Ring-theoretical infiniteness and ultrapowers

Matthew Daws

UCLan
Retirement meeting for Garth Dales, IWOTA, August 2021

Garth

The plan

(In my humble opinion ...) some links between my interests and Garth's work are the following:

- General theory of Banach Algebras;
- Compare and contrast to the theory of Operator Algebras;
- Interesting Examples of Banach Algebras.

Ultrafilters

A filter \mathcal{F} on a set I is a non-empty collection of subsets of I with:
(1) If $A, B \in \mathcal{F}$ then $A \cap B \in \mathcal{F}$;
(2) If $A \in \mathcal{F}$ and $A \subseteq B$ then $B \in \mathcal{F}$.
(3) $\emptyset \notin \mathcal{F}$ (this ensures $\mathcal{F} \neq 2^{I}$).

For example, the Fréchet Filter is the collection of A such that $I \backslash A$ is finite.
We order by inclusion, and define an ultrafilter to be a maximal filter.

Lemma

A filter \mathcal{U} on I is an ultrafilter if and only if for each $A \subseteq I$ either $A \in \mathcal{U}$ or $I \backslash A \in \mathcal{U}$.

- For example, for $i_{0} \in I$ the principle ultrafilter at i_{0} is $\left\{A \subseteq I: i_{0} \in A\right\}$.
- Use Zorn's Lemma to find a maximal filter which contains the Fréchet Filter. This ultrafilter is not principle.

Ultraproducts

In a metric space (X, d), a family $\left(x_{i}\right)$ in X converges along a filter \mathcal{F} to $x_{0} \in X$ when

$$
\forall \epsilon>0, \quad\left\{i \in I: d\left(x_{0}, x_{i}\right)<\epsilon\right\} \in \mathcal{F} .
$$

We write $x_{0}=\lim _{i \rightarrow \mathcal{U}} x_{i}$. When (X, d) is compact, any family converges along an ultrafilter.
Let $\left(E_{i}\right)_{i \in I}$ be a family of Banach spaces. Form $\ell^{\infty}\left(E_{i}\right)$. For an ultrafilter \mathcal{U}, define

$$
N_{\mathcal{U}}=\left\{\left(x_{i}\right) \in \ell^{\infty}\left(E_{i}\right): \lim _{i \rightarrow \mathcal{U}}\left\|x_{i}\right\|=0\right\}
$$

which is a closed subspace.
The ultraproduct is the quotient space $\ell^{\infty}\left(E_{i}\right) / N_{\mathcal{U}}$, denoted $\left(E_{i}\right)_{\mathcal{U}}$. When $E_{i}=E$ for all i, we have the ultrapower $(E)_{\mathcal{U}}$.

Applications

Studying ultraproducts and ultrapowers is an interesting way to convert approximate statements into exact statements.

- There is the notion of finite-representation of one Banach space in another: that finite-dimensional subspaces are "close to" finite-dimensional subspaces;
- A separable E is finitely-representable in F if and only if E is a subspace of $(F)_{\mathcal{U}}$.
- Also gives an interesting way to study biduals.

If $\left(A_{i}\right)$ is a family of Banach algebras then the ultraproduct $\left(A_{i}\right)_{\mathcal{U}}$ is a Banach algebra, because $N_{\mathcal{U}}$ is an ideal.

Unital algebras

This is joint work with Bence Horváth. Fix a Banach algebra A.

Question

When is $(A)_{\mathcal{U}}$ unital?

- If A is unital, under the diagonal embedding $A \rightarrow(A)_{\mathcal{U}}$, the unit becomes a unit for $(A)_{\mathcal{U}}$.
- Conversely, let $e \in(A)_{\mathcal{U}}$ be a unit. This has a representative $\left(e_{n}\right) \in \ell^{\infty}(A)$, which satisfies

$$
\lim _{n \rightarrow \mathcal{U}}\left\|e_{n} a_{n}-a_{n}\right\|=0, \quad \lim _{n \rightarrow \mathcal{U}}\left\|a_{n} e_{n}-a_{n}\right\|=0 \quad\left(\left(a_{n}\right) \in \ell^{\infty}(A)\right)
$$

- Can then extract a Cauchy sequence from the $\left(e_{n}\right)$, which must converge in A, to the unit.
Also an ultraproduct $\left(A_{n}\right)_{\mathcal{U}}$ is unital if and only if "eventually" A_{n} is unital. (But this is only true because we assume a unit has norm one).

Idempotents and equivalence

Let A be a (Banach) algebra.

Definition

$p \in A$ is an idempotent if $p^{2}=p$.
Two idempotents p, q are equivalent, written $p \sim q$, if there are $a, b \in A$ with $p=a b$ and $q=b a$.
[If $q \sim r$, say $q=c d, r=d c$, then $p=p^{2}=a b a b=a q b=(a c)(d b)$ and
$(d b)(a c)=d q c=d c d c=r^{2}=r$ so $p \sim r$.]
For example, with $A=\mathbb{M}_{n} \cong \mathcal{B}\left(\mathbb{C}^{n}\right)$:

- idempotents correspond to direct sums

$$
\mathbb{C}^{n}=V \oplus W=\operatorname{Im}(p) \oplus \operatorname{ker}(p)
$$

- equivalence looks at the dimension of V.

For C^{*}-algebras, we usually look at projections and equivalence using partial-isometries. This gives the same notion of equivalence; and the same definitions in what follows.

Finiteness

Definition

Let A be a unital algebra. A is Dedekind finite if $p \sim 1$ implies $p=1$.

- So \mathbb{M}_{n} is Dedekind finite, via dimension.
- A Banach algebra like $\mathcal{B}\left(\ell^{p}\right)$ is not, as there are proper, complemented subspaces of ℓ^{p} isomorphic to ℓ^{p}.
- Indeed, $a b=1, b a=p$ can be achieved by letting:
- b be the isometry of ℓ^{p} onto the subspace of elements with even support, and
- a the projection onto this subspace composed with the inverse to b,
- then p is the projection.

Purely infinite

Definition

A is purely infinite if $A \not \equiv \mathbb{C}$ and for $a \neq 0$ there are $b, c \in A$ with $b a c=1$.

Theorem (Ara, Goodearl, Pardo)
Let A be a simple algebra. TFAE:

- A is purely infinite;
- every non-zero right ideal of A contains an infinite idempotent.
(An infinite idempotent is equivalent to a proper sub-idempotent of itself.)

To ultrapowers

Definition

For a unital Banach algebra A, for $a \neq 0$, define

$$
C_{p i}(a)=\inf \{\|b\|\|c\|: b a c=1\}
$$

- Thus A is purely infinite if $C_{p i}(a)<\infty$ for each $a \neq 0$.

Theorem

For a unital Banach algebra, the following are equivalent:
(1) $(A)_{\mathcal{U}}$ is purely infinite;
(2) $\sup \left\{C_{p i}(a):\|a\|=1\right\}<\infty$.

Examples

Result

If A is a simple unital purely infinite C^{*}-algebra, then $C_{p i}(a)=1$ for each $\|a\|=1$.

For a Banach space E, let $\mathcal{B}(E)$ and $\mathcal{K}(E)$ be the algebras of bounded, respectively, compact operators. Sometimes, $\mathcal{K}(E)$ is the unique closed, two-sided ideal in $\mathcal{B}(E)$, so that $\mathcal{B}(E) / \mathcal{K}(E)$ is simple.

Theorem

For $E=c_{0}$ or ℓ^{p}, the algebra $\mathcal{B}(E) / \mathcal{K}(E)$ has purely infinite ultrapowers.

Proof.

A result of Ware gives exactly that $C_{p i}(T+\mathcal{K}(E))=1 /\|T+\mathcal{K}(E)\|$ for each non-compact $T \in \mathcal{B}(E)$.

Towards a counter-example

We seek a Banach algebra which is purely infinite, but with no good control of $C_{p i}(\cdot)$. This is hard, because being purely infinite is a "global" property.

Proposition

Let A, B be unital Banach algebras. Let A have purely infinite ultrapowers. When $\theta: A \rightarrow B$ is a homomorphism, θ is automatically bounded below.

Proof.

If $\|a\|=1$ and $\|\theta(a)\|<\delta$ then there are $b, c \in A$ with $\|b\|\|c\|<2 C_{p i}(a)$ and $b a c=1$ so $\theta(b) \theta(a) \theta(c)=1$ so

$$
1 \leq\|\theta(b)\|\|\theta(c)\|\|\theta(a)\|<\|\theta\|^{2} 2 C_{p i}(a) \delta
$$

which puts a lower-bound on δ.

The Cuntz monoid

(Or "Cuntz semigroup", but that has multiple meanings.)

$$
C u_{2}=\left\langle s_{1}, s_{2}, t_{1}, t_{2}: t_{1} s_{1}=t_{2} s_{2}=1, t_{1} s_{2}=t_{2} s_{1}=\Delta\right\rangle
$$

where \diamond is a "semigroup zero", meaning $s \diamond=\diamond s=\diamond$ for all s. So $C u_{2}$ is all words in these generators, subject to the relations. For example:

$$
s_{1} s_{2} t_{2} s_{1} t_{2}=s_{1} s_{2} \diamond t_{2}=\diamond, \quad s_{1} s_{2} t_{2} s_{2} t_{2}=s_{1} s_{2} t_{2}
$$

In fact, any word reduces to either \diamond or a word starting in s_{1}, s_{2} and ending in t_{1}, t_{2}.
ℓ^{1} algebras
We form the usual ℓ^{1} algebra of this monoid:

- $\ell^{1}\left(C u_{2}\right)$ is all sequences indexed by $C u_{2}$ with finite ℓ^{1}-norm:

$$
\left\|\left(a_{s}\right)_{s \in C u_{2}}\right\|=\sum_{s \in C u_{2}}\left|a_{s}\right| .
$$

- Write elements as sums of "point-mass measures" δ_{s} :

$$
\left(a_{s}\right)=\sum_{s \in C u_{2}} a_{s} \delta_{s} .
$$

- Use the convolution product: $\delta_{s} \delta_{t}=\delta_{s t}$.

Notice that $\mathbb{C} \delta_{\diamond}$ is a two-sided ideal. So we can quotient by it:

$$
\mathcal{A}:=\ell^{1}\left(C u_{2}\right) / \mathbb{C} \delta_{\diamond} .
$$

This is equivalent to identify δ_{\diamond} with the algebra 0 , so e.g.

$$
\delta_{t_{1}} \delta_{s_{1}}=1, \quad \delta_{t_{1}} \delta_{s_{2}}=0
$$

Comparison with the Cuntz algebra \mathcal{O}_{2}

\mathcal{O}_{2} is generated by isometries s_{1}, s_{2} (so $s_{1}^{*} s_{1}=s_{2}^{*} s_{2}=1$) with relation

$$
s_{1} s_{1}^{*}+s_{2} s_{2}^{*}=1
$$

This implies that s_{1} and s_{2} have orthogonal ranges, so $s_{1}^{*} s_{2}=s_{2}^{*} s_{1}=0$.
Let $\mathcal{J} \subseteq \mathcal{A}$ be the closed ideal generated by

$$
1-\delta_{s_{1} t_{1}}-\delta_{s_{2} t_{2}}
$$

- So in the quotient algebra $\mathcal{A} / \mathcal{J}$ we do have that $\delta_{s_{1} t_{1}}+\delta_{s_{2} t_{2}}=1$.

Theorem

The algebra $\mathcal{A} / \mathcal{J}$ is simple.

Towards a proof

Consider the Banach space ℓ^{1}, with standard unit vector basis $\left(e_{n}\right)_{n \geq 1}$. Define isometries

$$
S_{1}: e_{n} \mapsto e_{2 n}, \quad S_{2}: e_{n} \mapsto e_{2 n-1}
$$

and define surjections

$$
T_{1}: e_{n} \mapsto\left\{\begin{array}{ll}
e_{n / 2} & : n \text { even, } \\
0 & : n \text { odd, }
\end{array} \quad T_{2}: e_{n} \mapsto \begin{cases}0 & : n \text { even } \\
e_{(n+1) / 2} & : n \text { odd }\end{cases}\right.
$$

Then

$$
T_{1} S_{1}=1, \quad T_{2} S_{2}=1, \quad T_{1} S_{2}=0, \quad T_{2} S_{1}=0
$$

and

$$
S_{1} T_{1}+S_{2} T_{2}=1
$$

We have a representation

So we obtain a representation $\mathcal{A} \rightarrow \mathcal{B}\left(\ell^{1}\right)$ which annihilates \mathcal{J}, and so drops to a representation of $\mathcal{A} / \mathcal{J}$.

Proposition

The representation $\Theta: \mathcal{A} / \mathcal{J} \rightarrow \mathcal{B}\left(\ell^{1}\right)$ is not bounded below.
Proof.
Let $T=T_{1}+T_{2}$ so for $\left(\xi_{n}\right) \in \ell^{1}$,

$$
T\left(\xi_{n}\right)=\left(\xi_{1}+\xi_{2}, \xi_{3}+\xi_{4}, \xi_{5}+\xi_{6}, \cdots\right) .
$$

Hence $\|T\|=1$. Consider

$$
a=\left(\delta_{t_{1}}+\delta_{t_{2}}\right)^{N}=\sum\left\{\delta_{s}: s \text { is a word in } t_{1}, t_{2} \text { of length } N\right\}
$$

So $\|a\|=2^{N}$ and one can show that $\|a+\mathcal{J}\|=2^{N}$ as well. Notice that $\Theta(a+\mathcal{J})=T^{N}$, so $\|\Theta(a+\mathcal{J})\| \leq 1$.

Purely infinite

Theorem

$\mathcal{A} / \mathcal{J}$ is purely infinite.
The proof is a careful but direct construction: given $a \in \mathcal{A}$ with $a \notin \mathcal{J}$, we find $b, c \in \mathcal{A}$ with $b a c=1$.

- Of use is identifying \mathcal{J}^{\perp} in $\mathcal{A}^{*} \cong \ell^{\infty}\left(C u_{2} \backslash\{\diamond\}\right)$ and playing Hahn-Banach games.
- Consider $a=1-\delta_{s_{1} t_{1}}-\delta_{s_{2} t_{2}} \in \mathcal{J}$. Then

$$
\delta_{t_{1}} a=\delta_{t_{1}}-\delta_{t_{1} s_{1} t_{1}}-\delta_{t_{1} s_{2} t_{2}}=0,
$$

similarly $\delta_{t_{2}} a=0$ and $a \delta_{s_{1}}=a \delta_{s_{2}}=0$.

- So we can only left-multiply by s_{1}, s_{2} and right multiply by t_{1}, t_{2}, but then no cancellation can occur. So we can never get $b a c=1$.

Corollaries

Corollary
 $\mathcal{A} / \mathcal{J}$ is simple.

Corollary

$\mathcal{A} / \mathcal{J}$ does not have purely infinite ultrapowers.

Proof.

It is purely infinite, but we found a non-bounded below homomorphism.

Interesting (to me) that the example is rather "natural". We didn't "build in" to the algebra some "bad norm control".

