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The plan

(In my humble opinion . . . ) some links between my interests and

Garth's work are the following:

General theory of Banach Algebras;

Compare and contrast to the theory of Operator Algebras;

Interesting Examples of Banach Algebras.
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Ultra�lters
A �lter F on a set I is a non-empty collection of subsets of I with:

1 If A,B ∈ F then A ∩B ∈ F ;
2 If A ∈ F and A ⊆ B then B ∈ F .
3 ∅ 6∈ F (this ensures F 6= 2I ).

For example, the Fr�echet Filter is the collection of A such that I \A

is �nite.

We order by inclusion, and de�ne an ultra�lter to be a maximal �lter.

Lemma

A �lter U on I is an ultra�lter if and only if for each A ⊆ I either

A ∈ U or I \A ∈ U .

For example, for i0 ∈ I the principle ultra�lter at i0 is

{A ⊆ I : i0 ∈ A}.

Use Zorn's Lemma to �nd a maximal �lter which contains the

Fr�echet Filter. This ultra�lter is not principle.
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Ultraproducts

In a metric space (X , d), a family (xi ) in X converges along a �lter F
to x0 ∈ X when

∀ ε > 0, {i ∈ I : d(x0, xi ) < ε} ∈ F .

We write x0 = limi→U xi . When (X , d) is compact, any family

converges along an ultra�lter.

Let (Ei )i∈I be a family of Banach spaces. Form `∞(Ei ). For an

ultra�lter U , de�ne

NU = {(xi ) ∈ `∞(Ei ) : lim
i→U ‖xi‖ = 0},

which is a closed subspace.

The ultraproduct is the quotient space `∞(Ei )/NU , denoted (Ei )U .

When Ei = E for all i , we have the ultrapower (E)U .
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Applications

Studying ultraproducts and ultrapowers is an interesting way to

convert approximate statements into exact statements.

There is the notion of �nite-representation of one Banach space

in another: that �nite-dimensional subspaces are \close to"

�nite-dimensional subspaces;

A separable E is �nitely-representable in F if and only if E is a

subspace of (F )U .

Also gives an interesting way to study biduals.

If (Ai ) is a family of Banach algebras then the ultraproduct (Ai )U is a

Banach algebra, because NU is an ideal.
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Unital algebras

This is joint work with Bence Horv�ath. Fix a Banach algebra A.

Question

When is (A)U unital?

If A is unital, under the diagonal embedding A→ (A)U , the unit

becomes a unit for (A)U .

Conversely, let e ∈ (A)U be a unit. This has a representative

(en) ∈ `∞(A), which satis�es

lim
n→U ‖enan − an‖ = 0, lim

n→U ‖anen − an‖ = 0 ((an) ∈ `∞(A)).

Can then extract a Cauchy sequence from the (en), which must

converge in A, to the unit.

Also an ultraproduct (An)U is unital if and only if \eventually" An is

unital. (But this is only true because we assume a unit has norm one).
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Idempotents and equivalence

Let A be a (Banach) algebra.

De�nition

p ∈ A is an idempotent if p2 = p.

Two idempotents p, q are equivalent, written p ∼ q , if there are

a , b ∈ A with p = ab and q = ba .

[If q ∼ r , say q = cd , r = dc, then p = p2 = abab = aqb = (ac)(db) and

(db)(ac) = dqc = dcdc = r2 = r so p ∼ r .]

For example, with A = Mn
∼= B(Cn):

idempotents correspond to direct sums

Cn = V ⊕W = Im(p)⊕ ker(p);

equivalence looks at the dimension of V .

For C ∗-algebras, we usually look at projections and equivalence using

partial-isometries. This gives the same notion of equivalence; and the

same de�nitions in what follows.
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Finiteness

De�nition

Let A be a unital algebra. A is Dedekind �nite if p ∼ 1 implies p = 1.

So Mn is Dedekind �nite, via dimension.

A Banach algebra like B(`p) is not, as there are proper,
complemented subspaces of `p isomorphic to `p .

I Indeed, ab = 1, ba = p can be achieved by letting:

I b be the isometry of `p onto the subspace of elements with even

support, and

I a the projection onto this subspace composed with the inverse to b,

I then p is the projection.
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Purely in�nite

De�nition

A is purely in�nite if A 6∼= C and for a 6= 0 there are b, c ∈ A with

bac = 1.

Theorem (Ara, Goodearl, Pardo)

Let A be a simple algebra. TFAE:

A is purely in�nite;

every non-zero right ideal of A contains an in�nite

idempotent.

(An in�nite idempotent is equivalent to a proper sub-idempotent of

itself.)
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To ultrapowers

De�nition

For a unital Banach algebra A, for a 6= 0, de�ne

Cpi (a) = inf
{
‖b‖‖c‖ : bac = 1

}
.

Thus A is purely in�nite if Cpi (a) <∞ for each a 6= 0.

Theorem

For a unital Banach algebra, the following are equivalent:

1 (A)U is purely in�nite;

2 sup{Cpi (a) : ‖a‖ = 1} <∞.
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Examples

Result

If A is a simple unital purely in�nite C ∗-algebra, then Cpi (a) = 1

for each ‖a‖ = 1.

For a Banach space E , let B(E) and K(E) be the algebras of bounded,

respectively, compact operators. Sometimes, K(E) is the unique

closed, two-sided ideal in B(E), so that B(E)/K(E) is simple.

Theorem

For E = c0 or `p, the algebra B(E)/K(E) has purely in�nite

ultrapowers.

Proof.

A result of Ware gives exactly that Cpi (T +K(E)) = 1/‖T +K(E)‖
for each non-compact T ∈ B(E).
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Towards a counter-example

We seek a Banach algebra which is purely in�nite, but with no good

control of Cpi (·). This is hard, because being purely in�nite is a

\global" property.

Proposition

Let A,B be unital Banach algebras. Let A have purely in�nite

ultrapowers. When θ : A→ B is a homomorphism, θ is

automatically bounded below.

Proof.

If ‖a‖ = 1 and ‖θ(a)‖ < δ then there are b, c ∈ A with

‖b‖‖c‖ < 2Cpi (a) and bac = 1 so θ(b)θ(a)θ(c) = 1 so

1 ≤ ‖θ(b)‖‖θ(c)‖‖θ(a)‖ < ‖θ‖22Cpi (a)δ,

which puts a lower-bound on δ.
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The Cuntz monoid

(Or \Cuntz semigroup", but that has multiple meanings.)

Cu2 = 〈s1, s2, t1, t2 : t1s1 = t2s2 = 1, t1s2 = t2s1 = ♦〉

where ♦ is a \semigroup zero", meaning s♦ = ♦s = ♦ for all s .

So Cu2 is all words in these generators, subject to the relations. For

example:

s1s2t2s1t2 = s1s2♦t2 = ♦, s1s2t2s2t2 = s1s2t2.

In fact, any word reduces to either ♦ or a word starting in s1, s2 and

ending in t1, t2.
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`1 algebras
We form the usual `1 algebra of this monoid:

`1(Cu2) is all sequences indexed by Cu2 with �nite `1-norm:

‖(as)s∈Cu2‖ =
∑

s∈Cu2

|as |.

Write elements as sums of \point-mass measures" δs :

(as) =
∑

s∈Cu2

asδs .

Use the convolution product: δsδt = δst .

Notice that Cδ♦ is a two-sided ideal. So we can quotient by it:

A := `1(Cu2)/Cδ♦.

This is equivalent to identify δ♦ with the algebra 0, so e.g.

δt1δs1 = 1, δt1δs2 = 0.
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Comparison with the Cuntz algebra O2

O2 is generated by isometries s1, s2 (so s∗
1
s1 = s∗

2
s2 = 1) with relation

s1s
∗
1 + s2s

∗
2 = 1.

This implies that s1 and s2 have orthogonal ranges, so s∗
1
s2 = s∗

2
s1 = 0.

Let J ⊆ A be the closed ideal generated by

1− δs1t1 − δs2t2 .

So in the quotient algebra A/J we do have that δs1t1 + δs2t2 = 1.

Theorem

The algebra A/J is simple.
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Towards a proof

Consider the Banach space `1, with standard unit vector basis (en)n≥1.

De�ne isometries

S1 : en 7→ e2n , S2 : en 7→ e2n−1.

and de�ne surjections

T1 : en 7→ {en/2 : n even,

0 : n odd,
T2 : en 7→ {0 : n even,

e(n+1)/2 : n odd.

Then

T1S1 = 1, T2S2 = 1, T1S2 = 0, T2S1 = 0,

and

S1T1 + S2T2 = 1.
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We have a representation
So we obtain a representation A→ B(`1) which annihilates J , and so

drops to a representation of A/J .

Proposition

The representation Θ : A/J → B(`1) is not bounded below.

Proof.

Let T = T1 +T2 so for (ξn) ∈ `1,

T (ξn) = (ξ1 + ξ2, ξ3 + ξ4, ξ5 + ξ6, · · · ).

Hence ‖T‖ = 1. Consider

a = (δt1 + δt2)
N =

∑{
δs : s is a word in t1, t2 of length N

}
So ‖a‖ = 2N and one can show that ‖a + J ‖ = 2N as well. Notice that

Θ(a + J ) = TN , so ‖Θ(a + J )‖ ≤ 1.
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Purely in�nite

Theorem

A/J is purely in�nite.

The proof is a careful but direct construction: given a ∈ A with

a 6∈ J , we �nd b, c ∈ A with bac = 1.

Of use is identifying J ⊥ in A∗ ∼= `∞(Cu2 \ {♦}) and playing

Hahn-Banach games.

Consider a = 1− δs1t1 − δs2t2 ∈ J . Then

δt1a = δt1 − δt1s1t1 − δt1s2t2 = 0,

similarly δt2a = 0 and aδs1 = aδs2 = 0.

So we can only left-multiply by s1, s2 and right multiply by t1, t2,

but then no cancellation can occur. So we can never get bac = 1.
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Corollaries

Corollary

A/J is simple.

Corollary

A/J does not have purely in�nite ultrapowers.

Proof.

It is purely in�nite, but we found a non-bounded below

homomorphism.

Interesting (to me) that the example is rather \natural". We didn't

\build in" to the algebra some \bad norm control".
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