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The von Neumann algebra of a group

Let G be a locally compact group =⇒ has a Haar measure =⇒ can

form the von Neumann algebra L∞(G) acting on L2(G).

Have lost the product of G . We recapture this by considering the

injective, normal ∗-homomorphism

∆ : L∞(G)→ L∞(G ×G); ∆(F )(s , t) = F (st).

The pre-adjoint of ∆ gives the usual convolution product on L1(G)

L1(G)⊗ L1(G)→ L1(G); ω⊗ τ 7→ (ω⊗ τ) ◦ ∆ = ω ? τ.

The map ∆ is implemented by a unitary operator W on L2(G ×G),

W ξ(s , t) = ξ(s , s−1t), ∆(F ) = W ∗(1⊗ F )W ,

where F ∈ L∞(G) identi�ed with the operator of multiplication by F .
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The other von Neumann algebra of a group

Let VN (G) be the von Neumann algebra acting on L2(G) generated

by the left translation operators λs , s ∈ G .

The predual of VN (G) is the �Fourier algebra� (a la Eymard) A(G), a

commutative Banach algebra.

Again, there is ∆ : VN (G)→ VN (G)⊗VN (G) whose pre-adjoint

induces the product on A(G),

∆(λs) = λs ⊗ λs .

That such a ∆ exists follows as

∆(x ) = Ŵ ∗(1⊗ x )Ŵ with Ŵ = σW ∗σ,

where σ : L2(G ×G)→ L2(G ×G) is the swap map.
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HowW governs everything
The unitary W is multiplicative; W12W13W23 = W23W12; and lives in

L∞(G)⊗VN (G).

The map

L1(G)→ VN (G); ω 7→ (ω⊗ ι)(W ),

is the usual representation of L1(G) on L2(G) by convolution. The

image is σ-weakly dense in VN (G), and norm dense in C ∗r (G).

The map

A(G)→ L∞(G); ω 7→ (ι⊗ω)(W ),

is the usual embedding of A(G) into L∞(G) (the Gelfand map, if you

wish). The image is σ-weakly dense in L∞(G), and norm dense in

C0(G).

The group inverse is represented by the antipode

S : L∞(G)→ L∞(G);S(F )(t) = F (t−1). We have that

S
(
(ι⊗ω)(W )

)
= (ι⊗ω)(W ∗).
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More non-commutative framework

M a von Neumann algebra;

∆ a normal injective ∗-homomorphism M →M⊗M with

(∆⊗ ι)∆ = (ι⊗ ∆)∆;

a �left-invariant� weight ϕ, with (ι⊗ϕ)∆(·) = ϕ(·)1 (in some loose

sense).

a �right-invariant� weight ψ, with (ψ⊗ ι)∆(·) = ψ(·)1.

Let H be the GNS space for ϕ. There is a unitary W on H ⊗H with

∆(x ) = W ∗(1⊗ x )W , M = lin{(ι⊗ω)(W )}
σ-weak

.

Again form Ŵ = σW ∗σ. Then

M̂ = lin{(ι⊗ω)(Ŵ )}
σ-weak

is a von Neumann algebra, we can de�ne ∆̂(·) = Ŵ ∗(1⊗ ·)Ŵ which is

�coassociative�. It is possible to de�ne weights ϕ̂ and ψ̂.
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Antipode not bounded

Can again de�ne

S
(
(ι⊗ω)(W )

)
= (ι⊗ω)(W ∗).

However, in general S will be an unbounded, σ-weakly-closed operator.

We can factor S as S = R ◦ τ−i/2.

R is the �unitary antipode�, a normal anti-∗-homomorphism

M →M which is an anti-homomorphism on M∗

S ◦ ∗ ◦ S ◦ ∗ = ι.

τ−i/2 is the analytic generator of a one-parameter automorphism

group (τt ) of M . Each τt also induces a homomorphism on M∗.

Via Tomita-Takesaki theory, the weight ϕ̂ has a modular operator

∇̂. Then τt (·) = ∇̂it (·)∇̂−it . (τt ) is the scaling group.
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A few names

An incomplete list. . .

This viewpoint on L∞(G) and VN (G) comes from Takesaki,

Tatsuuma.

Using W in a more general setting comes from Baaj, Skandalis.

Work of Woronowicz on the compact case.

Enock & Schwartz, Kac & Vainerman developed �Kac algebras�

(essentially when S = R).

Masuda, Nakagami, Woronowicz gave a more complicated (but

equivalent) set of axioms

Current axioms are from Kustermans, Vaes.

Prioritising W leads to the notion of a �manageable multiplicative

unitary� from Woronowicz (and Soªtan).

Various more algebraic approaches from van Daele.
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Representation theory

A corepresentation of (M , ∆) is a unitary U ∈M⊗B(K ) with

(∆⊗ ι)(U ) = U13U23.

If M = L∞(G) and π is a unitary representation of G on K , then let

U =
(
π(t)

)
t∈G ∈ L

∞(G ,B(K )) ∼= L∞(G)⊗B(K ).

That (∆⊗ ι)(U ) = U13U23 is equivalent to π(st) = π(s)π(t).

The relation π(s)∗ = π(s−1) becomes re�ected in the general fact that

(ι⊗ω)(U ) ∈ D(S), S
(
(ι⊗ω)(U )

)
= (ι⊗ω)(U ∗).

W is a corepresentation� the left regular corepresentation on H .
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Reduced and universal C∗-algebras

Taking the norm closure of {(ι⊗ω)(W )} gives a C∗-algebra A. Then ∆

gives a �morphism� A→ A⊗A (a non-denegenerate ∗-homomorphism

A→M (A⊗A)). The weights restrict to densely de�ned KMS weights.

There is a parallel C∗-algebraic theory, though the axioms are more

subtle.

There is a �maximal� corepresentation W (formed from a suitable

direct sum argument). Then

Âu = closure{(ω⊗ ι)(W)}

is a C∗-algebra, which also admits a coproduct and invariant weights

(thought these might fail to be faithful).

Any corepresentation U is of the form U = (ι⊗ φ)(W) where

φ : Âu → B(K ) is a unique non-degenerate ∗-representation.
This parallels the formation of C ∗(G) vs C ∗r (G).
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Multipliers

I'm interested in the algebra M∗, but this is only unital when (M , ∆) is

said to be discrete.

So you can study the multipliers of M∗.

Turn A∗ into a Banach algebra by using ∆ (analogue of the

measures on a group).

Then M∗ is an essential ideal in A∗.

Indeed, the same is true for A∗u .

In the commutative case, A = Au and you get all the multipliers

of M∗ = L1(G) as measures.

In the cocommutative case, A∗u is the Fourier-Stieltjes algebra

B(G), but you get all multipliers of M∗ = A(G) if and only if G

is amenable (Bo»ejko, Losert, Nebbia).
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Completely positive case

Suppose that a is a completely positive multiplier of A(G).

To be precise, multiplication by a induces a map A(G)→ A(G).

So the adjoint is a map on VN (G), and we ask that this is

completely positive in the usual way.

(Gilbert) There is a continuous map α : G → K with

a(t−1s) = (α(t)|α(s))K .

(de Canniere, Haagerup) Now immediate that a is positive de�nite

(and conversely).

Notice that a is then also a positive member of B(G), that is, a

positive functional on C ∗(G).

So if G amenable if and only if the span of the completely positive

multipliers equals the space of all (completely bounded)

multipliers.
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Result in quantum case

Let L∗ : M̂∗ → M̂∗ be a completely bounded (left) multiplier. So:

L∗(ω ? τ) = L∗(ω) ? τ;

the adjoint L = (L∗)
∗ : M̂ → M̂ is completely bounded.

Theorem (Junge, Neufang, Ruan)

There is a unique x ∈M such that, if we embed M̂∗ into M via

ω 7→ (ω⊗ ι)(Ŵ ), then L∗ is given by left multiplication by x .

Theorem (D.)

x ∈M (A) and x ∗ ∈ D(S) with S(x ∗) also inducing a left multiplier.

Picture: abstract multiplier of A(G) corresponds to multiplication by

a (continuous) function on G.
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Completely positive case

Theorem (D.)

Let L∗ be a left multiplier, associated to x ∈M (A). The following

are equivalent:

L = (L∗)
∗ is completely positive (L : M̂ → M̂ ).

There is a positive functional µ ∈ Â∗u with L∗(ω) = µ ?ω

(recall: M∗ ideal in Â∗u), and x = (ι⊗ µ)(W∗).
There is a unitary corepresentation U of (M , ∆) on K, and a

positive µ ∈ B(K )∗ with x = (ι⊗ µ)(U ∗), and with

L(x̂ ) = (ι⊗ µ)
(
U (x̂ ⊗ 1)U ∗

)
(x̂ ∈ M̂ ).
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Link with Haagerup tensor product

So L(x̂ ) = (ι⊗ µ)(U (x̂ ⊗ 1)U ∗). By adjusting the space U acts on, we

may assume that µ is a vector state ωξ, and then taking (ei ) an

orthonormal basis of K , de�ne

ai = (ι⊗ωξ,ei )(U
∗) ∈M =⇒ ∑

i

a∗i x̂ ai = L(x̂ ).

The extended (or weak∗) Haagerup tensor product (E�ros-Ruan,

Blecher-Smith, Haagerup (unpublished)) of M with itself is the space{
u ∈M⊗M : u =

∑
i

xi ⊗ yi with
∑
i

xix
∗
i ,
∑
i

y∗i yi <∞}.
So ∑

i

a∗i ⊗ ai ∈M
eh

⊗M .
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Sketch proof that CP multiplier ⇒ corep
Actually, if we start with a CP left multiplier, then [JNR] (and a little

bookkeeping) shows that for some
∑

i∈I a
∗
i
⊗ ai ∈M

eh

⊗M we have

L(x̂ ) =
∑

i
a∗
i
x̂ ai .

By applying the [JNR] construction twice, you �nd that∑
i

a∗i ⊗ ai ⊗ 1 =
∑
i

∆(a∗i )13∆(ai )23.

This is enough to construct an isometry U ∗ on H ⊗ `2(I ) and
ξ ∈ `2(I ) with

(∆⊗ ι)(U ∗) = U ∗23U
∗
13, (ι⊗ωξ,ei )(U

∗) = ai .

So U is a corepresentation; only remains to show that U is

unitary. This follows by using that we can �nd the (ai ) from the

Stinespring representation, and so we have some sort of

minimality condition, and then using M̂M ′ is linearly, σ-weakly

dense in B(H ).
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�Positive de�nite� elements

Recall that a function f on G is positive de�nite if(
f (st−1)

)
s,t∈G×G = (ι⊗ S)∆(f )

is a positive kernel on G ×G.

B(H )
eh

⊗B(H ) is isomorphic to the space of completely bounded normal

maps on B(H ),

x ⊗ y 7→ (
a 7→ xay

)
(a ∈ B(H )).

So can talk of �complete positivity�.

Theorem (D. & Salmi)

x ∈M is a completely positive multiplier if and only if

(ι⊗ S)∆(x ) ∈ B(H )
eh

⊗ B(H ) and is completely positive.
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To right multipliers

Introduce an involution JK on K by JK (ei ) = ei (and anti-linearity).

De�ne τ(·) = JK (·)∗JK , an anti-∗-automorphism on B(K ). Then set

U c = (R ⊗ τ)(U ) =⇒ (∆⊗ ι)(U c) = (R ⊗R ⊗ τ)(σ⊗ ι)(U13U23)

= (σ⊗ ι)(U c
23U

c
13) = U c

13U
c
23.

So U c is a unitary corepresentation.

So L ′(x̂ ) = (ι⊗ω)(U c(x̂ ⊗ 1)(U c)∗) is a left multiplier.

The point is that r = R̂ ◦L ′ ◦ R̂ is then the adjoint of a completely

positive right multiplier of M̂∗, with (L, r) a double multiplier.

Not surprising from the viewpoint that we're multiplying the

(two-sided!) ideal M̂∗ by elements of Â∗u . But. . .
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For Kac algebras
Have L associated to ai = (ι⊗ωξ,ei )(U ∗), and now L ′ associated to

bi = (ι⊗ωξ,ei )((U c)∗). Supposing that S = R,

a∗i = (ι⊗ωξ,ei )(U
∗)∗ = (ι⊗ωei ,ξ)(U ) = R

(
(ι⊗ωei ,ξ)(U

∗)
)

= (ι⊗ωJKξ,JK ei
)((U c)∗) = (ι⊗ωξ,ei )((U

c)∗) = bi .

(Assume JKξ = ξ). So curiously,∑
i

aia
∗
i =
∑
i

b∗i bi = L ′(1) = 1.

So on all of B(H ),

x 7→∑
i

a∗i xai ,

is a unital completely positive map, and a trace-preserving completely

positive map.

In Quantum Information Theorey, such maps are called �bistochastic

quantum channels�. There is a small amount of literature. . .
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From a Haagerup tensor product perspective

There is an asymmetry in the extended Haagerup tensor product, so

the swap map σ is unbounded on M
eh

⊗M .

Yet we �nd that u =
∑

i
a∗
i
⊗ ai is such that both u and σ(u) are in

M
eh

⊗M .

Theorem (Pisier & Shlyakhtenko, Haagerup & Musat)

Let u ∈ B(K )⊗B(K ) be such that both u and σ(u) are in

B(K )
eh

⊗ B(K ). Then the map

B(K )∗ � B(K )∗ → C; ω1 ⊗ω2 7→ 〈u ,ω1 ⊗ω2〉

is bounded for the minimal operator space tensor norm.
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Curiosity; and a question

If also L = L ′ (the µ ∈ Â∗u satis�es µ = µ ◦ R̂u) then in M
eh

⊗M ,

u =
∑
i

a∗i ⊗ ai =
∑
i

b∗i ⊗ bi =
∑
i

ai ⊗ a∗i ,

so we even have that σ(u) = u .

But in general, u ∈ B(K )
eh

⊗ B(K ), σ(u) = u does not imply that

u =
∑

i
xi ⊗ yi with

∑
i
x ∗
i
xi ,
∑

i
y∗
i
yi <∞.

What extra conditions on u would give this representation?

If u =
∑

c∗
i
⊗ di and x 7→∑

i
c∗
i
xdi is completely positive, that's

enough!

Application: Completely bounded maps A(G)→ VN (G) which

factor through a column or row Hilbert space.
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