Completely positive multipliers

Matthew Daws

Leeds

Lille, Oct 2012

Outline
(1) Locally compact quantum groups
(2) Multipliers of convolution algebras
(3) Bistochastic channels

The von Neumann algebra of a group

Let G be a locally compact group \Longrightarrow has a Haar measure \Longrightarrow can form the von Neumann algebra $L^{\infty}(G)$ acting on $L^{2}(G)$.
Have lost the product of G. We recapture this by considering the injective, normal $*$-homomorphism

$$
\Delta: L^{\infty}(G) \rightarrow L^{\infty}(G \times G) ; \quad \Delta(F)(s, t)=F(s t)
$$

The pre-adjoint of Δ gives the usual convolution product on $L^{1}(G)$

$$
L^{1}(G) \otimes L^{1}(G) \rightarrow L^{1}(G) ; \quad \omega \otimes \tau \mapsto(\omega \otimes \tau) \circ \Delta=\omega \star \tau
$$

The map Δ is implemented by a unitary operator W on $L^{2}(G \times G)$,

$$
W \xi(s, t)=\xi\left(s, s^{-1} t\right), \quad \Delta(F)=W^{*}(1 \otimes F) W
$$

where $F \in L^{\infty}(G)$ identified with the operator of multiplication by F.

The other von Neumann algebra of a group

Let $V N(G)$ be the von Neumann algebra acting on $L^{2}(G)$ generated by the left translation operators $\lambda_{s}, s \in G$.
The predual of $V N(G)$ is the "Fourier algebra" (a la Eymard) $A(G)$, a commutative Banach algebra.
Again, there is $\Delta: V N(G) \rightarrow V N(G) \bar{\otimes} V N(G)$ whose pre-adjoint induces the product on $A(G)$,

$$
\Delta\left(\lambda_{s}\right)=\lambda_{s} \otimes \lambda_{s} .
$$

That such a Δ exists follows as

$$
\Delta(x)=\widehat{W}^{*}(1 \otimes x) \hat{W} \quad \text { with } \quad \hat{W}=\sigma W^{*} \sigma
$$

where $\sigma: L^{2}(G \times G) \rightarrow L^{2}(G \times G)$ is the swap map.

How W governs everything

The unitary W is multiplicative; $W_{12} W_{13} W_{23}=W_{23} W_{12}$; and lives in $L^{\infty}(G) \bar{\otimes} V N(G)$.
The map

$$
L^{1}(G) \rightarrow V N(G) ; \quad \omega \mapsto(\omega \otimes \imath)(W),
$$

is the usual representation of $L^{1}(G)$ on $L^{2}(G)$ by convolution. The image is σ-weakly dense in $V N(G)$, and norm dense in $C_{r}^{*}(G)$.
The map

$$
A(G) \rightarrow L^{\infty}(G) ; \quad \omega \mapsto(\llcorner\otimes \omega)(W),
$$

is the usual embedding of $A(G)$ into $L^{\infty}(G)$ (the Gelfand map, if you wish). The image is σ-weakly dense in $L^{\infty}(G)$, and norm dense in $C_{0}(G)$.
The group inverse is represented by the antipode $S: L^{\infty}(G) \rightarrow L^{\infty}(G) ; S(F)(t)=F\left(t^{-1}\right)$. We have that

$$
S((\iota \otimes \omega)(W))=(\iota \otimes \omega)\left(W^{*}\right) .
$$

More non-commutative framework

- M a von Neumann algebra;
- Δ a normal injective $*$-homomorphism $M \rightarrow M \bar{\otimes} M$ with $(\Delta \otimes \mathfrak{l}) \Delta=(\iota \otimes \Delta) \Delta ;$
- a "left-invariant" weight φ, with $(\iota \otimes \varphi) \Delta(\cdot)=\varphi(\cdot) 1$ (in some loose sense).
- a "right-invariant" weight ψ, with $(\psi \otimes \mathrm{l}) \Delta(\cdot)=\psi(\cdot) 1$.

Let H be the GNS space for φ. There is a unitary W on $H \otimes H$ with

$$
\Delta(x)=W^{*}(1 \otimes x) W, \quad M=\operatorname{lin}\{(\iota \otimes \omega)(W)\}^{\sigma-w e a k}
$$

Again form $\hat{W}=\sigma W^{*} \sigma$. Then

$$
\widehat{M}=\operatorname{lin}\{(\iota \otimes \omega)(\hat{W})\}^{\sigma} \text {-weak }
$$

is a von Neumann algebra, we can define $\hat{\Delta}(\cdot)=\hat{W}^{*}(1 \otimes \cdot) \hat{W}$ which is "coassociative". It is possible to define weights $\hat{\varphi}$ and $\hat{\psi}$.

Antipode not bounded

Can again define

$$
S((\iota \otimes \omega)(W))=(\iota \otimes \omega)\left(W^{*}\right)
$$

However, in general S will be an unbounded, σ-weakly-closed operator.

- We can factor S as $S=R \circ \tau_{-i / 2}$.
- R is the "unitary antipode", a normal anti-*-homomorphism $M \rightarrow M$ which is an anti-homomorphism on M_{*}
- $S \circ * \circ S \circ *=\iota$.
- $\tau_{-i / 2}$ is the analytic generator of a one-parameter automorphism group $\left(\tau_{t}\right)$ of M. Each τ_{t} also induces a homomorphism on M_{*}.
- Via Tomita-Takesaki theory, the weight $\hat{\varphi}$ has a modular operator $\stackrel{\rightharpoonup}{\nabla}$. Then $\tau_{t}(\cdot)=\widehat{\nabla}^{i t}(\cdot) \hat{\nabla}^{-i t}$. $\left(\tau_{t}\right)$ is the scaling group.

A few names

An incomplete list...

- This viewpoint on $L^{\infty}(G)$ and $V N(G)$ comes from Takesaki, Tatsuuma.
- Using W in a more general setting comes from Baaj, Skandalis.
- Work of Woronowicz on the compact case.
- Enock \& Schwartz, Kac \& Vainerman developed "Kac algebras" (essentially when $S=R$).
- Masuda, Nakagami, Woronowicz gave a more complicated (but equivalent) set of axioms
- Current axioms are from Kustermans, Vaes.
- Prioritising W leads to the notion of a "manageable multiplicative unitary" from Woronowicz (and Sołtan).
- Various more algebraic approaches from van Daele.

Representation theory

A corepresentation of (M, Δ) is a unitary $U \in M \bar{\otimes} \mathcal{B}(K)$ with $(\Delta \otimes \imath)(U)=U_{13} U_{23}$.
If $M=L^{\infty}(G)$ and π is a unitary representation of G on K, then let

$$
U=(\pi(t))_{t \in G} \in L^{\infty}(G, \mathcal{B}(K)) \cong L^{\infty}(G) \bar{\otimes} \mathcal{B}(K) .
$$

That $(\Delta \otimes \iota)(U)=U_{13} U_{23}$ is equivalent to $\pi(s t)=\pi(s) \pi(t)$.
The relation $\pi(s)^{*}=\pi\left(s^{-1}\right)$ becomes reflected in the general fact that

$$
(\iota \otimes \omega)(U) \in D(S), \quad S((\iota \otimes \omega)(U))=(\iota \otimes \omega)\left(U^{*}\right) .
$$

W is a corepresentation- the left regular corepresentation on H.

Reduced and universal C*-algebras

Taking the norm closure of $\{(\iota \otimes \omega)(W)\}$ gives a C*-algebra A. Then Δ gives a "morphism" $A \rightarrow A \otimes A$ (a non-denegenerate $*$-homomorphism $A \rightarrow M(A \otimes A))$. The weights restrict to densely defined KMS weights. There is a parallel C^{*}-algebraic theory, though the axioms are more subtle.
There is a "maximal" corepresentation \mathcal{W} (formed from a suitable direct sum argument). Then

$$
\hat{A}_{u}=\operatorname{closure}\{(\omega \otimes \mathfrak{L})(\mathcal{W})\}
$$

is a C*-algebra, which also admits a coproduct and invariant weights (thought these might fail to be faithful).
Any corepresentation U is of the form $U=(\iota \otimes \phi)(\mathcal{W})$ where $\phi: \hat{A}_{u} \rightarrow \mathcal{B}(K)$ is a unique non-degenerate $*$-representation. This parallels the formation of $C^{*}(G)$ vs $C_{r}^{*}(G)$.

Multipliers

I'm interested in the algebra M_{*}, but this is only unital when (M, Δ) is said to be discrete.

- So you can study the multipliers of M_{*}.
- Turn A^{*} into a Banach algebra by using Δ (analogue of the measures on a group).
- Then M_{*} is an essential ideal in A^{*}.
- Indeed, the same is true for A_{u}^{*}.
- In the commutative case, $A=A_{u}$ and you get all the multipliers of $M_{*}=L^{1}(G)$ as measures.
- In the cocommutative case, A_{u}^{*} is the Fourier-Stieltjes algebra $B(G)$, but you get all multipliers of $M_{*}=A(G)$ if and only if G is amenable (Bożejko, Losert, Nebbia).

Completely positive case

Suppose that a is a completely positive multiplier of $A(G)$.

- To be precise, multiplication by a induces a map $A(G) \rightarrow A(G)$.
- So the adjoint is a map on $V N(G)$, and we ask that this is completely positive in the usual way.
- (Gilbert) There is a continuous map $\alpha: G \rightarrow K$ with $a\left(t^{-1} s\right)=(\alpha(t) \mid \alpha(s))_{K}$.
- (de Canniere, Haagerup) Now immediate that a is positive definite (and conversely).
- Notice that a is then also a positive member of $B(G)$, that is, a positive functional on $C^{*}(G)$.
- So if G amenable if and only if the span of the completely positive multipliers equals the space of all (completely bounded) multipliers.

Result in quantum case

Let $L_{*}: \widehat{M}_{*} \rightarrow \widehat{M}_{*}$ be a completely bounded (left) multiplier. So:

- $L_{*}(\omega \star \tau)=L_{*}(\omega) \star \tau$;
- the adjoint $L=\left(L_{*}\right)^{*}: \widehat{M} \rightarrow \widehat{M}$ is completely bounded.

Theorem (Junge, Neufang, Ruan)
There is a unique $x \in M$ such that, if we embed \widehat{M}_{*} into M via $\omega \mapsto(\omega \otimes \downarrow)(\widehat{W})$, then L_{*} is given by left multiplication by x.

Theorem (D.)

$x \in M(A)$ and $x^{*} \in D(S)$ with $S\left(x^{*}\right)$ also inducing a left multiplier.
Picture: abstract multiplier of $A(G)$ corresponds to multiplication by a (continuous) function on G.

Completely positive case

Theorem (D.)

Let L_{*} be a left multiplier, associated to $x \in M(A)$. The following are equivalent:

- $L=\left(L_{*}\right)^{*}$ is completely positive ($L: \widehat{M} \rightarrow \widehat{M}$).
- There is a positive functional $\mu \in \widehat{A}_{u}^{*}$ with $L_{*}(\omega)=\mu \star \omega$ (recall: M_{*} ideal in $\left.\hat{A}_{u}^{*}\right)$, and $x=(\iota \otimes \mu)\left(\mathcal{W}^{*}\right)$.
- There is a unitary corepresentation U of (M, Δ) on K, and a positive $\mu \in \mathcal{B}(K)_{*}$ with $x=(\iota \otimes \mu)\left(U^{*}\right)$, and with

$$
L(\hat{x})=(\iota \otimes \mu)\left(U(\hat{x} \otimes 1) U^{*}\right) \quad(\hat{x} \in \widehat{M})
$$

Link with Haagerup tensor product

So $L(\hat{x})=(\iota \otimes \mu)\left(U(\hat{x} \otimes 1) U^{*}\right)$. By adjusting the space U acts on, we may assume that μ is a vector state ω_{ξ}, and then taking $\left(e_{i}\right)$ an orthonormal basis of K, define

$$
a_{i}=\left(\iota \otimes \omega_{\xi, e_{i}}\right)\left(U^{*}\right) \in M \Longrightarrow \sum_{i} a_{i}^{*} \hat{x} a_{i}=L(\hat{x})
$$

The extended (or weak*) Haagerup tensor product (Effros-Ruan, Blecher-Smith, Haagerup (unpublished)) of M with itself is the space

$$
\left\{u \in M \bar{\otimes} M: u=\sum_{i} x_{i} \otimes y_{i} \text { with } \sum_{i} x_{i} x_{i}^{*}, \sum_{i} y_{i}^{*} y_{i}<\infty\right\} .
$$

So

$$
\sum_{i} a_{i}^{*} \otimes a_{i} \in M \stackrel{e h}{\otimes} M
$$

Sketch proof that CP multiplier \Rightarrow corep

Actually, if we start with a CP left multiplier, then [JNR] (and a little bookkeeping) shows that for some $\sum_{i \in I} a_{i}^{*} \otimes a_{i} \in M \stackrel{e h}{\otimes} M$ we have $L(\hat{x})=\sum_{i} a_{i}^{*} \hat{x} a_{i}$.

- By applying the [JNR] construction twice, you find that

$$
\sum_{i} a_{i}^{*} \otimes a_{i} \otimes 1=\sum_{i} \Delta\left(a_{i}^{*}\right)_{13} \Delta\left(a_{i}\right)_{23} .
$$

- This is enough to construct an isometry U^{*} on $H \otimes \ell^{2}(I)$ and $\xi \in \ell^{2}(I)$ with

$$
(\Delta \otimes \mathfrak{l})\left(U^{*}\right)=U_{23}^{*} U_{13}^{*}, \quad\left(\imath \otimes \omega_{\xi, e_{i}}\right)\left(U^{*}\right)=a_{i}
$$

- So U is a corepresentation; only remains to show that U is unitary. This follows by using that we can find the (a_{i}) from the Stinespring representation, and so we have some sort of minimality condition, and then using $\widehat{M} M^{\prime}$ is linearly, σ-weakly dense in $\mathcal{B}(H)$.

"Positive definite" elements

Recall that a function f on G is positive definite if

$$
\left(f\left(s t^{-1}\right)\right)_{s, t \in G \times G}=(\iota \otimes S) \Delta(f)
$$

is a positive kernel on $G \times G$.
$\mathcal{B}(H) \otimes \stackrel{\text { eh }}{\otimes} \mathcal{B}(H)$ is isomorphic to the space of completely bounded normal maps on $\mathcal{B}(H)$,

$$
x \otimes y \mapsto(a \mapsto x a y) \quad(a \in \mathcal{B}(H)) .
$$

So can talk of "complete positivity".

Theorem (D. \& Salmi)

$x \in M$ is a completely positive multiplier if and only if $(\iota \otimes S) \Delta(x) \in \mathcal{B}(H) \stackrel{e h}{\otimes} \mathcal{B}(H)$ and is completely positive.

To right multipliers

Introduce an involution J_{K} on K by $J_{K}\left(e_{i}\right)=e_{i}$ (and anti-linearity). Define $\tau(\cdot)=J_{K}(\cdot)^{*} J_{K}$, an anti-*-automorphism on $\mathcal{B}(K)$. Then set

$$
\begin{gathered}
U^{c}=(R \otimes \tau)(U) \Longrightarrow(\Delta \otimes \mathfrak{\imath})\left(U^{c}\right)=(R \otimes R \otimes \tau)(\sigma \otimes \mathfrak{\imath})\left(U_{13} U_{23}\right) \\
=(\sigma \otimes \mathfrak{\imath})\left(U_{23}^{c} U_{13}^{c}\right)=U_{13}^{c} U_{23}^{c}
\end{gathered}
$$

- So U^{c} is a unitary corepresentation.
- So $L^{\prime}(\hat{x})=(\iota \otimes \omega)\left(U^{c}(\hat{x} \otimes 1)\left(U^{c}\right)^{*}\right)$ is a left multiplier.
- The point is that $r=\hat{R} \circ L^{\prime} \circ \hat{R}$ is then the adjoint of a completely positive right multiplier of \hat{M}_{*}, with (L, r) a double multiplier.
- Not surprising from the viewpoint that we're multiplying the (two-sided!) ideal \widehat{M}_{*} by elements of \widehat{A}_{u}^{*}. But...

For Kac algebras

Have L associated to $a_{i}=\left(\iota \otimes \omega_{\xi, e_{i}}\right)\left(U^{*}\right)$, and now L^{\prime} associated to $b_{i}=\left(\iota \otimes \omega_{\xi, e_{i}}\right)\left(\left(U^{c}\right)^{*}\right)$. Supposing that $S=R$,

$$
\begin{aligned}
a_{i}^{*} & =\left(\iota \otimes \omega_{\xi, e_{i}}\right)\left(U^{*}\right)^{*}=\left(\iota \otimes \omega_{e_{i}, \xi}\right)(U)=R\left(\left(\iota \otimes \omega_{e_{i}, \xi}\right)\left(U^{*}\right)\right) \\
& =\left(\iota \otimes \omega_{J_{K} \xi, J_{K} e_{i}}\right)\left(\left(U^{c}\right)^{*}\right)=\left(\iota \otimes \omega_{\xi, e_{i}}\right)\left(\left(U^{c}\right)^{*}\right)=b_{i} .
\end{aligned}
$$

(Assume $J_{K} \xi=\xi$). So curiously,

$$
\sum_{i} a_{i} a_{i}^{*}=\sum_{i} b_{i}^{*} b_{i}=L^{\prime}(1)=1 .
$$

So on all of $\mathcal{B}(H)$,

$$
x \mapsto \sum_{i} a_{i}^{*} x a_{i},
$$

is a unital completely positive map, and a trace-preserving completely positive map.
In Quantum Information Theorey, such maps are called "bistochastic quantum channels". There is a small amount of literature...

From a Haagerup tensor product perspective

There is an asymmetry in the extended Haagerup tensor product, so the swap map σ is unbounded on $M \otimes M$.
Yet we find that $u=\sum_{i} a_{i}^{*} \otimes a_{i}$ is such that both u and $\sigma(u)$ are in $M \stackrel{e h}{\otimes} M$.

Theorem (Pisier \& Shlyakhtenko, Haagerup \& Musat)
Let $u \in \mathcal{B}(K) \bar{\otimes} \mathcal{B}(K)$ be such that both u and $\sigma(u)$ are in $\mathcal{B}(K) \stackrel{\text { eh }}{\otimes} \mathcal{B}(K)$. Then the map

$$
\mathcal{B}(K)_{*} \odot \mathcal{B}(K)_{*} \rightarrow \mathbb{C} ; \quad \omega_{1} \otimes \omega_{2} \mapsto\left\langle u, \omega_{1} \otimes \omega_{2}\right\rangle
$$

is bounded for the minimal operator space tensor norm.

Curiosity; and a question

If also $L=L^{\prime}$ (the $\mu \in \widehat{A}_{u}^{*}$ satisfies $\mu=\mu \circ \widehat{R}_{u}$) then in $M \stackrel{e h}{\otimes} M$,

$$
u=\sum_{i} a_{i}^{*} \otimes a_{i}=\sum_{i} b_{i}^{*} \otimes b_{i}=\sum_{i} a_{i} \otimes a_{i}^{*}
$$

so we even have that $\sigma(u)=u$.
But in general, $u \in \mathcal{B}(K) \stackrel{e h}{\otimes} \mathcal{B}(K), \sigma(u)=u$ does not imply that $u=\sum_{i} x_{i} \otimes y_{i}$ with $\sum_{i} x_{i}^{*} x_{i}, \sum_{i} y_{i}^{*} y_{i}<\infty$.

- What extra conditions on u would give this representation?
- If $u=\sum c_{i}^{*} \otimes d_{i}$ and $x \mapsto \sum_{i} c_{i}^{*} x d_{i}$ is completely positive, that's enough!
- Application: Completely bounded maps $A(G) \rightarrow V N(G)$ which factor through a column or row Hilbert space.

