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Multiplier algebras

Let A be an algebra. A multiplier of A is a pair (L,R) of maps A→ A such that
aL(b) = R(a)b for a, b ∈ A. Let M(A) be the collection of such maps, made into
an algebra for the product (L,R)(L′,R ′) = (LL′,R ′R).

Henceforth assume that A is faithful: if a ∈ A and bac = 0 for all b, c ∈ A, then
a = 0. Then we can show that

L(ab) = L(a)b, R(ab) = aR(b) (a, b ∈ A),

and furthermore, the map A→ M(A),

a 7→ (La,Ra), La(b) = ab,Ra(b) = ba (a, b ∈ A),

is an injective algebra homomorphism.

Then A becomes an ideal in M(A). If B is an algebra containing A as an ideal,
we say that A is essential if x ∈ B is such that axb = 0 for a, b ∈ A, then x = 0.
Then B embeds into M(A). In this sense, M(A) is the “largest” algebra
containing A as an essential ideal.
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Banach algebras; Examples

If A is a Banach algebra, then a little closed graph argument shows that if
(L,R) ∈ M(A), then L and R are bounded. We norm M(A) by regarding it as a
subspace of B(A)⊕∞ B(A).

If A is unital, then A = M(A).

If A is a C∗-algebra then so is M(A). For a commutative C∗-algebra A = C0(X ),
the multiplier algebra can be identified with C b(X ), which in turn is C (βX ). So
multiplier algebras are Stone-Cech compactifications.
Notice that M(A) is rarely a von Neumann algebra.

Let E be a Banach algebra, and A = K(E ) the compact operators on E . Then
M(A) = B(E ).
Notice that B(E ) may or may not be a dual space.

For a locally compact group G , consider the algebra L1(G ). Then
M(L1(G )) = M(G ) [Wendel’s Theorem]. A bit of measure theory shows that
L1(G ) is an ideal in M(G ), and so we have an embedding M(G )→ M(L1(G )). A
bounded approximate identity argument gives that this surjects.
Notice that M(G ) is always a dual space (and indeed a dual Banach algebra).
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Dual Banach algebras

Let A be a Banach algebra which is the dual Banach space of A∗ say. We say that
A is a dual Banach algebra (for A∗) if the product is separately weak∗-continuous.

Let’s assemble some ingredients. Let A be a Banach algebra such that
{ab : a, b ∈ A} is linearly dense in A. Let (B,B∗) be a dual Banach algebra such
that:

we have an isometric homomorphism ι : A→ B;

ι(A) is an (essential) ideal in B;

the resulting map B → M(A) injects.

We’ll construct a predual for M(A).

If you are interested in the one-sided case, compare with [Selivanov], Monatsh.
Math. (1999).
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The construction

Consider

X = (A⊗̂B∗)⊕1 (A⊗̂B∗) so that X ∗ = B(A,B)⊕∞ B(A,B).

Let Y ⊆ X be the linear span of(
b ⊗ µ · ι(a)

)
⊕
(
− a⊕ ι(b) · µ

)
(a, b ∈ A, µ ∈ B∗).

Then Y⊥ ⊆ X ∗ is a weak∗-closed subspace with predual X/Y . A calculation
shows that

(T ,S) ∈ Y⊥ ⇔ ι(a)T (b) = S(a)ι(b) (a, b ∈ A).

Now argue that as products are dense in A, actually T (A),S(A) ⊆ ι(A), and so
we really have maps L,R : A→ A with T = ιL,S = ιR. But then (L,R) ∈ M(A);
so we’ve shown that M(A) ∼= Y⊥.

A final, slightly technical, check shows that M(A) is indeed a dual Banach
algebra.
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Uniqueness

Following the construction through the weak∗-topology on M(A) satisfies: a
bounded net (Lα,Rα) in M(A) is weak∗-null if and only if

lim
α
〈ιLα(a), µ〉+ 〈ιRα(b), λ〉 = 0 (a, b ∈ A, µ, λ ∈ B∗).

Let θ : B → M(A) be the map induced by ι : A→ B. Then there is one and only
one weak∗-topology on M(A) such that:

M(A) is a dual Banach algebra;

for a bounded net (bα) in B, we have that (bα) is weak∗ null in B if and
only if (θ(bα)) is weak∗ null in M(A).

So what we’ve done is taken a dual Banach algebra B which isn’t quite large
enough to be all of M(A), and boot-strapped the weak∗-topology from B to
M(A).
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The Fourier algebra

Let G be a locally compact group, and let λ be the left-regular representation of
G on L2(G ):

λ(s)ξ : t 7→ ξ(s−1t) (s, t ∈ G , ξ ∈ L2(G )).

Let VN(G ) be the group von Neumann algebra, which is generated by
{λ(s) : s ∈ G}.
There exists a normal ∗-homomorphism ∆ : VN(G )→ VN(G × G ) which
satisfies ∆(λ(s)) = λ(s)⊗ λ(s). This exists, as we can define a unitary
W ∈ B(L2(G × G )) by W ξ(s, t) = ξ(ts, t), and then

∆(x) = W ∗(1⊗ x)W (x ∈ VN(G )),

does the job.

Let A(G ) be the predual of VN(G ). As ∆ is normal, for ω, σ ∈ A(G ), there exists
ωσ ∈ A(G ) such that

〈∆(x), ω ⊗ σ〉 = 〈x , ωσ〉 (x ∈ VN(G )).

Thus we’ve turned A(G ) into a Banach algebra.
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As a function algebra
As {λ(s) : s ∈ G} generates VN(G ), an element ω ∈ A(G ) is uniquely
determined by {〈λ(s), ω〉 : s ∈ G} so we can think of ω as a function
G → C; s 7→ ω(s) = 〈λ(s), ω〉.
Then the product on A(G ) is just the pointwise product, as

(ωσ)(s) = 〈∆(λ(s)), ω ⊗ σ〉 = 〈λ(s)⊗ λ(s), ω ⊗ σ〉 = ω(s)σ(s).

Alternatively, starting with λ, we could integrate this to get a ∗-homomorphism
λ : L1(G )→ B(L2(G )). Then the norm closure of the image is C∗r (G ), the
(reduced) group C∗-algebra. Then ∆ restricts to give a map

∆ : C∗r (G )→ M
(
C∗r (G × G )

)
.

Using this, we turn C∗r (G )∗ into a commutative, dual Banach algebra, Br (G ) the
(reduced) Fourier-Stieltjes algebra.

If G is abelian with dual group Ĝ , then

VN(G ) ∼= L∞(Ĝ ), A(G ) ∼= L1(Ĝ ), C∗r (G ) ∼= C0(Ĝ ), Br (G ) ∼= M(Ĝ ).
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Multipliers of A(G )

By analogy with the abelian case, we might hope that M(A(G )) = Br (G ) always.
However, Br (G ) is unital if and only if G is amenable [Leptin, Cowling?].

As A(G ) is commutative, it follows that for (L,R) ∈ M(A(G )) we have L = R,
and that actually

M(A(G )) = {T : A(G )→ A(G ) : T (ωσ) = T (ω)σ (ω, σ ∈ A(G ))}.

Indeed, we can actually identify M(A(G )) with a space of functions:

M(A(G )) = {f ∈ C b(G ) : f ω ∈ A(G ) (ω ∈ A(G ))}.

We do always have that A(G )→ Br (G ) = C∗r (G )∗ isometrically (Kaplansky
density), and that A(G ) is an ideal in Br (G ) (the Fell absorption principle). A
little check shows that A(G ) is essential in Br (G ). Thus we can run our
programme, and M(A(G )) is a dual Banach algebra.

This was first shown by [De Canniere, Haagerup]. I think it’s nice that we don’t
really need to know very much about the structure of A(G ) at all. Also, this
construction happily extends to locally compact quantum groups.
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Operator spaces; Completely bounded maps

Given a map T : A→ B between C∗-algebras, we can dilate T to a map

T ⊗ ιn : A⊗Mn = Mn(A)→ B ⊗Mn = Mn(B)

between the matrix algebras over A and B. If supn ‖T ⊗ ιn‖ <∞, then T is
completely bounded.

Given a multiplier T ∈ M(A(G )), if T ∗ : VN(G )→ VN(G ) is completely
bounded, then T is completely bounded, T ∈ McbA(G ).

Of course, the definition of completely bounded makes sense for operators
between subspaces of C∗-algebras, and this leads to the notion of an operator
space. The category of operators spaces and completely bounded maps is nicely
behaved, and we can run our construction again, showing that McbA(G ) is a dual
Banach algebra.
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Self-induced algebras and modules

Let A⊗̂AA be the quotient of A⊗̂A by the linear closure of

{ab ⊗ c − a⊗ bc : a, b, c ∈ A}.

The product map π : A⊗̂A→ A; a⊗ b 7→ ab respects this quotient, so we get a
map A⊗̂AA→ A. If this is an isomorphism, then A is self-induced.

Similarly, for a left A-module E , we can form A⊗̂AE , and we say that E is
induced if the product map implements an isomorphism A⊗̂AE ∼= E .

Let θ : A→ M(B) be a homomorphism: we say that this is non-degenerate if
{θ(a1)bθ(a2) : a1, a2 ∈ A, b ∈ B} is linearly dense in B. We can turn B into an
A-bimodule by setting

a · b = θ(a)b, b · a = bθ(a) (a ∈ A, b ∈ B).

Then θ is non-degenerate if B is an essential A-module.

[Johnson]⇒ that if A has a bounded approximate identity, then any
non-degenerate homomorphism extends to θ : M(A)→ M(B).
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Extending homomorphisms in the induced case

Let θ : A→ M(B) be a homomorphism which turns B into an induced
A-bimodule. We can extend θ to M(A) as follows. Given (L,R) ∈ M(A), we
define L′ : B → B by

B

L′

��

A⊗̂AB
∼=oo

��

A⊗̂Boooo

L⊗ι
��

B A⊗̂AB
∼=oo A⊗̂Boooo

This commutes, as L⊗ ι maps
N = lin{a1a2 ⊗ b − a1 ⊗ θ(a2)b : a1, a2 ∈ A, b ∈ B} into itself. This follows, as

L(a1a2)⊗ b − L(a1)⊗ θ(a2)b = L(a1)a2 ⊗ b − L(a1)⊗ θ(a2)b ∈ N.

Similarly we form R ′ : B → B, check that (L′,R ′) ∈ M(A), and that
(L,R) 7→ (L′,R ′) is homomorphism.
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Example of an induced algebra

[Rieffel; Forrest, Lee, Samei]⇒ If A has a bounded approximate identity, then A is
self-induced and any essential module is induced.

We now work in the category of Operator Spaces. We’ll show that A(G ) is always
self-induced: we want that A(G )⊗̂A(G )/N = A(G × G )/N is isomorphic to A(G )
under the product map. Dualising, we want that

VN(G )
∆ // N⊥ ⊆ VN(G )⊗VN(G ) = VN(G × G )

is an isomorphism. All we need to prove is that it’s onto. However,

N⊥ = {x ∈ VN(G )⊗VN(G ) : 〈x , ab ⊗ c − a⊗ bc〉 = 0}
= {x ∈ VN(G )⊗VN(G ) : 〈(∆⊗ ι)x − (ι⊗∆)x , a⊗ b ⊗ c〉 = 0}
= {x ∈ VN(G )⊗VN(G ) : (∆⊗ ι)x = (ι⊗∆)x}.

We can then check that the support of x ∈ N⊥ must be contained in the diagonal
{(s, s) : s ∈ G} ⊆ G × G . As this is a set of synthesis, by [Herz; Takesaki,
Tatsumma] we have that x ∈ ∆(VN(G )), so we’re done.
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Other extensions

For a homomorphism θ : A→ M(B), we can extend to M(A) when:

A has a bounded approximate identity, and θ is non-degenerate;

B becomes an induced A-bimodule;

[Ilie, Stokke] A has a bounded approximate identity, and M(B) is a dual
Banach algebra.

For more on induced algebras, see work of [Gronbaek].
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Haagerup tensor products

For a C∗-algebra A, we define a norm ‖ · ‖h on A⊗ A by

‖τ‖h = inf
{∥∥∥∑

k

aka∗k

∥∥∥∥∥∥∑
k

b∗k bk

∥∥∥ : τ =
∑

k

ak ⊗ bk

}
.

Write A⊗h A for the completed tensor product.

If A ⊆ B(H) then the (maybe infinite) column vector b = (b1, b2, · · · )T can be
regarded as a map H → H(∞), and then b∗b =

∑
k b∗k bk . Similarly the row vector

a = (a1, a2, · · · ) is such that aa∗ =
∑

k aka∗k . Then notice that

ab =
∑

k

akbk , ‖ab‖ ≤ ‖a‖‖b‖ = ‖aa∗‖1/2‖b∗b‖1/2 =
∥∥∥∑

k

aka∗k

∥∥∥∥∥∥∑
k

b∗k bk

∥∥∥.
So multiplication A⊗h A→ A; a⊗ b 7→ ab is (completely) contractive.
(Multiplication from A⊗min A is rarely even bounded).
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Haagerup tensor products (cont.)

The same definition works to form A⊗h B. The Haagerup tensor product is
injective (and projective). So it makes perfect sense on Operator Spaces as well.
The Haagerup tensor product is then self-dual in the sense that

E∗ ⊗h F ∗ ⊆ (E ⊗h F )∗ (completely) isometrically,

for Operator Spaces E and F .

For a von Neumann algebra M, we define the extended Haagerup tensor product
by

M ⊗eh M = (M∗ ⊗h M∗)
∗.

(This can also be defined as before, but with the sums
∑

k aka∗k , and so forth,
being interpreted in the σ-weak topology, not the norm topology).

For an operator space E , we define

E ⊗eh E = (E∗ ⊗h E∗)∗σ,

the separately-weak∗-continuous functionals E∗ ⊗h E∗ → C.
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Hopf convolution algebras

I introduced the Fourier algebra by:

defining a von Neumann algebra VN(G );

defining a “coproduct”, a normal ∗-homomorphism
∆ : VN(G )→ VN(G )⊗VN(G ) with (∆⊗ ι)∆ = (ι⊗∆)∆.

then ∆ induces the algebra structure on A(G ) = VN(G )∗.

Can we do everything at the level of A(G )? We’d need a map

m : A(G )→ A(G )⊗ A(G ) for some tensor product

whose adjoint m : VN(G )⊗ VN(G )→ VN(G ) was the product on VN(G ).

[Quigg] tried to do with with the projective tensor product, but that only works
(in any sense) if G is abelian by finite.

We could try the Haagerup tensor product A(G )⊗h A(G ), as then the adjoint is
the product map VN(G )⊗eh VN(G )→ VN(G ), which is (completely) contractive.
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The problem

However, this is too small: even if G is abelian but non-compact, then
A(G )⊗h A(G ) won’t work.

[Effros+Ruan] solve this by working with A(G )⊗eh A(G ). So we get a map
m : A(G )→ A(G )⊗eh A(G ). For a good analogy, this should be a
homomorphism.

To turn A(G )⊗eh A(G ) into an algebra, we use the shuffle map

S :
(
A(G )⊗eh A(G )

)
⊗̂
(
A(G )⊗eh A(G )

)
→
(
A(G )⊗̂A(G )

)
⊗eh

(
A(G )⊗̂A(G )

)
which sends (a⊗ b)⊗ (c ⊗ d) to (a⊗ c)⊗ (b ⊗ d). Then the product on
A(G )⊗eh A(G ) is given by:

(
A(G )⊗eh A(G )

)
⊗̂
(
A(G )⊗eh A(G )

) S //
(
A(G )⊗̂A(G )

)
⊗eh

(
A(G )⊗̂A(G )

)
∆∗⊗∆∗

��
A(G )⊗eh A(G )
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Using multipliers

Remember that, if I don’t like von Neumann algebras, I can work with C∗r (G ).
However, here ∆ now maps from C∗r (G ) to the multiplier algebra
M(C∗r (G )⊗min C∗r (G )).

So can we analogously replace A(G )⊗eh A(G ) by, for example,
Mcb(A(G )⊗h A(G ))? (So, if G is compact, then actually we should be able to
work with A(G )⊗h A(G )).

We can indeed do so. Firstly note that A(G )⊗h A(G ) ⊆ A(G )⊗eh A(G )
(completely) isometrically, and so it follows that A(G )⊗h A(G ) is a subalgebra of
A(G )⊗eh A(G ). The strategy will be to show that m : A(G )→ A(G )⊗eh A(G )
maps into the idealiser{

τ ∈ A(G )⊗eh A(G ) : τσ ∈ A(G )⊗h A(G ) (σ ∈ A(G )⊗h A(G ))
}
.

If we can do this, then we obviously have a map A(G )→ Mcb(A(G )⊗h A(G )).

Matthew Daws (Leeds) Multipliers and Abstract Harmonic Analysis August 2010 20 / 24



The proof

An alternative description of (E ⊗h F )∗ is those maps F → E∗ which cb-factor
through a column Hilbert space. For a, b, c ∈ A(G ), consider
m(a)(b⊗ c) ∈ A(G )⊗eh A(G ) =

(
VN(G )⊗h VN(G )

)∗
σ

; let’s see how to view this

as a map which factors through the column L2(G ) = B(C, L2(G )):

VN(G ) //

α
&&MMMMMMMMMM

A(G ) � � // VN(G )∗

B(C, L2(G ))

β

99rrrrrrrrrr

Let a ∈ A(G ) be the normal functional 〈x , a〉 = (xξ0|η0) for x ∈ VN(G ). Then
we have

α(x) = (c · x)(ξ0) (x ∈ VN(G )),

β(ξ) = ωξ,η0 b (ξ ∈ L2(G )),

where ωξ,η0 : VN(G )→ C; x 7→ (xξ|η0).
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The proof continued

Let’s think more about α : VN(G )→ L2(G ); x 7→ (c · x)(ξ0). Let c = ωξ1,η1 , so
that(
α(x)

∣∣η) = 〈c · x , ωξ0,η〉 =
(
∆(x)ξ0⊗ξ2

∣∣η⊗η2

)
=
(
(1⊗x)W (ξ0⊗ξ2)

∣∣W (η⊗η2)
)
.

Let (ei ) be an orthonormal basis for L2(G ), so we can write

W (ξ0 ⊗ ξ2) =
∑

i

ei ⊗ φi ,

for some (φi ). Then, letting σ : L2(G )⊗ L2(G )→ L2(G )⊗ L2(G ) be the swap
map,(

α(x)
∣∣η) =

∑
i

(
σW ∗(ei ⊗ x(φi ))

∣∣η2 ⊗ η
)

=
∑

i

(
(ωei ,η2 ⊗ ι)(σW ∗)xφi

∣∣η).
Now, the key idea is that (ωei ,η2 ⊗ ι)(σW ∗) is a compact operator, which we can
approximate by finite-ranks. So, being careful, we can approximate α, in the
cb-norm, by a finite-rank map.
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Finishing up

Recall we had a, b, c ∈ A(G ), and we viewed m(a)(b ⊗ c) as:

VN(G ) //

α
&&MMMMMMMMMM

A(G ) � � // VN(G )∗

B(C, L2(G ))

β

99rrrrrrrrrr

We can cb-norm approximate α by a finite-rank map, so we can approximate
m(a)(b ⊗ c), in the extended Haagerup norm, by a finite-rank tensor in
A(G )⊗ A(G ). As A(G )⊗h A(G ) is closed in A(G )⊗eh A(G ), it follows that
m(a)(b ⊗ c) ∈ A(G )⊗h A(G ), as required.
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Various open problems

We have a complete contraction A(G )→ C0(G ) and so also complete
contractions

A(G × G ) = A(G )⊗̂A(G )→ A(G )⊗h A(G )→ C0(G )⊗h C0(G )

→ C0(G )⊗min C0(G ) = C0(G × G ).

So we can view A = A(G )⊗h A(G ) as an algebra of functions on G ×G . A result
of [Gelbaum, Robbins] easily generalises to show that the spectrum of A is
G × G .

What sort of spectral synthesis properties does A have?

When is m : A(G )→ Mcb(A(G )⊗h A(G )) induced?

Can we otherwise form an extension McbA(G )→ Mcb(A(G )⊗h A(G )) when
G is non-amenable?

Is there any use of the fact that A(G ) is a (completely contractive) self-induced
algebra? For a general locally compact quantum group, do we have
{x ∈ L∞(G) : (∆⊗ ι)x = (ι⊗∆)x} = ∆(L∞(G))?
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