langle x, \omega\rangle=(x(\xi) \mid \eta) \quad\left(x \in V N(G), \xi, \eta \in L^{2}(G)\right) .
$$

- As $\{\lambda(s): s \in G\}$ generates $V N(G)$, for $\omega \in V N(G)_{*}$, if we know what $\langle\lambda(s), \omega\rangle$ is for all s, then we know ω.

- Here $\check{\eta}(s)=\eta\left(s^{-1}\right)$ (so I lied in the first line!)

What is the Fourier algebra? [Eymard]

We do have that $A(G)=V N(G)_{*}=L^{2}(G) * L^{2}(G) \subseteq C_{0}(G)$:

- (Big Machine $\Rightarrow) V N(G)$ is in standard position, so any normal functional ω on $\operatorname{VN}(G)$ is of the form $\omega=\omega_{\xi, \eta}$ for some $\xi, \eta \in L^{2}(G)$,

$$
\langle x, \omega\rangle=(x(\xi) \mid \eta) \quad\left(x \in V N(G), \xi, \eta \in L^{2}(G)\right) .
$$

- As $\{\lambda(s): s \in G\}$ generates $V N(G)$, for $\omega \in V N(G)_{*}$, if we know what $\langle\lambda(s), \omega\rangle$ is for all s, then we know ω.
- Observe that

$$
\begin{aligned}
\left\langle\lambda(s), \omega_{\xi, \eta}\right\rangle & =\int_{G} \lambda(s)(\xi)(t) \overline{\eta(t)} d t=\int_{G} \xi\left(s^{-1} t\right) \overline{\eta(t)} d t \\
& =\int_{G} \overline{\eta(t) \check{\xi}\left(t^{-1} s\right) d t=(\bar{\eta} * \check{\xi})(s) .}
\end{aligned}
$$

- Here $\check{\eta}(s)=\eta\left(s^{-1}\right)$ (so I lied in the first line!)

Why an algebra? [Takesaki-Tatsumma]

There is a normal $*$-homomorphsm
$\Delta: V N(G) \rightarrow V N(G) \bar{\otimes} V N(G)=V N(G \times G)$ which satisfies

$$
\Delta(\lambda(\boldsymbol{s}))=\lambda(\boldsymbol{s}) \otimes \lambda(\boldsymbol{s})=\lambda(\boldsymbol{s}, \boldsymbol{s}) .
$$

- As Δ is normal, we get a (completely) contractive map $\Delta_{*}: A(G) \times A(G) \rightarrow A(G)$.
- Turns out that Δ_{*} is associative, because Δ is coassociative. - This obviously induces the pointwise product on $A(G)$, as for $\omega, \sigma \in A(G)$ and $s \in G$,

- Δ exists as $\Delta(x)=W^{*}(1 \otimes x) W$ for some unitary $W \in \mathcal{B}\left(L^{2}(G \times G)\right)$; given by $W \xi(s, t)=\xi(t s, t)$.

Why an algebra? [Takesaki-Tatsumma]

There is a normal $*$-homomorphsm
$\Delta: V N(G) \rightarrow V N(G) \bar{\otimes} V N(G)=V N(G \times G)$ which satisfies

$$
\Delta(\lambda(\boldsymbol{s}))=\lambda(\boldsymbol{s}) \otimes \lambda(\boldsymbol{s})=\lambda(\boldsymbol{s}, \boldsymbol{s}) .
$$

- As Δ is normal, we get a (completely) contractive map $\Delta_{*}: A(G) \times A(G) \rightarrow A(G)$.
- Turns out that Δ_{*} is associative, because Δ is coassociative. - This obviously induces the pointwise product on $A(G)$, as for $\omega, \sigma \in A(G)$ and $s \in G$,
- Δ exists as $\Delta(x)=W^{*}(1 \otimes x) W$ for some unitary $W \in \mathcal{B}\left(L^{2}(G \times G)\right)$; given by $W \xi(s, t)=\xi(t s, t)$.

Why an algebra? [Takesaki-Tatsumma]

There is a normal $*$-homomorphsm
$\Delta: V N(G) \rightarrow V N(G) \bar{\otimes} V N(G)=V N(G \times G)$ which satisfies

$$
\Delta(\lambda(s))=\lambda(s) \otimes \lambda(s)=\lambda(s, s)
$$

- As Δ is normal, we get a (completely) contractive map

$$
\Delta_{*}: A(G) \times A(G) \rightarrow A(G)
$$

- Turns out that Δ_{*} is associative, because Δ is coassociative.
\square
- Δ exists as $\Delta(x)=W^{*}(1 \otimes x) W$ for some unitary $W \in \mathcal{B}\left(L^{2}(G \times G)\right)$; given by $W \xi(s, t)=\xi(t s, t)$.

Why an algebra? [Takesaki-Tatsumma]

There is a normal $*$-homomorphsm
$\Delta: V N(G) \rightarrow V N(G) \bar{\otimes} V N(G)=V N(G \times G)$ which satisfies

$$
\Delta(\lambda(s))=\lambda(s) \otimes \lambda(\boldsymbol{s})=\lambda(\boldsymbol{s}, \boldsymbol{s})
$$

- As Δ is normal, we get a (completely) contractive map $\Delta_{*}: A(G) \times A(G) \rightarrow A(G)$.
- Turns out that Δ_{*} is associative, because Δ is coassociative.
- This obviously induces the pointwise product on $A(G)$, as for $\omega, \sigma \in A(G)$ and $s \in G$,

$$
\begin{aligned}
(\omega \sigma)(s) & =\left\langle\lambda\left(s^{-1}\right), \Delta_{*}(\omega \otimes \sigma)\right\rangle \\
& =\left\langle\lambda\left(s^{-1}, s^{-1}\right), \omega \otimes \sigma\right\rangle=\omega(s) \sigma(s)
\end{aligned}
$$

- \triangle exists as $\Delta(x)=W^{*}(1 \otimes x) W$ for some unitary

Why an algebra? [Takesaki-Tatsumma]

There is a normal $*$-homomorphsm
$\Delta: V N(G) \rightarrow V N(G) \bar{\otimes} V N(G)=V N(G \times G)$ which satisfies

$$
\Delta(\lambda(s))=\lambda(s) \otimes \lambda(\boldsymbol{s})=\lambda(\boldsymbol{s}, \boldsymbol{s})
$$

- As Δ is normal, we get a (completely) contractive map $\Delta_{*}: A(G) \times A(G) \rightarrow A(G)$.
- Turns out that Δ_{*} is associative, because Δ is coassociative.
- This obviously induces the pointwise product on $A(G)$, as for $\omega, \sigma \in A(G)$ and $s \in G$,

$$
\begin{aligned}
(\omega \sigma)(s) & =\left\langle\lambda\left(s^{-1}\right), \Delta_{*}(\omega \otimes \sigma)\right\rangle \\
& =\left\langle\lambda\left(s^{-1}, s^{-1}\right), \omega \otimes \sigma\right\rangle=\omega(s) \sigma(s)
\end{aligned}
$$

- Δ exists as $\Delta(x)=W^{*}(1 \otimes x) W$ for some unitary $W \in \mathcal{B}\left(L^{2}(G \times G)\right)$; given by $W \xi(s, t)=\xi(t s, t)$.

Multipliers of the Fourier algebra

- As $A(G)$ is commutative, multipliers of $A(G)$ are simply maps T on $A(G)$ with $T(a b)=T(a) b$.
- As we consider $A(G) \subseteq C_{0}(G)$, we find that every $T \in M A(G)$ is given by some $f \in C^{b}(G)$:

$$
M A(G)=\left\{f \in C^{b}(G): f a \in A(G)(a \in A(G))\right\} .
$$

- By duality, each $T \in M A(G)$ induces a map $T^{*}: V N(G) \rightarrow V N(G)$.
- If this is completely bounded- that is gives uniformly (in n) bounded maps $1 \otimes T^{*}$ on $\mathbb{M}_{n} \otimes V N(G)$ - then $T \in M_{c b} A(G)$.
- [Haagerup, DeCanniere] For $f \in M A(G)$, we have that $f \in M_{c b} A(G)$ if and only if $f \otimes 1_{K} \in M A(G \times K)$ for all compact K (or just $K=S U(2)$).

Multipliers of the Fourier algebra

- As $A(G)$ is commutative, multipliers of $A(G)$ are simply maps T on $A(G)$ with $T(a b)=T(a) b$.
- As we consider $A(G) \subseteq C_{0}(G)$, we find that every $T \in M A(G)$ is given by some $f \in C^{b}(G)$:

$$
M A(G)=\left\{f \in C^{b}(G): f a \in A(G)(a \in A(G))\right\}
$$

- By duality, each $T \in M A(G)$ induces a map $T^{*}: V N(G) \rightarrow V N(G)$.
- If this is completely bounded that is gives uniformly (in n) bounded maps $1 \otimes T^{*}$ on $\mathbb{M}_{n} \otimes V N(G)$ - then $T \in M_{c b} A(G)$.
- [Haagerup, DeCanniere] For $f \in M A(G)$, we have that (or just $K=S U(2)$).

Multipliers of the Fourier algebra

- As $A(G)$ is commutative, multipliers of $A(G)$ are simply maps T on $A(G)$ with $T(a b)=T(a) b$.
- As we consider $A(G) \subseteq C_{0}(G)$, we find that every $T \in M A(G)$ is given by some $f \in C^{b}(G)$:

$$
M A(G)=\left\{f \in C^{b}(G): f a \in A(G)(a \in A(G))\right\}
$$

- By duality, each $T \in M A(G)$ induces a map $T^{*}: V N(G) \rightarrow V N(G)$. bounded maps $1 \otimes T^{*}$ on $\mathbb{M}_{n} \otimes V N(G)$ - then $T \in M_{c b} A(G)$.
- [Haagerup, DeCanniere] For $f \in M A(G)$, we have that

Multipliers of the Fourier algebra

- As $A(G)$ is commutative, multipliers of $A(G)$ are simply maps T on $A(G)$ with $T(a b)=T(a) b$.
- As we consider $A(G) \subseteq C_{0}(G)$, we find that every $T \in M A(G)$ is given by some $f \in C^{b}(G)$:

$$
M A(G)=\left\{f \in C^{b}(G): f a \in A(G)(a \in A(G))\right\}
$$

- By duality, each $T \in M A(G)$ induces a map $T^{*}: V N(G) \rightarrow V N(G)$.
- If this is completely bounded- that is gives uniformly (in n) bounded maps $1 \otimes T^{*}$ on $\mathbb{M}_{n} \otimes V N(G)$ - then $T \in M_{c b} A(G)$.

Multipliers of the Fourier algebra

- As $A(G)$ is commutative, multipliers of $A(G)$ are simply maps T on $A(G)$ with $T(a b)=T(a) b$.
- As we consider $A(G) \subseteq C_{0}(G)$, we find that every $T \in M A(G)$ is given by some $f \in C^{b}(G)$:

$$
M A(G)=\left\{f \in C^{b}(G): f a \in A(G)(a \in A(G))\right\}
$$

- By duality, each $T \in M A(G)$ induces a map $T^{*}: V N(G) \rightarrow V N(G)$.
- If this is completely bounded- that is gives uniformly (in n) bounded maps $1 \otimes T^{*}$ on $\mathbb{M}_{n} \otimes V N(G)$ - then $T \in M_{c b} A(G)$.
- [Haagerup, DeCanniere] For $f \in M A(G)$, we have that $f \in M_{c b} A(G)$ if and only if $f \otimes 1_{K} \in M A(G \times K)$ for all compact K (or just $K=S U(2)$).

Properties of groups via multipliers

Lots of interesting properties of groups are related to how $A(G)$ sits in $M_{c b} A(G)$:

- $A(G)$ has a bounded approximate identity if and only if G is amenable.
- If $A(G)$ has an approximate identity, bounded in $M_{c b} A(G)$, then G is weakly amenable.
- For example, this is true for $S O(1, n)$ and $S U(1, n)$.
- Let Λ_{G} be the minimal bounded (in $M_{c b} A(G)$) for such an approximate identity.
- [Cowling, Haagerup] Then, for $G=S p(1, n)$, then $\wedge_{G}=2 n-1$
- [Ozawa] All hyperbolic groups are weakly amenable.

Properties of groups via multipliers

Lots of interesting properties of groups are related to how $A(G)$ sits in $M_{c b} A(G)$:

- $A(G)$ has a bounded approximate identity if and only if G is amenable.
- If $A(G)$ has an approximate identity, bounded in $M_{c b} A(G)$, then G is weakly amenable.
- For example, this is true for $S O(1, n)$ and $S U(1, n)$.
- Let Λ_{G} be the minimal bounded (in $M_{c b} A(G)$) for such an approximate identity.
- [Cowling, Haagerup] Then, for $G=\operatorname{Sp}(1, n)$, then $\wedge_{G}=2 n-1$
- [Ozawa] All hyperbolic groups are weakly amenable.

Properties of groups via multipliers

Lots of interesting properties of groups are related to how $A(G)$ sits in $M_{c b} A(G)$:

- $A(G)$ has a bounded approximate identity if and only if G is amenable.
- If $A(G)$ has an approximate identity, bounded in $M_{c b} A(G)$, then G is weakly amenable.
- For example, this is true for $S O(1, n)$ and $S U(1, n)$.
- Let Λ_{G} be the minimal bounded (in $M_{c b} A(G)$) for such an approximate identity.
- [Cowling, Haagerup] Then, for $G=\operatorname{Sp}(1, n)$, then $\wedge_{G}=2 n-1$
- [Ozawa] All hyperbolic groups are weakly amenable.

Properties of groups via multipliers

Lots of interesting properties of groups are related to how $A(G)$ sits in $M_{c b} A(G)$:

- $A(G)$ has a bounded approximate identity if and only if G is amenable.
- If $A(G)$ has an approximate identity, bounded in $M_{c b} A(G)$, then G is weakly amenable.
- For example, this is true for $S O(1, n)$ and $S U(1, n)$.
- Let Λ_{G} be the minimal bounded (in $M_{c b} A(G)$) for such an approximate identity.
- [Cowling, Haagerup] Then, for $G=\operatorname{Sp}(1, n)$, then $\wedge_{G}=2 n-1$
- [Ozawa] All hyperbolic groups are weakly amenable.

Properties of groups via multipliers

Lots of interesting properties of groups are related to how $A(G)$ sits in $M_{c b} A(G)$:

- $A(G)$ has a bounded approximate identity if and only if G is amenable.
- If $A(G)$ has an approximate identity, bounded in $M_{c b} A(G)$, then G is weakly amenable.
- For example, this is true for $S O(1, n)$ and $S U(1, n)$.
- Let Λ_{G} be the minimal bounded (in $M_{c b} A(G)$) for such an approximate identity.
- [Cowling, Haagerup] Then, for $G=\operatorname{Sp}(1, n)$, then $\wedge_{G}=2 n-1$
- [Ozawa] All hyperbolic groups are weakly amenable.

Properties of groups via multipliers

Lots of interesting properties of groups are related to how $A(G)$ sits in $M_{c b} A(G)$:

- $A(G)$ has a bounded approximate identity if and only if G is amenable.
- If $A(G)$ has an approximate identity, bounded in $M_{c b} A(G)$, then G is weakly amenable.
- For example, this is true for $S O(1, n)$ and $S U(1, n)$.
- Let Λ_{G} be the minimal bounded (in $M_{c b} A(G)$) for such an approximate identity.
- [Cowling, Haagerup] Then, for $G=S p(1, n)$, then $\wedge_{G}=2 n-1$.
- [Ozawa] All hyperbolic groups are weakly amenable.

Properties of groups via multipliers

Lots of interesting properties of groups are related to how $A(G)$ sits in $M_{c b} A(G)$:

- $A(G)$ has a bounded approximate identity if and only if G is amenable.
- If $A(G)$ has an approximate identity, bounded in $M_{c b} A(G)$, then G is weakly amenable.
- For example, this is true for $S O(1, n)$ and $S U(1, n)$.
- Let Λ_{G} be the minimal bounded (in $M_{c b} A(G)$) for such an approximate identity.
- [Cowling, Haagerup] Then, for $G=S p(1, n)$, then $\wedge_{G}=2 n-1$.
- [Ozawa] All hyperbolic groups are weakly amenable.

Non-commutative L^{p} spaces

Want an abstract way to think about $L^{p}(G)$:

- We regard $L^{\infty}=L^{\infty}(G)$ and $L^{1}=L^{1}(G)$ as spaces of functions on G, so it makes sense to talk about $L^{\infty} \cap L^{1}$ and $L^{\infty}+L^{1}$.
- We have inclusions L°
- Let $\mathcal{S}=\{x+i y: 0 \leq x \leq 1\}$ and \mathcal{S}_{0} be the interior;
- Let \mathcal{F} be the space of continuous functions $f: \mathcal{S} \rightarrow L^{\infty}+L^{1}$ which are analytic on \mathcal{S}_{0};
- We further ensure that $t \mapsto f($ it $)$ is a member of $C_{0}\left(\mathbb{R}, L^{\infty}\right)$ and that $t \mapsto f(1+i t)$ is a member of $C_{0}\left(\mathbb{R}, L^{1}\right)$;
- Norm \mathcal{F} by $\|f\|=\max \left(\|f(i t)\|_{\infty},\|f(1+i t)\|_{\infty}\right)$.
- Then the map $\mathcal{F} \rightarrow L^{p} ; f \mapsto f(1 / p)$ is a quotient map.

Non-commutative L^{p} spaces

Want an abstract way to think about $L^{p}(G)$:

- We regard $L^{\infty}=L^{\infty}(G)$ and $L^{1}=L^{1}(G)$ as spaces of functions on G, so it makes sense to talk about $L^{\infty} \cap L^{1}$ and $L^{\infty}+L^{1}$.
- We have inclusions $L^{\infty} \cap L^{1} \subseteq L^{p} \subseteq L^{\infty}+L^{1}$.
- Let $\mathcal{S}=\{x+i y: 0 \leq x \leq 1\}$ and \mathcal{S}_{0} be the interior;
- Let \mathcal{F} be the space of continuous functions $f: \mathcal{S} \rightarrow L^{\infty}+L^{1}$ which are analytic on \mathcal{S}_{0};
- We further ensure that $t \mapsto f(i t)$ is a member of $C_{0}\left(\mathbb{R}, L^{\infty}\right)$ and that $t \mapsto f(1+i t)$ is a member of $C_{0}\left(\mathbb{R}, L^{1}\right)$;
- Norm \mathcal{F} by $\|f\|=\max \left(\|f(i t)\|_{\infty},\|f(1+i t)\|_{\infty}\right)$
- Then the map $\mathcal{F} \rightarrow L^{p ;} f \mapsto f(1 / p)$ is a quotient map.

Non-commutative L^{p} spaces

Want an abstract way to think about $L^{p}(G)$:

- We regard $L^{\infty}=L^{\infty}(G)$ and $L^{1}=L^{1}(G)$ as spaces of functions on G, so it makes sense to talk about $L^{\infty} \cap L^{1}$ and $L^{\infty}+L^{1}$.
- We have inclusions $L^{\infty} \cap L^{1} \subseteq L^{p} \subseteq L^{\infty}+L^{1}$.
- Let $\mathcal{S}=\{x+i y: 0 \leq x \leq 1\}$ and \mathcal{S}_{0} be the interior;
- Let \mathcal{F} be the space of continuous functions $f: \mathcal{S} \rightarrow L^{\infty}+L^{1}$ which are analytic on \mathcal{S}_{0};
- We further ensure that $t \mapsto f(i t)$ is a member of $C_{0}\left(\mathbb{R}, L^{\infty}\right)$ and
- Norm \mathcal{F} by $\|f\|=\max \left(\|f(i t)\|_{\infty},\|f(1+i t)\|_{\infty}\right)$.
- Then the map $\mathcal{F} \rightarrow L^{p} ; f \mapsto f(1 / p)$ is a quotient map.

Non-commutative L^{p} spaces

Want an abstract way to think about $L^{P}(G)$:

- We regard $L^{\infty}=L^{\infty}(G)$ and $L^{1}=L^{1}(G)$ as spaces of functions on G, so it makes sense to talk about $L^{\infty} \cap L^{1}$ and $L^{\infty}+L^{1}$.
- We have inclusions $L^{\infty} \cap L^{1} \subseteq L^{p} \subseteq L^{\infty}+L^{1}$.
- Let $\mathcal{S}=\{x+i y: 0 \leq x \leq 1\}$ and \mathcal{S}_{0} be the interior;
- Let \mathcal{F} be the space of continuous functions $f: \mathcal{S} \rightarrow L^{\infty}+L^{1}$ which are analytic on \mathcal{S}_{0};
- We further ensure that $t \mapsto f($ it $)$ is a member of $C_{0}\left(\mathbb{R}, L^{\infty}\right)$ and
- Norm \mathcal{F} by $\|f\|=\max \left(\|f(i t)\|_{\infty},\|f(1+i t)\|_{\infty}\right)$
- Then the map $\mathcal{F} \rightarrow L^{p} ; f \mapsto f(1 / p)$ is a quotient map.

Non-commutative L^{p} spaces

Want an abstract way to think about $L^{P}(G)$:

- We regard $L^{\infty}=L^{\infty}(G)$ and $L^{1}=L^{1}(G)$ as spaces of functions on G, so it makes sense to talk about $L^{\infty} \cap L^{1}$ and $L^{\infty}+L^{1}$.
- We have inclusions $L^{\infty} \cap L^{1} \subseteq L^{p} \subseteq L^{\infty}+L^{1}$.
- Let $\mathcal{S}=\{x+i y: 0 \leq x \leq 1\}$ and \mathcal{S}_{0} be the interior;
- Let \mathcal{F} be the space of continuous functions $f: \mathcal{S} \rightarrow L^{\infty}+L^{1}$ which are analytic on \mathcal{S}_{0};
- We further ensure that $t \mapsto f(i t)$ is a member of $C_{0}\left(\mathbb{R}, L^{\infty}\right)$ and that $t \mapsto f(1+i t)$ is a member of $C_{0}\left(\mathbb{R}, L^{1}\right)$;

Non-commutative L^{p} spaces

Want an abstract way to think about $L^{P}(G)$:

- We regard $L^{\infty}=L^{\infty}(G)$ and $L^{1}=L^{1}(G)$ as spaces of functions on G, so it makes sense to talk about $L^{\infty} \cap L^{1}$ and $L^{\infty}+L^{1}$.
- We have inclusions $L^{\infty} \cap L^{1} \subseteq L^{p} \subseteq L^{\infty}+L^{1}$.
- Let $\mathcal{S}=\{x+i y: 0 \leq x \leq 1\}$ and \mathcal{S}_{0} be the interior;
- Let \mathcal{F} be the space of continuous functions $f: \mathcal{S} \rightarrow L^{\infty}+L^{1}$ which are analytic on \mathcal{S}_{0};
- We further ensure that $t \mapsto f(i t)$ is a member of $C_{0}\left(\mathbb{R}, L^{\infty}\right)$ and that $t \mapsto f(1+i t)$ is a member of $C_{0}\left(\mathbb{R}, L^{1}\right)$;
- Norm \mathcal{F} by $\|f\|=\max \left(\|f(i t)\|_{\infty},\|f(1+i t)\|_{\infty}\right)$.

Non-commutative L^{p} spaces

Want an abstract way to think about $L^{p}(G)$:

- We regard $L^{\infty}=L^{\infty}(G)$ and $L^{1}=L^{1}(G)$ as spaces of functions on G, so it makes sense to talk about $L^{\infty} \cap L^{1}$ and $L^{\infty}+L^{1}$.
- We have inclusions $L^{\infty} \cap L^{1} \subseteq L^{p} \subseteq L^{\infty}+L^{1}$.
- Let $\mathcal{S}=\{x+i y: 0 \leq x \leq 1\}$ and \mathcal{S}_{0} be the interior;
- Let \mathcal{F} be the space of continuous functions $f: \mathcal{S} \rightarrow L^{\infty}+L^{1}$ which are analytic on \mathcal{S}_{0};
- We further ensure that $t \mapsto f(i t)$ is a member of $C_{0}\left(\mathbb{R}, L^{\infty}\right)$ and that $t \mapsto f(1+i t)$ is a member of $C_{0}\left(\mathbb{R}, L^{1}\right)$;
- Norm \mathcal{F} by $\|f\|=\max \left(\|f(i t)\|_{\infty},\|f(1+i t)\|_{\infty}\right)$.
- Then the map $\mathcal{F} \rightarrow L^{p} ; f \mapsto f(1 / p)$ is a quotient map.

Complex interpolation

- We can apply this procedure to any pair of Banach spaces $\left(E_{0}, E_{1}\right)$.
- Have to embed E_{0} and E_{1} into some Hausdorff topological vector space X, which allows us to form $E_{0}+E_{1}$ and $E_{0} \cap E_{1}$
- Let to $E_{\theta}=\left(E_{0}, E_{1}\right)_{|\theta|}=\{f(\theta): f \in \mathcal{F}\}$, for $0 \leq \theta \leq 1$;
- Previously we had $\left(L^{\infty}, L^{1}\right)_{[1 / p]}=L^{p}$.
- (Riesz-Thorin) If $T: E_{0}+E_{1} \rightarrow E_{0}+E_{1}$ is linear, and restricts to give maps $E_{0} \rightarrow E_{0}$ and $E_{1} \rightarrow E_{1}$, then

$$
\left\|T: E_{\theta} \rightarrow E_{\theta}\right\| \leq\left\|T: E_{0} \rightarrow E_{0}\right\|^{1-\theta}\left\|T: E_{1} \rightarrow E_{1}\right\|^{\theta} .
$$

Complex interpolation

- We can apply this procedure to any pair of Banach spaces $\left(E_{0}, E_{1}\right)$.
- Have to embed E_{0} and E_{1} into some Hausdorff topological vector space X, which allows us to form $E_{0}+E_{1}$ and $E_{0} \cap E_{1}$.
- Previously we had $\left(L^{\infty}, L^{1}\right)_{[1 / p]}=L^{p}$.
- (Riesz-Thorin) If $T: E_{0}+E_{1} \rightarrow E_{0}+E_{1}$ is linear, and restricts to give maps $E_{0} \rightarrow E_{0}$ and $E_{1} \rightarrow E_{1}$, then

$$
\left\|T: E_{\theta} \rightarrow E_{\theta}\right\| \leq\left\|T: E_{0} \rightarrow E_{0}\right\|^{1-\theta}\left\|T: E_{1} \rightarrow E_{1}\right\|^{\theta} .
$$

Complex interpolation

- We can apply this procedure to any pair of Banach spaces $\left(E_{0}, E_{1}\right)$.
- Have to embed E_{0} and E_{1} into some Hausdorff topological vector space X, which allows us to form $E_{0}+E_{1}$ and $E_{0} \cap E_{1}$.
- Let to $E_{\theta}=\left(E_{0}, E_{1}\right)_{[\theta]}=\{f(\theta): f \in \mathcal{F}\}$, for $0 \leq \theta \leq 1$;
- Previously we had $\left(L^{\infty}, L^{1}\right)_{[1 / p]}=L^{p}$.
- (Riesz-Thorin) If $T: E_{0}+E_{1} \rightarrow E_{0}+E_{1}$ is linear, and restricts to give maps $E_{0} \rightarrow E_{0}$ and $E_{1} \rightarrow E_{1}$, then

$$
\left\|T: \Xi_{\theta} \rightarrow \Xi_{\theta}\right\| \leq\left\|T: \Xi_{0} \rightarrow \Xi_{0}\right\|^{1-\theta}\left\|T: E_{1} \rightarrow E_{1}\right\|^{\theta} .
$$

Complex interpolation

- We can apply this procedure to any pair of Banach spaces $\left(E_{0}, E_{1}\right)$.
- Have to embed E_{0} and E_{1} into some Hausdorff topological vector space X, which allows us to form $E_{0}+E_{1}$ and $E_{0} \cap E_{1}$.
- Let to $E_{\theta}=\left(E_{0}, E_{1}\right)_{[\theta]}=\{f(\theta): f \in \mathcal{F}\}$, for $0 \leq \theta \leq 1$;
- Previously we had $\left(L^{\infty}, L^{1}\right)_{[1 / p]}=L^{p}$.
give maps $E_{0} \rightarrow E_{0}$ and $E_{1} \rightarrow E_{1}$, then

$$
\left\|T: E_{\theta} \rightarrow E_{\theta}\right\| \leq\left\|T: E_{0} \rightarrow E_{0}\right\|^{1-\theta}\left\|T: E_{1} \rightarrow E_{1}\right\|^{\theta} .
$$

Complex interpolation

- We can apply this procedure to any pair of Banach spaces $\left(E_{0}, E_{1}\right)$.
- Have to embed E_{0} and E_{1} into some Hausdorff topological vector space X, which allows us to form $E_{0}+E_{1}$ and $E_{0} \cap E_{1}$.
- Let to $E_{\theta}=\left(E_{0}, E_{1}\right)_{[\theta]}=\{f(\theta): f \in \mathcal{F}\}$, for $0 \leq \theta \leq 1$;
- Previously we had $\left(L^{\infty}, L^{1}\right)_{[1 / p]}=L^{p}$.
- (Riesz-Thorin) If $T: E_{0}+E_{1} \rightarrow E_{0}+E_{1}$ is linear, and restricts to give maps $E_{0} \rightarrow E_{0}$ and $E_{1} \rightarrow E_{1}$, then

$$
\left\|T: E_{\theta} \rightarrow E_{\theta}\right\| \leq\left\|T: E_{0} \rightarrow E_{0}\right\|^{1-\theta}\left\|T: E_{1} \rightarrow E_{1}\right\|^{\theta}
$$

For the Fourier algebra

- Suppose for the moment we have a way to make sense of $A(G)+V N(G)$.
- Then we can form $L^{p}(\hat{G})=(V N(G), A(G))_{[1 / p]}$.
- If G is abelian, then $L^{p}(\hat{G})$ is the L^{p} space of \hat{G}.
- For example, if G is compact, then

a direct sum of Schatten-classes.
- $S_{d}^{p}=\mathbb{M}_{d}$ with the norm $\|x\|=\operatorname{trace}\left(|x|^{p}\right)^{1 / p}$.
- But, we want this to be an $A(G)$ module: not obvious! (Need to think about how irreducible representations tensor).

For the Fourier algebra

- Suppose for the moment we have a way to make sense of $A(G)+V N(G)$.
- Then we can form $L^{p}(\hat{G})=(V N(G), A(G))_{[1 / p]}$.
- If G is abelian, then $L^{P}(\hat{G})$ is the L^{P} space of \hat{G}.
- For example, if G is compact, then

a direct sum of Schatten-classes.
- $S_{d}^{p}=\mathbb{M}_{d}$ with the norm $\|x\|=\operatorname{trace}\left(|x|^{p}\right)^{1 / p}$.
- But, we want this to be an $A(G)$ module: not obvious! (Need to think about how irreducible representations tensor).

For the Fourier algebra

- Suppose for the moment we have a way to make sense of $A(G)+V N(G)$.
- Then we can form $L^{p}(\hat{G})=(V N(G), A(G))_{[1 / p]}$.
- If G is abelian, then $L^{p}(\hat{G})$ is the L^{p} space of \hat{G}.
- For example, if G is compact, then

a direct sum of Schatten-classes.
- $S_{d^{\prime}}^{p}=\mathbb{M}_{d}$ with the norm $\|x\|=\operatorname{trace}\left(|x|^{p}\right)^{1 / p}$.
- But, we want this to be an $A(G)$ module: not obvious! (Need to think about how irreducible representations tensor).

For the Fourier algebra

- Suppose for the moment we have a way to make sense of $A(G)+V N(G)$.
- Then we can form $L^{p}(\hat{G})=(V N(G), A(G))_{[1 / p]}$.
- If G is abelian, then $L^{p}(\hat{G})$ is the L^{p} space of \hat{G}.
- For example, if G is compact, then

$$
V N(G)=\prod_{\pi \in \hat{G}} \mathbb{M}_{d(\pi)}, \quad L^{p}(\hat{G})=\ell^{p}-\bigoplus_{\pi} d(\pi)^{1 / p} \mathcal{S}_{d(\pi)}^{p}
$$

a direct sum of Schatten-classes.

- But, we want this to be an $A(G)$ module: not obvious! (Need to think about how irreducible representations tensor).

For the Fourier algebra

- Suppose for the moment we have a way to make sense of $A(G)+V N(G)$.
- Then we can form $L^{p}(\hat{G})=(V N(G), A(G))_{[1 / p]}$.
- If G is abelian, then $L^{p}(\hat{G})$ is the L^{p} space of \hat{G}.
- For example, if G is compact, then

$$
V N(G)=\prod_{\pi \in \hat{G}} \mathbb{M}_{d(\pi)}, \quad L^{p}(\hat{G})=\ell^{p}-\bigoplus_{\pi} d(\pi)^{1 / p} \mathcal{S}_{d(\pi)}^{p}
$$

a direct sum of Schatten-classes.

- $S_{d}^{p}=\mathbb{M}_{d}$ with the norm $\|x\|=\operatorname{trace}\left(|x|^{p}\right)^{1 / p}$.
think about how irreducible representations tensor).

For the Fourier algebra

- Suppose for the moment we have a way to make sense of $A(G)+V N(G)$.
- Then we can form $L^{p}(\hat{G})=(V N(G), A(G))_{[1 / p]}$.
- If G is abelian, then $L^{p}(\hat{G})$ is the L^{p} space of \hat{G}.
- For example, if G is compact, then

$$
V N(G)=\prod_{\pi \in \hat{G}} \mathbb{M}_{d(\pi)}, \quad L^{p}(\hat{G})=\ell^{p}-\bigoplus_{\pi} d(\pi)^{1 / p} \mathcal{S}_{d(\pi)}^{p}
$$

a direct sum of Schatten-classes.

- $S_{d}^{p}=\mathbb{M}_{d}$ with the norm $\|x\|=\operatorname{trace}\left(|x|^{p}\right)^{1 / p}$.
- But, we want this to be an $A(G)$ module: not obvious! (Need to think about how irreducible representations tensor).

A hint from operator spaces

Using complex interpolation between a von Neumann algebra and its predual is a well-known way to construct non-commutative L^{p} spaces. See work of [Kosaki], [Terp] and [Izumi].

- We eventually want to deal with the completely bounded case: we want $L^{p}(\hat{G})$ to be an operator space.
- We also hope that $L^{2}(\hat{G})$ is a Hilbert space;
- so it should be self-dual;
- which means it should be Pisier's operator Hilbert space.
- This means we need to actually interpolate between $A(G)$ and $V N(G)^{o p}$: the algebra $V N(G)$ with the opposite multiplication.

A hint from operator spaces

Using complex interpolation between a von Neumann algebra and its predual is a well-known way to construct non-commutative L^{p} spaces. See work of [Kosaki], [Terp] and [Izumi].

- We eventually want to deal with the completely bounded case: we want $L^{p}(\hat{G})$ to be an operator space.
- We also hope that $L^{2}(\hat{G})$ is a Hilbert space;
- so it should be self-dual;
- which means it should be Pisier's operator Hilbert space.
- This means we need to actually interpolate between $A(G)$ and $V N(G)^{\text {op: }}$: the algebra $V N(G)$ with the opposite multiplication.

A hint from operator spaces

Using complex interpolation between a von Neumann algebra and its predual is a well-known way to construct non-commutative L^{p} spaces. See work of [Kosaki], [Terp] and [Izumi].

- We eventually want to deal with the completely bounded case: we want $L^{p}(\hat{G})$ to be an operator space.
- We also hope that $L^{2}(\hat{G})$ is a Hilbert space;
- so it should be self-dual;
- which means it should be Pisier's operator Hilbert space.
- This means we need to actually interpolate between $A(G)$ and $V N(G)^{\text {op: }}$: the algebra $V N(G)$ with the opposite multiplication.

A hint from operator spaces

Using complex interpolation between a von Neumann algebra and its predual is a well-known way to construct non-commutative L^{p} spaces. See work of [Kosaki], [Terp] and [Izumi].

- We eventually want to deal with the completely bounded case: we want $L^{p}(\hat{G})$ to be an operator space.
- We also hope that $L^{2}(\hat{G})$ is a Hilbert space;
- so it should be self-dual;
- which means it should be Pisier's operator Hilbert space.
- This means we need to actually interpolate between $A(G)$ and $V N(G)^{\text {op: }}$: the algebra $V N(G)$ with the opposite multiplication.

A hint from operator spaces

Using complex interpolation between a von Neumann algebra and its predual is a well-known way to construct non-commutative L^{p} spaces. See work of [Kosaki], [Terp] and [Izumi].

- We eventually want to deal with the completely bounded case: we want $L^{p}(\hat{G})$ to be an operator space.
- We also hope that $L^{2}(\hat{G})$ is a Hilbert space;
- so it should be self-dual;
- which means it should be Pisier's operator Hilbert space.
- This means we need to actually interpolate between $A(G)$ and $V N(G)^{\mathrm{op}}$: the algebra $V N(G)$ with the opposite multiplication.

A hint from operator spaces

Using complex interpolation between a von Neumann algebra and its predual is a well-known way to construct non-commutative L^{p} spaces. See work of [Kosaki], [Terp] and [Izumi].

- We eventually want to deal with the completely bounded case: we want $L^{p}(\hat{G})$ to be an operator space.
- We also hope that $L^{2}(\hat{G})$ is a Hilbert space;
- so it should be self-dual;
- which means it should be Pisier's operator Hilbert space.
- This means we need to actually interpolate between $A(G)$ and $V N(G)^{\mathrm{op}}$: the algebra $V N(G)$ with the opposite multiplication.

Using the right von Neumann algebra

- As $V N(G)$ is in standard position on $L^{2}(G)$, it follows that $V N(G)^{\text {op }}$ is isomorphic to $V N(G)^{\prime}$, the commutant of $V N(G)$.
- But this is $V N_{r}(G)$, the von Neumann algebra generated by the right regular representation:

Here ∇ is the modular function on G.

- If we follow Terp, then we construct $A(G) \cap V N_{r}(G)$ by identifying $a \in A(G) \cap C_{00}(G)$ with $\rho\left(\nabla^{-1 / 2} a\right) \in V N_{r}(G)$.
- By doing some work with left Hilbert algebras, we can show that $a \in A(G) \cap V N_{r}(G)$ if and only if convolution by ǎ on the right gives a bounded map on $L^{2}(G)$.

Using the right von Neumann algebra

- As $V N(G)$ is in standard position on $L^{2}(G)$, it follows that $V N(G)^{\text {op }}$ is isomorphic to $V N(G)^{\prime}$, the commutant of $V N(G)$.
- But this is $V N_{r}(G)$, the von Neumann algebra generated by the right regular representation:

$$
\rho(s): \xi \mapsto \eta, \quad \eta(t)=\xi(t s) \nabla(s)^{1 / 2} \quad\left(s, t \in G, \xi \in L^{2}(G)\right)
$$

Here ∇ is the modular function on G.

- If we follow Terp, then we construct $A(G) \cap V N_{r}(G)$ by identifying

Using the right von Neumann algebra

- As $V N(G)$ is in standard position on $L^{2}(G)$, it follows that $V N(G)^{\mathrm{op}}$ is isomorphic to $V N(G)^{\prime}$, the commutant of $V N(G)$.
- But this is $V N_{r}(G)$, the von Neumann algebra generated by the right regular representation:

$$
\rho(s): \xi \mapsto \eta, \quad \eta(t)=\xi(t s) \nabla(s)^{1 / 2} \quad\left(s, t \in G, \xi \in L^{2}(G)\right)
$$

Here ∇ is the modular function on G.

- If we follow Terp, then we construct $A(G) \cap V N_{r}(G)$ by identifying $a \in A(G) \cap C_{00}(G)$ with $\rho\left(\nabla^{-1 / 2} a\right) \in V N_{r}(G)$.
a bounded map on $L^{2}(G)$

Using the right von Neumann algebra

- As $V N(G)$ is in standard position on $L^{2}(G)$, it follows that $V N(G)^{\text {op }}$ is isomorphic to $V N(G)^{\prime}$, the commutant of $V N(G)$.
- But this is $V N_{r}(G)$, the von Neumann algebra generated by the right regular representation:

$$
\rho(s): \xi \mapsto \eta, \quad \eta(t)=\xi(t s) \nabla(s)^{1 / 2} \quad\left(s, t \in G, \xi \in L^{2}(G)\right)
$$

Here ∇ is the modular function on G.

- If we follow Terp, then we construct $A(G) \cap V N_{r}(G)$ by identifying $a \in A(G) \cap C_{00}(G)$ with $\rho\left(\nabla^{-1 / 2} a\right) \in V N_{r}(G)$.
- By doing some work with left Hilbert algebras, we can show that $a \in A(G) \cap V N_{r}(G)$ if and only if convolution by ǎ on the right gives a bounded map on $L^{2}(G)$.

Building $L^{p}(\hat{G})$

- Once we have $A(G) \cap V N_{r}(G)$, we can form $A(G)+V N_{r}(G)$ (formally, this will be a subspace of the dual of $A(G) \cap V N_{r}(G)$).
- We use complex interpolation: $L^{P}(\hat{G})=\left(V N_{r}(G), A(G)\right)_{[1 / p]}$.
- If G is abelian, then everything is commutative, and we really do just recover $L^{p}(\hat{G})$.
- As $A(G) \cap V N_{r}(G)$ is dense in $L^{P}(\hat{G})$, we can view $L^{P}(\hat{G})$ as an abstract Banach space completion of some subspace (actually, ideal) of $A(G)$. So a function space.
- Then the $A(G)$ module action is just multiplication of functions!
- This generalises work of [Forrest, Lee, Samei]: they have different constructions for $p_{a}>2$ and $p<2$, but actually the spaces are isomorphic to $L^{P}(\hat{G})$ (just via "different" isomorphisms).

Building $L^{p}(\hat{G})$

- Once we have $A(G) \cap V N_{r}(G)$, we can form $A(G)+V N_{r}(G)$ (formally, this will be a subspace of the dual of $A(G) \cap V N_{r}(G)$).
- We use complex interpolation: $L^{p}(\hat{G})=\left(V N_{r}(G), A(G)\right)_{[1 / p]}$.
- If G is abelian, then everything is commutative, and we really do just recover $L^{p}(\hat{G})$.
- As $A(G) \cap V N_{r}(G)$ is dense in $L^{P}(G)$, we can view $L^{P}(G)$ as an abstract Banach space completion of some subspace (actually, ideal) of $A(G)$. So a function space.
- Then the $A(G)$ module action is just multiplication of functions!
- This generalises work of [Forrest, Lee, Samei]: they have different constructions for $p>2$ and $p<2$, but actually the spaces are isomorphic to $L^{p}(\hat{G})$ (just via "different" isomorphisms).

Building $L^{P}(\hat{G})$

- Once we have $A(G) \cap V N_{r}(G)$, we can form $A(G)+V N_{r}(G)$ (formally, this will be a subspace of the dual of $A(G) \cap V N_{r}(G)$).
- We use complex interpolation: $L^{p}(\hat{G})=\left(V N_{r}(G), A(G)\right)_{[1 / p]}$.
- If G is abelian, then everything is commutative, and we really do just recover $L^{p}(\hat{G})$.
- As $A(G) \cap V N_{r}(G)$ is dense in $L^{P}(\hat{G})$, we can view $L^{P}(\hat{G})$ as an
abstract Banach space completion of some subspace (actually,
ideal) of $A(G)$. So a function space.
- Then the $A(G)$ module action is just multiplication of functions!
- This generalises work of [Forrest, Lee, Samei]: they have different constructions for $p>2$ and $p<2$, but actually the spaces are isomorphic to $L^{p}(\hat{G})$ (just via "different" isomorphisms).

Building $L^{P}(\hat{G})$

- Once we have $A(G) \cap V N_{r}(G)$, we can form $A(G)+V N_{r}(G)$ (formally, this will be a subspace of the dual of $A(G) \cap V N_{r}(G)$).
- We use complex interpolation: $L^{p}(\hat{G})=\left(V N_{r}(G), A(G)\right)_{[1 / p]}$.
- If G is abelian, then everything is commutative, and we really do just recover $L^{p}(\hat{G})$.
- As $A(G) \cap V N_{r}(G)$ is dense in $L^{p}(\hat{G})$, we can view $L^{p}(\hat{G})$ as an abstract Banach space completion of some subspace (actually, ideal) of $A(G)$. So a function space.
- This generalises work of [Forrest, Lee, Samei]: they have different constructions for $p>2$ and $p<2$, but actually the spaces are isomorphic to $L^{P}(\hat{G})$ (just via "different" isomorphisms)

Building $L^{P}(\hat{G})$

- Once we have $A(G) \cap V N_{r}(G)$, we can form $A(G)+V N_{r}(G)$ (formally, this will be a subspace of the dual of $A(G) \cap V N_{r}(G)$).
- We use complex interpolation: $L^{p}(\hat{G})=\left(V N_{r}(G), A(G)\right)_{[1 / p]}$.
- If G is abelian, then everything is commutative, and we really do just recover $L^{p}(\hat{G})$.
- As $A(G) \cap V N_{r}(G)$ is dense in $L^{p}(\hat{G})$, we can view $L^{p}(\hat{G})$ as an abstract Banach space completion of some subspace (actually, ideal) of $A(G)$. So a function space.
- Then the $A(G)$ module action is just multiplication of functions!
constructions for $p>2$ and $p<2$, but actually the spaces are isomorphic to $L^{p}(\hat{G})$ (just via "different" isomorphisms).

Building $L^{p}(\hat{G})$

- Once we have $A(G) \cap V N_{r}(G)$, we can form $A(G)+V N_{r}(G)$ (formally, this will be a subspace of the dual of $A(G) \cap V N_{r}(G)$).
- We use complex interpolation: $L^{p}(\hat{G})=\left(V N_{r}(G), A(G)\right)_{[1 / p]}$.
- If G is abelian, then everything is commutative, and we really do just recover $L^{p}(\hat{G})$.
- As $A(G) \cap V N_{r}(G)$ is dense in $L^{p}(\hat{G})$, we can view $L^{p}(\hat{G})$ as an abstract Banach space completion of some subspace (actually, ideal) of $A(G)$. So a function space.
- Then the $A(G)$ module action is just multiplication of functions!
- This generalises work of [Forrest, Lee, Samei]: they have different constructions for $p>2$ and $p<2$, but actually the spaces are isomorphic to $L^{p}(\hat{G})$ (just via "different" isomorphisms).

Representing multipliers

- Similarly, $M A(G)$ and $M_{c b} A(G)$ act on $L^{p}(\hat{G})$ by multiplication.
- So let $p_{n} \rightarrow 1$, and let

$$
E=\bigoplus_{n} L^{p_{n}}(\hat{G}),
$$

say in the ℓ^{2} sense (so E is reflexive).

- Thus E is an $A(G)$ module and an $M A(G)$ module.
- The action of $\operatorname{MA}(G)$ is weak*-continuous, and

$$
\operatorname{MA}(G)=\{T \in \mathcal{B}(E): T a, a T \in A(G)(a \in A(G))\} .
$$

Representing multipliers

- Similarly, $M A(G)$ and $M_{c b} A(G)$ act on $L^{p}(\hat{G})$ by multiplication.
- So let $p_{n} \rightarrow 1$, and let

$$
E=\bigoplus_{n} L^{p_{n}}(\hat{G})
$$

say in the ℓ^{2} sense (so E is reflexive).

- Thus E is an $A(G)$ module and an $M A(G)$ module.
- The action of $M A(G)$ is weak*-continuous, and

$$
M A(G)=\{T \in B(E): T a, a T \in A(G)(a \in A(G))\} .
$$

Representing multipliers

- Similarly, $M A(G)$ and $M_{c b} A(G)$ act on $L^{p}(\hat{G})$ by multiplication.
- So let $p_{n} \rightarrow 1$, and let

$$
E=\bigoplus_{n} L^{p_{n}}(\hat{G})
$$

say in the ℓ^{2} sense (so E is reflexive).

- Thus E is an $A(G)$ module and an $M A(G)$ module.
- The action of $\operatorname{MA}(G)$ is weak*-continuous, and

$$
M A(G)=\{T \in \mathcal{B}(E): T a, a T \in A(G)(a \in A(G))\}
$$

Representing multipliers

- Similarly, $M A(G)$ and $M_{c b} A(G)$ act on $L^{p}(\hat{G})$ by multiplication.
- So let $p_{n} \rightarrow 1$, and let

$$
E=\bigoplus_{n} L^{p_{n}}(\hat{G})
$$

say in the ℓ^{2} sense (so E is reflexive).

- Thus E is an $A(G)$ module and an $M A(G)$ module.
- The action of $M A(G)$ is weak*-continuous, and

$$
M A(G)=\{T \in \mathcal{B}(E): T a, a T \in A(G)(a \in A(G))\}
$$

Representing cb multipliers

- The actions of $A(G)$ and $M_{c b} A(G)$ on $L^{p}(\hat{G})$ are completely contractive.
- We can give the ℓ^{2}-direct sum of operator spaces a natural operator space structure ([Xu]: use interpolation again!)
- So E becomes an operator space.
- Then $M_{c b} A(G)$ acts weak*-continuously on E, and again

$$
M_{c b} A(G)=\{T \in \mathcal{C B}(E): T a, a T \in A(G)(a \in A(G))\}
$$

- Notice that this is the same E, just with an operator space structure; we still have

$$
M A(G)=\{T \in \mathcal{B}(E): T a, a T \in A(G)(a \in A(G))\} .
$$

Representing cb multipliers

- The actions of $A(G)$ and $M_{c b} A(G)$ on $L^{p}(\hat{G})$ are completely contractive.
- We can give the ℓ^{2}-direct sum of operator spaces a natural operator space structure ([Xu]: use interpolation again!)
- So E becomes an operator space.
- Then $M_{c b} A(G)$ acts weak*-continuously on E, and again

$$
M_{c b} A(G)=\{T \in C B(E): T a, a T \in A(G)(a \in A(G))\}
$$

- Notice that this is the same E, just with an operator space structure; we still have

$$
M A(G)=\{T \in \mathcal{B}(E): T a, a T \in A(G)(a \in A(G))\} .
$$

Representing cb multipliers

- The actions of $A(G)$ and $M_{c b} A(G)$ on $L^{p}(\hat{G})$ are completely contractive.
- We can give the ℓ^{2}-direct sum of operator spaces a natural operator space structure ([Xu]: use interpolation again!)
- So E becomes an operator space.
- Then $M_{c b} A(G)$ acts weak*-continuously on E, and again

$$
M_{c b} A(G)=\{T \in \mathcal{C B}(E): T a, a T \in A(G)(a \in A(G))\}
$$

- Notice that this is the same E, just with an operator space structure; we still have

$$
M A(G)=\{T \in \mathcal{B}(E): T a, a T \in A(G)(a \in A(G))\} .
$$

Representing cb multipliers

- The actions of $A(G)$ and $M_{c b} A(G)$ on $L^{p}(\hat{G})$ are completely contractive.
- We can give the ℓ^{2}-direct sum of operator spaces a natural operator space structure ([Xu]: use interpolation again!)
- So E becomes an operator space.
- Then $M_{c b} A(G)$ acts weak*-continuously on E, and again

$$
M_{c b} A(G)=\{T \in \mathcal{C B}(E): T a, a T \in A(G)(a \in A(G))\} .
$$

- Notice that this is the same E, just with an operator space structure; we still have

$$
M A(G)=\{T \in \mathcal{B}(E): T a, a T \in A(G)(a \in A(G))\}
$$

Representing cb multipliers

- The actions of $A(G)$ and $M_{c b} A(G)$ on $L^{p}(\hat{G})$ are completely contractive.
- We can give the ℓ^{2}-direct sum of operator spaces a natural operator space structure ([Xu]: use interpolation again!)
- So E becomes an operator space.
- Then $M_{c b} A(G)$ acts weak*-continuously on E, and again

$$
M_{c b} A(G)=\{T \in \mathcal{C B}(E): T a, a T \in A(G)(a \in A(G))\} .
$$

- Notice that this is the same E, just with an operator space structure; we still have

$$
M A(G)=\{T \in \mathcal{B}(E): T a, a T \in A(G)(a \in A(G))\} .
$$

Analogues of the Figa-Talamanca-Herz algebras

- Recall that $A(G)=L^{2}(G) * L^{2}(G)^{\vee}$.
- We could instead define $A_{p}(G)=L^{P}(G) * L^{P^{\prime}}(G)^{r}$, the Figa-Talamanca-Herz algebra (where $1 / p+1 / p^{\prime}=1$).
- These have similar properties to $A(G)$, although some results are still conjecture: as working away from a Hilbert space can be tricky.
- We've developed a theory of L^{P} spaces "on the dual side",
- So we should have $A_{p}(\hat{G})=L^{P}(\hat{G}) \cdot L^{P^{\prime}}(\hat{G})$ (roughly!)
- Then $A_{2}(\hat{G})$ is isometrically isomorphic to $L^{1}(G)$, as we might hope (as if G is abelian, this has to be true!)
- I couldn't decide if $A_{p}(G)$ is always an algebra: it contains a dense subalgebra.
- See arXiv:0906.5128v2; to appear in Canad. J. Math.

Analogues of the Figa-Talamanca-Herz algebras

- Recall that $A(G)=L^{2}(G) * L^{2}(G)^{\vee}$.
- We could instead define $A_{p}(G)=L^{p}(G) * L^{p^{\prime}}(G)^{r}$, the Figa-Talamanca-Herz algebra (where $1 / p+1 / p^{\prime}=1$).
- These have similar properties to $A(G)$, although some results are still conjecture: as working away from a Hilbert space can be tricky.
- We've developed a theory of L^{P} spaces "on the dual side"
- So we should have $A_{p}(\hat{G})=L^{p}(\hat{G}) \cdot L^{p^{\prime}}(\hat{G})$ (roughly!)
- Then $A_{2}(\hat{G})$ is isometrically isomorphic to $L^{1}(G)$, as we might hope (as if G is abelian, this has to be true!)
- I couldn't decide if $A_{p}(\hat{G})$ is always an algebra: it contains a dense subalgebra.
- See arXiv:0906.5128v2; to appear in Canad. J. Math.

Analogues of the Figa-Talamanca-Herz algebras

- Recall that $A(G)=L^{2}(G) * L^{2}(G)^{v}$.
- We could instead define $A_{p}(G)=L^{p}(G) * L^{p^{\prime}}(G)^{r}$, the Figa-Talamanca-Herz algebra (where $1 / p+1 / p^{\prime}=1$).
- These have similar properties to $A(G)$, although some results are still conjecture: as working away from a Hilbert space can be tricky.
- We've developed a theory of L^{P} spaces "on the dual side",
- So we should have $A_{p}(\hat{G})=L^{p}(\hat{G}) \cdot L^{p^{\prime}}(\hat{G})$ (roughly!)
- Then $A_{2}(\hat{G})$ is isometrically isomorphic to $L^{1}(G)$, as we might hope (as if G is abelian, this has to be true!)
- I couldn't decide if $A_{p}(\hat{G})$ is always an algebra: it contains a dense subalgebra.
- See arXiv:0906.5128v2; to appear in Canad. J. Math.

Analogues of the Figa-Talamanca-Herz algebras

- Recall that $A(G)=L^{2}(G) * L^{2}(G)^{v}$.
- We could instead define $A_{p}(G)=L^{p}(G) * L^{p^{\prime}}(G)^{r}$, the Figa-Talamanca-Herz algebra (where $1 / p+1 / p^{\prime}=1$).
- These have similar properties to $A(G)$, although some results are still conjecture: as working away from a Hilbert space can be tricky.
- We've developed a theory of L^{p} spaces "on the dual side",
- So we should have $A_{p}(\hat{G})=L^{P}(\hat{G}) \cdot L^{P^{\prime}}(\hat{G})$ (roughly!)
Then $A_{2}(\hat{G})$ is isometrically isomorphic to $L^{1}(G)$, as we might
hope (as if G is abelian, this has to be true!) subalgebra.
- See arXiv:0906.5128v2; to appear in Canad. J. Math.

Analogues of the Figa-Talamanca-Herz algebras

- Recall that $A(G)=L^{2}(G) * L^{2}(G)^{v}$.
- We could instead define $A_{p}(G)=L^{p}(G) * L^{p^{\prime}}(G)^{r}$, the Figa-Talamanca-Herz algebra (where $1 / p+1 / p^{\prime}=1$).
- These have similar properties to $A(G)$, although some results are still conjecture: as working away from a Hilbert space can be tricky.
- We've developed a theory of L^{p} spaces "on the dual side",
- So we should have $A_{p}(\hat{G})=L^{p}(\hat{G}) \cdot L^{p^{\prime}}(\hat{G})$ (roughly!)
hope (as if G is abelian, this has to be true!)
- I couldn't decide if $A_{p}(\hat{G})$ is always an algebra: it contains a dense subalgebra.
- See arXiv:0906.5128v2; to appear in Canad. J. Math.

Analogues of the Figa-Talamanca-Herz algebras

- Recall that $A(G)=L^{2}(G) * L^{2}(G)^{v}$.
- We could instead define $A_{p}(G)=L^{p}(G) * L^{p^{\prime}}(G)^{r}$, the Figa-Talamanca-Herz algebra (where $1 / p+1 / p^{\prime}=1$).
- These have similar properties to $A(G)$, although some results are still conjecture: as working away from a Hilbert space can be tricky.
- We've developed a theory of L^{p} spaces "on the dual side",
- So we should have $A_{p}(\hat{G})=L^{p}(\hat{G}) \cdot L^{p^{\prime}}(\hat{G})$ (roughly!)
- Then $A_{2}(\hat{G})$ is isometrically isomorphic to $L^{1}(G)$, as we might hope (as if G is abelian, this has to be true!)
- See arXiv:0906.5128v2; to appear in Canad. J. Math.

Analogues of the Figa-Talamanca-Herz algebras

- Recall that $A(G)=L^{2}(G) * L^{2}(G)^{v}$.
- We could instead define $A_{p}(G)=L^{p}(G) * L^{p^{\prime}}(G)^{r}$, the Figa-Talamanca-Herz algebra (where $1 / p+1 / p^{\prime}=1$).
- These have similar properties to $A(G)$, although some results are still conjecture: as working away from a Hilbert space can be tricky.
- We've developed a theory of L^{p} spaces "on the dual side",
- So we should have $A_{p}(\hat{G})=L^{p}(\hat{G}) \cdot L^{p^{\prime}}(\hat{G})$ (roughly!)
- Then $A_{2}(\hat{G})$ is isometrically isomorphic to $L^{1}(G)$, as we might hope (as if G is abelian, this has to be true!)
- I couldn't decide if $A_{p}(\hat{G})$ is always an algebra: it contains a dense subalgebra.
- See arXiv:0906.5128v2; to appear in Canad. J. Math.

Analogues of the Figa-Talamanca-Herz algebras

- Recall that $A(G)=L^{2}(G) * L^{2}(G)^{v}$.
- We could instead define $A_{p}(G)=L^{p}(G) * L^{p^{\prime}}(G)^{r}$, the Figa-Talamanca-Herz algebra (where $1 / p+1 / p^{\prime}=1$).
- These have similar properties to $A(G)$, although some results are still conjecture: as working away from a Hilbert space can be tricky.
- We've developed a theory of L^{p} spaces "on the dual side",
- So we should have $A_{p}(\hat{G})=L^{p}(\hat{G}) \cdot L^{p^{\prime}}(\hat{G})$ (roughly!)
- Then $A_{2}(\hat{G})$ is isometrically isomorphic to $L^{1}(G)$, as we might hope (as if G is abelian, this has to be true!)
- I couldn't decide if $A_{p}(\hat{G})$ is always an algebra: it contains a dense subalgebra.
- See arXiv:0906.5128v2; to appear in Canad. J. Math.

