Ring-theoretical infiniteness and ultrapowers

Matthew Daws

UCLan

Retirement meeting for Garth Dales, IWOTA, August 2021

Matthew Daws (UCLan)

Ultrapowers

Lancaster, Aug 2021

1/20

Garth

The plan

(In my humble opinion ...) some links between my interests and Garth's work are the following:

- General theory of Banach Algebras;
- Compare and contrast to the theory of Operator Algebras;
- Interesting Examples of Banach Algebras.

Ultrafilters

A filter \mathcal{F} on a set I is a non-empty collection of subsets of I with:

• If $A, B \in \mathcal{F}$ then $A \cap B \in \mathcal{F}$;

- **2** If $A \in \mathcal{F}$ and $A \subseteq B$ then $B \in \mathcal{F}$.
- $\textcircled{0} \ \emptyset \not\in \mathcal{F} \ (\texttt{this ensures} \ \mathcal{F} \neq 2^I).$

For example, the *Fréchet Filter* is the collection of A such that $I \setminus A$ is finite.

We order by inclusion, and define an *ultrafilter* to be a maximal filter.

Lemma

A filter \mathcal{U} on I is an ultrafilter if and only if for each $A \subseteq I$ either $A \in \mathcal{U}$ or $I \setminus A \in \mathcal{U}$.

- For example, for $i_0 \in I$ the principle ultrafilter at i_0 is $\{A \subseteq I : i_0 \in A\}.$
- Use Zorn's Lemma to find a maximal filter which contains the Fréchet Filter. This ultrafilter is not principle.

Matthew Daws (UCLan)

Ultrapowers

Ultraproducts

In a metric space (X, d), a family (x_i) in X converges along a filter \mathcal{F} to $x_0 \in X$ when

$$\forall \epsilon > 0, \quad \{i \in I : d(x_0, x_i) < \epsilon\} \in \mathcal{F}.$$

We write $x_0 = \lim_{i \to U} x_i$. When (X, d) is compact, any family converges along an *ultra*filter.

Let $(E_i)_{i \in I}$ be a family of Banach spaces. Form $\ell^{\infty}(E_i)$. For an ultrafilter \mathcal{U} , define

$$N_{\mathcal{U}} = \{(x_i) \in \ell^\infty(E_i) : \lim_{i \to \mathcal{U}} \|x_i\| = 0\},$$

which is a closed subspace.

The ultraproduct is the quotient space $\ell^{\infty}(E_i)/N_{\mathcal{U}}$, denoted $(E_i)_{\mathcal{U}}$. When $E_i = E$ for all *i*, we have the ultrapower $(E)_{\mathcal{U}}$.

Applications

Studying ultraproducts and ultrapowers is an interesting way to convert *approximate* statements into *exact* statements.

- There is the notion of *finite-representation* of one Banach space in another: that finite-dimensional subspaces are "close to" finite-dimensional subspaces;
- A separable E is finitely-representable in F if and only if E is a subspace of (F)_U.
- Also gives an interesting way to study biduals.
- If (A_i) is a family of Banach algebras then the ultraproduct $(A_i)_{\mathcal{U}}$ is a Banach algebra, because $N_{\mathcal{U}}$ is an ideal.

Unital algebras

This is joint work with Bence Horváth. Fix a Banach algebra A.

Question

When is $(A)_{\mathcal{U}}$ unital?

- If A is unital, under the diagonal embedding $A \to (A)_{\mathcal{U}}$, the unit becomes a unit for $(A)_{\mathcal{U}}$.
- Conversely, let $e \in (A)_{\mathcal{U}}$ be a unit. This has a representative $(e_n) \in \ell^{\infty}(A)$, which satisfies

 $\lim_{n\to\mathcal{U}}\|e_na_n-a_n\|=0,\quad \lim_{n\to\mathcal{U}}\|a_ne_n-a_n\|=0\qquad ((a_n)\in\ell^\infty(A)).$

• Can then extract a Cauchy sequence from the (e_n) , which must converge in A, to the unit.

Also an ultraproduct $(A_n)_{\mathcal{U}}$ is unital if and only if "eventually" A_n is unital. (But this is only true because we assume a unit has norm one).

Idempotents and equivalence

Let A be a (Banach) algebra.

Definition

 $p \in A$ is an *idempotent* if $p^2 = p$. Two idempotents p, q are *equivalent*, written $p \sim q$, if there are $a, b \in A$ with p = ab and q = ba.

$$[ext{If } q \sim r, ext{ say } q = cd, r = dc, ext{ then } p = p^2 = abab = aqb = (ac)(db) ext{ and } (db)(ac) = dqc = dcdc = r^2 = r ext{ so } p \sim r.]$$

For example, with $A = \mathbb{M}_n \cong \mathcal{B}(\mathbb{C}^n)$:

- idempotents correspond to direct sums $\mathbb{C}^n = V \oplus W = \operatorname{Im}(p) \oplus \ker(p);$
- equivalence looks at the *dimension* of V.

For C^* -algebras, we usually look at *projections* and equivalence using partial-isometries. This gives the same notion of equivalence; and the same definitions in what follows.

Matthew Daws (UCLan)

Finiteness

Definition

Let A be a unital algebra. A is Dedekind finite if $p \sim 1$ implies p = 1.

- So \mathbb{M}_n is Dedekind finite, via dimension.
- A Banach algebra like B(l^p) is not, as there are proper, complemented subspaces of l^p isomorphic to l^p.
 - Indeed, ab = 1, ba = p can be achieved by letting:
 - \blacktriangleright b be the isometry of ℓ^p onto the subspace of elements with even support, and
 - a the projection onto this subspace composed with the inverse to b,
 - then p is the projection.

Purely infinite

Definition

A is purely infinite if $A \not\cong \mathbb{C}$ and for $a \neq 0$ there are $b, c \in A$ with bac = 1.

Theorem (Ara, Goodearl, Pardo)

Let A be a simple algebra. TFAE:

• A is purely infinite;

• every non-zero right ideal of A contains an infinite idempotent.

(An infinite idempotent is equivalent to a proper sub-idempotent of itself.)

To ultrapowers

Definition

For a unital Banach algebra A, for $a \neq 0$, define

$$C_{pi}(a) = \inf \{ \|b\| \|c\| : bac = 1 \}.$$

• Thus A is purely infinite if $C_{pi}(a) < \infty$ for each $a \neq 0$.

Theorem

For a unital Banach algebra, the following are equivalent:

1
$$(A)_{\mathcal{U}}$$
 is purely infinite;

2
$$\sup\{C_{pi}(a): \|a\|=1\} < \infty.$$

Examples

Result

If A is a simple unital purely infinite C*-algebra, then $C_{pi}(a) = 1$ for each $\|a\| = 1$.

For a Banach space E, let $\mathcal{B}(E)$ and $\mathcal{K}(E)$ be the algebras of bounded, respectively, compact operators. Sometimes, $\mathcal{K}(E)$ is the unique closed, two-sided ideal in $\mathcal{B}(E)$, so that $\mathcal{B}(E)/\mathcal{K}(E)$ is simple.

Theorem

For $E = c_0$ or ℓ^p , the algebra $\mathcal{B}(E)/\mathcal{K}(E)$ has purely infinite ultrapowers.

Proof.

A result of Ware gives exactly that $C_{pi}(T + \mathcal{K}(E)) = 1/||T + \mathcal{K}(E)||$ for each non-compact $T \in \mathcal{B}(E)$.

Towards a counter-example

We seek a Banach algebra which *is* purely infinite, but with no good control of $C_{pi}(\cdot)$. This is hard, because being purely infinite is a "global" property.

Proposition

Let A, B be unital Banach algebras. Let A have purely infinite ultrapowers. When $\theta: A \to B$ is a homomorphism, θ is automatically bounded below.

Proof.

If ||a|| = 1 and $||\theta(a)|| < \delta$ then there are $b, c \in A$ with $||b|| ||c|| < 2C_{pi}(a)$ and bac = 1 so $\theta(b)\theta(a)\theta(c) = 1$ so

```
1 \le \|\theta(b)\|\|\theta(c)\|\|\theta(a)\| < \|\theta\|^2 2C_{pi}(a)\delta,
```

which puts a lower-bound on δ .

The Cuntz monoid

(Or "Cuntz semigroup", but that has multiple meanings.)

$$Cu_2 = \langle s_1, s_2, t_1, t_2 : t_1s_1 = t_2s_2 = 1, t_1s_2 = t_2s_1 = \Diamond \rangle$$

where \Diamond is a "semigroup zero", meaning $s \Diamond = \Diamond s = \Diamond$ for all s. So Cu_2 is all words in these generators, subject to the relations. For example:

$$s_1s_2t_2s_1t_2 = s_1s_2\Diamond t_2 = \Diamond, \quad s_1s_2t_2s_2t_2 = s_1s_2t_2.$$

In fact, any word reduces to either \Diamond or a word starting in s_1, s_2 and ending in t_1, t_2 .

ℓ^1 algebras

We form the usual ℓ^1 algebra of this monoid:

• $\ell^1(Cu_2)$ is all sequences indexed by Cu_2 with finite ℓ^1 -norm:

$$\|(a_s)_{s\in Cu_2}\| = \sum_{s\in Cu_2} |a_s|.$$

Write elements as sums of "point-mass measures" δ_s:

$$(a_s)=\sum_{s\in Cu_2}a_s\delta_s.$$

• Use the convolution product: $\delta_s \delta_t = \delta_{st}$. Notice that $\mathbb{C}\delta_{\Diamond}$ is a two-sided ideal. So we can quotient by it:

$$\mathcal{A} := \ell^1(\mathit{Cu}_2)/\mathbb{C}\delta_{\diamondsuit}.$$

This is equivalent to identify δ_{\Diamond} with the algebra 0, so e.g.

$$\delta_{t_1}\delta_{s_1}=1,\qquad \delta_{t_1}\delta_{s_2}=0.$$

Comparison with the Cuntz algebra \mathcal{O}_2

 \mathcal{O}_2 is generated by isometries s_1, s_2 (so $s_1^*s_1 = s_2^*s_2 = 1$) with relation

$$s_1s_1^* + s_2s_2^* = 1.$$

This implies that s_1 and s_2 have orthogonal ranges, so $s_1^*s_2 = s_2^*s_1 = 0$. Let $\mathcal{J} \subseteq \mathcal{A}$ be the closed ideal generated by

$$1 - \delta_{s_1 t_1} - \delta_{s_2 t_2}.$$

• So in the quotient algebra \mathcal{A}/\mathcal{J} we do have that $\delta_{s_1t_1} + \delta_{s_2t_2} = 1$.

Theorem

The algebra \mathcal{A}/\mathcal{J} is simple.

Towards a proof

Consider the Banach space l^1 , with standard unit vector basis $(e_n)_{n\geq 1}$. Define isometries

$$S_1:e_n\mapsto e_{2n},\qquad S_2:e_n\mapsto e_{2n-1}.$$

and define surjections

$$T_1: e_n \mapsto egin{cases} e_{n/2} & :n ext{ even}, \ 0 & :n ext{ odd}, \end{cases} \qquad T_2: e_n \mapsto egin{cases} 0 & :n ext{ even}, \ e_{(n+1)/2} & :n ext{ odd}. \end{cases}$$

Then

and

$$T_1S_1=1, \qquad T_2S_2=1, \qquad T_1S_2=0, \qquad T_2S_1=0,$$

$$S_1 T_1 + S_2 T_2 = 1.$$

We have a representation

So we obtain a representation $\mathcal{A} \to \mathcal{B}(\ell^1)$ which annihilates \mathcal{J} , and so drops to a representation of \mathcal{A}/\mathcal{J} .

Proposition

The representation $\Theta: \mathcal{A}/\mathcal{J} \to \mathcal{B}(\ell^1)$ is not bounded below.

Proof.

Let $T = T_1 + T_2$ so for $(\xi_n) \in \ell^1$,

$$T(\xi_n) = (\xi_1 + \xi_2, \xi_3 + \xi_4, \xi_5 + \xi_6, \cdots).$$

Hence ||T|| = 1. Consider

$$\mathfrak{a} = (\delta_{t_1} + \delta_{t_2})^N = \sum ig\{ \delta_s : s ext{ is a word in } t_1, t_2 ext{ of length } N ig\}$$

So $||a|| = 2^N$ and one can show that $||a + \mathcal{J}|| = 2^N$ as well. Notice that $\Theta(a + \mathcal{J}) = T^N$, so $||\Theta(a + \mathcal{J})|| \le 1$.

Purely infinite

Theorem

 \mathcal{A}/\mathcal{J} is purely infinite.

The proof is a careful but direct construction: given $a \in \mathcal{A}$ with $a \notin \mathcal{J}$, we find $b, c \in \mathcal{A}$ with bac = 1.

- Of use is identifying \mathcal{J}^{\perp} in $\mathcal{A}^* \cong \ell^{\infty}(Cu_2 \setminus \{\Diamond\})$ and playing Hahn-Banach games.
- Consider $a = 1 \delta_{s_1 t_1} \delta_{s_2 t_2} \in \mathcal{J}$. Then

$$\delta_{t_1} a = \delta_{t_1} - \delta_{t_1 s_1 t_1} - \delta_{t_1 s_2 t_2} = 0,$$

similarly $\delta_{t_2} a = 0$ and $a \delta_{s_1} = a \delta_{s_2} = 0$.

• So we can only left-multiply by s_1, s_2 and right multiply by t_1, t_2 , but then no cancellation can occur. So we can never get bac = 1.

Corollaries

Corollary

 \mathcal{A}/\mathcal{J} is simple.

Corollary

 \mathcal{A}/\mathcal{J} does not have purely infinite ultrapowers.

Proof.

It is purely infinite, but we found a non-bounded below homomorphism.

Interesting (to me) that the example is rather "natural". We didn't "build in" to the algebra some "bad norm control".