Multipliers and Abstract Harmonic Analysis

Matthew Daws

Leeds

August 2010

Outline

Multiplier algebras; Dual Banach algebras

2 The Fourier algebra; Extending homomorphisms

3 Hopf convolution algebras

Multiplier algebras

Let A be an algebra. A multiplier of A is a pair (L,R) of maps $A \to A$ such that aL(b) = R(a)b for $a,b \in A$. Let M(A) be the collection of such maps, made into an algebra for the product (L,R)(L',R') = (LL',R'R).

Henceforth assume that A is faithful: if $a \in A$ and bac = 0 for all $b, c \in A$, then a = 0. Then we can show that

$$L(ab) = L(a)b, \quad R(ab) = aR(b) \quad (a, b \in A),$$

and furthermore, the map $A \to M(A)$,

$$a\mapsto (L_a,R_a),\quad L_a(b)=ab,R_a(b)=ba\qquad (a,b\in A),$$

is an injective algebra homomorphism.

Then A becomes an ideal in M(A). If B is an algebra containing A as an ideal, we say that A is *essential* if $x \in B$ is such that axb = 0 for $a, b \in A$, then x = 0. Then B embeds into M(A). In this sense, M(A) is the "largest" algebra containing A as an essential ideal.

Multiplier algebras

Let A be an algebra. A multiplier of A is a pair (L,R) of maps $A \to A$ such that aL(b) = R(a)b for $a,b \in A$. Let M(A) be the collection of such maps, made into an algebra for the product (L,R)(L',R') = (LL',R'R).

Henceforth assume that A is faithful: if $a \in A$ and bac = 0 for all $b, c \in A$, then a = 0. Then we can show that

$$L(ab) = L(a)b, \quad R(ab) = aR(b) \qquad (a, b \in A),$$

and furthermore, the map $A \rightarrow M(A)$,

$$a\mapsto (L_a,R_a),\quad L_a(b)=ab,R_a(b)=ba\qquad (a,b\in A),$$

is an injective algebra homomorphism.

Then A becomes an ideal in M(A). If B is an algebra containing A as an ideal, we say that A is essential if $x \in B$ is such that axb = 0 for $a, b \in A$, then x = 0. Then B embeds into M(A). In this sense, M(A) is the "largest" algebra containing A as an essential ideal.

Multiplier algebras

Let A be an algebra. A multiplier of A is a pair (L,R) of maps $A \to A$ such that aL(b) = R(a)b for $a,b \in A$. Let M(A) be the collection of such maps, made into an algebra for the product (L,R)(L',R') = (LL',R'R).

Henceforth assume that A is faithful: if $a \in A$ and bac = 0 for all $b, c \in A$, then a = 0. Then we can show that

$$L(ab) = L(a)b, \quad R(ab) = aR(b) \qquad (a, b \in A),$$

and furthermore, the map $A \rightarrow M(A)$,

$$a \mapsto (L_a, R_a), \quad L_a(b) = ab, R_a(b) = ba \qquad (a, b \in A),$$

is an injective algebra homomorphism.

Then A becomes an ideal in M(A). If B is an algebra containing A as an ideal, we say that A is essential if $x \in B$ is such that axb = 0 for $a, b \in A$, then x = 0. Then B embeds into M(A). In this sense, M(A) is the "largest" algebra containing A as an essential ideal.

If A is a Banach algebra, then a little closed graph argument shows that if $(L,R)\in M(A)$, then L and R are bounded. We norm M(A) by regarding it as a subspace of $\mathcal{B}(A)\oplus_{\infty}\mathcal{B}(A)$.

If A is unital, then A = M(A).

If A is a C^* -algebra then so is M(A). For a commutative C^* -algebra $A = C_0(X)$, the multiplier algebra can be identified with $C^b(X)$, which in turn is $C(\beta X)$. So multiplier algebras are Stone-Cech compactifications.

Notice that M(A) is rarely a von Neumann algebra.

Let E be a Banach algebra, and $A = \mathcal{K}(E)$ the compact operators on E. Then $M(A) = \mathcal{B}(E)$.

Notice that $\mathcal{B}(E)$ may or may not be a dual space.

For a locally compact group G, consider the algebra $L^1(G)$. Then $M(L^1(G)) = M(G)$ [Wendel's Theorem]. A bit of measure theory shows that $L^1(G)$ is an ideal in M(G), and so we have an embedding $M(G) \to M(L^1(G))$. A bounded approximate identity argument gives that this surjects.

If A is a Banach algebra, then a little closed graph argument shows that if $(L,R)\in M(A)$, then L and R are bounded. We norm M(A) by regarding it as a subspace of $\mathcal{B}(A)\oplus_{\infty}\mathcal{B}(A)$.

If A is unital, then A = M(A).

If A is a C^* -algebra then so is M(A). For a commutative C^* -algebra $A = C_0(X)$, the multiplier algebra can be identified with $C^b(X)$, which in turn is $C(\beta X)$. So multiplier algebras are Stone-Cech compactifications.

Notice that M(A) is rarely a von Neumann algebra.

Let E be a Banach algebra, and $A = \mathcal{K}(E)$ the compact operators on E. Then $M(A) = \mathcal{B}(E)$.

Notice that $\mathcal{B}(E)$ may or may not be a dual space.

For a locally compact group G, consider the algebra $L^1(G)$. Then $M(L^1(G)) = M(G)$ [Wendel's Theorem]. A bit of measure theory shows that $L^1(G)$ is an ideal in M(G), and so we have an embedding $M(G) \to M(L^1(G))$. A bounded approximate identity argument gives that this surjects. Notice that M(G) is always a dual space (and indeed a dual Banach algebra).

If A is a Banach algebra, then a little closed graph argument shows that if $(L,R)\in M(A)$, then L and R are bounded. We norm M(A) by regarding it as a subspace of $\mathcal{B}(A)\oplus_{\infty}\mathcal{B}(A)$.

If A is unital, then A = M(A).

If A is a C^* -algebra then so is M(A). For a commutative C^* -algebra $A = C_0(X)$, the multiplier algebra can be identified with $C^b(X)$, which in turn is $C(\beta X)$. So multiplier algebras are Stone-Cech compactifications.

Notice that M(A) is rarely a von Neumann algebra.

Let E be a Banach algebra, and $A = \mathcal{K}(E)$ the compact operators on E. Then $M(A) = \mathcal{B}(E)$.

Notice that $\mathcal{B}(E)$ may or may not be a dual space.

For a locally compact group G, consider the algebra $L^1(G)$. Then $M(L^1(G)) = M(G)$ [Wendel's Theorem]. A bit of measure theory shows that $L^1(G)$ is an ideal in M(G), and so we have an embedding $M(G) \to M(L^1(G))$. A bounded approximate identity argument gives that this surjects. Notice that M(G) is always a dual space (and indeed a dual Banach algebra).

If A is a Banach algebra, then a little closed graph argument shows that if $(L,R)\in M(A)$, then L and R are bounded. We norm M(A) by regarding it as a subspace of $\mathcal{B}(A)\oplus_{\infty}\mathcal{B}(A)$.

If A is unital, then A = M(A).

If A is a C^* -algebra then so is M(A). For a commutative C^* -algebra $A = C_0(X)$, the multiplier algebra can be identified with $C^b(X)$, which in turn is $C(\beta X)$. So multiplier algebras are Stone-Cech compactifications.

Notice that M(A) is rarely a von Neumann algebra.

Let E be a Banach algebra, and $A = \mathcal{K}(E)$ the compact operators on E. Then $M(A) = \mathcal{B}(E)$.

Notice that $\mathcal{B}(E)$ may or may not be a dual space.

For a locally compact group G, consider the algebra $L^1(G)$. Then $M(L^1(G)) = M(G)$ [Wendel's Theorem]. A bit of measure theory shows that $L^1(G)$ is an ideal in M(G), and so we have an embedding $M(G) \to M(L^1(G))$. A bounded approximate identity argument gives that this surjects. Notice that M(G) is always a dual space (and indeed a dual Banach algebra).

Dual Banach algebras

Let A be a Banach algebra which is the dual Banach space of A_* say. We say that A is a dual Banach algebra (for A_*) if the product is separately weak*-continuous.

Let's assemble some ingredients. Let A be a Banach algebra such that $\{ab: a,b\in A\}$ is linearly dense in A. Let (B,B_*) be a dual Banach algebra such that:

- we have an isometric homomorphism $\iota: A \to B$;
- $\iota(A)$ is an (essential) ideal in B;
- the resulting map $B \to M(A)$ injects.

We'll construct a predual for M(A).

If you are interested in the one-sided case, compare with [Selivanov], Monatsh. Math. (1999).

Dual Banach algebras

Let A be a Banach algebra which is the dual Banach space of A_* say. We say that A is a dual Banach algebra (for A_*) if the product is separately weak*-continuous.

Let's assemble some ingredients. Let A be a Banach algebra such that $\{ab: a,b\in A\}$ is linearly dense in A. Let (B,B_*) be a dual Banach algebra such that:

- we have an isometric homomorphism $\iota: A \to B$;
- $\iota(A)$ is an (essential) ideal in B;
- the resulting map $B \to M(A)$ injects.

We'll construct a predual for M(A).

If you are interested in the one-sided case, compare with [Selivanov], Monatsh. Math. (1999).

Dual Banach algebras

Let A be a Banach algebra which is the dual Banach space of A_* say. We say that A is a dual Banach algebra (for A_*) if the product is separately weak*-continuous.

Let's assemble some ingredients. Let A be a Banach algebra such that $\{ab: a, b \in A\}$ is linearly dense in A. Let (B, B_*) be a dual Banach algebra such that:

- we have an isometric homomorphism $\iota: A \to B$;
- $\iota(A)$ is an (essential) ideal in B;
- the resulting map $B \to M(A)$ injects.

We'll construct a predual for M(A).

If you are interested in the one-sided case, compare with [Selivanov], Monatsh. Math. (1999).

Consider

$$X = (A \widehat{\otimes} B_*) \oplus_1 (A \widehat{\otimes} B_*)$$
 so that $X^* = \mathcal{B}(A, B) \oplus_\infty \mathcal{B}(A, B)$.

Let $Y \subseteq X$ be the linear span of

$$(b \otimes \mu \cdot \iota(a)) \oplus (-a \oplus \iota(b) \cdot \mu)$$
 $(a, b \in A, \mu \in B_*).$

Then $Y^{\perp} \subseteq X^*$ is a weak*-closed subspace with predual X/Y. A calculation shows that

$$(T,S) \in Y^{\perp} \iff \iota(a)T(b) = S(a)\iota(b) \qquad (a,b \in A).$$

Now argue that as products are dense in A, actually $T(A), S(A) \subseteq \iota(A)$, and so we really have maps $L, R : A \to A$ with $T = \iota L, S = \iota R$. But then $(L, R) \in M(A)$; so we've shown that $M(A) \cong Y^{\perp}$.

Consider

$$X = (A \widehat{\otimes} B_*) \oplus_1 (A \widehat{\otimes} B_*)$$
 so that $X^* = \mathcal{B}(A, B) \oplus_\infty \mathcal{B}(A, B)$.

Let $Y \subseteq X$ be the linear span of

$$(b \otimes \mu \cdot \iota(a)) \oplus (-a \oplus \iota(b) \cdot \mu)$$
 $(a, b \in A, \mu \in B_*).$

Then $Y^{\perp} \subseteq X^*$ is a weak*-closed subspace with predual X/Y. A calculation shows that

$$(T,S) \in Y^{\perp} \Leftrightarrow \iota(a)T(b) = S(a)\iota(b) \qquad (a,b \in A).$$

Now argue that as products are dense in A, actually $T(A), S(A) \subseteq \iota(A)$, and so we really have maps $L, R : A \to A$ with $T = \iota L, S = \iota R$. But then $(L, R) \in M(A)$; so we've shown that $M(A) \cong Y^{\perp}$.

Consider

$$X = (A \widehat{\otimes} B_*) \oplus_1 (A \widehat{\otimes} B_*)$$
 so that $X^* = \mathcal{B}(A, B) \oplus_\infty \mathcal{B}(A, B)$.

Let $Y \subseteq X$ be the linear span of

$$(b \otimes \mu \cdot \iota(a)) \oplus (-a \oplus \iota(b) \cdot \mu)$$
 $(a, b \in A, \mu \in B_*).$

Then $Y^{\perp} \subseteq X^*$ is a weak*-closed subspace with predual X/Y. A calculation shows that

$$(T,S) \in Y^{\perp} \Leftrightarrow \iota(a)T(b) = S(a)\iota(b) \qquad (a,b \in A).$$

Now argue that as products are dense in A, actually $T(A), S(A) \subseteq \iota(A)$, and so we really have maps $L, R : A \to A$ with $T = \iota L, S = \iota R$. But then $(L, R) \in M(A)$; so we've shown that $M(A) \cong Y^{\perp}$.

Consider

$$X = (A \widehat{\otimes} B_*) \oplus_1 (A \widehat{\otimes} B_*)$$
 so that $X^* = \mathcal{B}(A, B) \oplus_{\infty} \mathcal{B}(A, B)$.

Let $Y \subseteq X$ be the linear span of

$$(b \otimes \mu \cdot \iota(a)) \oplus (-a \oplus \iota(b) \cdot \mu)$$
 $(a, b \in A, \mu \in B_*).$

Then $Y^{\perp} \subseteq X^*$ is a weak*-closed subspace with predual X/Y. A calculation shows that

$$(T,S) \in Y^{\perp} \Leftrightarrow \iota(a)T(b) = S(a)\iota(b) \qquad (a,b \in A).$$

Now argue that as products are dense in A, actually $T(A), S(A) \subseteq \iota(A)$, and so we really have maps $L, R : A \to A$ with $T = \iota L, S = \iota R$. But then $(L, R) \in M(A)$; so we've shown that $M(A) \cong Y^{\perp}$.

Uniqueness

Following the construction through the weak*-topology on M(A) satisfies: a bounded net (L_{α}, R_{α}) in M(A) is weak*-null if and only if

$$\lim_{\alpha} \langle \iota L_{\alpha}(a), \mu \rangle + \langle \iota R_{\alpha}(b), \lambda \rangle = 0 \qquad (a, b \in A, \mu, \lambda \in B_*).$$

Let $\theta: B \to M(A)$ be the map induced by $\iota: A \to B$. Then there is one and only one weak*-topology on M(A) such that:

- M(A) is a dual Banach algebra;
- for a bounded net (b_{α}) in B, we have that (b_{α}) is weak* null in B if and only if $(\theta(b_{\alpha}))$ is weak* null in M(A).

So what we've done is taken a dual Banach algebra B which isn't quite large enough to be all of M(A), and boot-strapped the weak*-topology from B to M(A).

Uniqueness

Following the construction through the weak*-topology on M(A) satisfies: a bounded net (L_{α}, R_{α}) in M(A) is weak*-null if and only if

$$\lim_{\alpha} \langle \iota L_{\alpha}(a), \mu \rangle + \langle \iota R_{\alpha}(b), \lambda \rangle = 0 \qquad (a, b \in A, \mu, \lambda \in B_*).$$

Let $\theta: B \to M(A)$ be the map induced by $\iota: A \to B$. Then there is one and only one weak*-topology on M(A) such that:

- M(A) is a dual Banach algebra;
- for a bounded net (b_{α}) in B, we have that (b_{α}) is weak* null in B if and only if $(\theta(b_{\alpha}))$ is weak* null in M(A).

So what we've done is taken a dual Banach algebra B which isn't quite large enough to be all of M(A), and boot-strapped the weak*-topology from B to M(A).

Uniqueness

Following the construction through the weak*-topology on M(A) satisfies: a bounded net (L_{α}, R_{α}) in M(A) is weak*-null if and only if

$$\lim_{\alpha} \langle \iota L_{\alpha}(a), \mu \rangle + \langle \iota R_{\alpha}(b), \lambda \rangle = 0 \qquad (a, b \in A, \mu, \lambda \in B_*).$$

Let $\theta: B \to M(A)$ be the map induced by $\iota: A \to B$. Then there is one and only one weak*-topology on M(A) such that:

- M(A) is a dual Banach algebra;
- for a bounded net (b_{α}) in B, we have that (b_{α}) is weak* null in B if and only if $(\theta(b_{\alpha}))$ is weak* null in M(A).

So what we've done is taken a dual Banach algebra B which isn't quite large enough to be all of M(A), and boot-strapped the weak*-topology from B to M(A).

The Fourier algebra

Let G be a locally compact group, and let λ be the left-regular representation of G on $L^2(G)$:

$$\lambda(s)\xi: t \mapsto \xi(s^{-1}t) \qquad (s, t \in G, \xi \in L^2(G)).$$

Let VN(G) be the group von Neumann algebra, which is generated by $\{\lambda(s): s \in G\}$.

There exists a normal *-homomorphism $\Delta: VN(G) \to VN(G \times G)$ which satisfies $\Delta(\lambda(s)) = \lambda(s) \otimes \lambda(s)$. This exists, as we can define a unitary $W \in \mathcal{B}(L^2(G \times G))$ by $W\xi(s,t) = \xi(ts,t)$, and then

$$\Delta(x) = W^*(1 \otimes x)W \qquad (x \in VN(G)),$$

does the job.

Let A(G) be the predual of VN(G). As Δ is normal, for $\omega, \sigma \in A(G)$, there exists $\omega \sigma \in A(G)$ such that

$$\langle \Delta(x), \omega \otimes \sigma \rangle = \langle x, \omega \sigma \rangle \qquad (x \in VN(G)).$$

Thus we've turned A(G) into a Banach algebra

The Fourier algebra

Let G be a locally compact group, and let λ be the left-regular representation of G on $L^2(G)$:

$$\lambda(s)\xi: t \mapsto \xi(s^{-1}t) \qquad (s, t \in G, \xi \in L^2(G)).$$

Let VN(G) be the group von Neumann algebra, which is generated by $\{\lambda(s): s \in G\}$.

There exists a normal *-homomorphism $\Delta: VN(G) \to VN(G \times G)$ which satisfies $\Delta(\lambda(s)) = \lambda(s) \otimes \lambda(s)$. This exists, as we can define a unitary $W \in \mathcal{B}(L^2(G \times G))$ by $W\xi(s,t) = \xi(ts,t)$, and then

$$\Delta(x) = W^*(1 \otimes x)W \qquad (x \in VN(G)),$$

does the job.

Let A(G) be the predual of VN(G). As Δ is normal, for $\omega, \sigma \in A(G)$, there exists $\omega \sigma \in A(G)$ such that

$$\langle \Delta(x), \omega \otimes \sigma \rangle = \langle x, \omega \sigma \rangle \qquad (x \in VN(G)).$$

Thus we've turned A(G) into a Banach algebra

The Fourier algebra

Let G be a locally compact group, and let λ be the left-regular representation of G on $L^2(G)$:

$$\lambda(s)\xi: t \mapsto \xi(s^{-1}t) \qquad (s, t \in G, \xi \in L^2(G)).$$

Let VN(G) be the group von Neumann algebra, which is generated by $\{\lambda(s): s \in G\}$.

There exists a normal *-homomorphism $\Delta: VN(G) \to VN(G \times G)$ which satisfies $\Delta(\lambda(s)) = \lambda(s) \otimes \lambda(s)$. This exists, as we can define a unitary $W \in \mathcal{B}(L^2(G \times G))$ by $W\xi(s,t) = \xi(ts,t)$, and then

$$\Delta(x) = W^*(1 \otimes x)W \qquad (x \in VN(G)),$$

does the job.

Let A(G) be the predual of VN(G). As Δ is normal, for $\omega, \sigma \in A(G)$, there exists $\omega \sigma \in A(G)$ such that

$$\langle \Delta(x), \omega \otimes \sigma \rangle = \langle x, \omega \sigma \rangle \qquad (x \in VN(G)).$$

Thus we've turned A(G) into a Banach algebra.

As $\{\lambda(s): s \in G\}$ generates VN(G), an element $\omega \in A(G)$ is uniquely determined by $\{\langle \lambda(s), \omega \rangle : s \in G\}$ so we can think of ω as a function $G \to \mathbb{C}$; $s \mapsto \omega(s) = \langle \lambda(s), \omega \rangle$.

Then the product on A(G) is just the pointwise product, as

$$(\omega\sigma)(s) = \langle \Delta(\lambda(s)), \omega \otimes \sigma \rangle = \langle \lambda(s) \otimes \lambda(s), \omega \otimes \sigma \rangle = \omega(s)\sigma(s)$$

Alternatively, starting with λ , we could integrate this to get a *-homomorphism $\lambda: L^1(G) \to \mathcal{B}(L^2(G))$. Then the norm closure of the image is $C_r^*(G)$, the (reduced) group C*-algebra. Then Δ restricts to give a map

$$\Delta: C_r^*(G) \to M(C_r^*(G \times G)).$$

Using this, we turn $C_r^*(G)^*$ into a commutative, dual Banach algebra, $B_r(G)$ the (reduced) Fourier-Stieltjes algebra.

If G is abelian with dual group \hat{G} , then

$$VN(G) \cong L^{\infty}(\hat{G}), \quad A(G) \cong L^{1}(\hat{G}), \quad C_{r}^{*}(G) \cong C_{0}(\hat{G}), \quad B_{r}(G) \cong M(\hat{G}).$$

As $\{\lambda(s): s \in G\}$ generates VN(G), an element $\omega \in A(G)$ is uniquely determined by $\{\langle \lambda(s), \omega \rangle : s \in G\}$ so we can think of ω as a function $G \to \mathbb{C}; s \mapsto \omega(s) = \langle \lambda(s), \omega \rangle$.

Then the product on A(G) is just the pointwise product, as

$$(\omega\sigma)(s) = \langle \Delta(\lambda(s)), \omega \otimes \sigma \rangle = \langle \lambda(s) \otimes \lambda(s), \omega \otimes \sigma \rangle = \omega(s)\sigma(s).$$

Alternatively, starting with λ , we could integrate this to get a *-homomorphism $\lambda: L^1(G) \to \mathcal{B}(L^2(G))$. Then the norm closure of the image is $C_r^*(G)$, the (reduced) group C*-algebra. Then Δ restricts to give a map

$$\Delta: C_r^*(G) \to M(C_r^*(G \times G)).$$

Using this, we turn $C_r^*(G)^*$ into a commutative, dual Banach algebra, $B_r(G)$ the (reduced) Fourier-Stieltjes algebra.

If G is abelian with dual group \hat{G} , then

$$VN(G) \cong L^{\infty}(\hat{G}), \quad A(G) \cong L^{1}(\hat{G}), \quad C_{r}^{*}(G) \cong C_{0}(\hat{G}), \quad B_{r}(G) \cong M(\hat{G}).$$

4 m > 4 m >

As $\{\lambda(s): s \in G\}$ generates VN(G), an element $\omega \in A(G)$ is uniquely determined by $\{\langle \lambda(s), \omega \rangle : s \in G\}$ so we can think of ω as a function $G \to \mathbb{C}; s \mapsto \omega(s) = \langle \lambda(s), \omega \rangle$.

Then the product on A(G) is just the pointwise product, as

$$(\omega\sigma)(s) = \langle \Delta(\lambda(s)), \omega\otimes\sigma\rangle = \langle \lambda(s)\otimes\lambda(s), \omega\otimes\sigma\rangle = \omega(s)\sigma(s).$$

Alternatively, starting with λ , we could integrate this to get a *-homomorphism $\lambda: L^1(G) \to \mathcal{B}(L^2(G))$. Then the norm closure of the image is $C_r^*(G)$, the (reduced) group C*-algebra. Then Δ restricts to give a map

$$\Delta: C_r^*(G) \to M(C_r^*(G \times G)).$$

Using this, we turn $C_r^*(G)^*$ into a commutative, dual Banach algebra, $B_r(G)$ the (reduced) Fourier-Stieltjes algebra.

If G is abelian with dual group \hat{G} , then

$$VN(G) \cong L^{\infty}(\hat{G}), \quad A(G) \cong L^{1}(\hat{G}), \quad C_{r}^{*}(G) \cong C_{0}(\hat{G}), \quad B_{r}(G) \cong M(\hat{G}).$$

4□ > 4ⓓ > 4≧ > 4≧ > ½ 99.0°

As $\{\lambda(s): s \in G\}$ generates VN(G), an element $\omega \in A(G)$ is uniquely determined by $\{\langle \lambda(s), \omega \rangle : s \in G\}$ so we can think of ω as a function $G \to \mathbb{C}; s \mapsto \omega(s) = \langle \lambda(s), \omega \rangle$.

Then the product on A(G) is just the pointwise product, as

$$(\omega\sigma)(s) = \langle \Delta(\lambda(s)), \omega\otimes\sigma\rangle = \langle \lambda(s)\otimes\lambda(s), \omega\otimes\sigma\rangle = \omega(s)\sigma(s).$$

Alternatively, starting with λ , we could integrate this to get a *-homomorphism $\lambda: L^1(G) \to \mathcal{B}(L^2(G))$. Then the norm closure of the image is $C_r^*(G)$, the (reduced) group C*-algebra. Then Δ restricts to give a map

$$\Delta: C_r^*(G) \to M(C_r^*(G \times G)).$$

Using this, we turn $C_r^*(G)^*$ into a commutative, dual Banach algebra, $B_r(G)$ the (reduced) Fourier-Stieltjes algebra.

If G is abelian with dual group \hat{G} , then

$$VN(G) \cong L^{\infty}(\hat{G}), \quad A(G) \cong L^{1}(\hat{G}), \quad C_{r}^{*}(G) \cong C_{0}(\hat{G}), \quad B_{r}(G) \cong M(\hat{G}).$$

By analogy with the abelian case, we might hope that $M(A(G)) = B_r(G)$ always. However, $B_r(G)$ is unital if and only if G is amenable [Leptin, Cowling?].

As A(G) is commutative, it follows that for $(L,R) \in M(A(G))$ we have L=R, and that actually

$$M(A(G)) = \{T : A(G) \rightarrow A(G) : T(\omega\sigma) = T(\omega)\sigma \ (\omega, \sigma \in A(G))\}.$$

Indeed, we can actually identify M(A(G)) with a space of functions

$$M(A(G)) = \{ f \in C^b(G) : f\omega \in A(G) \ (\omega \in A(G)) \}.$$

We do always have that $A(G) \to B_r(G) = C_r^*(G)^*$ isometrically (Kaplansky density), and that A(G) is an ideal in $B_r(G)$ (the Fell absorption principle). A little check shows that A(G) is essential in $B_r(G)$. Thus we can run our programme, and M(A(G)) is a dual Banach algebra.

By analogy with the abelian case, we might hope that $M(A(G)) = B_r(G)$ always. However, $B_r(G)$ is unital if and only if G is amenable [Leptin, Cowling?].

As A(G) is commutative, it follows that for $(L,R) \in M(A(G))$ we have L=R, and that actually

$$M(A(G)) = \{T : A(G) \rightarrow A(G) : T(\omega\sigma) = T(\omega)\sigma \ (\omega, \sigma \in A(G))\}.$$

Indeed, we can actually identify M(A(G)) with a space of functions:

$$M(A(G)) = \{ f \in C^b(G) : f\omega \in A(G) \ (\omega \in A(G)) \}.$$

We do always have that $A(G) \to B_r(G) = C_r^*(G)^*$ isometrically (Kaplansky density), and that A(G) is an ideal in $B_r(G)$ (the Fell absorption principle). A little check shows that A(G) is essential in $B_r(G)$. Thus we can run our programme, and M(A(G)) is a dual Banach algebra.

By analogy with the abelian case, we might hope that $M(A(G)) = B_r(G)$ always. However, $B_r(G)$ is unital if and only if G is amenable [Leptin, Cowling?].

As A(G) is commutative, it follows that for $(L,R) \in M(A(G))$ we have L=R, and that actually

$$M(A(G)) = \{T : A(G) \rightarrow A(G) : T(\omega\sigma) = T(\omega)\sigma \ (\omega, \sigma \in A(G))\}.$$

Indeed, we can actually identify M(A(G)) with a space of functions:

$$M(A(G)) = \{ f \in C^b(G) : f\omega \in A(G) \ (\omega \in A(G)) \}.$$

We do always have that $A(G) \to B_r(G) = C_r^*(G)^*$ isometrically (Kaplansky density), and that A(G) is an ideal in $B_r(G)$ (the Fell absorption principle). A little check shows that A(G) is essential in $B_r(G)$. Thus we can run our programme, and M(A(G)) is a dual Banach algebra.

By analogy with the abelian case, we might hope that $M(A(G)) = B_r(G)$ always. However, $B_r(G)$ is unital if and only if G is amenable [Leptin, Cowling?].

As A(G) is commutative, it follows that for $(L,R) \in M(A(G))$ we have L=R, and that actually

$$M(A(G)) = \{T : A(G) \rightarrow A(G) : T(\omega\sigma) = T(\omega)\sigma \ (\omega, \sigma \in A(G))\}.$$

Indeed, we can actually identify M(A(G)) with a space of functions:

$$M(A(G)) = \{ f \in C^b(G) : f\omega \in A(G) \ (\omega \in A(G)) \}.$$

We do always have that $A(G) \to B_r(G) = C_r^*(G)^*$ isometrically (Kaplansky density), and that A(G) is an ideal in $B_r(G)$ (the Fell absorption principle). A little check shows that A(G) is essential in $B_r(G)$. Thus we can run our programme, and M(A(G)) is a dual Banach algebra.

Operator spaces; Completely bounded maps

Given a map $T: A \rightarrow B$ between C*-algebras, we can dilate T to a map

$$T \otimes \iota_n : A \otimes M_n = M_n(A) \to B \otimes M_n = M_n(B)$$

between the matrix algebras over A and B. If $\sup_n ||T \otimes \iota_n|| < \infty$, then T is completely bounded.

Given a multiplier $T \in M(A(G))$, if $T^* : VN(G) \to VN(G)$ is completely bounded, then T is completely bounded, $T \in M_{cb}A(G)$.

Of course, the definition of completely bounded makes sense for operators between subspaces of C*-algebras, and this leads to the notion of an *operator space*. The category of operators spaces and completely bounded maps is nicely behaved, and we can run our construction again, showing that $M_{cb}A(G)$ is a dual Banach algebra.

Operator spaces; Completely bounded maps

Given a map $T: A \rightarrow B$ between C*-algebras, we can dilate T to a map

$$T \otimes \iota_n : A \otimes M_n = M_n(A) \to B \otimes M_n = M_n(B)$$

between the matrix algebras over A and B. If $\sup_n ||T \otimes \iota_n|| < \infty$, then T is completely bounded.

Given a multiplier $T \in M(A(G))$, if $T^* : VN(G) \to VN(G)$ is completely bounded, then T is completely bounded, $T \in M_{cb}A(G)$.

Of course, the definition of completely bounded makes sense for operators between subspaces of C*-algebras, and this leads to the notion of an *operator space*. The category of operators spaces and completely bounded maps is nicely behaved, and we can run our construction again, showing that $M_{cb}A(G)$ is a dual Banach algebra.

Operator spaces; Completely bounded maps

Given a map $T: A \rightarrow B$ between C*-algebras, we can dilate T to a map

$$T \otimes \iota_n : A \otimes M_n = M_n(A) \to B \otimes M_n = M_n(B)$$

between the matrix algebras over A and B. If $\sup_n ||T \otimes \iota_n|| < \infty$, then T is completely bounded.

Given a multiplier $T \in M(A(G))$, if $T^* : VN(G) \to VN(G)$ is completely bounded, then T is completely bounded, $T \in M_{cb}A(G)$.

Of course, the definition of completely bounded makes sense for operators between subspaces of C*-algebras, and this leads to the notion of an *operator space*. The category of operators spaces and completely bounded maps is nicely behaved, and we can run our construction again, showing that $M_{cb}A(G)$ is a dual Banach algebra.

Self-induced algebras and modules

Let $A\widehat{\otimes}_A A$ be the quotient of $A\widehat{\otimes} A$ by the linear closure of

$${ab \otimes c - a \otimes bc : a, b, c \in A}.$$

The product map $\pi: A\widehat{\otimes} A \to A$; $a \otimes b \mapsto ab$ respects this quotient, so we get a map $A\widehat{\otimes}_A A \to A$. If this is an isomorphism, then A is *self-induced*.

Similarly, for a left A-module E, we can form $A \widehat{\otimes}_A E$, and we say that E is induced if the product map implements an isomorphism $A \widehat{\otimes}_A E \cong E$.

Let $\theta: A \to M(B)$ be a homomorphism: we say that this is *non-degenerate* if $\{\theta(a_1)b\theta(a_2): a_1, a_2 \in A, b \in B\}$ is linearly dense in B. We can turn B into an A-bimodule by setting

$$a \cdot b = \theta(a)b, \quad b \cdot a = b\theta(a) \qquad (a \in A, b \in B).$$

Then θ is non-degenerate if B is an essential A-module.

[Johnson] \Rightarrow that if A has a bounded approximate identity, then any non-degenerate homomorphism extends to $\theta: M(A) \to M(B)$.

Self-induced algebras and modules

Let $A\widehat{\otimes}_A A$ be the quotient of $A\widehat{\otimes} A$ by the linear closure of

$${ab \otimes c - a \otimes bc : a, b, c \in A}.$$

The product map $\pi: A\widehat{\otimes} A \to A$; $a \otimes b \mapsto ab$ respects this quotient, so we get a map $A\widehat{\otimes}_A A \to A$. If this is an isomorphism, then A is *self-induced*.

Similarly, for a left A-module E, we can form $A \widehat{\otimes}_A E$, and we say that E is induced if the product map implements an isomorphism $A \widehat{\otimes}_A E \cong E$.

Let $\theta: A \to M(B)$ be a homomorphism: we say that this is *non-degenerate* if $\{\theta(a_1)b\theta(a_2): a_1, a_2 \in A, b \in B\}$ is linearly dense in B. We can turn B into an A-bimodule by setting

$$a \cdot b = \theta(a)b, \quad b \cdot a = b\theta(a) \qquad (a \in A, b \in B).$$

Then θ is non-degenerate if B is an essential A-module.

[Johnson] \Rightarrow that if A has a bounded approximate identity, then any non-degenerate homomorphism extends to $\theta: M(A) \to M(B)$.

Self-induced algebras and modules

Let $A\widehat{\otimes}_A A$ be the quotient of $A\widehat{\otimes} A$ by the linear closure of

$${ab \otimes c - a \otimes bc : a, b, c \in A}.$$

The product map $\pi: A\widehat{\otimes} A \to A$; $a\otimes b\mapsto ab$ respects this quotient, so we get a map $A\widehat{\otimes}_A A \to A$. If this is an isomorphism, then A is *self-induced*.

Similarly, for a left A-module E, we can form $A \widehat{\otimes}_A E$, and we say that E is induced if the product map implements an isomorphism $A \widehat{\otimes}_A E \cong E$.

Let $\theta:A\to M(B)$ be a homomorphism: we say that this is *non-degenerate* if $\{\theta(a_1)b\theta(a_2):a_1,a_2\in A,b\in B\}$ is linearly dense in B. We can turn B into an A-bimodule by setting

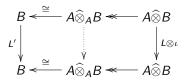
$$a \cdot b = \theta(a)b, \quad b \cdot a = b\theta(a) \qquad (a \in A, b \in B).$$

Then θ is non-degenerate if B is an essential A-module.

[Johnson] \Rightarrow that if A has a bounded approximate identity, then any non-degenerate homomorphism extends to $\theta: M(A) \to M(B)$.

Extending homomorphisms in the induced case

Let $\theta:A\to M(B)$ be a homomorphism which turns B into an induced A-bimodule. We can extend θ to M(A) as follows. Given $(L,R)\in M(A)$, we define $L':B\to B$ by



This commutes, as $L \otimes \iota$ maps

 $N = \overline{\lim} \{a_1 a_2 \otimes b - a_1 \otimes \theta(a_2) b : a_1, a_2 \in A, b \in B\}$ into itself. This follows, as

$$L(a_1a_2)\otimes b-L(a_1)\otimes \theta(a_2)b=L(a_1)a_2\otimes b-L(a_1)\otimes \theta(a_2)b\in N.$$

Similarly we form $R': B \to B$, check that $(L', R') \in M(A)$, and that $(L, R) \mapsto (L', R')$ is homomorphism.

Example of an induced algebra

[Rieffel; Forrest, Lee, Samei] \Rightarrow If A has a bounded approximate identity, then A is self-induced and any essential module is induced.

We now work in the category of Operator Spaces. We'll show that A(G) is always self-induced: we want that $A(G)\widehat{\otimes}A(G)/N=A(G\times G)/N$ is isomorphic to A(G) under the product map. Dualising, we want that

$$VN(G) \xrightarrow{\Delta} N^{\perp} \subseteq VN(G) \overline{\otimes} VN(G) = VN(G \times G)$$

is an isomorphism. All we need to prove is that it's onto. However,

$$N^{\perp} = \{x \in VN(G) \overline{\otimes} VN(G) : \langle x, ab \otimes c - a \otimes bc \rangle = 0\}$$

= \{x \in VN(G) \overline{\overline} VN(G) : \langle (\Delta \overline{\overline} \cdot) x - (\tau \overline{\Omega} \Delta) x, a \overline{\overline} \over

We can then check that the *support* of $x \in N^{\perp}$ must be contained in the diagonal $\{(s,s): s \in G\} \subseteq G \times G$. As this is a set of synthesis, by [Herz; Takesaki, Tatsumma] we have that $x \in \Delta(VN(G))$, so we're done.

Example of an induced algebra

[Rieffel; Forrest, Lee, Samei] \Rightarrow If A has a bounded approximate identity, then A is self-induced and any essential module is induced.

We now work in the category of Operator Spaces. We'll show that A(G) is always self-induced: we want that $A(G)\widehat{\otimes}A(G)/N=A(G\times G)/N$ is isomorphic to A(G) under the product map. Dualising, we want that

$$VN(G) \xrightarrow{\Delta} N^{\perp} \subseteq VN(G) \overline{\otimes} VN(G) = VN(G \times G)$$

is an isomorphism. All we need to prove is that it's onto. However,

$$N^{\perp} = \{ x \in VN(G) \overline{\otimes} VN(G) : \langle x, ab \otimes c - a \otimes bc \rangle = 0 \}$$

= \{ x \in VN(G) \overline{\overline} VN(G) : \langle (\Delta \overline{\overline} \cup x - (\beta \overline{\overline} \Delta x) x, a \overline{\overline} b \overline{\overline} c \rangle = 0 \}
= \{ x \in VN(G) \overline{\overline} VN(G) : (\Delta \overline{\overline} \cup x) x = (\beta \overline{\overline} \Delta x) x \}.

We can then check that the *support* of $x \in N^{\perp}$ must be contained in the diagonal $\{(s,s): s \in G\} \subseteq G \times G$. As this is a set of synthesis, by [Herz; Takesaki, Tatsumma] we have that $x \in \Delta(VN(G))$, so we're done.

Example of an induced algebra

[Rieffel; Forrest, Lee, Samei] \Rightarrow If A has a bounded approximate identity, then A is self-induced and any essential module is induced.

We now work in the category of Operator Spaces. We'll show that A(G) is always self-induced: we want that $A(G) \widehat{\otimes} A(G)/N = A(G \times G)/N$ is isomorphic to A(G) under the product map. Dualising, we want that

$$VN(G) \xrightarrow{\Delta} N^{\perp} \subseteq VN(G) \overline{\otimes} VN(G) = VN(G \times G)$$

is an isomorphism. All we need to prove is that it's onto. However,

$$N^{\perp} = \{ x \in VN(G) \overline{\otimes} VN(G) : \langle x, ab \otimes c - a \otimes bc \rangle = 0 \}$$

= \{ x \in VN(G) \overline{\overline} VN(G) : \langle (\Delta \overline{\overline} \cup x - (\beta \overline{\overline} \Delta x) x, a \overline{\overline} b \overline{\overline} c \rangle = 0 \}
= \{ x \in VN(G) \overline{\overline} VN(G) : (\Delta \overline{\overline} \overline{\overline} x) x = (\beta \overline{\overline} \Delta x) x \}.

We can then check that the *support* of $x \in N^{\perp}$ must be contained in the diagonal $\{(s,s): s \in G\} \subseteq G \times G$. As this is a set of synthesis, by [Herz; Takesaki, Tatsumma] we have that $x \in \Delta(VN(G))$, so we're done.

Other extensions

For a homomorphism $\theta: A \to M(B)$, we can extend to M(A) when:

- A has a bounded approximate identity, and θ is non-degenerate;
- B becomes an induced A-bimodule;
- [Ilie, Stokke] A has a bounded approximate identity, and M(B) is a dual Banach algebra.

For more on induced algebras, see work of [Gronbaek].

Haagerup tensor products

For a C*-algebra A, we define a norm $\|\cdot\|_h$ on $A\otimes A$ by

$$\|\tau\|_{h}=\inf\Big\{\Big\|\sum_{k}a_{k}a_{k}^{*}\Big\|\Big\|\sum_{k}b_{k}^{*}b_{k}\Big\|: au=\sum_{k}a_{k}\otimes b_{k}\Big\}.$$

Write $A \otimes^h A$ for the completed tensor product.

If $A \subseteq \mathcal{B}(H)$ then the (maybe infinite) column vector $b = (b_1, b_2, \cdots)^T$ can be regarded as a map $H \to H^{(\infty)}$, and then $b^*b = \sum_k b_k^*b_k$. Similarly the row vector $a = (a_1, a_2, \cdots)$ is such that $aa^* = \sum_k a_k a_k^*$. Then notice that

$$ab = \sum_{k} a_k b_k, \quad ||ab|| \le ||a|| ||b|| = ||aa^*||^{1/2} ||b^*b||^{1/2} = ||\sum_{k} a_k a_k^*|| ||\sum_{k} b_k^* b_k||.$$

So multiplication $A \otimes^h A \to A$; $a \otimes b \mapsto ab$ is (completely) contractive. (Multiplication from $A \otimes_{\min} A$ is rarely even bounded).

Haagerup tensor products

For a C*-algebra A, we define a norm $\|\cdot\|_h$ on $A\otimes A$ by

$$\|\tau\|_h = \inf\Big\{\Big\|\sum_k a_k a_k^*\Big\|\Big\|\sum_k b_k^* b_k\Big\| : \tau = \sum_k a_k \otimes b_k\Big\}.$$

Write $A \otimes^h A$ for the completed tensor product.

If $A \subseteq \mathcal{B}(H)$ then the (maybe infinite) column vector $b = (b_1, b_2, \cdots)^T$ can be regarded as a map $H \to H^{(\infty)}$, and then $b^*b = \sum_k b_k^*b_k$. Similarly the row vector $a = (a_1, a_2, \cdots)$ is such that $aa^* = \sum_k a_k a_k^*$. Then notice that

$$ab = \sum_{k} a_k b_k, \quad ||ab|| \le ||a|| ||b|| = ||aa^*||^{1/2} ||b^*b||^{1/2} = ||\sum_{k} a_k a_k^*|| ||\sum_{k} b_k^* b_k||.$$

So multiplication $A \otimes^h A \to A$; $a \otimes b \mapsto ab$ is (completely) contractive. (Multiplication from $A \otimes_{\min} A$ is rarely even bounded).

Haagerup tensor products (cont.)

The same definition works to form $A\otimes^h B$. The Haagerup tensor product is injective (and projective). So it makes perfect sense on Operator Spaces as well. The Haagerup tensor product is then *self-dual* in the sense that

$$E^* \otimes^h F^* \subseteq (E \otimes^h F)^*$$
 (completely) isometrically,

for Operator Spaces E and F.

For a von Neumann algebra M, we define the extended Haagerup tensor product by

$$M \otimes^{eh} M = (M_* \otimes^h M_*)^*.$$

(This can also be defined as before, but with the sums $\sum_k a_k a_k^*$, and so forth, being interpreted in the σ -weak topology, not the norm topology).

For an operator space E, we define

$$E\otimes^{eh}E=(E^*\otimes^hE^*)^*_{\sigma},$$

the separately-weak*-continuous functionals $E^* \otimes^h E^* \to \mathbb{C}$.

Hopf convolution algebras

I introduced the Fourier algebra by:

- defining a von Neumann algebra VN(G);
- defining a "coproduct", a normal *-homomorphism $\Delta: VN(G) \to VN(G) \overline{\otimes} VN(G)$ with $(\Delta \otimes \iota)\Delta = (\iota \otimes \Delta)\Delta$.
- then Δ induces the algebra structure on $A(G) = VN(G)_*$.

Can we do everything at the level of A(G)? We'd need a map

$$m: A(G) \rightarrow A(G) \otimes A(G)$$
 for some tensor product

whose adjoint $m: VN(G) \otimes VN(G) \rightarrow VN(G)$ was the product on VN(G).

[Quigg] tried to do with with the projective tensor product, but that only works (in any sense) if G is abelian by finite.

We could try the Haagerup tensor product $A(G) \otimes^h A(G)$, as then the adjoint is the product map $VN(G) \otimes^{eh} VN(G) \to VN(G)$, which is (completely) contractive.

Hopf convolution algebras

I introduced the Fourier algebra by:

- defining a von Neumann algebra VN(G);
- defining a "coproduct", a normal *-homomorphism $\Delta: VN(G) \to VN(G) \overline{\otimes} VN(G)$ with $(\Delta \otimes \iota)\Delta = (\iota \otimes \Delta)\Delta$.
- then Δ induces the algebra structure on $A(G) = VN(G)_*$.

Can we do everything at the level of A(G)? We'd need a map

$$m: A(G) \rightarrow A(G) \otimes A(G)$$
 for some tensor product

whose adjoint $m: VN(G) \otimes VN(G) \rightarrow VN(G)$ was the product on VN(G).

[Quigg] tried to do with with the projective tensor product, but that only works (in any sense) if G is abelian by finite.

We could try the Haagerup tensor product $A(G) \otimes^h A(G)$, as then the adjoint is the product map $VN(G) \otimes^{eh} VN(G) \to VN(G)$, which is (completely) contractive.

The problem

However, this is too small: even if G is abelian but non-compact, then $A(G) \otimes^h A(G)$ won't work.

[Effros+Ruan] solve this by working with $A(G) \otimes^{eh} A(G)$. So we get a map $m: A(G) \to A(G) \otimes^{eh} A(G)$. For a good analogy, this should be a homomorphism.

To turn $A(G) \otimes^{eh} A(G)$ into an algebra, we use the *shuffle map*

$$S: \big(A(G) \otimes^{eh} A(G)\big) \widehat{\otimes} \big(A(G) \otimes^{eh} A(G)\big) \to \big(A(G) \widehat{\otimes} A(G)\big) \otimes^{eh} \big(A(G) \widehat{\otimes} A(G)\big)$$

which sends $(a \otimes b) \otimes (c \otimes d)$ to $(a \otimes c) \otimes (b \otimes d)$. Then the product on $A(G) \otimes^{eh} A(G)$ is given by:

$$(A(G) \otimes^{eh} A(G)) \widehat{\otimes} (A(G) \otimes^{eh} A(G)) \xrightarrow{S} (A(G) \widehat{\otimes} A(G)) \otimes^{eh} (A(G) \widehat{\otimes} A(G))$$

$$\downarrow^{\Delta_* \otimes \Delta_*}$$

$$A(G) \otimes^{eh} A(G)$$

The problem

However, this is too small: even if G is abelian but non-compact, then $A(G) \otimes^h A(G)$ won't work.

[Effros+Ruan] solve this by working with $A(G) \otimes^{eh} A(G)$. So we get a map $m: A(G) \to A(G) \otimes^{eh} A(G)$. For a good analogy, this should be a homomorphism.

To turn $A(G) \otimes^{eh} A(G)$ into an algebra, we use the *shuffle map*

$$S: \big(A(G) \otimes^{eh} A(G)\big) \widehat{\otimes} \big(A(G) \otimes^{eh} A(G)\big) \to \big(A(G) \widehat{\otimes} A(G)\big) \otimes^{eh} \big(A(G) \widehat{\otimes} A(G)\big)$$

which sends $(a \otimes b) \otimes (c \otimes d)$ to $(a \otimes c) \otimes (b \otimes d)$. Then the product on $A(G) \otimes^{eh} A(G)$ is given by:

$$(A(G) \otimes^{eh} A(G)) \widehat{\otimes} (A(G) \otimes^{eh} A(G)) \xrightarrow{S} (A(G) \widehat{\otimes} A(G)) \otimes^{eh} (A(G) \widehat{\otimes} A(G))$$

$$\downarrow^{\Delta_* \otimes \Delta_*}$$

$$A(G) \otimes^{eh} A(G)$$

Using multipliers

Remember that, if I don't like von Neumann algebras, I can work with $C_r^*(G)$. However, here Δ now maps from $C_r^*(G)$ to the multiplier algebra $M(C_r^*(G) \otimes_{\min} C_r^*(G))$.

So can we analogously replace $A(G) \otimes^{eh} A(G)$ by, for example, $M_{cb}(A(G) \otimes^h A(G))$? (So, if G is compact, then actually we should be able to work with $A(G) \otimes^h A(G)$).

We can indeed do so. Firstly note that $A(G) \otimes^h A(G) \subseteq A(G) \otimes^{eh} A(G)$ (completely) isometrically, and so it follows that $A(G) \otimes^h A(G)$ is a subalgebra of $A(G) \otimes^{eh} A(G)$. The strategy will be to show that $m: A(G) \to A(G) \otimes^{eh} A(G)$ maps into the *idealiser*

$$\{\tau \in A(G) \otimes^{eh} A(G) : \tau \sigma \in A(G) \otimes^{h} A(G) \ (\sigma \in A(G) \otimes^{h} A(G))\}.$$

If we can do this, then we obviously have a map $A(G) \to M_{cb}(A(G) \otimes^h A(G))$.

Using multipliers

Remember that, if I don't like von Neumann algebras, I can work with $C_r^*(G)$. However, here Δ now maps from $C_r^*(G)$ to the multiplier algebra $M(C_r^*(G) \otimes_{\min} C_r^*(G))$.

So can we analogously replace $A(G) \otimes^{eh} A(G)$ by, for example, $M_{cb}(A(G) \otimes^h A(G))$? (So, if G is compact, then actually we should be able to work with $A(G) \otimes^h A(G)$).

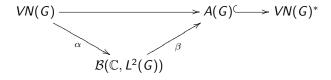
We can indeed do so. Firstly note that $A(G) \otimes^h A(G) \subseteq A(G) \otimes^{eh} A(G)$ (completely) isometrically, and so it follows that $A(G) \otimes^h A(G)$ is a subalgebra of $A(G) \otimes^{eh} A(G)$. The strategy will be to show that $m: A(G) \to A(G) \otimes^{eh} A(G)$ maps into the *idealiser*

$$\big\{\tau\in A(G)\otimes^{eh}A(G):\tau\sigma\in A(G)\otimes^{h}A(G)\;(\sigma\in A(G)\otimes^{h}A(G))\big\}.$$

If we can do this, then we obviously have a map $A(G) \to M_{cb}(A(G) \otimes^h A(G))$.

The proof

An alternative description of $(E \otimes^h F)^*$ is those maps $F \to E^*$ which cb-factor through a *column* Hilbert space. For $a,b,c \in A(G)$, consider $m(a)(b \otimes c) \in A(G) \otimes^{eh} A(G) = (VN(G) \otimes^h VN(G))_{\sigma}^*$; let's see how to view this as a map which factors through the column $L^2(G) = \mathcal{B}(\mathbb{C}, L^2(G))$:



Let $a \in A(G)$ be the normal functional $\langle x, a \rangle = (x\xi_0|\eta_0)$ for $x \in VN(G)$. Then we have

$$\alpha(x) = (c \cdot x)(\xi_0) \qquad (x \in VN(G)),$$

$$\beta(\xi) = \omega_{\xi,\eta_0}b \qquad (\xi \in L^2(G)),$$

where $\omega_{\xi,\eta_0}: VN(G) \to \mathbb{C}; x \mapsto (x\xi|\eta_0).$

↓□▶ ↓□▶ ↓□▶ ↓□▶ □ ♥Q○

The proof continued

Let's think more about $\alpha: VN(G) \to L^2(G); x \mapsto (c \cdot x)(\xi_0)$. Let $c = \omega_{\xi_1,\eta_1}$, so that

$$\big(\alpha(x)\big|\eta\big)=\langle c\cdot x,\omega_{\xi_0,\eta}\rangle=\big(\Delta(x)\xi_0\otimes\xi_2\big|\eta\otimes\eta_2\big)=\big((1\otimes x)W(\xi_0\otimes\xi_2)\big|W(\eta\otimes\eta_2)\big).$$

Let (e_i) be an orthonormal basis for $L^2(G)$, so we can write

$$W(\xi_0 \otimes \xi_2) = \sum_i e_i \otimes \phi_i,$$

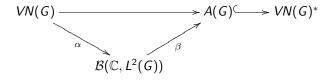
for some (ϕ_i) . Then, letting $\sigma: L^2(G) \otimes L^2(G) \to L^2(G) \otimes L^2(G)$ be the swap map,

$$(\alpha(x)|\eta) = \sum_{i} (\sigma W^*(e_i \otimes x(\phi_i))|\eta_2 \otimes \eta) = \sum_{i} ((\omega_{e_i,\eta_2} \otimes \iota)(\sigma W^*)x\phi_i|\eta).$$

Now, the key idea is that $(\omega_{e_i,\eta_2}\otimes\iota)(\sigma W^*)$ is a compact operator, which we can approximate by finite-ranks. So, being careful, we can approximate α , in the cb-norm, by a finite-rank map.

Finishing up

Recall we had $a, b, c \in A(G)$, and we viewed $m(a)(b \otimes c)$ as:



We can cb-norm approximate α by a finite-rank map, so we can approximate $m(a)(b\otimes c)$, in the extended Haagerup norm, by a finite-rank tensor in $A(G)\otimes A(G)$. As $A(G)\otimes^h A(G)$ is closed in $A(G)\otimes^{eh} A(G)$, it follows that $m(a)(b\otimes c)\in A(G)\otimes^h A(G)$, as required.

Various open problems

We have a complete contraction $A(G) \rightarrow C_0(G)$ and so also complete contractions

$$A(G \times G) = A(G) \widehat{\otimes} A(G) \to A(G) \otimes^h A(G) \to C_0(G) \otimes^h C_0(G)$$

$$\to C_0(G) \otimes_{min} C_0(G) = C_0(G \times G).$$

So we can view $\mathfrak{A}=A(G)\otimes^hA(G)$ as an algebra of functions on $G\times G$. A result of [Gelbaum, Robbins] easily generalises to show that the spectrum of \mathfrak{A} is $G\times G$.

- What sort of spectral synthesis properties does A have?
- When is $m: A(G) \to M_{cb}(A(G) \otimes^h A(G))$ induced?
- Can we otherwise form an extension $M_{cb}A(G) \to M_{cb}(A(G) \otimes^h A(G))$ when G is non-amenable?

Is there any use of the fact that A(G) is a (completely contractive) self-induced algebra? For a general locally compact quantum group, do we have $\{x \in L^{\infty}(\mathbb{G}) : (\Delta \otimes \iota)x = (\iota \otimes \Delta)x\} = \Delta(L^{\infty}(\mathbb{G}))$?