Completely positive multipliers

Matthew Daws

Leeds

Lille, Oct 2012

Matthew Daws (Leeds)

CP Multipliers

Lille, Oct 2012 1 / 21

Outline

Locally compact quantum groups

2 Multipliers of convolution algebras

3 Bistochastic channels

The von Neumann algebra of a group

Let G be a locally compact group \implies has a Haar measure \implies can form the von Neumann algebra $L^{\infty}(G)$ acting on $L^{2}(G)$. Have lost the product of G. We recapture this by considering the injective, normal *-homomorphism

$$\Delta: L^\infty(G) o L^\infty(G imes G); \quad \Delta(F)(s,t) = F(st).$$

The pre-adjoint of Δ gives the usual convolution product on $L^1(G)$

$$L^1(G)\otimes L^1(G)
ightarrow L^1(G); \quad w\otimes au\mapsto (w\otimes au)\circ \Delta = w\star au.$$

The map Δ is implemented by a unitary operator W on $L^2(G \times G)$,

$$W\xi(s,t)=\xi(s,s^{-1}t), \quad \Delta(F)=W^*(1\otimes F)W,$$

where $F \in L^{\infty}(G)$ identified with the operator of multiplication by F.

The other von Neumann algebra of a group

Let VN(G) be the von Neumann algebra acting on $L^2(G)$ generated by the left translation operators $\lambda_s, s \in G$.

The predual of VN(G) is the "Fourier algebra" (a la Eymard) A(G), a commutative Banach algebra.

Again, there is $\Delta: VN(G) \rightarrow VN(G) \overline{\otimes} VN(G)$ whose pre-adjoint induces the product on A(G),

$$\Delta(\lambda_s) = \lambda_s \otimes \lambda_s.$$

That such a Δ exists follows as

$$\Delta(x) = \hat{W}^*(1 \otimes x) \hat{W}$$
 with $\hat{W} = \sigma W^* \sigma$,

where $\sigma: L^2(\,G imes \,G) o L^2(\,G imes \,G)$ is the swap map.

How W governs everything

The unitary W is multiplicative; $W_{12} W_{13} W_{23} = W_{23} W_{12}$; and lives in $L^{\infty}(G) \overline{\otimes} VN(G)$.

The map

 $L^1(G) o VN(G); \quad \omega \mapsto (\omega \otimes \iota)(W),$

is the usual representation of $L^1(G)$ on $L^2(G)$ by convolution. The image is σ -weakly dense in VN(G), and norm dense in $C_r^*(G)$. The map

$$A(G)
ightarrow L^{\infty}(G); \quad \omega \mapsto (\iota \otimes \omega)(W),$$

is the usual embedding of A(G) into $L^{\infty}(G)$ (the Gelfand map, if you wish). The image is σ -weakly dense in $L^{\infty}(G)$, and norm dense in $C_0(G)$.

The group inverse is represented by the antipode $S: L^{\infty}(G) \to L^{\infty}(G); S(F)(t) = F(t^{-1})$. We have that

$$S((\iota\otimes\omega)(W))=(\iota\otimes\omega)(W^*).$$

```
Matthew Daws (Leeds)
```

CP Multipliers

Lille, Oct 2012 5 / 21

More non-commutative framework

- M a von Neumann algebra;
- Δ a normal injective *-homomorphism $M \to M \overline{\otimes} M$ with $(\Delta \otimes \iota) \Delta = (\iota \otimes \Delta) \Delta;$
- a "left-invariant" weight ϕ , with $(\iota \otimes \phi)\Delta(\cdot) = \phi(\cdot)1$ (in some loose sense).
- a "right-invariant" weight ψ , with $(\psi \otimes \iota)\Delta(\cdot) = \psi(\cdot)1$.

Let H be the GNS space for φ . There is a unitary W on $H \otimes H$ with

$$\Delta(x) = W^*(1 \otimes x) W, \quad M = \lim\{(\iota \otimes \omega)(W)\}^{\sigma ext{-weak}}.$$

Again form $\widehat{W} = \sigma W^* \sigma$. Then

$$\widehat{M} = \mathrm{lin}\{(\iota\otimes\omega)(\,\widehat{W}\,)
ight\}^{\sigma ext{-weak}}$$

is a von Neumann algebra, we can define $\hat{\Delta}(\cdot) = \hat{W}^*(1 \otimes \cdot) \hat{W}$ which is "coassociative". It is possible to define weights $\hat{\phi}$ and $\hat{\psi}$.

Antipode not bounded

Can again define

$$S((\iota\otimes\omega)(W))=(\iota\otimes\omega)(W^*).$$

However, in general S will be an unbounded, σ -weakly-closed operator.

- We can factor S as $S = R \circ au_{-i/2}$.
- R is the "unitary antipode", a normal anti-*-homomorphism M o M which is an anti-homomorphism on M_*
- $S \circ * \circ S \circ * = \iota$.
- $\tau_{-i/2}$ is the analytic generator of a one-parameter automorphism group (τ_t) of M. Each τ_t also induces a homomorphism on M_* .
- Via Tomita-Takesaki theory, the weight $\hat{\phi}$ has a modular operator $\hat{\nabla}$. Then $\tau_t(\cdot) = \hat{\nabla}^{it}(\cdot)\hat{\nabla}^{-it}$. (τ_t) is the scaling group.

```
Matthew Daws (Leeds)
```

CP Multipliers

Lille, Oct 2012 7 / 21

A few names

An incomplete list...

- This viewpoint on $L^{\infty}(G)$ and VN(G) comes from Takesaki, Tatsuuma.
- Using W in a more general setting comes from Baaj, Skandalis.
- Work of Woronowicz on the compact case.
- Enock & Schwartz, Kac & Vainerman developed "Kac algebras" (essentially when S = R).
- Masuda, Nakagami, Woronowicz gave a more complicated (but equivalent) set of axioms
- Current axioms are from Kustermans, Vaes.
- Prioritising W leads to the notion of a "manageable multiplicative unitary" from Woronowicz (and Soltan).
- Various more algebraic approaches from van Daele.

Representation theory

A corepresentation of (M, Δ) is a unitary $U \in M \overline{\otimes} \mathcal{B}(K)$ with $(\Delta \otimes \iota)(U) = U_{13} U_{23}.$ If $M = L^{\infty}(G)$ and π is a unitary representation of G on K, then let

$$U = \left(\pi(t)\right)_{t \in G} \in L^{\infty}(G, \mathcal{B}(K)) \cong L^{\infty}(G) \overline{\otimes} \mathcal{B}(K).$$

That $(\Delta \otimes \iota)(U) = U_{13}U_{23}$ is equivalent to $\pi(st) = \pi(s)\pi(t)$. The relation $\pi(s)^* = \pi(s^{-1})$ becomes reflected in the general fact that

$$(\mathfrak{l}\otimes \mathfrak{w})(U)\in D(S), \quad Sig((\mathfrak{l}\otimes \mathfrak{w})(U)ig)=(\mathfrak{l}\otimes \mathfrak{w})(U^*).$$

W is a corepresentation- the left regular corepresentation on H.

Matthew Daws (Leeds)

CP Multipliers

Lille, Oct 2012 9 / 21

Reduced and universal C*-algebras

Taking the norm closure of $\{(\iota \otimes \omega)(W)\}$ gives a C*-algebra A. Then Δ gives a "morphism" $A \to A \otimes A$ (a non-denegenerate *-homomorphism $A \to M(A \otimes A)$). The weights restrict to densely defined KMS weights. There is a parallel C*-algebraic theory, though the axioms are more subtle.

There is a "maximal" corepresentation \mathcal{W} (formed from a suitable direct sum argument). Then

 $\hat{A}_u = \text{closure}\{(\omega \otimes \iota)(\mathcal{W})\}$

is a C^{*}-algebra, which also admits a coproduct and invariant weights (thought these might fail to be faithful).

Any corepresentation U is of the form $U = (\iota \otimes \varphi)(\mathcal{W})$ where $\varphi : \hat{A}_u \to \mathcal{B}(K)$ is a unique non-degenerate *-representation. This parallels the formation of $C^*(G)$ vs $C_r^*(G)$.

Multipliers

I'm interested in the algebra M_* , but this is only unital when (M, Δ) is said to be *discrete*.

- So you can study the multipliers of M_* .
- Turn A^* into a Banach algebra by using Δ (analogue of the measures on a group).
- Then M_* is an essential ideal in A^* .
- Indeed, the same is true for A_u^* .
- In the commutative case, $A = A_u$ and you get all the multipliers of $M_* = L^1(G)$ as measures.
- In the cocommutative case, A_u^* is the Fourier-Stieltjes algebra B(G), but you get all multipliers of $M_* = A(G)$ if and only if G is amenable (Bożejko, Losert, Nebbia).

```
Matthew Daws (Leeds)
```

CP Multipliers

Lille, Oct 2012 11 / 21

Completely positive case

Suppose that a is a completely positive multiplier of A(G).

- To be precise, multiplication by a induces a map $A(G) \rightarrow A(G)$.
- So the adjoint is a map on VN(G), and we ask that this is completely positive in the usual way.
- (Gilbert) There is a continuous map lpha:G o K with $a(t^{-1}s)=(lpha(t)|lpha(s))_K.$
- (de Canniere, Haagerup) Now immediate that *a* is positive definite (and conversely).
- Notice that a is then also a positive member of B(G), that is, a positive functional on $C^*(G)$.
- So if G amenable if and only if the span of the completely positive multipliers equals the space of all (completely bounded) multipliers.

Result in quantum case

Let $L_*: \hat{M}_* \to \hat{M}_*$ be a completely bounded (left) multiplier. So:

- $L_*(\omega \star \tau) = L_*(\omega) \star \tau;$
- the adjoint $L=(L_*)^*: \widehat{M} o \widehat{M}$ is completely bounded.

Theorem (Junge, Neufang, Ruan)

There is a unique $x \in M$ such that, if we embed \hat{M}_* into M via $\omega \mapsto (\omega \otimes \iota)(\hat{W})$, then L_* is given by left multiplication by x.

Theorem (D.) $x \in M(A)$ and $x^* \in D(S)$ with $S(x^*)$ also inducing a left multiplier.

Picture: abstract multiplier of A(G) corresponds to multiplication by a (continuous) function on G.

Matthew Daws (Leeds)

CP Multipliers

Lille, Oct 2012 13 / 21

Completely positive case

Theorem (D.)

Let L_* be a left multiplier, associated to $x \in M(A)$. The following are equivalent:

- $L = (L_*)^*$ is completely positive $(L: \hat{M} \to \hat{M})$.
- There is a positive functional $\mu \in \hat{A}_u^*$ with $L_*(\omega) = \mu \star \omega$ (recall: M_* ideal in \hat{A}_u^*), and $x = (\iota \otimes \mu)(\mathcal{W}^*)$.
- There is a unitary corepresentation U of (M, Δ) on K, and a positive $\mu \in \mathcal{B}(K)_*$ with $x = (\iota \otimes \mu)(U^*)$, and with

$$L(\widehat{x}) = (\mathfrak{\iota} \otimes \mu) ig(\, U(\widehat{x} \otimes 1) \, U^* ig) \qquad (\widehat{x} \in \widehat{M} \,).$$

Link with Haagerup tensor product

So $L(\hat{x}) = (\iota \otimes \mu)(U(\hat{x} \otimes 1)U^*)$. By adjusting the space U acts on, we may assume that μ is a vector state ω_{ξ} , and then taking (e_i) an orthonormal basis of K, define

$$a_i = (\mathfrak{\iota} \otimes \mathfrak{w}_{\xi,e_i})(\, U^*) \in M \implies \sum_i a_i^* \widehat{x} \, a_i = L(\widehat{x}).$$

The extended (or weak^{*}) Haagerup tensor product (Effros-Ruan, Blecher-Smith, Haagerup (unpublished)) of M with itself is the space

$$\Big\{u\in M\overline{\otimes}M: u=\sum_i x_i\otimes y_i ext{ with } \sum_i x_ix_i^*, \sum_i y_i^*y_i<\infty\Big\}.$$

So

$$\sum_i \, a_i^st \otimes \, a_i \in M \stackrel{eh}{\otimes} M \, .$$

Matthew Daws (Leeds)

CP Multipliers

Lille, Oct 2012 15 / 21

Sketch proof that CP multiplier \Rightarrow corep

Actually, if we start with a CP left multiplier, then [JNR] (and a little bookkeeping) shows that for some $\sum_{i \in I} a_i^* \otimes a_i \in M \overset{eh}{\otimes} M$ we have $L(\hat{x}) = \sum_i a_i^* \hat{x} a_i$.

• By applying the [JNR] construction twice, you find that

$$\sum_i a_i^* \otimes a_i \otimes 1 = \sum_i \Delta(a_i^*)_{13} \Delta(a_i)_{23}.$$

• This is enough to construct an isometry U^* on $H\otimes \ell^2(I)$ and $\xi\in \ell^2(I)$ with

$$(\Delta\otimes \mathfrak{\iota})(U^*)=U^*_{23}\,U^*_{13},\quad (\mathfrak{\iota}\otimes \omega_{\xi,e_i})(U^*)=a_i.$$

So U is a corepresentation; only remains to show that U is unitary. This follows by using that we can find the (a_i) from the Stinespring representation, and so we have some sort of minimality condition, and then using MM' is linearly, σ-weakly dense in B(H).

"Positive definite" elements

Recall that a function f on G is positive definite if

$$\left(f(st^{-1})\right)_{s,t\in G imes G} = (\mathfrak{\iota}\otimes S)\Delta(f)$$

is a positive kernel on $G \times G$.

 $\mathcal{B}(H) \overset{eh}{\otimes} \mathcal{B}(H)$ is isomorphic to the space of completely bounded normal maps on $\mathcal{B}(H)$,

 $x \otimes y \mapsto (a \mapsto xay)$ $(a \in \mathcal{B}(H)).$

So can talk of "complete positivity".

Theorem (D. & Salmi) $x \in M$ is a completely positive multiplier if and only if $(\iota \otimes S)\Delta(x) \in \mathcal{B}(H) \overset{eh}{\otimes} \mathcal{B}(H)$ and is completely positive.

To right multipliers

Introduce an involution J_K on K by $J_K(e_i) = e_i$ (and anti-linearity). Define $\tau(\cdot) = J_K(\cdot)^* J_K$, an anti-*-automorphism on $\mathcal{B}(K)$. Then set

$$U^{c} = (R \otimes \tau)(U) \implies (\Delta \otimes \iota)(U^{c}) = (R \otimes R \otimes \tau)(\sigma \otimes \iota)(U_{13}U_{23})$$
$$= (\sigma \otimes \iota)(U_{23}^{c}U_{13}^{c}) = U_{13}^{c}U_{23}^{c}.$$

- So U^c is a unitary corepresentation.
- So $L'(\hat{x}) = (\iota \otimes \omega)(U^c(\hat{x} \otimes 1)(U^c)^*)$ is a left multiplier.
- The point is that $r = \hat{R} \circ L' \circ \hat{R}$ is then the adjoint of a completely positive right multiplier of \hat{M}_* , with (L, r) a double multiplier.
- Not surprising from the viewpoint that we're multiplying the (two-sided!) ideal \hat{M}_* by elements of \hat{A}_u^* . But...

For Kac algebras

Have L associated to $a_i = (\iota \otimes \omega_{\xi,e_i})(U^*)$, and now L' associated to $b_i = (\iota \otimes \omega_{\xi,e_i})((U^c)^*)$. Supposing that S = R,

$$a_i^* = (\iota \otimes \omega_{\xi,e_i})(U^*)^* = (\iota \otimes \omega_{e_i,\xi})(U) = R((\iota \otimes \omega_{e_i,\xi})(U^*))$$

= $(\iota \otimes \omega_{J_K\xi,J_Ke_i})((U^c)^*) = (\iota \otimes \omega_{\xi,e_i})((U^c)^*) = b_i.$

(Assume $J_K \xi = \xi$). So curiously,

$$\sum_{i} a_{i} a_{i}^{*} = \sum_{i} b_{i}^{*} b_{i} = L'(1) = 1.$$

So on all of $\mathcal{B}(H)$,

$$x\mapsto \sum_i a_i^*xa_i,$$

is a unital completely positive map, and a trace-preserving completely positive map.

In Quantum Information Theorey, such maps are called "bistochastic quantum channels". There is a small amount of literature...

From a Haagerup tensor product perspective

There is an asymmetry in the extended Haagerup tensor product, so the swap map σ is unbounded on $M \overset{eh}{\otimes} M$. Yet we find that $u = \sum_i a_i^* \otimes a_i$ is such that both u and $\sigma(u)$ are in $M \overset{eh}{\otimes} M$.

Theorem (Pisier & Shlyakhtenko, Haagerup & Musat)

Let $u \in \mathcal{B}(K) \overline{\otimes} \mathcal{B}(K)$ be such that both u and $\sigma(u)$ are in $\mathcal{B}(K) \overset{eh}{\otimes} \mathcal{B}(K)$. Then the map

 $\mathcal{B}(K)_* \odot \mathcal{B}(K)_* \to \mathbb{C}; \quad \omega_1 \otimes \omega_2 \mapsto \langle u, \omega_1 \otimes \omega_2 \rangle$

is bounded for the minimal operator space tensor norm.

Curiosity; and a question

If also L=L' (the $\mu\in \widehat{A}^*_u$ satisfies $\mu=\mu\circ \widehat{R}_u$) then in $M\stackrel{eh}{\otimes} M$,

$$u=\sum_i a_i^*\otimes a_i=\sum_i b_i^*\otimes b_i=\sum_i a_i\otimes a_i^*,$$

so we even have that $\sigma(u) = u$.

But in general, $u \in \mathcal{B}(K) \overset{eh}{\otimes} \mathcal{B}(K), \sigma(u) = u$ does not imply that $u = \sum_i x_i \otimes y_i$ with $\sum_i x_i^* x_i, \sum_i y_i^* y_i < \infty$.

- What extra conditions on u would give this representation?
- If $u = \sum c_i^* \otimes d_i$ and $x \mapsto \sum_i c_i^* x d_i$ is completely *positive*, that's enough!
- Application: Completely bounded maps $A(G) \rightarrow VN(G)$ which factor through a column or row Hilbert space.

Matthew Daws (Leeds)

CP Multipliers

Lille, Oct 2012 21 / 21