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W∗-algebras

I Recall that a W∗-algebra is a C∗-algebra A such that
A = E ′ for some Banach space E ;

I Then, automatically, the multiplication on A becomes
separately weak∗-continuous, and the involution becomes
weak∗-continuous;

I There always exists a weak∗-continuous ∗-representation
of A onto a von Neumann algebra inside B(H) for a
suitable Hilbert space H;

I Furthermore, the E above is isometrically unique: if F is
any other Banach space such that A is isometrically
isomorphic to F ′, then E and F are isometrically
isomorphic.
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Dual Banach algebras

I A Dual Banach algebra is a Banach algebra which is a
dual space as a Banach space, and such that the
multiplication becomes separately weak∗-continuous.

I The weak∗-topology allows us to, say, take limits, as the
unit ball becomes compact. For example, if a dual Banach
algebra A has a bounded approximate identity, then it has
an identity.
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Algebras of operators

I Let E , F be Banach spaces, and form the projective tensor
product E⊗̂F with norm

‖τ‖π = inf
{ r∑

i=1

‖xi‖‖yi‖ : τ =
r∑

i=1

xi ⊗ yi

}
(τ ∈ E ⊗ F ).

I Then (E⊗̂F )′ = B(E , F ′), the space of all bounded linear
operators from E to F ′, with duality given by

〈T , x ⊗ y〉 = 〈T (x), y〉 (T ∈ B(E , F ′), x ∈ E , y ∈ F ).

I So (E ′⊗̂E)′ = B(E ′), but we can check that the product is
weak∗-continuous if and only if E is reflexive.
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Representing dual Banach algebras.

Let A be a dual Banach algebra with predual A∗.

I For each µ ∈ A∗, the map A → A∗ given by a 7→ a · µ is
weakly-compact.

I By interpolation space results, this map factors through a
reflexive left A-module Eµ.

I We can check that the resulting representation A → B(Eµ)
is actually weak∗-continuous.

I Hence, if we let E be the l2-direct sum of all such Eµ, we
see that A is weak∗-continuously isometric to a
weak∗-closed subalgebra of B(E).

I This looks very similar to the GNS construction for a
W∗-algebra.
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Derivations
I A derivation from a Banach algebra A to a Banach
A-bimodule E is a linear map d such that
d(ab) = d(a) · b + a · d(b).

I We say that an algebra is contractable if every derivation to
every bimodule is inner, that is, d(a) = a · x − x · a for some
x ∈ E . It is conjectured that contractable algebras are
finite-dimensional; this is true for C∗-algebras, for example.

I An algebra is amenable if every derivation to every dual
bimodule is inner. This is a richer class: for example, L1(G)
is amenable if and only if the group is amenable. A
C∗-algebra is amenable if and only if it is nuclear.

I However, there are few amenable dual Banach algebras:
M(G) is amenable only when G is discrete (so that
M(G) = l1(G)) while an amenable von Neumann algebra
is of the form

C(X )⊗
n⊕

i=1

Mni .
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Connes-amenability

I Let A be a dual Banach algebra, and let E be an
A-bimodule. Then E ′ is normal if the maps

A → E ′, a 7→

{
a · µ,

µ · a,

are weak∗-continuous, for each µ ∈ E ′.
I Then A is Connes-amenable if every weak∗-continuous

derivation from A to a normal dual bimodule is inner.
I Volker Runde has shown that then M(G) is

Connes-amenable if and only if G is amenable.
I If E is a reflexive Banach space with the approximation

property, then B(E) is Connes-amenable if and only if
K (E), the algebra of compact operators, is amenable. So
B(`p) is Connes-amenable for 1 < p < ∞.
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Injectivity

I Let A ⊆ B(H) be a von Neumann algebra, and let
Ac = {a ∈ B(H) : ab = ba (b ∈ A)} be the commutant of
A in B(H).

I An expectation for Ac is a norm-one projection
Q : B(H) → Ac .

I A von Neumann algebra is injective if there is an
expectation for Ac .

I We can use the structure theorem for weak∗-continuous
∗-isomorphisms to show that the definition of injectivity
does not actually depend on the choice of representation
A ⊆ B(H).

I So this definition makes sense for W∗-algebras.
I In fact, A is injective if and only if A is Connes-amenable.
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Injectivity for dual Banach algebras

Let A ⊆ B(E) be a dual Banach algebra.

I A quasi-expectation for Ac is a bounded projection
Q : B(E) → Ac such that Q(aTb) = aQ(T )b for T ∈ B(E)
and a, b ∈ Ac .

I An expectation is a quasi-expectation.
I If A is Connes-amenable, then whenever A is realised as a

weak∗-closed subalgebra of B(E), there is a
quasi-expectation B(E) → Ac .

I We say that A is injective if there is always a
quasi-expectation for Ac .

I So Connes-amenable implies injective.
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The converse

I Building on work of Runde, and again using interpolation
spaces extensively, the converse can be shown to hold.

I That is, a dual Banach algebra A is Connes-amenable if
and only if whenever A ⊆ B(E), there is a
quasi-expectation for Ac .

I However, unlike the von Neumann algebra case, we really
do need to check for all E ;

I For example, B(`p ⊕ `q) is not Connes-amenable when
p, q ∈ (1,∞) \ {2} are distinct. However, B(`p ⊕ `q)
obviously admits a quasi-expectation over itself.
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Conclusion

I This doesn’t provide an “easy” proof that
Connes-amenability and injectivity agree for W∗-algebras,
as we do not generate representations on Hilbert spaces;

I Indeed, which Banach spaces E do appear? What sort of
weak∗-representation B(`p ⊕ `q) → B(E) doesn’t allow a
quasi-expectation?

I As above, K(E) is amenable if and only if B(E) is
Connes-amenable (for “nice” E). This allows an
“abtrast-nonsense” formulation of when K(E) is amenable,
in terms of (necessarily rather pathological) tensor
products of E . Can we use this to improve upon known
results of when K(E) is and is not amenable?
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