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Bochner’s Theorem

Theorem (Herglotz, Bochner)

f ∈ Cb(R) is positive definite if and only if f is the Fourier transform of a
positive, finite Borel measure on R.

Recall that f is positive definite if and only if, for s1, · · · , sn ∈ R the
matrix (f (s−1

i sj)) is positive (semi-definite). That is,

n∑
i,j=1

ajai f (s−1
i sj) ≥ 0 ((aj)

n
j=1 ⊆ C).
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Bochner’s Theorem, general case

Recall that for a locally compact abelian group G, we have the
Pontryagin dual Ĝ, the collection of continuous characters φ : G→ T,
with pointwise operations, and the compact-open topology.

Theorem (Bochner, 1932)

f ∈ Cb(G) is positive definite if and only if f is the Fourier transform of
a positive, finite Borel measure on Ĝ.
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Group C∗-algebras

Recall that we turn L1(G) into a Banach ∗-algebra for the
convolution product. The group C∗-algebra C∗(G) is the universal
C∗-completion of L1(G).
We have bijections between:

I unitary representations of G;
I ∗-representations of L1(G);
I ∗-representations of C∗(G).

Then the adjoint of L1(G)→ C∗(G) allows us to identify C∗(G)∗

with a (non-closed) subspace of L∞(G).
A bit of calculation shows that we actually get a subspace of
Cb(G) (or even uniformly continuous functions on G).
Write B(G) for this space— it is a subalgebra of Cb(G). The
multiplication follows by tensoring respresentations. Get the
“Fourier-Stieltjes algebra”.
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Non-commutative generalisations

If G is abelian, then the Fourier transform gives a unitary

F : L2(G)→ L2(Ĝ).

Then conjugating by F gives a ∗-isomorphism

C∗(G) ∼= C0(Ĝ) =⇒ B(G) ∼= M(Ĝ).

Define the positive part of B(G) to be the positive functionals on
C∗(G). This is not the same as being “positive” in Cb(G).

Theorem (Abstract Bochner)
The continuous positive definite functions on G form precisely the
positive part of B(G).

For abelian G this is just a re-statement of Bochner’s Theorem. But it’s
true for arbitrary G.

Matthew Daws (Leeds) Bochner for LCQGs Cergy-Pontoise, March 2013 5 / 35



Non-commutative generalisations

If G is abelian, then the Fourier transform gives a unitary

F : L2(G)→ L2(Ĝ).
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Sketch proof
Theorem (Abstract Bochner)
The continuous positive definite functions on G form precisely the
positive part of B(G).

f ∈ Cb(G) is positive definite if and only if K (g,h) = f (g−1h)
defines a positive kernel of G.
By GNS or Kolmogorov decomposition, there is a Hilbert space H
and a map θ : G→ H with(

θ(g)
∣∣θ(h)

)
= K (g,h) = f (g−1h) (g,h ∈ G).

Then π(g)θ(h) = θ(gh) extends by linearity to a unitary π(g); the
map g → π(g) is a unitary representation.
Set ξ = θ(e) ∈ H, so that

(π(g)θ(h1)|θ(h2)) = f (h−1
2 gh1),

which shows both that π is weakly (and hence strongly)
continuous, and that f = ωξ ◦ π is a positive functional on C∗(G).
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The Fourier algebra

The Fourier-Stieltjes algebra B(G) is the space of coefficient
functionals of all unitary representations of G.
The Fourier algebra A(G) is the the space of coefficient
functionals of the (left) regular representation of G.
Fell absorption shows that A(G) is an ideal in B(G).
We identify A(G) with a dense, non-closed subalgebra of C0(G).
An alternative picture is that A(G) forms a space of functionals on
the reduced group C∗-algebra C∗r (G).
In fact, we get exactly the ultra-weakly continuous functionals, and
so A(G) is the predual of VN(G) = C∗r (G)′′.

If G is abelian then A(G) ∼= L1(Ĝ).
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The Fourier algebra and multipliers

A “multiplier” of A(G) is a (continuous) function F : G→ C such
that Fa ∈ A(G) for each a ∈ A(G).
A Closed Graph argument shows that we get a bounded map
mF : A(G)→ A(G); a 7→ Fa.
We say that F is a completely bounded multiplier if
m∗F : VN(G)→ VN(G) is completely bounded (matrix dilations are
uniformly bounded).

Theorem (Gilbert, Herz, Jolissaint)
F is a completely bounded multiplier if and only if there is a Hilbert
space H and continuous maps α, β : G→ H such that

F (g−1h) =
(
α(g)

∣∣β(h)
)
.
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Summary of Bochner’s Theorem

The following are all equivalent notions:
1 Positive functionals on the Banach ∗-algebra L1(G);
2 Positive functionals on C∗(G);
3 Completely positive multipliers of A(G);
4 Positive definite functions on G.

The equivalence of (3) and (4) was first noted by de Canniere and
Haagerup.
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The von Neumann algebra of a group

Let G be a locally compact group =⇒ has a Haar measure =⇒ can
form the von Neumann algebra L∞(G) acting on L2(G).
Have lost the product of G. We recapture this by considering the
injective, normal ∗-homomorphism

∆ : L∞(G)→ L∞(G ×G); ∆(F )(s, t) = F (st).

The pre-adjoint of ∆ gives the usual convolution product on L1(G)

L1(G)⊗ L1(G)→ L1(G); ω ⊗ τ 7→ (ω ⊗ τ) ◦∆ = ω ? τ.

The map ∆ is implemented by a unitary operator W on L2(G ×G),

W ξ(s, t) = ξ(s, s−1t), ∆(F ) = W ∗(1⊗ F )W ,

where F ∈ L∞(G) identified with the operator of multiplication by F .
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The other von Neumann algebra of a group

Let VN(G) be the von Neumann algebra acting on L2(G) generated by
the left translation operators λs, s ∈ G.
The predual of VN(G) is the Fourier algebra A(G).
Again, there is ∆ : VN(G)→ VN(G)⊗VN(G) whose pre-adjoint
induces the product on A(G),

∆(λs) = λs ⊗ λs.

That such a ∆ exists follows as

∆(x) = Ŵ ∗(1⊗ x)Ŵ with Ŵ = σW ∗σ,

where σ : L2(G ×G)→ L2(G ×G) is the swap map.
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How W governs everything
The unitary W is multiplicative; W12W13W23 = W23W12; and lives in
L∞(G)⊗VN(G).
The map

L1(G)→ VN(G); ω 7→ (ω ⊗ ι)(W ),

is the usual representation of L1(G) on L2(G) by convolution. The
image is σ-weakly dense in VN(G), and norm dense in C∗r (G).
The map

A(G)→ L∞(G); ω 7→ (ι⊗ ω)(W ),

is the usual embedding of A(G) into L∞(G) (the Gelfand map, if you
wish). The image is σ-weakly dense in L∞(G), and norm dense in
C0(G).
The group inverse is represented by the antipode
S : L∞(G)→ L∞(G); S(F )(t) = F (t−1). We have that

S
(
(ι⊗ ω)(W )

)
= (ι⊗ ω)(W ∗).

Matthew Daws (Leeds) Bochner for LCQGs Cergy-Pontoise, March 2013 12 / 35



How W governs everything
The unitary W is multiplicative; W12W13W23 = W23W12; and lives in
L∞(G)⊗VN(G).
The map

L1(G)→ VN(G); ω 7→ (ω ⊗ ι)(W ),

is the usual representation of L1(G) on L2(G) by convolution. The
image is σ-weakly dense in VN(G), and norm dense in C∗r (G).
The map

A(G)→ L∞(G); ω 7→ (ι⊗ ω)(W ),

is the usual embedding of A(G) into L∞(G) (the Gelfand map, if you
wish). The image is σ-weakly dense in L∞(G), and norm dense in
C0(G).
The group inverse is represented by the antipode
S : L∞(G)→ L∞(G); S(F )(t) = F (t−1). We have that

S
(
(ι⊗ ω)(W )

)
= (ι⊗ ω)(W ∗).

Matthew Daws (Leeds) Bochner for LCQGs Cergy-Pontoise, March 2013 12 / 35



How W governs everything
The unitary W is multiplicative; W12W13W23 = W23W12; and lives in
L∞(G)⊗VN(G).
The map

L1(G)→ VN(G); ω 7→ (ω ⊗ ι)(W ),

is the usual representation of L1(G) on L2(G) by convolution. The
image is σ-weakly dense in VN(G), and norm dense in C∗r (G).
The map

A(G)→ L∞(G); ω 7→ (ι⊗ ω)(W ),

is the usual embedding of A(G) into L∞(G) (the Gelfand map, if you
wish). The image is σ-weakly dense in L∞(G), and norm dense in
C0(G).
The group inverse is represented by the antipode
S : L∞(G)→ L∞(G); S(F )(t) = F (t−1). We have that

S
(
(ι⊗ ω)(W )

)
= (ι⊗ ω)(W ∗).

Matthew Daws (Leeds) Bochner for LCQGs Cergy-Pontoise, March 2013 12 / 35



How W governs everything
The unitary W is multiplicative; W12W13W23 = W23W12; and lives in
L∞(G)⊗VN(G).
The map

L1(G)→ VN(G); ω 7→ (ω ⊗ ι)(W ),

is the usual representation of L1(G) on L2(G) by convolution. The
image is σ-weakly dense in VN(G), and norm dense in C∗r (G).
The map

A(G)→ L∞(G); ω 7→ (ι⊗ ω)(W ),

is the usual embedding of A(G) into L∞(G) (the Gelfand map, if you
wish). The image is σ-weakly dense in L∞(G), and norm dense in
C0(G).
The group inverse is represented by the antipode
S : L∞(G)→ L∞(G); S(F )(t) = F (t−1). We have that

S
(
(ι⊗ ω)(W )

)
= (ι⊗ ω)(W ∗).

Matthew Daws (Leeds) Bochner for LCQGs Cergy-Pontoise, March 2013 12 / 35



More non-commutative framework
M a von Neumann algebra;
∆ a normal injective ∗-homomorphism M → M⊗M with
(∆⊗ ι)∆ = (ι⊗∆)∆;
a “left-invariant” weight ϕ, with (ι⊗ ϕ)∆(·) = ϕ(·)1 (in some loose
sense).
a “right-invariant” weight ψ, with (ψ ⊗ ι)∆(·) = ψ(·)1.

Let H be the GNS space for ϕ. There is a unitary W on H ⊗ H with

∆(x) = W ∗(1⊗ x)W , M = {(ι⊗ ω)(W ) : ω ∈ B(H)∗}
σ-weak

.

Again form Ŵ = σW ∗σ. Then

M̂ = lin{(ι⊗ ω)(Ŵ )}σ-weak

is a von Neumann algebra, we can define ∆̂(·) = Ŵ ∗(1⊗ ·)Ŵ which is
“coassociative”. It is possible to define weights ϕ̂ and ψ̂.
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“coassociative”. It is possible to define weights ϕ̂ and ψ̂.

Matthew Daws (Leeds) Bochner for LCQGs Cergy-Pontoise, March 2013 13 / 35



More non-commutative framework
M a von Neumann algebra;
∆ a normal injective ∗-homomorphism M → M⊗M with
(∆⊗ ι)∆ = (ι⊗∆)∆;
a “left-invariant” weight ϕ, with (ι⊗ ϕ)∆(·) = ϕ(·)1 (in some loose
sense).
a “right-invariant” weight ψ, with (ψ ⊗ ι)∆(·) = ψ(·)1.

Let H be the GNS space for ϕ. There is a unitary W on H ⊗ H with

∆(x) = W ∗(1⊗ x)W , M = {(ι⊗ ω)(W ) : ω ∈ B(H)∗}
σ-weak

.
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“coassociative”. It is possible to define weights ϕ̂ and ψ̂.

Matthew Daws (Leeds) Bochner for LCQGs Cergy-Pontoise, March 2013 13 / 35



More non-commutative framework
M a von Neumann algebra;
∆ a normal injective ∗-homomorphism M → M⊗M with
(∆⊗ ι)∆ = (ι⊗∆)∆;
a “left-invariant” weight ϕ, with (ι⊗ ϕ)∆(·) = ϕ(·)1 (in some loose
sense).
a “right-invariant” weight ψ, with (ψ ⊗ ι)∆(·) = ψ(·)1.

Let H be the GNS space for ϕ. There is a unitary W on H ⊗ H with

∆(x) = W ∗(1⊗ x)W , M = {(ι⊗ ω)(W ) : ω ∈ B(H)∗}
σ-weak

.
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Antipode not bounded

Can again define

S
(
(ι⊗ ω)(W )

)
= (ι⊗ ω)(W ∗).

However, in general S will be an unbounded, σ-weakly-closed
operator.

We can factor S as S = R ◦ τ−i/2.
R is the “unitary antipode”, a normal anti-∗-homomorphism
M → M which is an anti-homomorphism on M∗
S ◦ ∗ ◦ S ◦ ∗ = ι.
τ−i/2 is the analytic generator of a one-parameter automorphism
group, the “scaling group”, (τt ) of M. Each τt also induces a
homomorphism on M∗; equivalently, (τt ⊗ τt ) ◦∆ = ∆ ◦ τt .
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Notation

We tend to write L∞(G) for M, write L2(G) for H, and write L1(G)
for the predual of L∞(G).

Similarly, write L∞(Ĝ) for M̂.
If we take the norm closure of

{(ι⊗ ω)(W ) : ω ∈ B(H)∗}

then we obtain a C∗-algebra, which we’ll denote by C0(G).
∆ restricts to a map C0(G)→ M(C0(G)⊗ C0(G)) with, for
example, (1⊗ a)∆(b) ∈ C0(G)⊗ C0(G) for a,b ∈ C0(G).
Write M(G) for C0(G)∗; this becomes a Banach algebra for the
adjoint of ∆.
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Completely Bounded Multipliers
Definition
A “abstract left cb multiplier” (or “left cb centraliser”) of L1(G) is a
bounded linear map L∗ : L1(G)→ L1(G) such that
L∗(ω1 ? ω2) = L∗(ω1) ? ω2, and such that the adjoint
L = (L∗)∗ : L∞(G)→ L∞(G) is completely bounded.

The left regular representation of L1(G) is the contractive map
λ : L1(G)→ C0(Ĝ);ω 7→ (ω ⊗ ι)(W ).

Definition
A “concrete left cb multiplier” (or a “represented left cb multplier”) of
L1(G) is an element a ∈ L∞(Ĝ) such that there is L∗ as above, with
λ(L∗(ω)) = aλ(ω).

Picture: An abstract multiplier of A(G) is a right module
homomorphism on A(G), whereas a concrete multiplier is a continuous
function on G multiplying A(G) into itself. Notice that here these ideas
coincide.
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L1(G) is an element a ∈ L∞(Ĝ) such that there is L∗ as above, with
λ(L∗(ω)) = aλ(ω).

Picture: An abstract multiplier of A(G) is a right module
homomorphism on A(G), whereas a concrete multiplier is a continuous
function on G multiplying A(G) into itself. Notice that here these ideas
coincide.

Matthew Daws (Leeds) Bochner for LCQGs Cergy-Pontoise, March 2013 16 / 35



Concrete = Abstract
Theorem (Junge–Neufang–Ruan, D.)

For every (abstract) left cb multiplier L∗ there is a ∈ MC0(Ĝ) with
λ(L∗(ω)) = aλ(ω).

Lemma (Aristov, Kustermans–Vaes, Meyer–Roy–Woronowicz)
Let N be a von Neumann algebra, and let x ∈ L∞(G)⊗N with
(∆⊗ ι)(x) ∈ L∞(G)⊗C1⊗N. Then x ∈ C1⊗N.

Proof of Theorem, D..
Consider X = (L⊗ ι)(W )W ∗, and then calculate that (∆⊗ ι)(X ) = X13.
Key idea here is that L∗ a right module homomorphism means that
∆ ◦ L = (L⊗ ι) ◦∆. By the lemma, there is a ∈ L∞(Ĝ) with X = 1⊗ a,
that is, (L⊗ ι)(W ) = (1⊗ a)W . Using the definition of λ, it follows that
λ(L∗(ω)) = aλ(ω). Furthermore, as W ∈ M(C0(G)⊗ C0(Ĝ)), it follows
that
1⊗ a = (L⊗ ι)(W )W ∗ ∈ M(B0(L2(G))⊗C0(Ĝ)) =⇒ a ∈ MC0(Ĝ).
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Canonical extensions

Theorem (JNR)
Let L∗ be a cb left multiplier. There is a normal cb extension of L to
B(L2(G)), say Φ, which is an L∞(Ĝ)′ module map. Indeed,

1⊗ Φ(·) = W
(
(L⊗ ι)(W ∗(1⊗ ·)W )

)
W ∗.

Sketch proof.

Define T : B(L2(G))→ L∞(G)⊗B(L2(G)) using the formula on the
right-hand-side. Show that (∆⊗ ι)T (x) = T (x)13, so the lemma again
shows the existence of Φ. The rest is simple calculation.

For an alternative proof working purely with C0(G) (and Hilbert
C∗-modules) and only using the result of the previous slide, see [D., J.
London Math. Soc.]
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(Co)representations

Definition
A corepresentation of G on K is U ∈ L∞(G)⊗B(K ) with
(∆⊗ ι)(U) = U13U23. Usual to assume U is unitary.

If U has a right inverse, then an idea of Woronowicz (which follows an
idea of Baaj–Skandalis) shows that U ∈ M(C0(G)⊗ B0(K )).
As the antipode is unbounded, the usual way to define an involution on
L1(G),

〈x , ω]〉 = 〈S(x)∗, ω〉 (x ∈ D(S) ⊆ L∞(G), ω ∈ L1(G))

is only densely defined, but we end up with a dense ∗-algebra, L1
] (G).

Kustermans studied the universal C∗-enveloping algebra Cu
0 (Ĝ) which

has all the behaviour of a quantum group, excepting that the invariant
weights might fail to be faithful.
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(Co)representations and the universal dual

Theorem (Kustermans)
There is a bijection between (unitary) corepresentations of G and
non-degenerate ∗-homomorphisms of Cu

0 (Ĝ) (or L1
] (G)).

Indeed, there is a universal corepresentation V̂ ∈ M(C0(G)⊗ Cu
0 (Ĝ)),

and then U bijects with φ : Cu
0 (Ĝ)→ B(K ) according to the relation

U = (ι⊗ φ)(V̂).

(Advertisement: In [Brannan, D., Samei, Münster Journal Maths, to
appear] we start a program of studying non-unitary corepresenations.
It’s very interesting to me what a corepresentation on a Banach (or
Operator) space might be— the current theory is very “Hilbert space”
heavy.)
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Multipliers from (co)representations
Theorem
Let U be a unitary corepresentation on K , and let α, β ∈ K . Then

L(·) = (ι⊗ ωα,β)(U(· ⊗ 1)U∗)

defines (the adjoint of) a left cb multiplier of L1(Ĝ). The element
a ∈ MC0(G) “representing” this multiplier is a = (ι⊗ ωα,β)(U∗). If α = β
we get a completely positive multiplier.

Notice the dual here— if G = G is commutative then this says that a
unitary representation of G gives a cb multiplier of A(G); if G = Ĝ is
co-commutative this says that a unitary corpresentation of Ĝ, that is, a
∗-representation of C0(G), gives a cb multiplier of L1(G), that is, a
measure on G.
Via consider universal quantum groups, we see that all these
multipliers arise from functionals on Cu

0 (Ĝ)∗. Not surprising, as L1(Ĝ)

is an ideal in Cu
0 (Ĝ)∗.
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Completely positive multipliers are positive functionals
on the dual

Theorem (D. 2012)

Let L∗ be a completely positive multiplier of L1(Ĝ). Then L∗ arises from
a unitary corepresentation of G, equivalently, from a positive functional
in Cu

0 (Ĝ)∗.

An unpublished result of Losert (see also Ruan) shows that the space
of cb multipliers of A(G) is equal to B(G) (if and) only if G is amenable.
So as a corollary, we see that the cb multipliers of A(G) are equal to
the span of the cp multipliers only if G is amenable.
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Some ideas of the proof

First consider the adjoint L : L∞(Ĝ)→ L∞(Ĝ).
Recall that we can extend this to a normal CP map Φ on B(L2(G))
which is an L∞(G)-module map.
Applying the Stinespring construction to
Φ : K(L2(G))→ B(L2(G)), and looking carefully at what you get,
we find a family (ai)i∈I in L∞(G)′ with∑

i∈I

a∗i ai <∞, Φ(·) =
∑

i

a∗i (·)ai .

Let H = `2(I) with basis (ei), and write να,β =
∑

i〈ai , ωα,β〉ei .
The family (ai) is minimal in that such να,β span a dense subset of
H.
A similar result holds for cb module maps ([Smith], also [Blecher,
Effros, Ruan]).
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Constructing the corepresentation

Φ(·) =
∑
i∈I

a∗i (·)ai , 1⊗ Φ(·) = Ŵ
(
(L⊗ ι)(Ŵ ∗(1⊗ ·)Ŵ )

)
Ŵ ∗.

As Ŵ = σW ∗σ and ∆(·) = W ∗(1⊗ ·)W , and using that Φ extends L,
we can substitute the 1st equation into the 2nd, and find that∑

i

a∗i (·)ai ⊗ 1 = Φ(·)⊗ 1 =
∑

i

∆(a∗i )(· ⊗ 1)∆(ai).

Then putting this together, we find that there is an isometry U∗ with

U∗(ξ ⊗ να,β) =
∑

i

(ωα,β ⊗ ι)∆(ai)ξ ⊗ ei .

Recall that να,β =
∑

i〈ai , ωα,β〉ei .
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Actually is a corepresentation

U∗(ξ ⊗ να,β) =
∑

i

(ωα,β ⊗ ι)∆(ai)ξ ⊗ ei , να,β =
∑

i

〈ai , ωα,β〉ei .

Formally (ωξ,η ⊗ ι)(U∗)να,β =
∑

i〈ai , ωα,β ? ωξ,η〉ei .
So if we think of H as some sort of Hilbert space completion of
L1(G) (under the map Λ : ωξ,η 7→ νξ,η) then the
(anti-)representation of L1(G) which U∗ induces is
ω1 · Λ(ω2) = Λ(ω2 ? ω1).
Making this formal shows that U ∈ L∞(G)⊗B(H) and
(∆⊗ ι)(U) = U13U23.
Remains to show that U is unitary.
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Can recover our multiplier
There is a0 ∈ MC0(G) “representing” the multiplier L∗. So
(1⊗ a0)Ŵ = (L⊗ ι)(Ŵ ) = (Φ⊗ ι)(Ŵ ) =

∑
i(a
∗
i ⊗ 1)Ŵ (ai ⊗ 1).

Re-arranging shows ∑
i

(1⊗ ai)∆(ai) = a0 ⊗ 1.

Using this we can use Riesz to find α0 ∈ H with(∑
i

〈ai , ω〉ei
∣∣α0
)

= 〈a0, ω〉 (ω ∈ L1(G)).

It will then follows that

ai = (ι⊗ ωα0,ei )(U∗) (i ∈ I),

and so

L(·) = Φ(·) =
∑

i

a∗i (·)ai = (ι⊗ ωα0)(U(· ⊗ 1)U∗).
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It will then follows that

ai = (ι⊗ ωα0,ei )(U∗) (i ∈ I),

and so

L(·) = Φ(·) =
∑

i

a∗i (·)ai = (ι⊗ ωα0)(U(· ⊗ 1)U∗).
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Linking the multipliers

We have two pictures of out multiplier: the map L (extended to Φ) and
the representing element a0 ∈ MC0(G).
Recall the scaling group (τt ). There is a positive (unbounded) operator
P such that τt (·) = P it (·)P−it .

Theorem
Let ξ, η ∈ D(P1/2) and α, β ∈ D(P−1/2). Consider the rank-one
operator θξ,η. Then(

Φ(θξ,η)α
∣∣β) = 〈∆(a0), ωα,η ⊗ ω]ξ,β〉.

So, at least in principle, we can compute Φ from a0.
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Extended Haagerup tensor product

Let M ⊆ B(H) be a von Neumann algebra, and consider “tensor sums”∑
i

xi ⊗ yi with (xi), (yi) ⊆ M,
∑

i

xix∗i <∞,
∑

i

y∗i yi <∞.

Write M
eh
⊗ M for the resulting linear space.

Let CBM′(K(H),B(H)) denote the space of completely bounded maps
Φ : K(H)→ B(H) which are M ′ bimodule maps.

Then M
eh
⊗ M ∼= CBM′(K(H),B(H)) where∑

i

xi ⊗ yi ↔ Φ ⇔ Φ(·) =
∑

i

xi(·)yi .
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A little motivation

Have a0 ∈ L∞(G) and Φ : K(L2(G))→ B(L2(G)) linked by(
Φ(θξ,η)α

∣∣β) = 〈∆(a0), ωα,η ⊗ ω]ξ,β〉.

Then Φ(θ) =
∑

aiθbi say, so

〈∆(a0), ωα,η ⊗ ω]ξ,β〉 =
∑

i

(biα|η)(aiξ|β) =
∑

i

〈bi ⊗ S(ai), ωα,η ⊗ ω]ξ,β〉.

So, at least formally,

∆(a0) =
∑

i

bi ⊗ S(ai),

or, very vaguely, (ι⊗ S−1)∆(a0) is a completely bounded kernel.
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Bochner for LCQGs

Consider x ∈ L∞(G). Define:
1 x is a positive definite function if 〈x∗, ω ? ω]〉 ≥ 0 for ω ∈ L1

] (G);
2 x is the Fourier-Stieltjes transform of a positive measure if there is

a unitary corepresentation U ∈ M(C0(G)⊗K(H)) and ω ∈ K(H)∗+
with x = (ι⊗ ω)(U);

3 x is a completely positive multiplier of L1(Ĝ), as already
discussed;

4 x is a completely positive definite function if there is some CP
Φ : K(L2(G))→ B(L2(G)) with (Φ(θξ,η)α|β) = 〈x∗, ωξ,β ? ω]η,α〉 for
suitable α, β, ξ, η.

Notice we make no bimodule assumption in (4). That x or x∗ appears
is somehow related to S not being a ∗-map. Then (3) =⇒ (4) and
(3)⇔(2) we have seen; that (2) =⇒ (1) and (4) =⇒ (1) are easy.
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discussed;

4 x is a completely positive definite function if there is some CP
Φ : K(L2(G))→ B(L2(G)) with (Φ(θξ,η)α|β) = 〈x∗, ωξ,β ? ω]η,α〉 for
suitable α, β, ξ, η.

Notice we make no bimodule assumption in (4). That x or x∗ appears
is somehow related to S not being a ∗-map. Then (3) =⇒ (4) and
(3)⇔(2) we have seen; that (2) =⇒ (1) and (4) =⇒ (1) are easy.

Matthew Daws (Leeds) Bochner for LCQGs Cergy-Pontoise, March 2013 30 / 35



Bochner for LCQGs

Consider x ∈ L∞(G). Define:
1 x is a positive definite function if 〈x∗, ω ? ω]〉 ≥ 0 for ω ∈ L1

] (G);
2 x is the Fourier-Stieltjes transform of a positive measure if there is

a unitary corepresentation U ∈ M(C0(G)⊗K(H)) and ω ∈ K(H)∗+
with x = (ι⊗ ω)(U);

3 x is a completely positive multiplier of L1(Ĝ), as already
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GNS constructions

1 x is a positive definite function if 〈x∗, ω ? ω]〉 ≥ 0 for ω ∈ L1
] (G);

The obvious thing to do is to try a GNS construction, but first we need:

Theorem (D., Salmi, 2013)

Give L1
] (G) the norm ‖ω‖] = max(‖ω‖, ‖ω]‖), under which L1

] (G) is a
Banac ∗-algebra. Then {ω1 ? ω2 : ω1, ω2 ∈ L1

] (G)} is linearly dense in
L1
] (G).

Then we can produce a Hilbert space H, a map Λ : L1
] (G)→ H and a

non-degenerate representation π : L1
] (G)→ B(H) with

π(ω1)Λ(ω2) = Λ(ω1 ? ω2), (Λ(ω1)|Λ(ω2))H = 〈x∗, ω]2 ? ω1〉.

Then [Kustermans] =⇒ there is a unitary corepresentation U of G on
H with π(·) = (· ⊗ ι)(U).
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CP Positive Definite is Fourier-Stieltjes transform
1 x is a completely positive definite function if there is some CP

Φ : K(L2(G))→ B(L2(G)) with (Φ(θξ,η)α|β) = 〈x∗, ωξ,β ? ω]η,α〉 for
suitable α, β, ξ, η.

Sketch proof.
Show that the GNS space (H, π) constructed for x∗ is isomorphic
to the Stinespring space for Φ.
This also shows that Φ is an L∞(G)′ bimodule map.
Then use that the corepresentation U linked to π would agree with
the corepresentation for Φ (if Φ actually came from a multiplier,
which we don’t know, yet).
You reverse engineer from the corepresentation and Φ that,
actually, Φ was given by a multiplier.
Annoyingly seem to use complete positivity in an essential way!
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Positive definite doesn’t imply PD
1 x is a positive definite function if 〈x∗, ω ? ω]〉 ≥ 0 for ω ∈ L1

] (G);

If (1), then apply GNS to x and then applying Kustermans gives unitary
copresentation U. However, it’s not clear how we find ξ ∈ H with
x = (ι⊗ ωξ)(U).

Theorem

If G = F̂2 (that is, L∞(G) = VN(F2) then there are positive definite x
which do not come from positive functionals on Cu

0 (Ĝ)∗ = `1(F2).

Proof.
For a subset E ⊆ F2 define A(E) to be the collection of functions in
A(F2) restricted to E , normed so that A(F2)→ A(E) is a metric
surjection.
Pick a Leinert set E ⊆ F2; so A(E) ∼= `2(E). Then any positive
x ∈ `2(E) \ `1(E) gives the required counter-example.
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Co-amenability to the rescue
Recall that G is coamenable if C0(G) = Cu

0 (G), equivalently, if the
counit is bounded on C0(G).
Then [Bedos, Tuset] shows this is equivalent to L1(G) having a bai.

Theorem
If G is coamenable, then L1

] (G) has a bounded approximate identity in
it’s natural norm.

Proof.
To get something in L1

] (G), we usually “smear” by the scaling group.
However, this would tend to destroy norm control of ‖ω]‖.
Instead, we adapt an idea of Kustermans (who attributes it to van
Daele and Verding) and take the smeared limit in the “wrong direction”.
This works essentially because we’re trying to approximate the counit
which is invariant for the scaling group.
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Final Theorem

1 x is a positive definite function if 〈x∗, ω ? ω]〉 ≥ 0 for ω ∈ L1
] (G);

2 x is the Fourier-Stieltjes transform of a positive measure if there is
a unitary corepresentation U ∈ M(C0(G)⊗K(H)) and ω ∈ K(H)∗+
with x = (ι⊗ ω)(U);

3 x is a completely positive multiplier of L1(Ĝ), as already
discussed;

4 x is a completely positive definite function if there is some CP
Φ : K(L2(G))→ B(L2(G)) with (Φ(θξ,η)α|β) = 〈x∗, ωξ,β ? ω]η,α〉 for
suitable α, β, ξ, η.

Theorem (D.–Salmi, 2013)
Conditions (2)–(4) are equivalent, and imply (1). If G is coamenable,
then they are all equivalent.
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