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The von Neumann algebra of a group

Let G be a locally compact group — has a Haar measure — can
form the von Neumann algebra L™ (G) acting on L?(G).

Have lost the product of G. We recapture this by considering the
injective, normal x-homomorphism

A:L¥(G)— L*(G x G); A(F)(s,t) = F(st).
The pre-adjoint of A gives the usual convolution product on L!(G)
NAQLMG) - LMG), wets (WRT)oA=w*T.
The map A is implemented by a unitary operator W on L?(G x G),
WE(s, t) =E&(s,s't), AF)=W* (1 F)W,

where F' € L*°(G) identified with the operator of multiplication by F'.
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The other von Neumann algebra of a group

Let VN(G) be the von Neumann algebra acting on L?(G) generated
by the left translation operators A;,s € G.

The predual of VN(G) is the “Fourier algebra” (a la Eymard) A(G), a
commutative Banach algebra.

Again, thereis A: VN(G) —» VN(G)® VN (G) whose pre-adjoint
induces the product on A(G),

AAs) = A @ As.
That such a A exists follows as
Alz)=W*(loz)W with W =ocW*o,

where 0 : L?(G x G) — L?(G x G) is the swap mabp.
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How W governs everything
The unitary W is multiplicative; Wis Wiz Whs = Whg Wis; and lives in
L®(G)®QVN(G).
The map
I'G)— VN(G);, w— (we (W),

is the usual representation of L'(G) on L?(G) by convolution. The
image is o-weakly dense in VN (G), and norm dense in C}(G).
The map

A(G) = LZ(G); ww (tew)(W),

is the usual embedding of A(G) into L*°(G) (the Gelfand map, if you
wish). The image is o-weakly dense in L*°(G), and norm dense in
Co(@G).

The group inverse is represented by the antipode

S:L®(G)— L*®(G);S(F)(t) = F(t!). We have that

S((1® W) (W) = (1o w) (W),
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More non-commutative framework

@ M a von Neumann algebra;
@ A a normal injective x-homomorphism M — M QM with
(AR VA =(1® A)A,
@ a “left-invariant” weight ¢, with (1® @)A(-) = ¢(-)1 (in some loose
sense).
@ a “right-invariant” weight 1, with ( ® )A(-) =P (-)1.
Let H be the GNS space for ¢. There is a unitary W on H ® H with

—o-weak

Alz) =W 1loz)W, M=lin{(tw)(W)}
Again form W = cW*o. Then
1 =lin{(1® w)(W)}“"”e‘"*k
W*(1® )W which is
an

is a von Neumann algebra, we can define A() =
“coassociative”. It is possible to define welghts @ an LT)

Matthew Daws (Leeds) CP Multipliers Lille, Oct 2012 6 /21



Antipode not bounded

Can again define

S((Le W) (W) = (1o w)(W*).

However, in general S will be an unbounded, o-weakly-closed operator.

We can factor S as S = RoT_; .

R is the “unitary antipode”, a normal anti-x-homomorphism
M — M which is an anti-homomorphism on M,

SoxoSo*x =1

T_; /2 18 the analytic generator of a one-parameter automorphism
group (1¢) of M. Each 1; also induces a homomorphism on M,.

Via Tomita-Takesaki theory, the weight @ has a modular operator
V. Then () = V#(-)V~*. (1) is the scaling group.
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A few names

An incomplete list. ..

This viewpoint on L*°(G) and VN (G) comes from Takesaki,
Tatsuuma.

Using W in a more general setting comes from Baaj, Skandalis.
Work of Woronowicz on the compact case.

Enock & Schwartz, Kac & Vainerman developed “Kac algebras”
(essentially when S = R).

Masuda, Nakagami, Woronowicz gave a more complicated (but
equivalent) set of axioms

Current axioms are from Kustermans, Vaes.

Prioritising W leads to the notion of a “manageable multiplicative
unitary” from Woronowicz (and Soltan).

Various more algebraic approaches from van Daele.
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Representation theory

A corepresentation of (M,A) is a unitary U € MQB(K) with
(A® J(U) = Uz Uzs.
If M = L*(G) and 7t is a unitary representation of G on K, then let

U = (n(t),.q € L®(G,B(K)) = L®(G)ZB(K).

That (A ® )(U) = Uy3Uss is equivalent to 7t(st) = 7t(s)7m(¢).
The relation 7t(s)* = 7(s~!) becomes reflected in the general fact that

(t@w)(U)e D(S), S((te@w)(U)) =1 w)(U*).

W 1s a corepresentation— the left regular corepresentation on H.
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Reduced and universal C*-algebras

Taking the norm closure of {(t® w)( W)} gives a C*-algebra A. Then A
gives a “morphism” A — A ® A (a non-denegenerate x-homomorphism
A — M(A® A)). The weights restrict to densely defined KMS weights.
There 1s a parallel C*-algebraic theory, though the axioms are more
subtle.

There is a “maximal” corepresentation WV (formed from a suitable
direct sum argument). Then

4, = closure{(w @ V) (W)}

is a C*-algebra, which also admits a coproduct and invariant weights
(thought these might fail to be faithful).

Any corepresentation U is of the form U = (t® ¢) (VW) where

b : 4, - B (K') is a unique non-degenerate x-representation.

This parallels the formation of C*(G) vs C(G).
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Multipliers

I'm interested in the algebra M,, but this is only unital when (M,A) is
said to be discrete.
@ So you can study the multipliers of M.,.

e Turn A* into a Banach algebra by using A (analogue of the
measures on a group).

@ Then M, is an essential ideal in A*.
e Indeed, the same is true for A},.

@ In the commutative case, A = A, and you get all the multipliers
of M, = L*(G) as measures.

e In the cocommutative case, A}, is the Fourier-Stieltjes algebra
B(@G), but you get all multipliers of M, = A(G) if and only if G
is amenable (Bozejko, Losert, Nebbia).
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Completely positive case

Suppose that a is a completely positive multiplier of A(G).

@ To be precise, multiplication by a induces a map A(G) — A(G).

@ So the adjoint is a map on VN(G), and we ask that this is
completely positive in the usual way.

o (Gilbert) There is a continuous map «: G — K with
a(t™ts) = (aft)lx(s))k-

@ (de Canniere, Haagerup) Now immediate that a is positive definite
(and conversely).

o Notice that a is then also a positive member of B(G), that is, a
positive functional on C*(G).

@ So if G amenable if and only if the span of the completely positive
multipliers equals the space of all (completely bounded)
multipliers.
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Result in quantum case

Let L, : M, — I, be a completely bounded (left) multiplier. So:
@ L,(w*T)=L,(w)*T,

o the adjoint L = (L,)* : M — I/ is completely bounded.
Theorem (Junge, Neufang, Ruan)

There is a unique ¢ € M such that, if we embed M, into M via
w i (w @) (W), then L, is given by left multiplication by z.

Theorem (D.)
z € M(A) and z* € D(S) with S(z*) also inducing a left multiplier.J

Picture: abstract multiplier of A(G) corresponds to multiplication by
a (continuous) function on G.
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Completely positive case

Theorem (D.)

Let L, be a left multiplier, associated to ¢ € M(A). The following
are equivalent:

o L= (L,)* is completely positive (L: M — ).

@ There 18 a positwe functional u € ﬁz with L,(w) = ux w
(recall: M, ideal in ﬁj;), and z = (L® w)(W*).

@ There 1s a unitary corepresentation U of (M,A) on K, and a
positive u € B(K), withz = (@ u)(U*), and with

L2)= (oW (U@elU*) (2l
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Link with Haagerup tensor product

So L(Z)=(1®@u)(U(z®1)U*). By adjusting the space U acts on, we
may assume that p is a vector state wg, and then taking (e;) an
orthonormal basis of K, define

6 =(1@wee) (U eM = ) alfa; = L(2).

The extended (or weak*) Haagerup tensor product (Effros-Ruan,
Blecher-Smith, Haagerup (unpublished)) of M with itself is the space

{u c MM :u :Zmi ® y; with Zmimi*,nyyi < oo}.

S0
N eh
Y af@aicM®M.
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Sketch proof that CP multiplier = corep
Actually, if we start with a CP left multiplier, then [JNR] (and a little

h
bookkeeping) shows that for some ) , ;a’ ®a; € M ® M we have
=) ,a'Za,.
e By applying the [JNR] construction twice, you find that

Za ®az®1_ZA )13A(a;)2

e This is enough to construct an isometry U* on H ® (?(I) and
& € (?(I) with

(ARV(U) = Uy Uz, (@ wge)(U")=a,.

@ So U is a corepresentation; only remains to show that U is
unitary. This follows by using that we can find the (a;) from the
Stinespring representation, and so we have some sort of

minimality condition, and then using MM is linearly, o-weakly
dense in B(H).
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“Positive definite” elements

Recall that a function f on G is positive definite if

(F(st7), s = (18 SIA(F)

is a positive kernel on G x G.

eh
B(H) ® B(H) is isomorphic to the space of completely bounded normal
maps on B(H),

z®y— (a— zay) (a € B(H)).

So can talk of “complete positivity”.

Theorem (D. & Salmi)

z € M 15 a completely positive multiplier if and only +f
eh
(t® S)A(z) € B(H) ® B(H) and 1s completely positive.
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To right multipliers

Introduce an involution Jx on K by Jx(e;) = e; (and anti-linearity).
Define 1(-) = Jx (-)*Jx, an anti-x-automorphism on B(K ). Then set

US=(Re1)(U) = (A®)(U°) = (R® R®7)(0® )( U3 Us3)
= (0@ U(Us3 Ugz) = Uy Uss.

@ So UF€ is a unitary corepresentation.
@ SoL(Z2)=(1@w) (U2 ®1)(U°)*) is a left multiplier.

o The point is that » = Ro L’ o R is then the adjoint of a completely
positive right multiplier of I,, with (L, r) a double multiplier.

@ Not surprising from the viewpoint that we're multiplying the
(two-sided!) ideal M, by elements of A*. But...
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For Kac algebras

Have L associated to a; = (1 ® wg . )(U*), and now L’ associated to
bi = (L® wege,)((U)*). Supposing that S = R,

a; = (L@ We ) (U") = (1@ we, e)(U) = R((1® we, £)(UT))
(L ® Wieg,gxe, ) ((U)) = (L@ we e ) (T)T) = b;.

(Assume Jx & = &). So curiously,
Z a;a; = Z bib;, = L'(1) =1.

So on all of B(H),

*
T E a; Ta;,
g

is a unital completely positive map, and a trace-preserving completely
positive map.

In Quantum Information Theorey, such maps are called “bistochastic
quantum channels”. There is a small amount of literature. ..
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From a Haagerup tensor product perspective

There 1s an asymmetry in the extended Haagerup tensor product, so

h
the swap map o is unbounded on M i@ M.
Yet we find that v = ) , a’ ® a; is such that both u and o(u) are in

M & M.

Theorem (Pisier & Shlyakhtenko, Haagerup & Musat)

Let u € B(K)®RB(K) be such that both u and o(u) are in
B(K) %B(K). Then the map

B(K)s©B(K)y = C;, w1 ®ws— (u,w; ®ws)

18 bounded for the minimal operator space tensor norm.
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Curiosity; and a question

eh
If also L = L' (the u € ﬁ; satisfies © = po R,) then in M @ M,
u:Za;-k@)ai:be@bi:Zai@af,

so we even have that o(u) = u.
But in general, u € B(K) g B(K),o(u) = u does not imply that
u=) ,T;Qy; with ) . z'z; ) ,y'y; < oo.

e What extra conditions on v would give this representation?

o Ifu=) ¢’ ®d;and z — ) , c’zd; is completely positive, that’s
enough!

e Application: Completely bounded maps A(G) — VN(G) which
factor through a column or row Hilbert space.
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