Outline

Multipliers and Abstract Harmonic Analysis

Matthew Daws

Leeds
August 2010

Multiplier algebras

Let A be an algebra. A multiplier of A is a pair (L, R) of maps $A \rightarrow A$ such that $a L(b)=R(a) b$ for $a, b \in A$. Let $M(A)$ be the collection of such maps, made into an algebra for the product $(L, R)\left(L^{\prime}, R^{\prime}\right)=\left(L L^{\prime}, R^{\prime} R\right)$.
Henceforth assume that A is faithful: if $a \in A$ and bac $=0$ for all $b, c \in A$, then $a=0$. Then we can show that

$$
L(a b)=L(a) b, \quad R(a b)=a R(b) \quad(a, b \in A)
$$

and furthermore, the map $A \rightarrow M(A)$,

$$
a \mapsto\left(L_{a}, R_{a}\right), \quad L_{a}(b)=a b, R_{a}(b)=b a \quad(a, b \in A),
$$

is an injective algebra homomorphism.
Then A becomes an ideal in $M(A)$. If B is an algebra containing A as an ideal, we say that A is essential if $x \in B$ is such that $a x b=0$ for $a, b \in A$, then $x=0$. Then B embeds into $M(A)$. In this sense, $M(A)$ is the "largest" algebra containing A as an essential ideal.
 Multiplier algebras; Dual Banach algebras}The Fourier algebra; Extending homomorphismsHopf convolution algebras

Banach algebras; Examples

If A is a Banach algebra, then a little closed graph argument shows that if $(L, R) \in M(A)$, then L and R are bounded. We norm $M(A)$ by regarding it as a subspace of $\mathcal{B}(A) \oplus_{\infty} \mathcal{B}(A)$.
If A is unital, then $A=M(A)$.
If A is a C^{*}-algebra then so is $M(A)$. For a commutative C^{*}-algebra $A=C_{0}(X)$, the multiplier algebra can be identified with $C^{b}(X)$, which in turn is $C(\beta X)$. So multiplier algebras are Stone-Cech compactifications.
Notice that $M(A)$ is rarely a von Neumann algebra.
Let E be a Banach algebra, and $A=\mathcal{K}(E)$ the compact operators on E. Then $M(A)=\mathcal{B}(E)$.
Notice that $\mathcal{B}(E)$ may or may not be a dual space.
For a locally compact group G, consider the algebra $L^{1}(G)$. Then $M\left(L^{1}(G)\right)=M(G)$ [Wendel's Theorem]. A bit of measure theory shows that
$L^{1}(G)$ is an ideal in $M(G)$, and so we have an embedding $M(G) \rightarrow M\left(L^{1}(G)\right)$. A
bounded approximate identity argument gives that this surjects.
Notice that $M(G)$ is always a dual space (and indeed a dual Banach algebra).

Dual Banach algebras

Let A be a Banach algebra which is the dual Banach space of A_{*} say. We say that A is a dual Banach algebra (for A_{*}) if the product is separately weak*-continuous. Let's assemble some ingredients. Let A be a Banach algebra such that $\{a b: a, b \in A\}$ is linearly dense in A. Let $\left(B, B_{*}\right)$ be a dual Banach algebra such that:

- we have an isometric homomorphism $\iota: A \rightarrow B$;
- $\iota(A)$ is an (essential) ideal in B;
- the resulting map $B \rightarrow M(A)$ injects.

We'll construct a predual for $M(A)$.
If you are interested in the one-sided case, compare with [Selivanov], Monatsh. Math. (1999).

Uniqueness

Following the construction through the weak*-topology on $M(A)$ satisfies: a bounded net $\left(L_{\alpha}, R_{\alpha}\right)$ in $M(A)$ is weak*-null if and only if

$$
\lim _{\alpha}\left\langle\iota L_{\alpha}(a), \mu\right\rangle+\left\langle\iota R_{\alpha}(b), \lambda\right\rangle=0 \quad\left(a, b \in A, \mu, \lambda \in B_{*}\right) .
$$

Let $\theta: B \rightarrow M(A)$ be the map induced by $\iota: A \rightarrow B$. Then there is one and only one weak*-topology on $M(A)$ such that:

- $M(A)$ is a dual Banach algebra;
- for a bounded net $\left(b_{\alpha}\right)$ in B, we have that $\left(b_{\alpha}\right)$ is weak* null in B if and only if $\left(\theta\left(b_{\alpha}\right)\right)$ is weak* null in $M(A)$.

So what we've done is taken a dual Banach algebra B which isn't quite large enough to be all of $M(A)$, and boot-strapped the weak*-topology from B to $M(A)$.

The construction

Consider

$$
X=\left(A \widehat{\otimes} B_{*}\right) \oplus_{1}\left(A \widehat{\otimes} B_{*}\right) \quad \text { so that } \quad X^{*}=\mathcal{B}(A, B) \oplus_{\infty} \mathcal{B}(A, B)
$$

Let $Y \subseteq X$ be the linear span of

$$
(b \otimes \mu \cdot \iota(a)) \oplus(-a \oplus \iota(b) \cdot \mu) \quad\left(a, b \in A, \mu \in B_{*}\right)
$$

Then $Y^{\perp} \subseteq X^{*}$ is a weak*-closed subspace with predual X / Y. A calculation shows that

$$
(T, S) \in Y^{\perp} \Leftrightarrow \iota(a) T(b)=S(a) \iota(b) \quad(a, b \in A)
$$

Now argue that as products are dense in A, actually $T(A), S(A) \subseteq \iota(A)$, and so we really have maps $L, R: A \rightarrow A$ with $T=\iota L, S=\iota R$. But then $(L, R) \in M(A)$; so we've shown that $M(A) \cong Y^{\perp}$.
A final, slightly technical, check shows that $M(A)$ is indeed a dual Banach algebra.

The Fourier algebra

Let G be a locally compact group, and let λ be the left-regular representation of G on $L^{2}(G)$:

$$
\lambda(s) \xi: t \mapsto \xi\left(s^{-1} t\right) \quad\left(s, t \in G, \xi \in L^{2}(G)\right) .
$$

Let $V N(G)$ be the group von Neumann algebra, which is generated by $\{\lambda(s): s \in G\}$
There exists a normal $*$-homomorphism $\Delta: V N(G) \rightarrow V N(G \times G)$ which satisfies $\Delta(\lambda(s))=\lambda(s) \otimes \lambda(s)$. This exists, as we can define a unitary $W \in \mathcal{B}\left(L^{2}(G \times G)\right)$ by $W \xi(s, t)=\xi(t s, t)$, and then

$$
\Delta(x)=W^{*}(1 \otimes x) W \quad(x \in V N(G))
$$

does the job.
Let $A(G)$ be the predual of $V N(G)$. As Δ is normal, for $\omega, \sigma \in A(G)$, there exists $\omega \sigma \in A(G)$ such that

$$
\langle\Delta(x), \omega \otimes \sigma\rangle=\langle x, \omega \sigma\rangle \quad(x \in V N(G)) .
$$

Thus we've turned $A(G)$ into a Banach algebra.

As a function algebra

As $\{\lambda(s): s \in G\}$ generates $V N(G)$, an element $\omega \in A(G)$ is uniquely determined by $\{\langle\lambda(s), \omega\rangle: s \in G\}$ so we can think of ω as a function $G \rightarrow \mathbb{C} ; s \mapsto \omega(s)=\langle\lambda(s), \omega\rangle$.
Then the product on $A(G)$ is just the pointwise product, as

$$
(\omega \sigma)(s)=\langle\Delta(\lambda(s)), \omega \otimes \sigma\rangle=\langle\lambda(s) \otimes \lambda(s), \omega \otimes \sigma\rangle=\omega(s) \sigma(s) .
$$

Alternatively, starting with λ, we could integrate this to get a $*$-homomorphism $\lambda: L^{1}(G) \rightarrow \mathcal{B}\left(L^{2}(G)\right)$. Then the norm closure of the image is $C_{r}^{*}(G)$, the (reduced) group C^{*}-algebra. Then Δ restricts to give a map

$$
\Delta: C_{r}^{*}(G) \rightarrow M\left(C_{r}^{*}(G \times G)\right)
$$

Using this, we turn $C_{r}^{*}(G)^{*}$ into a commutative, dual Banach algebra, $B_{r}(G)$ the (reduced) Fourier-Stieltjes algebra.
If G is abelian with dual group \hat{G}, then

$$
V N(G) \cong L^{\infty}(\hat{G}), \quad A(G) \cong L^{1}(\hat{G}), \quad C_{r}^{*}(G) \cong C_{0}(\hat{G}), \quad B_{r}(G) \cong M(\hat{G}) .
$$

Operator spaces; Completely bounded maps

Given a map $T: A \rightarrow B$ between C^{*}-algebras, we can dilate T to a map

$$
T \otimes \iota_{n}: A \otimes M_{n}=M_{n}(A) \rightarrow B \otimes M_{n}=M_{n}(B)
$$

between the matrix algebras over A and B. If $\sup _{n}\left\|T \otimes \iota_{n}\right\|<\infty$, then T is completely bounded.
Given a multiplier $T \in M(A(G))$, if $T^{*}: V N(G) \rightarrow V N(G)$ is completely bounded, then T is completely bounded, $T \in M_{c b} A(G)$
Of course, the definition of completely bounded makes sense for operators between subspaces of C^{*}-algebras, and this leads to the notion of an operator space. The category of operators spaces and completely bounded maps is nicely behaved, and we can run our construction again, showing that $M_{c b} A(G)$ is a dua Banach algebra.

Multipliers of $A(G)$

By analogy with the abelian case, we might hope that $M(A(G))=B_{r}(G)$ always. However, $B_{r}(G)$ is unital if and only if G is amenable [Leptin, Cowling?].
As $A(G)$ is commutative, it follows that for $(L, R) \in M(A(G))$ we have $L=R$, and that actually

$$
M(A(G))=\{T: A(G) \rightarrow A(G): T(\omega \sigma)=T(\omega) \sigma(\omega, \sigma \in A(G))\}
$$

Indeed, we can actually identify $M(A(G))$ with a space of functions:

$$
M(A(G))=\left\{f \in C^{b}(G): f \omega \in A(G)(\omega \in A(G))\right\} .
$$

We do always have that $A(G) \rightarrow B_{r}(G)=C_{r}^{*}(G)^{*}$ isometrically (Kaplansky density), and that $A(G)$ is an ideal in $B_{r}(G)$ (the Fell absorption principle). A little check shows that $A(G)$ is essential in $B_{r}(G)$. Thus we can run our programme, and $M(A(G))$ is a dual Banach algebra.
This was first shown by [De Canniere, Haagerup]. I think it's nice that we don't really need to know very much about the structure of $A(G)$ at all. Also, this construction happily extends to locally compact quantum groups.

Self-induced algebras and modules

Let $A \widehat{\otimes}_{A} A$ be the quotient of $A \widehat{\otimes} A$ by the linear closure of

$$
\{a b \otimes c-a \otimes b c: a, b, c \in A\} .
$$

The product map $\pi: A \widehat{\otimes} A \rightarrow A ; a \otimes b \mapsto a b$ respects this quotient, so we get a map $A \widehat{\otimes}_{A} A \rightarrow A$. If this is an isomorphism, then A is self-induced.
Similarly, for a left A-module E, we can form $A \widehat{\otimes}_{A} E$, and we say that E is induced if the product map implements an isomorphism $A \widehat{\otimes}_{A} E \cong E$.
Let $\theta: A \rightarrow M(B)$ be a homomorphism: we say that this is non-degenerate if $\left\{\theta\left(a_{1}\right) b \theta\left(a_{2}\right): a_{1}, a_{2} \in A, b \in B\right\}$ is linearly dense in B. We can turn B into an A-bimodule by setting

$$
a \cdot b=\theta(a) b, \quad b \cdot a=b \theta(a) \quad(a \in A, b \in B) .
$$

Then θ is non-degenerate if B is an essential A-module.
[Johnson] \Rightarrow that if A has a bounded approximate identity, then any non-degenerate homomorphism extends to $\theta: M(A) \rightarrow M(B)$.

Extending homomorphisms in the induced case

Let $\theta: A \rightarrow M(B)$ be a homomorphism which turns B into an induced A-bimodule. We can extend θ to $M(A)$ as follows. Given $(L, R) \in M(A)$, we define $L^{\prime}: B \rightarrow B$ by

This commutes, as $L \otimes \iota$ maps
$N=\overline{\operatorname{lin}}\left\{a_{1} a_{2} \otimes b-a_{1} \otimes \theta\left(a_{2}\right) b: a_{1}, a_{2} \in A, b \in B\right\}$ into itself. This follows, as

$$
L\left(a_{1} a_{2}\right) \otimes b-L\left(a_{1}\right) \otimes \theta\left(a_{2}\right) b=L\left(a_{1}\right) a_{2} \otimes b-L\left(a_{1}\right) \otimes \theta\left(a_{2}\right) b \in N .
$$

Similarly we form $R^{\prime}: B \rightarrow B$, check that $\left(L^{\prime}, R^{\prime}\right) \in M(A)$, and that $(L, R) \mapsto\left(L^{\prime}, R^{\prime}\right)$ is homomorphism.

Other extensions

For a homomorphism $\theta: A \rightarrow M(B)$, we can extend to $M(A)$ when:

- A has a bounded approximate identity, and θ is non-degenerate;
- B becomes an induced A-bimodule;
- [Ilie, Stokke] A has a bounded approximate identity, and $M(B)$ is a dual Banach algebra.
For more on induced algebras, see work of [Gronbaek]

Example of an induced algebra

[Rieffel; Forrest, Lee, Samei] \Rightarrow If A has a bounded approximate identity, then A is self-induced and any essential module is induced.
We now work in the category of Operator Spaces. We'll show that $A(G)$ is always self-induced: we want that $A(G) \widehat{\otimes} A(G) / N=A(G \times G) / N$ is isomorphic to $A(G)$ under the product map. Dualising, we want that

$$
V N(G) \xrightarrow{\Delta} N^{\perp} \subseteq V N(G) \bar{\otimes} V N(G)=V N(G \times G)
$$

is an isomorphism. All we need to prove is that it's onto. However

$$
\begin{aligned}
N^{\perp} & =\{x \in V N(G) \bar{\otimes} V N(G):\langle x, a b \otimes c-a \otimes b c\rangle=0\} \\
& =\{x \in V N(G) \bar{\otimes} V N(G):\langle(\Delta \otimes \iota) x-(\iota \otimes \Delta) x, a \otimes b \otimes c\rangle=0\} \\
& =\{x \in \operatorname{VN}(G) \bar{\otimes} V N(G):(\Delta \otimes \iota) x=(\iota \otimes \Delta) x\} .
\end{aligned}
$$

We can then check that the support of $x \in N^{\perp}$ must be contained in the diagonal $\{(s, s): s \in G\} \subseteq G \times G$. As this is a set of synthesis, by [Herz; Takesaki, Tatsumma] we have that $x \in \Delta(V N(G))$, so we're done.

Haagerup tensor products

For a C*-algebra A, we define a norm $\|\cdot\|_{h}$ on $A \otimes A$ by

$$
\|\tau\|_{h}=\inf \left\{\left\|\sum_{k} a_{k} a_{k}^{*}\right\|\left\|\sum_{k} b_{k}^{*} b_{k}\right\|: \tau=\sum_{k} a_{k} \otimes b_{k}\right\}
$$

Write $A \otimes^{h} A$ for the completed tensor product.
If $A \subseteq \mathcal{B}(H)$ then the (maybe infinite) column vector $b=\left(b_{1}, b_{2}, \cdots\right)^{T}$ can be regarded as a map $H \rightarrow H^{(\infty)}$, and then $b^{*} b=\sum_{k} b_{k}^{*} b_{k}$. Similarly the row vector $a=\left(a_{1}, a_{2}, \cdots\right)$ is such that $a a^{*}=\sum_{k} a_{k} a_{k}^{*}$. Then notice that

$$
a b=\sum_{k} a_{k} b_{k}, \quad\|a b\| \leq\|a\|\|b\|=\left\|a a^{*}\right\|^{1 / 2}\left\|b^{*} b\right\|^{1 / 2}=\left\|\sum_{k} a_{k} a_{k}^{*}\right\|\left\|\sum_{k} b_{k}^{*} b_{k}\right\| .
$$

So multiplication $A \otimes{ }^{h} A \rightarrow A ; a \otimes b \mapsto a b$ is (completely) contractive.
(Multiplication from $A \otimes_{\min } A$ is rarely even bounded).

Haagerup tensor products (cont.)

The same definition works to form $A \otimes^{h} B$. The Haagerup tensor product is injective (and projective). So it makes perfect sense on Operator Spaces as well. The Haagerup tensor product is then self-dual in the sense that

$$
E^{*} \otimes^{h} F^{*} \subseteq\left(E \otimes^{h} F\right)^{*} \text { (completely) isometrically, }
$$

for Operator Spaces E and F.
For a von Neumann algebra M, we define the extended Haagerup tensor product by

$$
M \otimes^{e h} M=\left(M_{*} \otimes^{h} M_{*}\right)^{*} .
$$

(This can also be defined as before, but with the sums $\sum_{k} a_{k} a_{k}^{*}$, and so forth, being interpreted in the σ-weak topology, not the norm topology).
For an operator space E, we define

$$
E \otimes^{e h} E=\left(E^{*} \otimes^{h} E^{*}\right)_{\sigma}^{*},
$$

the separately-weak*-continuous functionals $E^{*} \otimes^{h} E^{*} \rightarrow \mathbb{C}$.

The problem

However, this is too small: even if G is abelian but non-compact, then $A(G) \otimes^{h} A(G)$ won't work.
[Effros+Ruan] solve this by working with $A(G) \otimes^{e h} A(G)$. So we get a map $m: A(G) \rightarrow A(G) \otimes{ }^{\text {eh }} A(G)$. For a good analogy, this should be a homomorphism.
To turn $A(G) \otimes^{\text {eh }} A(G)$ into an algebra, we use the shuffle map

$$
S:\left(A(G) \otimes^{e h} A(G)\right) \widehat{\otimes}\left(A(G) \otimes^{e h} A(G)\right) \rightarrow(A(G) \widehat{\otimes} A(G)) \otimes^{e h}(A(G) \widehat{\otimes} A(G))
$$

which sends $(a \otimes b) \otimes(c \otimes d)$ to $(a \otimes c) \otimes(b \otimes d)$. Then the product on $A(G) \otimes^{e h} A(G)$ is given by:

$$
\begin{array}{r}
\left(A(G) \otimes^{e h} A(G)\right) \widehat{\otimes}\left(A(G) \otimes^{e h} A(G)\right) \xrightarrow{s}(A(G) \widehat{\otimes} A(G)) \otimes^{e h}(A(G) \widehat{\otimes} A(G)) \\
\downarrow \Delta_{*} \otimes \Delta_{*} \\
A(G) \otimes^{e h} A(G)
\end{array}
$$

Hopf convolution algebras

I introduced the Fourier algebra by:

- defining a von Neumann algebra $V N(G)$;
- defining a "coproduct", a normal *-homomorphism

$$
\Delta: V N(G) \rightarrow V N(G) \bar{\otimes} V N(G) \text { with }(\Delta \otimes \iota) \Delta=(\iota \otimes \Delta) \Delta
$$

- then Δ induces the algebra structure on $A(G)=V N(G)_{*}$

Can we do everything at the level of $A(G)$? We'd need a map

$$
m: A(G) \rightarrow A(G) \otimes A(G) \quad \text { for some tensor product }
$$

whose adjoint $m: V N(G) \otimes V N(G) \rightarrow V N(G)$ was the product on $V N(G)$.
[Quigg] tried to do with with the projective tensor product, but that only works (in any sense) if G is abelian by finite.
We could try the Haagerup tensor product $A(G) \otimes^{h} A(G)$, as then the adjoint is the product map $V N(G) \otimes^{e h} V N(G) \rightarrow V N(G)$, which is (completely) contractive.

Using multipliers

Remember that, if I don't like von Neumann algebras, I can work with $C_{r}^{*}(G)$. However, here Δ now maps from $C_{r}^{*}(G)$ to the multiplier algebra
$M\left(C_{r}^{*}(G) \otimes_{\min } C_{r}^{*}(G)\right)$.
So can we analogously replace $A(G) \otimes^{\text {eh }} A(G)$ by, for example,
$M_{c b}\left(A(G) \otimes^{h} A(G)\right)$? (So, if G is compact, then actually we should be able to work with $\left.A(G) \otimes^{h} A(G)\right)$.
We can indeed do so. Firstly note that $A(G) \otimes^{h} A(G) \subseteq A(G) \otimes^{e h} A(G)$ (completely) isometrically, and so it follows that $A(G) \otimes^{h} A(G)$ is a subalgebra of $A(G) \otimes^{\text {eh }} A(G)$. The strategy will be to show that $m: A(G) \rightarrow A(G) \otimes^{e h} A(G)$ maps into the idealiser

$$
\left\{\tau \in A(G) \otimes^{e h} A(G): \tau \sigma \in A(G) \otimes^{h} A(G)\left(\sigma \in A(G) \otimes^{h} A(G)\right)\right\}
$$

If we can do this, then we obviously have a map $A(G) \rightarrow M_{c b}\left(A(G) \otimes^{h} A(G)\right)$.

The proof

An alternative description of $\left(E \otimes^{h} F\right)^{*}$ is those maps $F \rightarrow E^{*}$ which cb-factor through a column Hilbert space. For $a, b, c \in A(G)$, consider $m(a)(b \otimes c) \in A(G) \otimes^{e h} A(G)=\left(V N(G) \otimes^{h} V N(G)\right)_{\sigma}^{*}$; let's see how to view this as a map which factors through the column $L^{2}(G)=\mathcal{B}\left(\mathbb{C}, L^{2}(G)\right)$:

Let $a \in A(G)$ be the normal functional $\langle x, a\rangle=\left(x \xi_{0} \mid \eta_{0}\right)$ for $x \in \operatorname{VN}(G)$. Then we have

$$
\begin{aligned}
& \alpha(x)=(c \cdot x)\left(\xi_{0}\right) \quad(x \in V N(G)) \\
& \beta(\xi)=\omega_{\xi, \eta_{0}} b \quad\left(\xi \in L^{2}(G)\right)
\end{aligned}
$$

where $\omega_{\xi, \eta_{0}}: \operatorname{VN}(G) \rightarrow \mathbb{C} ; x \mapsto\left(x \xi \mid \eta_{0}\right)$.

Finishing up

Recall we had $a, b, c \in A(G)$, and we viewed $m(a)(b \otimes c)$ as:

We can cb-norm approximate α by a finite-rank map, so we can approximate $m(a)(b \otimes c)$, in the extended Haagerup norm, by a finite-rank tensor in $A(G) \otimes A(G)$. As $A(G) \otimes^{h} A(G)$ is closed in $A(G) \otimes^{\text {eh }} A(G)$, it follows that $m(a)(b \otimes c) \in A(G) \otimes^{h} A(G)$, as required.

The proof continued

Let's think more about $\alpha: V N(G) \rightarrow L^{2}(G) ; x \mapsto(c \cdot x)\left(\xi_{0}\right)$. Let $c=\omega_{\xi_{1}, \eta_{1}}$, so that
$(\alpha(x) \mid \eta)=\left\langle c \cdot x, \omega_{\xi_{0}, \eta}\right\rangle=\left(\Delta(x) \xi_{0} \otimes \xi_{2} \mid \eta \otimes \eta_{2}\right)=\left((1 \otimes x) W\left(\xi_{0} \otimes \xi_{2}\right) \mid W\left(\eta \otimes \eta_{2}\right)\right)$.
Let $\left(e_{i}\right)$ be an orthonormal basis for $L^{2}(G)$, so we can write

$$
W\left(\xi_{0} \otimes \xi_{2}\right)=\sum_{i} e_{i} \otimes \phi_{i}
$$

for some $\left(\phi_{i}\right)$. Then, letting $\sigma: L^{2}(G) \otimes L^{2}(G) \rightarrow L^{2}(G) \otimes L^{2}(G)$ be the swap map,

$$
(\alpha(x) \mid \eta)=\sum_{i}\left(\sigma W^{*}\left(e_{i} \otimes x\left(\phi_{i}\right)\right) \mid \eta_{2} \otimes \eta\right)=\sum_{i}\left(\left(\omega_{e_{i}, \eta_{2}} \otimes \iota\right)\left(\sigma W^{*}\right) x \phi_{i} \mid \eta\right)
$$

Now, the key idea is that $\left(\omega_{e_{i}, \eta_{2}} \otimes \iota\right)\left(\sigma W^{*}\right)$ is a compact operator, which we can approximate by finite-ranks. So, being careful, we can approximate α, in the cb-norm, by a finite-rank map.

Various open problems

We have a complete contraction $A(G) \rightarrow C_{0}(G)$ and so also complete contractions

$$
\begin{aligned}
A(G \times G) & =A(G) \widehat{\otimes} A(G) \rightarrow A(G) \otimes^{h} A(G) \rightarrow C_{0}(G) \otimes^{h} C_{0}(G) \\
& \rightarrow C_{0}(G) \otimes_{\min } C_{0}(G)=C_{0}(G \times G)
\end{aligned}
$$

So we can view $\mathfrak{A}=A(G) \otimes^{h} A(G)$ as an algebra of functions on $G \times G$. A result of [Gelbaum, Robbins] easily generalises to show that the spectrum of \mathfrak{A} is $G \times G$.

- What sort of spectral synthesis properties does \mathfrak{A} have?
- When is $m: A(G) \rightarrow M_{c b}\left(A(G) \otimes^{h} A(G)\right)$ induced?
- Can we otherwise form an extension $M_{c b} A(G) \rightarrow M_{c b}\left(A(G) \otimes^{h} A(G)\right)$ when G is non-amenable?

Is there any use of the fact that $A(G)$ is a (completely contractive) self-induced algebra? For a general locally compact quantum group, do we have $\left\{x \in L^{\infty}(\mathbb{G}):(\Delta \otimes \iota) x=(\iota \otimes \Delta) x\right\}=\Delta\left(L^{\infty}(\mathbb{G})\right) ?$

