Shift-invariant preduals of $\ell^1(\mathbb{Z})$

Matthew Daws

Leeds

February 2011

Matthew Daws (L

• • • • • • • • • • • • •

Banach spaces and duality

A first course in Banach spaces (not Hilbert spaces!) will introduce the Banach spaces $\ell^1 = \ell^1(\mathbb{N})$, and $c_0 = c_0(\mathbb{N})$:

$$\ell^{1} = \left\{ (a_{n}) : \|(a_{n})\|_{1} = \sum_{n} |a_{n}| < \infty \right\}$$

$$c_{0} = \left\{ (a_{n}) : \lim_{n} a_{n} = 0 \right\} \text{ with } \|(a_{n})\|_{\infty} = \sup_{n} |a_{n}|.$$

Remember that the dual space E^* is the collection of bounded linear maps $E \to \mathbb{C}$. Then $c_0^* = \ell^1$. To be precise, for each $f \in c_0^*$ there exists $(f_n) \in \ell^1$ such that

$$f((a_n)) = \sum_n f_n a_n \qquad ((a_n) \in c_0),$$

and with $||f|| = ||(f_n)||_1$.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Banach spaces and duality

A first course in Banach spaces (not Hilbert spaces!) will introduce the Banach spaces $\ell^1 = \ell^1(\mathbb{N})$, and $c_0 = c_0(\mathbb{N})$:

$$\ell^{1} = \left\{ (a_{n}) : \|(a_{n})\|_{1} = \sum_{n} |a_{n}| < \infty \right\}$$

$$c_{0} = \left\{ (a_{n}) : \lim_{n} a_{n} = 0 \right\} \text{ with } \|(a_{n})\|_{\infty} = \sup_{n} |a_{n}|.$$

Remember that the dual space E^* is the collection of bounded linear maps $E \to \mathbb{C}$. Then $c_0^* = \ell^1$. To be precise, for each $f \in c_0^*$ there exists $(f_n) \in \ell^1$ such that

$$f((a_n)) = \sum_n f_n a_n \qquad ((a_n) \in c_0),$$

and with $||f|| = ||(f_n)||_1$.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Let *K* be a compact Hausdorff space; let C(K) be the Banach space of continuous functions on *K* with the supremum norm; let M(K) be the space of regular Borel measures on *K*, with the total variation norm.

Then each member of $C(K)^*$ arising from integrating against a member of M(K). So we can write $C(K)^* = M(K)$. Now suppose that *K* is countable– we can enumerate *K* as $K = \{k_n : n \in \mathbb{N}\}$ say. Then any $\mu \in M(K)$ is countably additive, and so

for $f \in C($

$$\int_{K} f d\mu = \sum_{n} f(k_n) \mu(\{k_n\}).$$

Hence we have an isometric isomorphism $\theta : \ell^1 \to C(K)^*$ which sends $a = (a_n) \in \ell^1$ to the functional $\theta_a \in C(K)^*$ given by

$$\theta_a(f) = \sum_n f(k_n) a_n \qquad (f \in C(K)).$$

(日)

Let *K* be a compact Hausdorff space; let C(K) be the Banach space of continuous functions on *K* with the supremum norm; let M(K) be the space of regular Borel measures on *K*, with the total variation norm. Then each member of $C(K)^*$ arising from integrating against a member of M(K). So we can write $C(K)^* = M(K)$.

Now suppose that *K* is countable– we can enumerate *K* as $K = \{k_n : n \in \mathbb{N}\}$ say. Then any $\mu \in M(K)$ is countably additive, and so for $f \in C(K)$,

$$\int_{K} f d\mu = \sum_{n} f(k_n) \mu(\{k_n\}).$$

Hence we have an isometric isomorphism $\theta : \ell^1 \to C(K)^*$ which sends $a = (a_n) \in \ell^1$ to the functional $\theta_a \in C(K)^*$ given by

$$\theta_a(f) = \sum_n f(k_n) a_n \qquad (f \in C(K)).$$

イロト 不得 トイヨト イヨト

Let *K* be a compact Hausdorff space; let C(K) be the Banach space of continuous functions on *K* with the supremum norm; let M(K) be the space of regular Borel measures on *K*, with the total variation norm. Then each member of $C(K)^*$ arising from integrating against a member of M(K). So we can write $C(K)^* = M(K)$. Now suppose that *K* is countable– we can enumerate *K* as $K = \{k_n : n \in \mathbb{N}\}$ say. Then any $\mu \in M(K)$ is countably additive, and so for $f \in C(K)$,

$$\int_{K} f d\mu = \sum_{n} f(k_n) \mu(\{k_n\}).$$

Hence we have an isometric isomorphism $\theta : \ell^1 \to C(K)^*$ which sends $a = (a_n) \in \ell^1$ to the functional $\theta_a \in C(K)^*$ given by

$$\theta_a(f) = \sum_n f(k_n) a_n \qquad (f \in C(K)).$$

< 日 > < 同 > < 回 > < 回 > < 回 > <

Let *K* be a compact Hausdorff space; let C(K) be the Banach space of continuous functions on *K* with the supremum norm; let M(K) be the space of regular Borel measures on *K*, with the total variation norm. Then each member of $C(K)^*$ arising from integrating against a member of M(K). So we can write $C(K)^* = M(K)$. Now suppose that *K* is countable– we can enumerate *K* as $K = \{k_n : n \in \mathbb{N}\}$ say. Then any $\mu \in M(K)$ is countably additive, and so for $f \in C(K)$,

$$\int_{K} f d\mu = \sum_{n} f(k_n) \mu(\{k_n\}).$$

Hence we have an isometric isomorphism $\theta : \ell^1 \to C(K)^*$ which sends $a = (a_n) \in \ell^1$ to the functional $\theta_a \in C(K)^*$ given by

$$\theta_a(f) = \sum_n f(k_n) a_n \qquad (f \in C(K)).$$

イロト 不得 トイヨト イヨト

Let *K* be a compact Hausdorff space; let C(K) be the Banach space of continuous functions on *K* with the supremum norm; let M(K) be the space of regular Borel measures on *K*, with the total variation norm. Then each member of $C(K)^*$ arising from integrating against a member of M(K). So we can write $C(K)^* = M(K)$. Now suppose that *K* is countable– we can enumerate *K* as $K = \{k_n : n \in \mathbb{N}\}$ say. Then any $\mu \in M(K)$ is countably additive, and so for $f \in C(K)$,

$$\int_{K} f d\mu = \sum_{n} f(k_n) \mu(\{k_n\}).$$

Hence we have an isometric isomorphism $\theta : \ell^1 \to C(K)^*$ which sends $a = (a_n) \in \ell^1$ to the functional $\theta_a \in C(K)^*$ given by

$$\theta_a(f) = \sum_n f(k_n) a_n \qquad (f \in C(K)).$$

$$heta:\ell^{1}
ightarrow {old C}({old K})^{*}$$
; ${old a}=({old a}_{n})\mapsto heta_{{old a}}$

$$\theta_a(f) = \sum_n f(k_n) a_n \qquad (f \in C(K)).$$

To simplify notation, we shall write $\langle \cdot, \cdot \rangle$ for the dual pairing $\ell^1 \times C(K) \to \mathbb{C}$, so $\langle a, f \rangle = \theta_a(f)$.

So the isomorphism $\ell^1 \cong C(K)^*$ induces a weak*-topology on ℓ^1 . For example, as *K* is compact, we have non-trivial limiting sequences– say $(k_{n_i}) \to k_n$ as $i \to \infty$.

Write δ_k for the "point-mass" in ℓ^1 at k- that is, the sequence which is 0 except for a 1 in the *k*th place. Thus for $f \in C(K)$,

$$\lim_{i} \langle \delta_{k_{n_i}}, f \rangle = \lim_{i} f(k_{n_i}) = f(k_n) = \langle \delta_{k_n}, f \rangle,$$

and so $\delta_{k_{n_i}} \rightarrow \delta_{k_n}$ weak^{*}. Of course, this does not hold for the "usual" weak^{*}-topology induced by $c_0^* = \ell^1$.

$$heta:\ell^1 o {C}({K})^*$$
; ${a}=({a}_n)\mapsto heta_a$

$$\theta_a(f) = \sum_n f(k_n) a_n \qquad (f \in C(K)).$$

To simplify notation, we shall write $\langle \cdot, \cdot \rangle$ for the dual pairing $\ell^1 \times C(K) \to \mathbb{C}$, so $\langle a, f \rangle = \theta_a(f)$. So the isomorphism $\ell^1 \cong C(K)^*$ induces a weak*-topology on ℓ^1 . For example, as *K* is compact, we have non-trivial limiting sequences– say $(k_{n_i}) \to k_n$ as $i \to \infty$.

Write δ_k for the "point-mass" in ℓ^1 at k- that is, the sequence which is 0 except for a 1 in the *k*th place. Thus for $f \in C(K)$,

$$\lim_{i} \langle \delta_{k_{n_i}}, f \rangle = \lim_{i} f(k_{n_i}) = f(k_n) = \langle \delta_{k_n}, f \rangle,$$

and so $\delta_{k_{n_i}} \rightarrow \delta_{k_n}$ weak^{*}. Of course, this does not hold for the "usual" weak^{*}-topology induced by $c_0^* = \ell^1$.

$$heta:\ell^1 o C({\sf K})^*$$
; ${\it a}=({\it a}_{\it n})\mapsto heta_{\it a}$

$$\theta_a(f) = \sum_n f(k_n) a_n \qquad (f \in C(K)).$$

To simplify notation, we shall write $\langle \cdot, \cdot \rangle$ for the dual pairing $\ell^1 \times C(K) \to \mathbb{C}$, so $\langle a, f \rangle = \theta_a(f)$. So the isomorphism $\ell^1 \cong C(K)^*$ induces a weak*-topology on ℓ^1 . For example, as *K* is compact, we have non-trivial limiting sequences– say $(k_{n_i}) \to k_n$ as $i \to \infty$.

Write δ_k for the "point-mass" in ℓ^1 at k- that is, the sequence which is 0 except for a 1 in the *k*th place. Thus for $f \in C(K)$,

$$\lim_{i} \langle \delta_{k_{n_i}}, f \rangle = \lim_{i} f(k_{n_i}) = f(k_n) = \langle \delta_{k_n}, f \rangle,$$

and so $\delta_{k_{n_i}} \rightarrow \delta_{k_n}$ weak*. Of course, this does not hold for the "usual" weak*-topology induced by $c_0^* = \ell^1$.

$$heta:\ell^1 o {C}({K})^*$$
; ${a}=({a}_n)\mapsto heta_a$

$$\theta_a(f) = \sum_n f(k_n) a_n \qquad (f \in C(K)).$$

To simplify notation, we shall write $\langle \cdot, \cdot \rangle$ for the dual pairing $\ell^1 \times C(K) \to \mathbb{C}$, so $\langle a, f \rangle = \theta_a(f)$. So the isomorphism $\ell^1 \cong C(K)^*$ induces a weak*-topology on ℓ^1 . For example, as *K* is compact, we have non-trivial limiting sequences– say $(k_{n_i}) \to k_n$ as $i \to \infty$.

Write δ_k for the "point-mass" in ℓ^1 at k- that is, the sequence which is 0 except for a 1 in the *k*th place. Thus for $f \in C(K)$,

$$\lim_{i} \langle \delta_{k_{n_i}}, f \rangle = \lim_{i} f(k_{n_i}) = f(k_n) = \langle \delta_{k_n}, f \rangle,$$

and so $\delta_{k_{n_i}} \rightarrow \delta_{k_n}$ weak^{*}. Of course, this does not hold for the "usual" weak^{*}-topology induced by $c_0^* = \ell^1$.

4 D N 4 B N 4 B N 4 B

Given a Banach space *E*, a *predual* for *E* is a Banach space *F* together with an isomorphism (not assumed isometric) $\theta : E \to F^*$.

- Note that the map θ is very important.
- It seems reasonable to say that two preduals "are the same" if they induce the same weak*-topology on *E*.
- As usual, we identify F with a closed subspace of its bidual F^{**} , and so we can talk about the image of F under the adjoint map $\theta^* : F^{**} \to E^*$. Call this F_0 .
- Then $F_0 \subseteq E^*$ is a closed subspace such that:
 - F_0 separates the points of E;
 - every functional $\mu \in F_0^*$ is given by some element of *E*.
- We call such a subspace $F_0 \subseteq E^*$ a *concrete predual*.
- It's not hard to see that two concrete preduals F₀, F₁ induce the same weak*-topology on E if and only if F₀ = F₁.

Given a Banach space *E*, a *predual* for *E* is a Banach space *F* together with an isomorphism (not assumed isometric) $\theta : E \to F^*$.

• Note that the map θ is very important.

- It seems reasonable to say that two preduals "are the same" if they induce the same weak*-topology on *E*.
- As usual, we identify F with a closed subspace of its bidual F^{**} , and so we can talk about the image of F under the adjoint map $\theta^* : F^{**} \to E^*$. Call this F_0 .
- Then $F_0 \subseteq E^*$ is a closed subspace such that:
 - F_0 separates the points of E;
 - every functional $\mu \in F_0^*$ is given by some element of *E*.
- We call such a subspace $F_0 \subseteq E^*$ a *concrete predual*.
- It's not hard to see that two concrete preduals F₀, F₁ induce the same weak*-topology on E if and only if F₀ = F₁.

Given a Banach space *E*, a *predual* for *E* is a Banach space *F* together with an isomorphism (not assumed isometric) $\theta : E \to F^*$.

- Note that the map θ is very important.
- It seems reasonable to say that two preduals "are the same" if they induce the same weak*-topology on E.
- As usual, we identify F with a closed subspace of its bidual F^{**} , and so we can talk about the image of F under the adjoint map $\theta^* : F^{**} \to E^*$. Call this F_0 .
- Then $F_0 \subseteq E^*$ is a closed subspace such that:
 - F_0 separates the points of E;
 - every functional $\mu \in F_0^*$ is given by some element of *E*.
- We call such a subspace $F_0 \subseteq E^*$ a *concrete predual*.
- It's not hard to see that two concrete preduals F₀, F₁ induce the same weak*-topology on E if and only if F₀ = F₁.

< 日 > < 同 > < 回 > < 回 > < 回 > <

Given a Banach space *E*, a *predual* for *E* is a Banach space *F* together with an isomorphism (not assumed isometric) $\theta : E \to F^*$.

- Note that the map θ is very important.
- It seems reasonable to say that two preduals "are the same" if they induce the same weak*-topology on E.
- As usual, we identify *F* with a closed subspace of its bidual F^{**} , and so we can talk about the image of *F* under the adjoint map $\theta^* : F^{**} \to E^*$. Call this F_0 .
- Then $F_0 \subseteq E^*$ is a closed subspace such that:
 - F_0 separates the points of E;
 - every functional $\mu \in F_0^*$ is given by some element of *E*.
- We call such a subspace $F_0 \subseteq E^*$ a *concrete predual*.
- It's not hard to see that two concrete preduals F₀, F₁ induce the same weak*-topology on E if and only if F₀ = F₁.

Given a Banach space *E*, a *predual* for *E* is a Banach space *F* together with an isomorphism (not assumed isometric) $\theta : E \to F^*$.

- Note that the map θ is very important.
- It seems reasonable to say that two preduals "are the same" if they induce the same weak*-topology on E.
- As usual, we identify *F* with a closed subspace of its bidual F^{**} , and so we can talk about the image of *F* under the adjoint map $\theta^* : F^{**} \to E^*$. Call this F_0 .
- Then $F_0 \subseteq E^*$ is a closed subspace such that:
 - F_0 separates the points of E;
 - every functional $\mu \in F_0^*$ is given by some element of *E*.
- We call such a subspace $F_0 \subseteq E^*$ a *concrete predual*.
- It's not hard to see that two concrete preduals F₀, F₁ induce the same weak*-topology on E if and only if F₀ = F₁.

Given a Banach space *E*, a *predual* for *E* is a Banach space *F* together with an isomorphism (not assumed isometric) $\theta : E \to F^*$.

- Note that the map θ is very important.
- It seems reasonable to say that two preduals "are the same" if they induce the same weak*-topology on E.
- As usual, we identify *F* with a closed subspace of its bidual F^{**} , and so we can talk about the image of *F* under the adjoint map $\theta^* : F^{**} \to E^*$. Call this F_0 .
- Then $F_0 \subseteq E^*$ is a closed subspace such that:
 - F_0 separates the points of E;
 - every functional $\mu \in F_0^*$ is given by some element of *E*.
- We call such a subspace $F_0 \subseteq E^*$ a *concrete predual*.
- It's not hard to see that two concrete preduals F₀, F₁ induce the same weak*-topology on E if and only if F₀ = F₁.

Given a Banach space *E*, a *predual* for *E* is a Banach space *F* together with an isomorphism (not assumed isometric) $\theta : E \to F^*$.

- Note that the map θ is very important.
- It seems reasonable to say that two preduals "are the same" if they induce the same weak*-topology on E.
- As usual, we identify *F* with a closed subspace of its bidual F^{**} , and so we can talk about the image of *F* under the adjoint map $\theta^* : F^{**} \to E^*$. Call this F_0 .
- Then $F_0 \subseteq E^*$ is a closed subspace such that:
 - F_0 separates the points of E;
 - every functional $\mu \in F_0^*$ is given by some element of *E*.
- We call such a subspace $F_0 \subseteq E^*$ a *concrete predual*.
- It's not hard to see that two concrete preduals F₀, F₁ induce the same weak*-topology on E if and only if F₀ = F₁.

I now want to describe, in detail, the construction of a concrete predual for $\ell^1(\mathbb{Z})$ which has an unusual property– namely, the bilateral shift $S : \ell^1(\mathbb{Z}) \to \ell^1(\mathbb{Z})$ will be weak*-continuous. This is joint work with Richard Haydon, Thomas Schlumprecht, and Stuart White, see arXiv:1101.5696v1 [math.FA].

For an integer $n \ge 1$, let b(n) be the number of ones in the binary expansion of n, so b(1) = b(2) = b(4) = 1, b(3) = b(5) = b(6) = 2, b(7) = 3 and so on. Set b(0) = 0, and for n < 0, set $b(n) = \infty$. Let $x_0 = (2^{-b(n)})_{n \in \mathbb{Z}} \in \ell^{\infty}(\mathbb{Z})$, so

$$x_0 = \left(\cdots, 0, 0, 1, \frac{1}{2}, \frac{1}{2}, \frac{1}{4}, \frac{1}{2}, \frac{1}{4}, \frac{1}{4}, \frac{1}{8}, \frac{1}{2}, \cdots\right).$$

Let *F* be the closed, shift-invariant subspace of $\ell^{\infty}(\mathbb{Z})$ generated by x_0 . So *F* is the closed linear span of $\{S^k(x_0) : k \in \mathbb{Z}\}$. This will be a predual for $\ell^1(\mathbb{Z})$ —but why?

< 日 > < 同 > < 回 > < 回 > < 回 > <

I now want to describe, in detail, the construction of a concrete predual for $\ell^1(\mathbb{Z})$ which has an unusual property– namely, the bilateral shift $S: \ell^1(\mathbb{Z}) \to \ell^1(\mathbb{Z})$ will be weak*-continuous. This is joint work with Richard Haydon, Thomas Schlumprecht, and Stuart White, see arXiv:1101.5696v1 [math.FA].

For an integer $n \ge 1$, let b(n) be the number of ones in the binary expansion of n, so b(1) = b(2) = b(4) = 1, b(3) = b(5) = b(6) = 2, b(7) = 3 and so on. Set b(0) = 0, and for n < 0, set $b(n) = \infty$. Let $x_0 = (2^{-b(n)})_{n \in \mathbb{Z}} \in \ell^{\infty}(\mathbb{Z})$, so

$$x_0 = \left(\cdots, 0, 0, 1, \frac{1}{2}, \frac{1}{2}, \frac{1}{4}, \frac{1}{2}, \frac{1}{4}, \frac{1}{4}, \frac{1}{8}, \frac{1}{2}, \cdots\right).$$

Let *F* be the closed, shift-invariant subspace of $\ell^{\infty}(\mathbb{Z})$ generated by x_0 . So *F* is the closed linear span of $\{S^k(x_0) : k \in \mathbb{Z}\}$. This will be a predual for $\ell^1(\mathbb{Z})$ —but why?

・ロト ・ 四ト ・ ヨト ・ ヨト … ヨ

I now want to describe, in detail, the construction of a concrete predual for $\ell^1(\mathbb{Z})$ which has an unusual property– namely, the bilateral shift $S: \ell^1(\mathbb{Z}) \to \ell^1(\mathbb{Z})$ will be weak*-continuous. This is joint work with Richard Haydon, Thomas Schlumprecht, and Stuart White, see arXiv:1101.5696v1 [math.FA].

For an integer $n \ge 1$, let b(n) be the number of ones in the binary expansion of n, so b(1) = b(2) = b(4) = 1, b(3) = b(5) = b(6) = 2, b(7) = 3 and so on. Set b(0) = 0, and for n < 0, set $b(n) = \infty$. Let $x_0 = (2^{-b(n)})_{n \in \mathbb{Z}} \in \ell^{\infty}(\mathbb{Z})$, so

$$x_0 = (\cdots, 0, 0, 1, \frac{1}{2}, \frac{1}{2}, \frac{1}{4}, \frac{1}{2}, \frac{1}{4}, \frac{1}{4}, \frac{1}{8}, \frac{1}{2}, \cdots).$$

Let *F* be the closed, shift-invariant subspace of $\ell^{\infty}(\mathbb{Z})$ generated by x_0 . So *F* is the closed linear span of $\{S^k(x_0) : k \in \mathbb{Z}\}$. This will be a predual for $\ell^1(\mathbb{Z})$ —but why?

・ロト ・ 四ト ・ ヨト ・ ヨト … ヨ

I now want to describe, in detail, the construction of a concrete predual for $\ell^1(\mathbb{Z})$ which has an unusual property– namely, the bilateral shift $S: \ell^1(\mathbb{Z}) \to \ell^1(\mathbb{Z})$ will be weak*-continuous. This is joint work with Richard Haydon, Thomas Schlumprecht, and Stuart White, see arXiv:1101.5696v1 [math.FA].

For an integer $n \ge 1$, let b(n) be the number of ones in the binary expansion of n, so b(1) = b(2) = b(4) = 1, b(3) = b(5) = b(6) = 2, b(7) = 3 and so on. Set b(0) = 0, and for n < 0, set $b(n) = \infty$. Let $x_0 = (2^{-b(n)})_{n \in \mathbb{Z}} \in \ell^{\infty}(\mathbb{Z})$, so

$$x_0 = (\cdots, 0, 0, 1, \frac{1}{2}, \frac{1}{2}, \frac{1}{4}, \frac{1}{2}, \frac{1}{4}, \frac{1}{4}, \frac{1}{8}, \frac{1}{2}, \cdots).$$

Let *F* be the closed, shift-invariant subspace of $\ell^{\infty}(\mathbb{Z})$ generated by x_0 . So *F* is the closed linear span of $\{S^k(x_0) : k \in \mathbb{Z}\}$. This will be a predual for $\ell^1(\mathbb{Z})$ —but why?

イロン イロン イヨン イヨン 三日

I now want to describe, in detail, the construction of a concrete predual for $\ell^1(\mathbb{Z})$ which has an unusual property– namely, the bilateral shift $S: \ell^1(\mathbb{Z}) \to \ell^1(\mathbb{Z})$ will be weak*-continuous. This is joint work with Richard Haydon, Thomas Schlumprecht, and Stuart White, see arXiv:1101.5696v1 [math.FA].

For an integer $n \ge 1$, let b(n) be the number of ones in the binary expansion of n, so b(1) = b(2) = b(4) = 1, b(3) = b(5) = b(6) = 2, b(7) = 3 and so on. Set b(0) = 0, and for n < 0, set $b(n) = \infty$. Let $x_0 = (2^{-b(n)})_{n \in \mathbb{Z}} \in \ell^{\infty}(\mathbb{Z})$, so

$$x_0 = (\cdots, 0, 0, 1, \frac{1}{2}, \frac{1}{2}, \frac{1}{4}, \frac{1}{2}, \frac{1}{4}, \frac{1}{4}, \frac{1}{8}, \frac{1}{2}, \cdots).$$

Let *F* be the closed, shift-invariant subspace of $\ell^{\infty}(\mathbb{Z})$ generated by x_0 . So *F* is the closed linear span of $\{S^k(x_0) : k \in \mathbb{Z}\}$. This will be a predual for $\ell^1(\mathbb{Z})$ - but why?

A D A A B A A B A A B A B B

- Given x ∈ l[∞](Z), we view x as a function x : Z → C. Extend this to a function x : Q → C by setting x(q) = 0 for q ∈ Q \ Z.
- Define $\tau : \ell^{\infty}(\mathbb{Z}) \to \ell^{\infty}(\mathbb{Z})$ by $\tau(x)(n) = x(n/2)$.
- We can check that $\tau S = S^2 \tau$.
- We claim that $\tau^k(x_0) \in F$ for every $k \ge 1$.
 - First prove the identity

$$(1-\frac{1}{2}S)(x_0)(n) = \sum_{j\geq 1} 2^{-j} \tau^j(x_0)(n) \qquad (n\in\mathbb{Z}).$$

Then show that

$$(1 - \frac{1}{2}S)(x_0) = (1 - \frac{1}{4}S^2)\tau(x_0).$$

Then invert to get

$$\tau(x_0) = \sum_{j \ge 0} 4^{-j} S^{-2j} \big(1 - \frac{1}{2} S \big)(x_0) \in F.$$

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

- Given x ∈ l[∞](Z), we view x as a function x : Z → C. Extend this to a function x : Q → C by setting x(q) = 0 for q ∈ Q \ Z.
- Define $\tau: \ell^{\infty}(\mathbb{Z}) \to \ell^{\infty}(\mathbb{Z})$ by $\tau(x)(n) = x(n/2)$.
- We can check that $\tau S = S^2 \tau$.
- We claim that $\tau^k(x_0) \in F$ for every $k \ge 1$.
 - First prove the identity

$$(1-\frac{1}{2}S)(x_0)(n) = \sum_{j\geq 1} 2^{-j} \tau^j(x_0)(n) \qquad (n\in\mathbb{Z}).$$

Then show that

$$(1 - \frac{1}{2}S)(x_0) = (1 - \frac{1}{4}S^2)\tau(x_0).$$

Then invert to get

$$\tau(x_0) = \sum_{j \ge 0} 4^{-j} S^{-2j} \big(1 - \frac{1}{2} S \big)(x_0) \in F.$$

- Given x ∈ l[∞](Z), we view x as a function x : Z → C. Extend this to a function x : Q → C by setting x(q) = 0 for q ∈ Q \ Z.
- Define $\tau : \ell^{\infty}(\mathbb{Z}) \to \ell^{\infty}(\mathbb{Z})$ by $\tau(x)(n) = x(n/2)$.
- We can check that $\tau S = S^2 \tau$.
- We claim that $\tau^k(x_0) \in F$ for every $k \ge 1$.
 - First prove the identity

$$(1-\frac{1}{2}S)(x_0)(n) = \sum_{j\geq 1} 2^{-j} \tau^j(x_0)(n) \qquad (n\in\mathbb{Z}).$$

Then show that

$$(1 - \frac{1}{2}S)(x_0) = (1 - \frac{1}{4}S^2)\tau(x_0).$$

Then invert to get

$$\tau(x_0) = \sum_{j \ge 0} 4^{-j} S^{-2j} \big(1 - \frac{1}{2} S \big)(x_0) \in F.$$

- Given x ∈ l[∞](Z), we view x as a function x : Z → C. Extend this to a function x : Q → C by setting x(q) = 0 for q ∈ Q \ Z.
- Define $\tau: \ell^{\infty}(\mathbb{Z}) \to \ell^{\infty}(\mathbb{Z})$ by $\tau(x)(n) = x(n/2)$.
- We can check that $\tau S = S^2 \tau$.
- We claim that $\tau^k(x_0) \in F$ for every $k \ge 1$.
 - First prove the identity

$$(1-\frac{1}{2}S)(x_0)(n) = \sum_{j\geq 1} 2^{-j} \tau^j(x_0)(n) \qquad (n\in\mathbb{Z}).$$

Then show that

$$\left(1-\frac{1}{2}S\right)(x_0)=\left(1-\frac{1}{4}S^2\right)\tau(x_0).$$

Then invert to get

$$\tau(x_0) = \sum_{j \ge 0} 4^{-j} S^{-2j} \big(1 - \frac{1}{2} S \big)(x_0) \in F.$$

- Given x ∈ l[∞](Z), we view x as a function x : Z → C. Extend this to a function x : Q → C by setting x(q) = 0 for q ∈ Q \ Z.
- Define $\tau: \ell^{\infty}(\mathbb{Z}) \to \ell^{\infty}(\mathbb{Z})$ by $\tau(x)(n) = x(n/2)$.
- We can check that $\tau S = S^2 \tau$.
- We claim that $\tau^k(x_0) \in F$ for every $k \ge 1$.
 - First prove the identity

$$(1-\frac{1}{2}S)(x_0)(n) = \sum_{j\geq 1} 2^{-j} \tau^j(x_0)(n) \qquad (n\in\mathbb{Z}).$$

Then show that

$$\left(1-\frac{1}{2}S\right)(x_0)=\left(1-\frac{1}{4}S^2\right)\tau(x_0).$$

Then invert to get

$$\tau(\mathbf{x}_0) = \sum_{j \ge 0} 4^{-j} S^{-2j} \big(1 - \frac{1}{2} S \big)(\mathbf{x}_0) \in F.$$

A (10) A (10) A (10)

$$\begin{aligned} x_0 &= \left(\cdots, 0, 0, 1, \frac{1}{2}, \frac{1}{2}, \frac{1}{4}, \frac{1}{2}, \frac{1}{4}, \frac{1}{8}, \frac{1}{2}, \cdots\right) \\ \tau(x_0) &= \left(\cdots, 0, 0, 1, 0, \frac{1}{2}, 0, \frac{1}{2}, 0, \frac{1}{4}, 0, \frac{1}{2}, 0, \frac{1}{4}, 0, \frac{1}{4}, 0, \frac{1}{8}, 0, \frac{1}{2}, \cdots\right) \\ \tau^2(x_0) &= \left(\cdots, 0, 0, 1, 0, 0, 0, \frac{1}{2}, 0, 0, 0, \frac{1}{2}, 0, 0, 0, \frac{1}{4}, 0, 0, 0, \frac{1}{2}, \cdots\right) \end{aligned}$$

• So for any $a = (a_n) \in \ell^1(\mathbb{Z})$, we see that

 $\lim_{k} \langle \tau^{k}(x_{0}), a \rangle = a_{0}.$

- Hence if $\langle x, a \rangle = 0$ for all $x \in F$, then certainly $a_0 = 0$.
- By shift-invariance, $a_k = 0$ for all k.
- So *F* separates the points of $\ell^1(\mathbb{Z})$.

4 **A b b b b b b**

$$\begin{aligned} x_0 &= \left(\cdots, 0, 0, 1, \frac{1}{2}, \frac{1}{2}, \frac{1}{4}, \frac{1}{2}, \frac{1}{4}, \frac{1}{8}, \frac{1}{2}, \cdots\right) \\ \tau(x_0) &= \left(\cdots, 0, 0, 1, 0, \frac{1}{2}, 0, \frac{1}{2}, 0, \frac{1}{4}, 0, \frac{1}{2}, 0, \frac{1}{4}, 0, \frac{1}{4}, 0, \frac{1}{8}, 0, \frac{1}{2}, \cdots\right) \\ \tau^2(x_0) &= \left(\cdots, 0, 0, 1, 0, 0, 0, \frac{1}{2}, 0, 0, 0, \frac{1}{2}, 0, 0, 0, \frac{1}{4}, 0, 0, 0, \frac{1}{2}, \cdots\right) \end{aligned}$$

• So for any
$$a=(a_n)\in \ell^1(\mathbb{Z}),$$
 we see that

 $\lim_{k} \langle \tau^{k}(x_{0}), a \rangle = a_{0}.$

- Hence if $\langle x, a \rangle = 0$ for all $x \in F$, then certainly $a_0 = 0$.
- By shift-invariance, $a_k = 0$ for all k.
- So *F* separates the points of $\ell^1(\mathbb{Z})$.

A D N A B N A B N A

$$\begin{aligned} x_0 &= \left(\cdots, 0, 0, 1, \frac{1}{2}, \frac{1}{2}, \frac{1}{4}, \frac{1}{2}, \frac{1}{4}, \frac{1}{8}, \frac{1}{2}, \cdots\right) \\ \tau(x_0) &= \left(\cdots, 0, 0, 1, 0, \frac{1}{2}, 0, \frac{1}{2}, 0, \frac{1}{4}, 0, \frac{1}{2}, 0, \frac{1}{4}, 0, \frac{1}{4}, 0, \frac{1}{8}, 0, \frac{1}{2}, \cdots\right) \\ \tau^2(x_0) &= \left(\cdots, 0, 0, 1, 0, 0, 0, \frac{1}{2}, 0, 0, 0, \frac{1}{2}, 0, 0, 0, \frac{1}{4}, 0, 0, 0, \frac{1}{2}, \cdots\right) \end{aligned}$$

• So for any
$$a=(a_n)\in \ell^1(\mathbb{Z}),$$
 we see that

$$\lim_k \langle \tau^k(x_0), a \rangle = a_0.$$

• Hence if $\langle x, a \rangle = 0$ for all $x \in F$, then certainly $a_0 = 0$.

- By shift-invariance, $a_k = 0$ for all k.
- So *F* separates the points of $\ell^1(\mathbb{Z})$.

$$\begin{aligned} x_0 &= \left(\cdots, 0, 0, 1, \frac{1}{2}, \frac{1}{2}, \frac{1}{4}, \frac{1}{2}, \frac{1}{4}, \frac{1}{8}, \frac{1}{2}, \cdots\right) \\ \tau(x_0) &= \left(\cdots, 0, 0, 1, 0, \frac{1}{2}, 0, \frac{1}{2}, 0, \frac{1}{4}, 0, \frac{1}{2}, 0, \frac{1}{4}, 0, \frac{1}{4}, 0, \frac{1}{8}, 0, \frac{1}{2}, \cdots\right) \\ \tau^2(x_0) &= \left(\cdots, 0, 0, 1, 0, 0, 0, \frac{1}{2}, 0, 0, 0, \frac{1}{2}, 0, 0, 0, \frac{1}{4}, 0, 0, 0, \frac{1}{2}, \cdots\right) \end{aligned}$$

• So for any
$$a = (a_n) \in \ell^1(\mathbb{Z})$$
, we see that

$$\lim_{k} \langle \tau^{k}(x_{0}), a \rangle = a_{0}$$

- Hence if $\langle x, a \rangle = 0$ for all $x \in F$, then certainly $a_0 = 0$.
- By shift-invariance, $a_k = 0$ for all k.
- So *F* separates the points of $\ell^1(\mathbb{Z})$.

4 D N 4 B N 4 B N 4 B

$$\begin{aligned} x_0 &= \left(\cdots, 0, 0, 1, \frac{1}{2}, \frac{1}{2}, \frac{1}{4}, \frac{1}{2}, \frac{1}{4}, \frac{1}{8}, \frac{1}{2}, \cdots\right) \\ \tau(x_0) &= \left(\cdots, 0, 0, 1, 0, \frac{1}{2}, 0, \frac{1}{2}, 0, \frac{1}{4}, 0, \frac{1}{2}, 0, \frac{1}{4}, 0, \frac{1}{4}, 0, \frac{1}{8}, 0, \frac{1}{2}, \cdots\right) \\ \tau^2(x_0) &= \left(\cdots, 0, 0, 1, 0, 0, 0, \frac{1}{2}, 0, 0, 0, \frac{1}{2}, 0, 0, 0, \frac{1}{4}, 0, 0, 0, \frac{1}{2}, \cdots\right) \end{aligned}$$

• So for any
$$a=(a_n)\in \ell^1(\mathbb{Z}),$$
 we see that

$$\lim_{k} \langle \tau^{k}(x_{0}), a \rangle = a_{0}$$

- Hence if $\langle x, a \rangle = 0$ for all $x \in F$, then certainly $a_0 = 0$.
- By shift-invariance, $a_k = 0$ for all k.
- So *F* separates the points of $\ell^1(\mathbb{Z})$.

Functionals on F

It is rather harder to show that every bounded linear functional $F \to \mathbb{C}$ is induced by a member of $\ell^1(\mathbb{Z})$.

• For example, a "typical" functional on $\ell^{\infty}(\mathbb{Z})$ which is not given by an element $\ell^{1}(\mathbb{Z})$ is the functional

$$\mu: x \mapsto \lim_{n \to \infty} x(2^n).$$

(To make this converge on all of ℓ[∞](ℤ), limit down an ultrafilter).
Let's restrict μ to *F*. It's enough to compute μ on S^k(x₀) for k ∈ ℤ

$$\mu(S^{k}(x_{0})) = \lim_{n} x_{0}(2^{n} - k) = \lim_{n} 2^{-b(2^{n} - k)} = 2^{-1 - b(-k)}.$$

But then note that

$$\langle S^{k}(x_{0}), \frac{1}{2}\delta_{0} \rangle = \frac{1}{2}S^{k}(x_{0})(0) = \frac{1}{2}x_{0}(-k) = \frac{1}{2}2^{-b(-k)}.$$

So $\mu = \frac{1}{2}\delta_0$ on *F*.

Functionals on F

It is rather harder to show that every bounded linear functional $F \to \mathbb{C}$ is induced by a member of $\ell^1(\mathbb{Z})$.

 For example, a "typical" functional on ℓ[∞](Z) which is not given by an element ℓ¹(Z) is the functional

 $\mu: \mathbf{x} \mapsto \lim_{n \to \infty} \mathbf{x}(\mathbf{2}^n).$

(To make this converge on all of ℓ∞(Z), limit down an ultrafilter).
Let's restrict μ to *F*. It's enough to compute μ on S^k(x₀) for k ∈ Z
μ(S^k(x₀)) = lim x₀(2ⁿ − k) = lim 2^{-b(2ⁿ-k)} = 2^{-1-b(-k)}.

But then note that

$$\langle S^{k}(x_{0}), \frac{1}{2}\delta_{0} \rangle = \frac{1}{2}S^{k}(x_{0})(0) = \frac{1}{2}x_{0}(-k) = \frac{1}{2}2^{-b(-k)}.$$

So $\mu = \frac{1}{2}\delta_0$ on *F*.

A B A B A B A

Functionals on F

It is rather harder to show that every bounded linear functional $F \to \mathbb{C}$ is induced by a member of $\ell^1(\mathbb{Z})$.

 For example, a "typical" functional on ℓ[∞](Z) which is not given by an element ℓ¹(Z) is the functional

$$\mu: \mathbf{x} \mapsto \lim_{n \to \infty} \mathbf{x}(\mathbf{2}^n).$$

(To make this converge on all of $\ell^{\infty}(\mathbb{Z})$, limit down an ultrafilter).

• Let's restrict μ to F. It's enough to compute μ on $S^k(x_0)$ for $k \in \mathbb{Z}$

$$\mu(S^{k}(x_{0})) = \lim_{n} x_{0}(2^{n} - k) = \lim_{n} 2^{-b(2^{n} - k)} = 2^{-1 - b(-k)}.$$

But then note that

$$\langle S^{k}(x_{0}), \frac{1}{2}\delta_{0} \rangle = \frac{1}{2}S^{k}(x_{0})(0) = \frac{1}{2}x_{0}(-k) = \frac{1}{2}2^{-b(-k)}$$

So $\mu = \frac{1}{2}\delta_0$ on *F*.

Functionals on F

It is rather harder to show that every bounded linear functional $F \to \mathbb{C}$ is induced by a member of $\ell^1(\mathbb{Z})$.

 For example, a "typical" functional on ℓ[∞](Z) which is not given by an element ℓ¹(Z) is the functional

$$\mu: \mathbf{x} \mapsto \lim_{n \to \infty} \mathbf{x}(\mathbf{2}^n).$$

(To make this converge on all of $\ell^{\infty}(\mathbb{Z})$, limit down an ultrafilter).

• Let's restrict μ to F. It's enough to compute μ on $S^k(x_0)$ for $k \in \mathbb{Z}$

$$\mu(S^{k}(x_{0})) = \lim_{n} x_{0}(2^{n} - k) = \lim_{n} 2^{-b(2^{n} - k)} = 2^{-1 - b(-k)}.$$

But then note that

$$\langle S^{k}(x_{0}), \frac{1}{2}\delta_{0} \rangle = \frac{1}{2}S^{k}(x_{0})(0) = \frac{1}{2}x_{0}(-k) = \frac{1}{2}2^{-b(-k)}$$

So $\mu = \frac{1}{2}\delta_0$ on *F*.

So we conclude that *F* is a predual for $\ell^1(\mathbb{Z})$. By construction, it is shift-invariant, so it follows that *S* is weak*-continuous.

By the calculation on the previous slide, we see that

weak*
$$-\lim_n \delta_{2^n} = \frac{1}{2}\delta_0.$$

This gives but one example of a non-trivial weak*-limit point.

- In particular, *F* does not give the same weak*-topology as $c_0(\mathbb{Z})$.
- There was nothing special about using 2– this could have been any λ ∈ C with |λ| > 1. So we get an uncountable number of mutually non-isomorphic preduals.
- There was nothing particularly special about using binary expansion (though this is somewhat less obvious!)

So we conclude that *F* is a predual for $\ell^1(\mathbb{Z})$. By construction, it is shift-invariant, so it follows that *S* is weak*-continuous.

• By the calculation on the previous slide, we see that

weak*
$$-\lim_n \delta_{2^n} = \frac{1}{2}\delta_0.$$

This gives but one example of a non-trivial weak*-limit point.

- In particular, *F* does not give the same weak*-topology as $c_0(\mathbb{Z})$.
- There was nothing special about using 2– this could have been any λ ∈ C with |λ| > 1. So we get an uncountable number of mutually non-isomorphic preduals.
- There was nothing particularly special about using binary expansion (though this is somewhat less obvious!)

3

So we conclude that *F* is a predual for $\ell^1(\mathbb{Z})$. By construction, it is shift-invariant, so it follows that *S* is weak*-continuous.

• By the calculation on the previous slide, we see that

weak*
$$-\lim_n \delta_{2^n} = \frac{1}{2}\delta_0.$$

This gives but one example of a non-trivial weak*-limit point.

- In particular, F does not give the same weak*-topology as $c_0(\mathbb{Z})$.
- There was nothing special about using 2– this could have been any λ ∈ C with |λ| > 1. So we get an uncountable number of mutually non-isomorphic preduals.
- There was nothing particularly special about using binary expansion (though this is somewhat less obvious!)

3

So we conclude that *F* is a predual for $\ell^1(\mathbb{Z})$. By construction, it is shift-invariant, so it follows that *S* is weak*-continuous.

• By the calculation on the previous slide, we see that

weak*
$$-\lim_n \delta_{2^n} = \frac{1}{2}\delta_0.$$

This gives but one example of a non-trivial weak*-limit point.

- In particular, F does not give the same weak*-topology as $c_0(\mathbb{Z})$.
- There was nothing special about using 2– this could have been any λ ∈ C with |λ| > 1. So we get an uncountable number of mutually non-isomorphic preduals.
- There was nothing particularly special about using binary expansion (though this is somewhat less obvious!)

3

So we conclude that *F* is a predual for $\ell^1(\mathbb{Z})$. By construction, it is shift-invariant, so it follows that *S* is weak*-continuous.

• By the calculation on the previous slide, we see that

weak*
$$-\lim_n \delta_{2^n} = \frac{1}{2}\delta_0.$$

This gives but one example of a non-trivial weak*-limit point.

- In particular, F does not give the same weak*-topology as $c_0(\mathbb{Z})$.
- There was nothing special about using 2– this could have been any λ ∈ C with |λ| > 1. So we get an uncountable number of mutually non-isomorphic preduals.
- There was nothing particularly special about using binary expansion (though this is somewhat less obvious!)

3

If I were to give the actually proof that every functional on F is given by $\ell^1(\mathbb{Z})$, then I would use that $\ell^{\infty}(\mathbb{Z}) = C(\beta\mathbb{Z})$. We'd then check that there was a partition of $\beta\mathbb{Z} \setminus \mathbb{Z}$, say

$$\{X_t^{(k)}: t \in \mathbb{Z}, k \geq 1\} \cup \{X^{(\infty)}\},\$$

such that $x \in F$ if and only if

$$oldsymbol{x}(\omega) = egin{cases} \mathbf{2}^{-k} oldsymbol{x}(t) & : \omega \in oldsymbol{X}_t^{(k)}, \ \mathbf{0} & : \omega \in oldsymbol{X}^{(\infty)}, \end{cases}$$

- It follows that F is a "G-space", in the sense of Benyamini (Israel J. Math (1973)). Thus F is, as a Banach space, isomorphic to some C(K) space.
- So we can calculate the Szlenk index to work out which C(K) space *F* is isomorphic to.
- Well, it turns out that F is isomorphic to c_0 .

If I were to give the actually proof that every functional on F is given by $\ell^1(\mathbb{Z})$, then I would use that $\ell^{\infty}(\mathbb{Z}) = C(\beta\mathbb{Z})$. We'd then check that there was a partition of $\beta\mathbb{Z} \setminus \mathbb{Z}$, say

$$\{X_t^{(k)}: t \in \mathbb{Z}, k \geq 1\} \cup \{X^{(\infty)}\},\$$

such that $x \in F$ if and only if

$$oldsymbol{x}(\omega) = egin{cases} \mathbf{2}^{-k} oldsymbol{x}(t) & : \omega \in oldsymbol{X}_t^{(k)}, \ \mathbf{0} & : \omega \in oldsymbol{X}^{(\infty)}, \end{cases}$$

- It follows that *F* is a "G-space", in the sense of Benyamini (Israel J. Math (1973)). Thus *F* is, as a Banach space, isomorphic to some C(K) space.
- So we can calculate the Szlenk index to work out which C(K) space F is isomorphic to.
- Well, it turns out that F is isomorphic to c_0 .

If I were to give the actually proof that every functional on F is given by $\ell^1(\mathbb{Z})$, then I would use that $\ell^{\infty}(\mathbb{Z}) = C(\beta\mathbb{Z})$. We'd then check that there was a partition of $\beta\mathbb{Z} \setminus \mathbb{Z}$, say

$$\{X_t^{(k)}: t \in \mathbb{Z}, k \geq 1\} \cup \{X^{(\infty)}\},\$$

such that $x \in F$ if and only if

$$oldsymbol{x}(\omega) = egin{cases} 2^{-k} x(t) & : \omega \in X_t^{(k)}, \ 0 & : \omega \in X^{(\infty)}, \end{cases}$$

- It follows that F is a "G-space", in the sense of Benyamini (Israel J. Math (1973)). Thus F is, as a Banach space, isomorphic to some C(K) space.
- So we can calculate the Szlenk index to work out which C(K) space F is isomorphic to.
- Well, it turns out that F is isomorphic to c_0 .

If I were to give the actually proof that every functional on F is given by $\ell^1(\mathbb{Z})$, then I would use that $\ell^{\infty}(\mathbb{Z}) = C(\beta\mathbb{Z})$. We'd then check that there was a partition of $\beta\mathbb{Z} \setminus \mathbb{Z}$, say

$$\{X_t^{(k)}: t \in \mathbb{Z}, k \geq 1\} \cup \{X^{(\infty)}\},\$$

such that $x \in F$ if and only if

$$m{x}(\omega) = egin{cases} 2^{-k} m{x}(t) & : \omega \in m{X}_t^{(k)}, \ 0 & : \omega \in m{X}^{(\infty)}. \end{cases}$$

- It follows that F is a "G-space", in the sense of Benyamini (Israel J. Math (1973)). Thus F is, as a Banach space, isomorphic to some C(K) space.
- So we can calculate the Szlenk index to work out which C(K) space F is isomorphic to.
- Well, it turns out that F is isomorphic to c_0 .

- Recall that (in the weak*-topology) $\delta_{2^n} \rightarrow \frac{1}{2} \delta_0$.
- By shift-invariance, we must also have that $\delta_{2^n+1} \rightarrow \frac{1}{2}\delta_1$, and so forth.
- But then, consider

$$\lim_{n}\lim_{m}\delta_{2^{n}+2^{m}}=\lim_{n}\frac{1}{2}\delta_{2^{n}}=\frac{1}{4}\delta_{0}.$$

This is all fine, as {2ⁿ : n ∈ N} is sufficiently "sparse".
 But suppose instead we had that

$$\lim_n \delta_{2n} = \frac{1}{2} \delta_0.$$

Then we'd have that

$$\lim_{n} \delta_{2n} = \lim_{n} \delta_{2(n+1)} = \frac{1}{2} \delta_2,$$

which would be a contradiction

Matthew Daws (Leeds)

< ロ > < 同 > < 回 > < 回 >

- Recall that (in the weak*-topology) $\delta_{2^n} \rightarrow \frac{1}{2} \delta_0$.
- By shift-invariance, we must also have that $\delta_{2^n+1} \rightarrow \frac{1}{2}\delta_1$, and so forth.
- But then, consider

$$\lim_{n}\lim_{m}\delta_{2^{n}+2^{m}}=\lim_{n}\frac{1}{2}\delta_{2^{n}}=\frac{1}{4}\delta_{0}.$$

- This is all fine, as $\{2^n : n \in \mathbb{N}\}$ is sufficiently "sparse".
- But suppose, instead, we had that

$$\lim_n \delta_{2n} = \frac{1}{2} \delta_0.$$

• Then we'd have that

$$\lim_{n} \delta_{2n} = \lim_{n} \delta_{2(n+1)} = \frac{1}{2} \delta_{2n}$$

which would be a contradiction

Matthew Daws (Leeds)

< ロ > < 同 > < 回 > < 回 >

- Recall that (in the weak*-topology) $\delta_{2^n} \rightarrow \frac{1}{2} \delta_0$.
- By shift-invariance, we must also have that $\delta_{2^n+1} \rightarrow \frac{1}{2}\delta_1$, and so forth.
- But then, consider

$$\lim_{n}\lim_{m}\delta_{2^{n}+2^{m}}=\lim_{n}\frac{1}{2}\delta_{2^{n}}=\frac{1}{4}\delta_{0}.$$

This is all fine, as {2ⁿ : n ∈ N} is sufficiently "sparse".
 But suppose, instead, we had that

$$\lim_n \delta_{2n} = \frac{1}{2} \delta_0.$$

Then we'd have that

$$\lim_{n} \delta_{2n} = \lim_{n} \delta_{2(n+1)} = \frac{1}{2} \delta_{2}$$

which would be a contradiction!

Matthew Daws (Leeds)

- Recall that (in the weak*-topology) $\delta_{2^n} \rightarrow \frac{1}{2} \delta_0$.
- By shift-invariance, we must also have that $\delta_{2^n+1} \rightarrow \frac{1}{2}\delta_1$, and so forth.
- But then, consider

$$\lim_{n}\lim_{m}\delta_{2^{n}+2^{m}}=\lim_{n}\frac{1}{2}\delta_{2^{n}}=\frac{1}{4}\delta_{0}.$$

• This is all fine, as $\{2^n : n \in \mathbb{N}\}$ is sufficiently "sparse".

But suppose, instead, we had that

$$\lim_n \delta_{2n} = \frac{1}{2} \delta_0.$$

• Then we'd have that

$$\lim_{n} \delta_{2n} = \lim_{n} \delta_{2(n+1)} = \frac{1}{2} \delta_2$$

which would be a contradiction

Matthew Daws (Leeds)

イロト イポト イラト イラト

- Recall that (in the weak*-topology) $\delta_{2^n} \rightarrow \frac{1}{2} \delta_0$.
- By shift-invariance, we must also have that $\delta_{2^n+1} \rightarrow \frac{1}{2}\delta_1$, and so forth.
- But then, consider

$$\lim_{n}\lim_{m}\delta_{2^{n}+2^{m}}=\lim_{n}\frac{1}{2}\delta_{2^{n}}=\frac{1}{4}\delta_{0}.$$

- This is all fine, as $\{2^n : n \in \mathbb{N}\}$ is sufficiently "sparse".
- But suppose, instead, we had that

$$\lim_n \delta_{2n} = \frac{1}{2} \delta_0.$$

Then we'd have that

$$\lim_{n} \delta_{2n} = \lim_{n} \delta_{2(n+1)} = \frac{1}{2} \delta_{2n}$$

which would be a contradiction

Matthew Daws (Leeds)

- Recall that (in the weak*-topology) $\delta_{2^n} \rightarrow \frac{1}{2} \delta_0$.
- By shift-invariance, we must also have that $\delta_{2^n+1} \rightarrow \frac{1}{2}\delta_1$, and so forth.
- But then, consider

$$\lim_{n}\lim_{m}\delta_{2^{n}+2^{m}}=\lim_{n}\frac{1}{2}\delta_{2^{n}}=\frac{1}{4}\delta_{0}.$$

- This is all fine, as $\{2^n : n \in \mathbb{N}\}$ is sufficiently "sparse".
- But suppose, instead, we had that

$$\lim_n \delta_{2n} = \frac{1}{2} \delta_0.$$

Then we'd have that

$$\lim_{n} \delta_{2n} = \lim_{n} \delta_{2(n+1)} = \frac{1}{2} \delta_2,$$

4

which would be a contradiction!

Matthew Daws (Leeds)

We shall say that $J \subseteq \mathbb{Z}$ is "additively sparse" if given $t \in \mathbb{Z}$ and $r, s \in \mathbb{N}$, we can find N such that, if

$$j_1+\cdots+j_r=l_1+\cdots+l_s+t,$$

with $(j_i), (l_i) \subseteq J$ and $N < |j_1| < \cdots < |j_r|, N < |l_1| < \cdots < |l_s|$, then necessarily r = s, t = 0 and $j_i = l_i$ for each *i*.

Define a multiplication on $\ell'(\mathbb{Z})$ by $\delta_n \delta_m = \delta_{n+m}$.

Theorem

Let $J \subseteq \mathbb{Z}$ be additively sparse, and let $J = J^{(1)} \cup \cdots \cup J^{(r)}$ be a partition. For each *i*, let $a_i \in \ell^1(\mathbb{Z})$ be a power-bounded element with $||a_i^n||_{\infty} \to 0$. Then there is a shift-invariant $\ell^1(\mathbb{Z})$ predual *E* such that $\delta_n \to a_i$ weak* as $n \to \infty$ through $J^{(i)}$.

The example given before has $J=\{2^n:n\in\mathbb{N}\},\,r=1$ and $a_1=rac{1}{2}\delta_0.$

< 日 > < 同 > < 回 > < 回 > < □ > <

We shall say that $J \subseteq \mathbb{Z}$ is "additively sparse" if given $t \in \mathbb{Z}$ and $r, s \in \mathbb{N}$, we can find N such that, if

$$j_1+\cdots+j_r=l_1+\cdots+l_s+t,$$

with $(j_i), (l_i) \subseteq J$ and $N < |j_1| < \cdots < |j_r|, N < |l_1| < \cdots < |l_s|$, then necessarily r = s, t = 0 and $j_i = l_i$ for each *i*. Define a multiplication on $\ell^1(\mathbb{Z})$ by $\delta_n \delta_m = \delta_{n+m}$.

Theorem

Let $J \subseteq \mathbb{Z}$ be additively sparse, and let $J = J^{(1)} \cup \cdots \cup J^{(r)}$ be a partition. For each *i*, let $a_i \in \ell^1(\mathbb{Z})$ be a power-bounded element with $||a_i^n||_{\infty} \to 0$. Then there is a shift-invariant $\ell^1(\mathbb{Z})$ predual *E* such that $\delta_n \to a_i$ weak* as $n \to \infty$ through $J^{(i)}$.

The example given before has $J=\{2^n:n\in\mathbb{N}\},$ r= 1 and $a_1=rac{1}{2}\delta_0.$

3

イロト 不得 トイヨト イヨト

We shall say that $J \subseteq \mathbb{Z}$ is "additively sparse" if given $t \in \mathbb{Z}$ and $r, s \in \mathbb{N}$, we can find N such that, if

$$j_1+\cdots+j_r=l_1+\cdots+l_s+t,$$

with $(j_i), (I_i) \subseteq J$ and $N < |j_1| < \cdots < |j_r|, N < |I_1| < \cdots < |I_s|$, then necessarily r = s, t = 0 and $j_i = I_i$ for each *i*. Define a multiplication on $\ell^1(\mathbb{Z})$ by $\delta_n \delta_m = \delta_{n+m}$.

Theorem

Let $J \subseteq \mathbb{Z}$ be additively sparse, and let $J = J^{(1)} \cup \cdots \cup J^{(r)}$ be a partition. For each *i*, let $a_i \in \ell^1(\mathbb{Z})$ be a power-bounded element with $||a_i^n||_{\infty} \to 0$. Then there is a shift-invariant $\ell^1(\mathbb{Z})$ predual *E* such that $\delta_n \to a_i$ weak^{*} as $n \to \infty$ through $J^{(i)}$.

The example given before has $J=\{2^n:n\in\mathbb{N}\},$ r=1 and $a_1=rac{1}{2}\delta_0.$

くロン 不通 とくほ とくほ とうほう

We shall say that $J \subseteq \mathbb{Z}$ is "additively sparse" if given $t \in \mathbb{Z}$ and $r, s \in \mathbb{N}$, we can find N such that, if

$$j_1+\cdots+j_r=l_1+\cdots+l_s+t,$$

with $(j_i), (I_i) \subseteq J$ and $N < |j_1| < \cdots < |j_r|, N < |I_1| < \cdots < |I_s|$, then necessarily r = s, t = 0 and $j_i = I_i$ for each *i*. Define a multiplication on $\ell^1(\mathbb{Z})$ by $\delta_n \delta_m = \delta_{n+m}$.

Theorem

Let $J \subseteq \mathbb{Z}$ be additively sparse, and let $J = J^{(1)} \cup \cdots \cup J^{(r)}$ be a partition. For each *i*, let $a_i \in \ell^1(\mathbb{Z})$ be a power-bounded element with $||a_i^n||_{\infty} \to 0$. Then there is a shift-invariant $\ell^1(\mathbb{Z})$ predual *E* such that $\delta_n \to a_i$ weak^{*} as $n \to \infty$ through $J^{(i)}$.

The example given before has $J = \{2^n : n \in \mathbb{N}\}, r = 1$ and $a_1 = \frac{1}{2}\delta_0$.

• Let
$$J = \{2^n\}$$
 and $r = 1$. Let $a_1 = \frac{1}{2}(\delta_0 + \delta_1)$. Thus

$$a_1^2 = rac{1}{4}(\delta_0 + 2\delta_1 + \delta_2), \quad a_2^3 = rac{1}{8}(\delta_0 + 3\delta_1 + 3\delta_2 + \delta_3).$$

You can check that $||a_1^n||_1 = 1$ for any *n*, but that we do have $||a_1^n||_{\infty} \to 0$.

- Some fiddling with the Szlenk index shows that the resulting predual, in this case, is not isomorphic to *c*₀.
- Now set $a_1 = 5^{-1/2}(\delta_0 + \delta_1 \delta_2)$. Then $||a_1|| = 3/\sqrt{5} > 1$, but (if you know where to look!) this is a power-bounded element. Taking the Fourier transform shows that $||a_1^n||_{\infty} \to 0$.
- The predual *E* we construct in this case is only an isomorphic predual, not an *isometric* one.

< 日 > < 同 > < 回 > < 回 > < □ > <

• Let
$$J = \{2^n\}$$
 and $r = 1$. Let $a_1 = \frac{1}{2}(\delta_0 + \delta_1)$. Thus

$$a_1^2 = rac{1}{4}(\delta_0 + 2\delta_1 + \delta_2), \quad a_2^3 = rac{1}{8}(\delta_0 + 3\delta_1 + 3\delta_2 + \delta_3).$$

You can check that $||a_1^n||_1 = 1$ for any *n*, but that we do have $||a_1^n||_{\infty} \to 0$.

- Some fiddling with the Szlenk index shows that the resulting predual, in this case, is not isomorphic to *c*₀.
- Now set a₁ = 5^{-1/2}(δ₀ + δ₁ − δ₂). Then ||a₁|| = 3/√5 > 1, but (if you know where to look!) this is a power-bounded element. Taking the Fourier transform shows that ||a₁ⁿ||_∞ → 0.
- The predual *E* we construct in this case is only an isomorphic predual, not an *isometric* one.

3

イロト 不得 トイヨト イヨト

• Let
$$J = \{2^n\}$$
 and $r = 1$. Let $a_1 = \frac{1}{2}(\delta_0 + \delta_1)$. Thus

$$a_1^2 = rac{1}{4}(\delta_0 + 2\delta_1 + \delta_2), \quad a_2^3 = rac{1}{8}(\delta_0 + 3\delta_1 + 3\delta_2 + \delta_3).$$

You can check that $||a_1^n||_1 = 1$ for any *n*, but that we do have $||a_1^n||_{\infty} \to 0$.

- Some fiddling with the Szlenk index shows that the resulting predual, in this case, is not isomorphic to c₀.
- Now set $a_1 = 5^{-1/2}(\delta_0 + \delta_1 \delta_2)$. Then $||a_1|| = 3/\sqrt{5} > 1$, but (if you know where to look!) this is a power-bounded element. Taking the Fourier transform shows that $||a_1^n||_{\infty} \to 0$.
- The predual *E* we construct in this case is only an isomorphic predual, not an *isometric* one.

• Let
$$J = \{2^n\}$$
 and $r = 1$. Let $a_1 = \frac{1}{2}(\delta_0 + \delta_1)$. Thus

$$a_1^2 = rac{1}{4}(\delta_0 + 2\delta_1 + \delta_2), \quad a_2^3 = rac{1}{8}(\delta_0 + 3\delta_1 + 3\delta_2 + \delta_3).$$

You can check that $||a_1^n||_1 = 1$ for any *n*, but that we do have $||a_1^n||_{\infty} \to 0$.

- Some fiddling with the Szlenk index shows that the resulting predual, in this case, is not isomorphic to *c*₀.
- Now set $a_1 = 5^{-1/2}(\delta_0 + \delta_1 \delta_2)$. Then $||a_1|| = 3/\sqrt{5} > 1$, but (if you know where to look!) this is a power-bounded element. Taking the Fourier transform shows that $||a_1^n||_{\infty} \to 0$.
- The predual *E* we construct in this case is only an isomorphic predual, not an *isometric* one.

Hold on: I said that C(K) spaces, for countable K, provide simple examples of preduals of ℓ^1 .

- So could we cleverly choose a (compact, Hausdorff) topology on ℤ such that C(ℤ) provided a shift-invariant predual?
- Well, Z would then be countable and (locally) compact, so it would be a Baire Space, and hence would have some k ∈ Z with {k} being open.
- The identification of C(Z) as a closed subspace of l[∞](Z) is simply the identification of functions. So C(Z) will be shift-invariant if and only if the shift on Z is continuous.
- But then, by shifting, $\{k\}$ is open for *every* k.
- So actually \mathbb{Z} has the discrete topology, and we just get back $c_0(\mathbb{Z})$.

(Hat tip to Yemon Choi for this simple argument).

3

< 日 > < 同 > < 回 > < 回 > < □ > <

Hold on: I said that C(K) spaces, for countable K, provide simple examples of preduals of ℓ^1 .

- So could we cleverly choose a (compact, Hausdorff) topology on ℤ such that C(ℤ) provided a shift-invariant predual?
- Well, Z would then be countable and (locally) compact, so it would be a Baire Space, and hence would have some k ∈ Z with {k} being open.
- The identification of C(Z) as a closed subspace of l[∞](Z) is simply the identification of functions. So C(Z) will be shift-invariant if and only if the shift on Z is continuous.
- But then, by shifting, $\{k\}$ is open for *every* k.
- So actually \mathbb{Z} has the discrete topology, and we just get back $c_0(\mathbb{Z})$.

(Hat tip to Yemon Choi for this simple argument).

3

< 日 > < 同 > < 回 > < 回 > < □ > <

Hold on: I said that C(K) spaces, for countable K, provide simple examples of preduals of ℓ^1 .

- So could we cleverly choose a (compact, Hausdorff) topology on ℤ such that C(ℤ) provided a shift-invariant predual?
- Well, Z would then be countable and (locally) compact, so it would be a Baire Space, and hence would have some k ∈ Z with {k} being open.
- The identification of C(Z) as a closed subspace of l[∞](Z) is simply the identification of functions. So C(Z) will be shift-invariant if and only if the shift on Z is continuous.
- But then, by shifting, $\{k\}$ is open for *every* k.
- So actually \mathbb{Z} has the discrete topology, and we just get back $c_0(\mathbb{Z})$.

(Hat tip to Yemon Choi for this simple argument).

3

イロト 不得 トイヨト イヨト

Hold on: I said that C(K) spaces, for countable K, provide simple examples of preduals of ℓ^1 .

- So could we cleverly choose a (compact, Hausdorff) topology on ℤ such that C(ℤ) provided a shift-invariant predual?
- Well, Z would then be countable and (locally) compact, so it would be a Baire Space, and hence would have some k ∈ Z with {k} being open.
- The identification of C(Z) as a closed subspace of ℓ[∞](Z) is simply the identification of functions. So C(Z) will be shift-invariant if and only if the shift on Z is continuous.
- But then, by shifting, $\{k\}$ is open for *every* k.
- So actually \mathbb{Z} has the discrete topology, and we just get back $c_0(\mathbb{Z})$.

(Hat tip to Yemon Choi for this simple argument).

Hold on: I said that C(K) spaces, for countable K, provide simple examples of preduals of ℓ^1 .

- So could we cleverly choose a (compact, Hausdorff) topology on ℤ such that C(ℤ) provided a shift-invariant predual?
- Well, Z would then be countable and (locally) compact, so it would be a Baire Space, and hence would have some k ∈ Z with {k} being open.
- The identification of C(Z) as a closed subspace of ℓ[∞](Z) is simply the identification of functions. So C(Z) will be shift-invariant if and only if the shift on Z is continuous.
- But then, by shifting, $\{k\}$ is open for *every* k.
- So actually \mathbb{Z} has the discrete topology, and we just get back $c_0(\mathbb{Z})$.

(Hat tip to Yemon Choi for this simple argument).

Hold on: I said that C(K) spaces, for countable K, provide simple examples of preduals of ℓ^1 .

- So could we cleverly choose a (compact, Hausdorff) topology on ℤ such that C(ℤ) provided a shift-invariant predual?
- Well, Z would then be countable and (locally) compact, so it would be a Baire Space, and hence would have some k ∈ Z with {k} being open.
- The identification of C(Z) as a closed subspace of ℓ[∞](Z) is simply the identification of functions. So C(Z) will be shift-invariant if and only if the shift on Z is continuous.
- But then, by shifting, $\{k\}$ is open for *every* k.
- So actually \mathbb{Z} has the discrete topology, and we just get back $c_0(\mathbb{Z})$.

(Hat tip to Yemon Choi for this simple argument).

Hold on: I said that C(K) spaces, for countable K, provide simple examples of preduals of ℓ^1 .

- So could we cleverly choose a (compact, Hausdorff) topology on ℤ such that C(ℤ) provided a shift-invariant predual?
- Well, Z would then be countable and (locally) compact, so it would be a Baire Space, and hence would have some k ∈ Z with {k} being open.
- The identification of C(Z) as a closed subspace of ℓ[∞](Z) is simply the identification of functions. So C(Z) will be shift-invariant if and only if the shift on Z is continuous.
- But then, by shifting, $\{k\}$ is open for *every* k.
- So actually \mathbb{Z} has the discrete topology, and we just get back $c_0(\mathbb{Z})$.

(Hat tip to Yemon Choi for this simple argument).

A Banach algebra is a Banach space with an algebra product which is contractive: $||ab|| \le ||a|| ||b||$.

- For example, $\ell^1(\mathbb{Z})$ with the convolution product.
- More generally, let G be a discrete group, and consider ℓ¹(G) with the convolution product.
- This example has a predual: c₀(G). Furthermore, the algebra product is (separately) weak*-continuous. That is, if a_i → a weak*, then also a_ib → ab weak*, and similarly ba_i → ba.
- We say that $\ell^1(G)$ is a *dual Banach algebra* (with respect to $c_0(G)$).
- It's not hard to see that a predual E of ℓ¹(Z) is shift-invariant if and only if ℓ¹(Z) is a dual Banach algebra with respect to E.

A Banach algebra is a Banach space with an algebra product which is contractive: $||ab|| \le ||a|| ||b||$.

- For example, $\ell^1(\mathbb{Z})$ with the convolution product.
- More generally, let G be a discrete group, and consider l¹(G) with the convolution product.
- This example has a predual: c₀(G). Furthermore, the algebra product is (separately) weak*-continuous. That is, if a_i → a weak*, then also a_ib → ab weak*, and similarly ba_i → ba.
- We say that $\ell^1(G)$ is a *dual Banach algebra* (with respect to $c_0(G)$).
- It's not hard to see that a predual E of ℓ¹(Z) is shift-invariant if and only if ℓ¹(Z) is a dual Banach algebra with respect to E.

3

< 日 > < 同 > < 回 > < 回 > < □ > <

A Banach algebra is a Banach space with an algebra product which is contractive: $||ab|| \le ||a|| ||b||$.

- For example, $\ell^1(\mathbb{Z})$ with the convolution product.
- More generally, let G be a discrete group, and consider l¹(G) with the convolution product.
- This example has a predual: c₀(G). Furthermore, the algebra product is (separately) weak*-continuous. That is, if a_i → a weak*, then also a_ib → ab weak*, and similarly ba_i → ba.
- We say that $\ell^1(G)$ is a *dual Banach algebra* (with respect to $c_0(G)$).
- It's not hard to see that a predual E of ℓ¹(Z) is shift-invariant if and only if ℓ¹(Z) is a dual Banach algebra with respect to E.

3

< 日 > < 同 > < 回 > < 回 > < □ > <

A Banach algebra is a Banach space with an algebra product which is contractive: $||ab|| \le ||a|| ||b||$.

- For example, $\ell^1(\mathbb{Z})$ with the convolution product.
- More generally, let G be a discrete group, and consider l¹(G) with the convolution product.
- This example has a predual: c₀(G). Furthermore, the algebra product is (separately) weak*-continuous. That is, if a_i → a weak*, then also a_ib → ab weak*, and similarly ba_i → ba.
- We say that $\ell^1(G)$ is a *dual Banach algebra* (with respect to $c_0(G)$).
- It's not hard to see that a predual E of ℓ¹(Z) is shift-invariant if and only if ℓ¹(Z) is a dual Banach algebra with respect to E.

Original motivation

A Banach algebra is a Banach space with an algebra product which is contractive: $||ab|| \le ||a|| ||b||$.

- For example, $\ell^1(\mathbb{Z})$ with the convolution product.
- More generally, let G be a discrete group, and consider l¹(G) with the convolution product.
- This example has a predual: c₀(G). Furthermore, the algebra product is (separately) weak*-continuous. That is, if a_i → a weak*, then also a_ib → ab weak*, and similarly ba_i → ba.
- We say that $\ell^1(G)$ is a *dual Banach algebra* (with respect to $c_0(G)$).
- It's not hard to see that a predual E of ℓ¹(Z) is shift-invariant if and only if ℓ¹(Z) is a dual Banach algebra with respect to E.

Original motivation

A Banach algebra is a Banach space with an algebra product which is contractive: $||ab|| \le ||a|| ||b||$.

- For example, $\ell^1(\mathbb{Z})$ with the convolution product.
- More generally, let G be a discrete group, and consider ℓ¹(G) with the convolution product.
- This example has a predual: c₀(G). Furthermore, the algebra product is (separately) weak*-continuous. That is, if a_i → a weak*, then also a_ib → ab weak*, and similarly ba_i → ba.
- We say that $\ell^1(G)$ is a *dual Banach algebra* (with respect to $c_0(G)$).
- It's not hard to see that a predual E of ℓ¹(Z) is shift-invariant if and only if ℓ¹(Z) is a dual Banach algebra with respect to E.

A von Neumann algebra is a C*-algebra A which is the *isometric* dual of some Banach space E.

- Sakai's Theorem then says that *A* becomes a dual Banach algebra with respect to *E*.
- Furthermore, if also A = F* isometrically, then E and F are isometrically isomorphic, and *induce the same weak*-topology on* A.
- Another way to state this is: if A and B are von Neumann algebras and θ : A → B is an isometric isomorphism, then necessarily θ is weak*-continuous.
- Pełcynski showed that L[∞][0, 1] and l[∞] are, as Banach space, isomorphic. But of course, L¹[0, 1] and l¹ are not isomorphic.

A von Neumann algebra is a C*-algebra A which is the *isometric* dual of some Banach space E.

- Sakai's Theorem then says that A becomes a dual Banach algebra with respect to *E*.
- Furthermore, if also *A* = *F*^{*} isometrically, then *E* and *F* are isometrically isomorphic, and *induce the same weak*^{*}-*topology on A*.
- Another way to state this is: if A and B are von Neumann algebras and θ : A → B is an isometric isomorphism, then necessarily θ is weak*-continuous.
- Pełcynski showed that L[∞][0, 1] and l[∞] are, as Banach space, isomorphic. But of course, L¹[0, 1] and l¹ are not isomorphic.

A von Neumann algebra is a C*-algebra A which is the *isometric* dual of some Banach space E.

- Sakai's Theorem then says that A becomes a dual Banach algebra with respect to *E*.
- Furthermore, if also *A* = *F*^{*} isometrically, then *E* and *F* are isometrically isomorphic, and *induce the same weak***-topology on A*.
- Another way to state this is: if A and B are von Neumann algebras and θ : A → B is an isometric isomorphism, then necessarily θ is weak*-continuous.
- Pełcynski showed that L[∞][0, 1] and l[∞] are, as Banach space, isomorphic. But of course, L¹[0, 1] and l¹ are not isomorphic.

3

< 日 > < 同 > < 回 > < 回 > < 回 > <

A von Neumann algebra is a C*-algebra A which is the *isometric* dual of some Banach space E.

- Sakai's Theorem then says that A becomes a dual Banach algebra with respect to *E*.
- Furthermore, if also *A* = *F*^{*} isometrically, then *E* and *F* are isometrically isomorphic, and *induce the same weak***-topology on A*.
- Another way to state this is: if A and B are von Neumann algebras and θ : A → B is an isometric isomorphism, then necessarily θ is weak*-continuous.
- Pełcynski showed that L[∞][0, 1] and l[∞] are, as Banach space, isomorphic. But of course, L¹[0, 1] and l¹ are not isomorphic.

3

イロン イ団と イヨン 一

A von Neumann algebra is a C*-algebra A which is the *isometric* dual of some Banach space E.

- Sakai's Theorem then says that *A* becomes a dual Banach algebra with respect to *E*.
- Furthermore, if also *A* = *F*^{*} isometrically, then *E* and *F* are isometrically isomorphic, and *induce the same weak***-topology on A*.
- Another way to state this is: if A and B are von Neumann algebras and θ : A → B is an isometric isomorphism, then necessarily θ is weak*-continuous.
- Pełcynski showed that L[∞][0, 1] and ℓ[∞] are, as Banach space, isomorphic. But of course, L¹[0, 1] and ℓ¹ are not isomorphic.

3

・ロト ・四ト ・ヨト ・ヨト

Unique preduals (cont.)

Theorem (D., Le Pham, White)

Let A be a von Neumann algebra, and let B be a dual Banach algebra. If $\theta : A \to B$ is an isomorphism (not necessarily isometric) which is also an algebra homomorphism, then necessarily θ is weak*-continuous.

Theorem (D.)

Let E be a reflexive Banach space with the approximation property, and denote by $\mathcal{B}(E)$ the algebra of bounded operators on E. Let B be a dual Banach algebra. If $\theta : \mathcal{B}(E) \to B$ is an isomorphism (not necessarily isometric) which is also an algebra homomorphism, then necessarily θ is weak*-continuous.

Unique preduals (cont.)

Theorem (D., Le Pham, White)

Let A be a von Neumann algebra, and let B be a dual Banach algebra. If $\theta : A \to B$ is an isomorphism (not necessarily isometric) which is also an algebra homomorphism, then necessarily θ is weak*-continuous.

Theorem (D.)

Let E be a reflexive Banach space with the approximation property, and denote by $\mathcal{B}(E)$ the algebra of bounded operators on E. Let B be a dual Banach algebra. If $\theta : \mathcal{B}(E) \to B$ is an isomorphism (not necessarily isometric) which is also an algebra homomorphism, then necessarily θ is weak*-continuous.

イロン イロン イヨン イヨン 二日

Unique preduals (cont. 2)

Theorem (D., Le Pham, White)

Let G be a discrete group, and let $E \subseteq \ell^{\infty}(G)$ be a concrete predual for $\ell^{1}(G)$. Suppose that E is a subalgebra of $\ell^{\infty}(G)$, and that $\ell^{1}(G)$ becomes a dual Banach algebra with respect to E. Then $E = c_{0}(G)$.

Of course, the main task of this talk has been to show:

Theorem

 $\ell^1(\mathbb{Z})$ has a predual, not equal to $c_0(\mathbb{Z})$, which turns $\ell^1(\mathbb{Z})$ into a dual Banach algebra.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Unique preduals (cont. 2)

Theorem (D., Le Pham, White)

Let G be a discrete group, and let $E \subseteq \ell^{\infty}(G)$ be a concrete predual for $\ell^{1}(G)$. Suppose that E is a subalgebra of $\ell^{\infty}(G)$, and that $\ell^{1}(G)$ becomes a dual Banach algebra with respect to E. Then $E = c_{0}(G)$.

Of course, the main task of this talk has been to show:

Theorem

 $\ell^1(\mathbb{Z})$ has a predual, not equal to $c_0(\mathbb{Z})$, which turns $\ell^1(\mathbb{Z})$ into a dual Banach algebra.

For semigroups

Together with Le Pham and White, we showed that for semigroups, the situation is very different.

Theorem

With $S = \mathbb{Z} \times \mathbb{Z}_+$, consider the Banach algebra $\ell^1(S)$. There is a continuum of preduals of $\ell^1(S)$ which all turn $\ell^1(S)$ into a dual Banach algebra, and which are all subalgebras of $\ell^{\infty}(S)$.

Theorem

Let $S = \mathbb{N}$ equipped with the semigroup product max. Then $\ell^1(S)$ is a dual Banach algebra with respect to $c_0(S)$. If B is a dual Banach algebra and $\theta : \ell^1(S) \to B$ is an isomorphism which is an algebra homomorphism, then necessarily θ is weak*-continuous.

			2 2 4 6
Matthew Daws (Leeds)	Preduals	February 2011	20 / 20

A D N A D N A D N A D N

For semigroups

Together with Le Pham and White, we showed that for semigroups, the situation is very different.

Theorem

With $S = \mathbb{Z} \times \mathbb{Z}_+$, consider the Banach algebra $\ell^1(S)$. There is a continuum of preduals of $\ell^1(S)$ which all turn $\ell^1(S)$ into a dual Banach algebra, and which are all subalgebras of $\ell^{\infty}(S)$.

Theorem

Let $S = \mathbb{N}$ equipped with the semigroup product max. Then $\ell^1(S)$ is a dual Banach algebra with respect to $c_0(S)$. If B is a dual Banach algebra and $\theta : \ell^1(S) \to B$ is an isomorphism which is an algebra homomorphism, then necessarily θ is weak^{*}-continuous.

	•		1 = 1	1 = 1	-	*) 4 (*
Matthew Daws (Leeds)	Preduals		Febr	uary 2011	1	20 / 20