Shift-invariant preduals of $\ell^{1}(\mathbb{Z})$

Matthew Daws
Leeds
February 2011

Banach spaces and duality

A first course in Banach spaces (not Hilbert spaces!) will introduce the Banach spaces $\ell^{1}=\ell^{1}(\mathbb{N})$, and $c_{0}=c_{0}(\mathbb{N})$:

$$
\begin{aligned}
& \ell^{1}=\left\{\left(a_{n}\right):\left\|\left(a_{n}\right)\right\|_{1}=\sum_{n}\left|a_{n}\right|<\infty\right\} \\
& c_{0}=\left\{\left(a_{n}\right): \lim _{n} a_{n}=0\right\} \text { with }\left\|\left(a_{n}\right)\right\|_{\infty}=\sup _{n}\left|a_{n}\right| .
\end{aligned}
$$

Remember that the dual space E^{*} is the collection of bounded linear maps $E \rightarrow \mathbb{C}$. Then $c_{0}^{*}=\ell^{1}$. To be precise, for each $f \in c_{0}^{*}$ there exists $\left(f_{n}\right) \in \ell^{1}$ such that

$$
f\left(\left(a_{n}\right)\right)=\sum_{n} f_{n} a_{n} \quad\left(\left(a_{n}\right) \in c_{0}\right),
$$

Banach spaces and duality

A first course in Banach spaces (not Hilbert spaces!) will introduce the Banach spaces $\ell^{1}=\ell^{1}(\mathbb{N})$, and $c_{0}=c_{0}(\mathbb{N})$:

$$
\begin{aligned}
& \ell^{1}=\left\{\left(a_{n}\right):\left\|\left(a_{n}\right)\right\|_{1}=\sum_{n}\left|a_{n}\right|<\infty\right\} \\
& c_{0}=\left\{\left(a_{n}\right): \lim _{n} a_{n}=0\right\} \text { with }\left\|\left(a_{n}\right)\right\|_{\infty}=\sup _{n}\left|a_{n}\right| .
\end{aligned}
$$

Remember that the dual space E^{*} is the collection of bounded linear maps $E \rightarrow \mathbb{C}$. Then $c_{0}^{*}=\ell^{1}$. To be precise, for each $f \in c_{0}^{*}$ there exists $\left(f_{n}\right) \in \ell^{1}$ such that

$$
f\left(\left(a_{n}\right)\right)=\sum_{n} f_{n} a_{n} \quad\left(\left(a_{n}\right) \in c_{0}\right)
$$

and with $\|f\|=\left\|\left(f_{n}\right)\right\|_{1}$.

Other preduals of ℓ^{1}

Let K be a compact Hausdorff space; let $C(K)$ be the Banach space of continuous functions on K with the supremum norm; let $M(K)$ be the space of regular Borel measures on K, with the total variation norm.

Hence we have an isometric isomorphism $\theta: \ell^{1} \rightarrow C(K)^{*}$ which sends $a=\left(a_{n}\right) \in \ell^{1}$ to the functional $\theta_{a} \in C(K)^{*}$ given by

Other preduals of ℓ^{1}

Let K be a compact Hausdorff space; let $C(K)$ be the Banach space of continuous functions on K with the supremum norm; let $M(K)$ be the space of regular Borel measures on K, with the total variation norm. Then each member of $C(K)^{*}$ arising from integrating against a member of $M(K)$. So we can write $C(K)^{*}=M(K)$.

Other preduals of ℓ^{1}

Let K be a compact Hausdorff space; let $C(K)$ be the Banach space of continuous functions on K with the supremum norm; let $M(K)$ be the space of regular Borel measures on K, with the total variation norm. Then each member of $C(K)^{*}$ arising from integrating against a member of $M(K)$. So we can write $C(K)^{*}=M(K)$. Now suppose that K is countable- we can enumerate K as $K=\left\{k_{n}: n \in \mathbb{N}\right\}$ say.

Hence we have an isometric isomorphism $\theta: \ell^{1} \rightarrow C(K)^{*}$ which sends

Other preduals of ℓ^{1}

Let K be a compact Hausdorff space; let $C(K)$ be the Banach space of continuous functions on K with the supremum norm; let $M(K)$ be the space of regular Borel measures on K, with the total variation norm. Then each member of $C(K)^{*}$ arising from integrating against a member of $M(K)$. So we can write $C(K)^{*}=M(K)$.
Now suppose that K is countable- we can enumerate K as $K=\left\{k_{n}: n \in \mathbb{N}\right\}$ say. Then any $\mu \in M(K)$ is countably additive, and so for $f \in C(K)$,

$$
\int_{K} f d \mu=\sum_{n} f\left(k_{n}\right) \mu\left(\left\{k_{n}\right\}\right)
$$

Hence we have an isometric isomorphism $\theta: \ell^{1} \rightarrow C(K)^{*}$ which sends

Other preduals of ℓ^{1}

Let K be a compact Hausdorff space; let $C(K)$ be the Banach space of continuous functions on K with the supremum norm; let $M(K)$ be the space of regular Borel measures on K, with the total variation norm. Then each member of $C(K)^{*}$ arising from integrating against a member of $M(K)$. So we can write $C(K)^{*}=M(K)$.
Now suppose that K is countable- we can enumerate K as
$K=\left\{k_{n}: n \in \mathbb{N}\right\}$ say. Then any $\mu \in M(K)$ is countably additive, and so for $f \in C(K)$,

$$
\int_{K} f d \mu=\sum_{n} f\left(k_{n}\right) \mu\left(\left\{k_{n}\right\}\right)
$$

Hence we have an isometric isomorphism $\theta: \ell^{1} \rightarrow C(K)^{*}$ which sends $a=\left(a_{n}\right) \in \ell^{1}$ to the functional $\theta_{a} \in C(K)^{*}$ given by

$$
\theta_{a}(f)=\sum_{n} f\left(k_{n}\right) a_{n} \quad(f \in C(K))
$$

The weak*-topology

$\theta: \ell^{1} \rightarrow C(K)^{*} ; a=\left(a_{n}\right) \mapsto \theta_{a}$

$$
\theta_{a}(f)=\sum_{n} f\left(k_{n}\right) a_{n} \quad(f \in C(K))
$$

To simplify notation, we shall write $\langle\cdot, \cdot\rangle$ for the dual pairing $\ell^{1} \times C(K) \rightarrow \mathbb{C}$, so $\langle a, f\rangle=\theta_{a}(f)$.
So the isomorphism $\ell^{1} \cong C(K)^{*}$ induces a weak*-topology on ℓ^{1}. For example, as K is compact, we have non-trivial limiting sequences- say Write δ_{k} for the "point-mass" in ℓ^{1} at k - that is, the sequence which is 0 except for a 1 in the k th place. Thus for $f \in C(K)$,

The weak*-topology

$\theta: \ell^{1} \rightarrow C(K)^{*} ; a=\left(a_{n}\right) \mapsto \theta_{a}$

$$
\theta_{a}(f)=\sum_{n} f\left(k_{n}\right) a_{n} \quad(f \in C(K))
$$

To simplify notation, we shall write $\langle\cdot, \cdot\rangle$ for the dual pairing $\ell^{1} \times C(K) \rightarrow \mathbb{C}$, so $\langle a, f\rangle=\theta_{a}(f)$.
So the isomorphism $\ell^{1} \cong C(K)^{*}$ induces a weak*-topology on ℓ^{1}. For example, as K is compact, we have non-trivial limiting sequences- say $\left(k_{n_{i}}\right) \rightarrow k_{n}$ as $i \rightarrow \infty$.
Write δ_{k} for the "point-mass" in ℓ^{1} at k - that is, the sequence which is 0 except for a 1 in the k th place. Thus for $f \in C(K)$,

The weak*-topology
$\theta: \ell^{1} \rightarrow C(K)^{*} ; a=\left(a_{n}\right) \mapsto \theta_{a}$

$$
\theta_{a}(f)=\sum_{n} f\left(k_{n}\right) a_{n} \quad(f \in C(K)) .
$$

To simplify notation, we shall write $\langle\cdot, \cdot\rangle$ for the dual pairing $\ell^{1} \times C(K) \rightarrow \mathbb{C}$, so $\langle a, f\rangle=\theta_{a}(f)$.
So the isomorphism $\ell^{1} \cong C(K)^{*}$ induces a weak*-topology on ℓ^{1}. For example, as K is compact, we have non-trivial limiting sequences- say $\left(k_{n_{i}}\right) \rightarrow k_{n}$ as $i \rightarrow \infty$.
Write δ_{k} for the "point-mass" in ℓ^{1} at k - that is, the sequence which is 0 except for a 1 in the k th place. Thus for $f \in C(K)$,

$$
\lim _{i}\left\langle\delta_{k_{n}}, f\right\rangle=\lim _{i} f\left(k_{n_{i}}\right)=f\left(k_{n}\right)=\left\langle\delta_{k_{n}}, f\right\rangle,
$$

and so $\delta_{k_{n_{i}}} \rightarrow \delta_{k_{n}}$ weak *. \square

The weak*-topology
$\theta: \ell^{1} \rightarrow C(K)^{*} ; a=\left(a_{n}\right) \mapsto \theta_{a}$

$$
\theta_{a}(f)=\sum_{n} f\left(k_{n}\right) a_{n} \quad(f \in C(K)) .
$$

To simplify notation, we shall write $\langle\cdot, \cdot\rangle$ for the dual pairing $\ell^{1} \times C(K) \rightarrow \mathbb{C}$, so $\langle a, f\rangle=\theta_{a}(f)$.
So the isomorphism $\ell^{1} \cong C(K)^{*}$ induces a weak*-topology on ℓ^{1}. For example, as K is compact, we have non-trivial limiting sequences- say $\left(k_{n_{i}}\right) \rightarrow k_{n}$ as $i \rightarrow \infty$.
Write δ_{k} for the "point-mass" in ℓ^{1} at k - that is, the sequence which is 0 except for a 1 in the k th place. Thus for $f \in C(K)$,

$$
\lim _{i}\left\langle\delta_{k_{n_{i}}}, f\right\rangle=\lim _{i} f\left(k_{n_{i}}\right)=f\left(k_{n}\right)=\left\langle\delta_{k_{n}}, f\right\rangle,
$$

and so $\delta_{k_{n_{i}}} \rightarrow \delta_{k_{n}}$ weak*. Of course, this does not hold for the "usual" weak ${ }^{*}$-topology induced by $c_{0}^{*}=\ell^{1}$.

Think more abstractly about preduals

Given a Banach space E, a predual for E is a Banach space F together with an isomorphism (not assumed isometric) $\theta: E \rightarrow F^{*}$.

- Note that the map θ is very important.
- It seems reasonable to say that two preduals "are the same" if they induce the same weak*-topology on E.
- As usual, we identify F with a closed subspace of its bidual $F^{* *}$ and so we can talk about the image of F under the adjoint map $\theta^{*}: F^{* *} \rightarrow E^{*}$. Call this F_{0}.
- Then $F_{0} \subseteq E^{*}$ is a closed subspace such that:
- F_{0} separates the points of E;
- every functional $\mu \in F_{0}^{*}$ is given by some element of E
- We call such a subspace $F_{0} \subseteq E^{*}$ a concrete predual.
- It's not hard to see that two concrete preduals F_{0}, F_{1} induce the same weak*-topology on E if and only if $F_{0}=F_{1}$

Think more abstractly about preduals

Given a Banach space E, a predual for E is a Banach space F together with an isomorphism (not assumed isometric) $\theta: E \rightarrow F^{*}$.

- Note that the map θ is very important.
- It seems reasonable to say that two preduals "are the same" if
they induce the same weak*-topology on E.
- As usual, we identify F with a closed subspace of its bidual $F^{* *}$
and so we can talk about the image of F under the adjoint map

- Then $F_{0} \subseteq E^{*}$ is a closed subspace such that:
- F_{0} separates the points of E;
- every functional $\mu \in F_{0}^{*}$ is given by some element of E.
- We call such a subspace $F_{0} \subseteq E^{*}$ a concrete predual.
- It's not hard to see that two concrete preduals F_{0}. F_{1} induce the same weak*-topology on E if and only if $F_{0}=F_{1}$

Think more abstractly about preduals

Given a Banach space E, a predual for E is a Banach space F together with an isomorphism (not assumed isometric) $\theta: E \rightarrow F^{*}$.

- Note that the map θ is very important.
- It seems reasonable to say that two preduals "are the same" if they induce the same weak*-topology on E.

Think more abstractly about preduals

Given a Banach space E, a predual for E is a Banach space F together with an isomorphism (not assumed isometric) $\theta: E \rightarrow F^{*}$.

- Note that the map θ is very important.
- It seems reasonable to say that two preduals "are the same" if they induce the same weak*-topology on E.
- As usual, we identify F with a closed subspace of its bidual $F^{* *}$, and so we can talk about the image of F under the adjoint map $\theta^{*}: F^{* *} \rightarrow E^{*}$. Call this F_{0}.

Think more abstractly about preduals

Given a Banach space E, a predual for E is a Banach space F together with an isomorphism (not assumed isometric) $\theta: E \rightarrow F^{*}$.

- Note that the map θ is very important.
- It seems reasonable to say that two preduals "are the same" if they induce the same weak*-topology on E.
- As usual, we identify F with a closed subspace of its bidual $F^{* *}$, and so we can talk about the image of F under the adjoint map $\theta^{*}: F^{* *} \rightarrow E^{*}$. Call this F_{0}.
- Then $F_{0} \subseteq E^{*}$ is a closed subspace such that:
- F_{0} separates the points of E;
- every functional $\mu \in F_{0}^{*}$ is given by some element of E.
- It's not hard to see that two concrete preduals F_{0}, F_{1} induce the same weak*-topology on E if and only if $F_{0}=F_{1}$

Think more abstractly about preduals

Given a Banach space E, a predual for E is a Banach space F together with an isomorphism (not assumed isometric) $\theta: E \rightarrow F^{*}$.

- Note that the map θ is very important.
- It seems reasonable to say that two preduals "are the same" if they induce the same weak*-topology on E.
- As usual, we identify F with a closed subspace of its bidual $F^{* *}$, and so we can talk about the image of F under the adjoint map $\theta^{*}: F^{* *} \rightarrow E^{*}$. Call this F_{0}.
- Then $F_{0} \subseteq E^{*}$ is a closed subspace such that:
- F_{0} separates the points of E;
- every functional $\mu \in F_{0}^{*}$ is given by some element of E.
- We call such a subspace $F_{0} \subseteq E^{*}$ a concrete predual. same weak*-topology on E if and only if $F_{0}=F_{1}$

Think more abstractly about preduals

Given a Banach space E, a predual for E is a Banach space F together with an isomorphism (not assumed isometric) $\theta: E \rightarrow F^{*}$.

- Note that the map θ is very important.
- It seems reasonable to say that two preduals "are the same" if they induce the same weak*-topology on E.
- As usual, we identify F with a closed subspace of its bidual $F^{* *}$, and so we can talk about the image of F under the adjoint map $\theta^{*}: F^{* *} \rightarrow E^{*}$. Call this F_{0}.
- Then $F_{0} \subseteq E^{*}$ is a closed subspace such that:
- F_{0} separates the points of E;
- every functional $\mu \in F_{0}^{*}$ is given by some element of E.
- We call such a subspace $F_{0} \subseteq E^{*}$ a concrete predual.
- It's not hard to see that two concrete preduals F_{0}, F_{1} induce the same weak*-topology on E if and only if $F_{0}=F_{1}$.

An "exotic" predual of $\ell^{1}(\mathbb{Z})$

I now want to describe, in detail, the construction of a concrete predual for $\ell^{1}(\mathbb{Z})$ which has an unusual property- namely, the bilateral shift $S: \ell^{1}(\mathbb{Z}) \rightarrow \ell^{1}(\mathbb{Z})$ will be weak*-continuous.
This is joint work with Richard Haydon, Thomas Schlumprecht, and Stuart White, see arXiv:1101.5696v1 [math.FA].

Let F be the closed, shift-invariant subspace of $\ell^{\infty}(\mathbb{Z})$ generated by x_{0}.

An "exotic" predual of $\ell^{1}(\mathbb{Z})$

I now want to describe, in detail, the construction of a concrete predual for $\ell^{1}(\mathbb{Z})$ which has an unusual property- namely, the bilateral shift $S: \ell^{1}(\mathbb{Z}) \rightarrow \ell^{1}(\mathbb{Z})$ will be weak*-continuous.
This is joint work with Richard Haydon, Thomas Schlumprecht, and Stuart White, see arXiv:1101.5696v1 [math.FA].

For an integer $n \geq 1$, let $b(n)$ be the number of ones in the binary expansion of n, so $b(1)=b(2)=b(4)=1, b(3)=b(5)=b(6)=2$, $b(7)=3$ and so on. Set $b(0)=0$, and for $n<0$, set $b(n)=\infty$.

An "exotic" predual of $\ell^{1}(\mathbb{Z})$

I now want to describe, in detail, the construction of a concrete predual for $\ell^{1}(\mathbb{Z})$ which has an unusual property- namely, the bilateral shift $S: \ell^{1}(\mathbb{Z}) \rightarrow \ell^{1}(\mathbb{Z})$ will be weak*-continuous.
This is joint work with Richard Haydon, Thomas Schlumprecht, and Stuart White, see arXiv:1101.5696v1 [math.FA].

For an integer $n \geq 1$, let $b(n)$ be the number of ones in the binary expansion of n, so $b(1)=b(2)=b(4)=1, b(3)=b(5)=b(6)=2$, $b(7)=3$ and so on. Set $b(0)=0$, and for $n<0$, set $b(n)=\infty$.
Let $x_{0}=\left(2^{-b(n)}\right)_{n \in \mathbb{Z}} \in \ell^{\infty}(\mathbb{Z})$, so

$$
x_{0}=\left(\cdots, 0,0,1, \frac{1}{2}, \frac{1}{2}, \frac{1}{4}, \frac{1}{2}, \frac{1}{4}, \frac{1}{4}, \frac{1}{8}, \frac{1}{2}, \cdots\right) .
$$

An "exotic" predual of $\ell^{1}(\mathbb{Z})$

I now want to describe, in detail, the construction of a concrete predual for $\ell^{1}(\mathbb{Z})$ which has an unusual property- namely, the bilateral shift $S: \ell^{1}(\mathbb{Z}) \rightarrow \ell^{1}(\mathbb{Z})$ will be weak*-continuous.
This is joint work with Richard Haydon, Thomas Schlumprecht, and Stuart White, see arXiv:1101.5696v1 [math.FA].

For an integer $n \geq 1$, let $b(n)$ be the number of ones in the binary expansion of n, so $b(1)=b(2)=b(4)=1, b(3)=b(5)=b(6)=2$, $b(7)=3$ and so on. Set $b(0)=0$, and for $n<0$, set $b(n)=\infty$.
Let $x_{0}=\left(2^{-b(n)}\right)_{n \in \mathbb{Z}} \in \ell^{\infty}(\mathbb{Z})$, so

$$
x_{0}=\left(\cdots, 0,0,1, \frac{1}{2}, \frac{1}{2}, \frac{1}{4}, \frac{1}{2}, \frac{1}{4}, \frac{1}{4}, \frac{1}{8}, \frac{1}{2}, \cdots\right) .
$$

Let F be the closed, shift-invariant subspace of $\ell^{\infty}(\mathbb{Z})$ generated by x_{0}. So F is the closed linear span of $\left\{S^{k}\left(x_{0}\right): k \in \mathbb{Z}\right\}$.

An "exotic" predual of $\ell^{1}(\mathbb{Z})$

I now want to describe, in detail, the construction of a concrete predual for $\ell^{1}(\mathbb{Z})$ which has an unusual property- namely, the bilateral shift $S: \ell^{1}(\mathbb{Z}) \rightarrow \ell^{1}(\mathbb{Z})$ will be weak*-continuous.
This is joint work with Richard Haydon, Thomas Schlumprecht, and Stuart White, see arXiv:1101.5696v1 [math.FA].

For an integer $n \geq 1$, let $b(n)$ be the number of ones in the binary expansion of n, so $b(1)=b(2)=b(4)=1, b(3)=b(5)=b(6)=2$, $b(7)=3$ and so on. Set $b(0)=0$, and for $n<0$, set $b(n)=\infty$.
Let $x_{0}=\left(2^{-b(n)}\right)_{n \in \mathbb{Z}} \in \ell^{\infty}(\mathbb{Z})$, so

$$
x_{0}=\left(\cdots, 0,0,1, \frac{1}{2}, \frac{1}{2}, \frac{1}{4}, \frac{1}{2}, \frac{1}{4}, \frac{1}{4}, \frac{1}{8}, \frac{1}{2}, \cdots\right) .
$$

Let F be the closed, shift-invariant subspace of $\ell^{\infty}(\mathbb{Z})$ generated by x_{0}. So F is the closed linear span of $\left\{S^{k}\left(x_{0}\right): k \in \mathbb{Z}\right\}$.
This will be a predual for $\ell^{1}(\mathbb{Z})$ - but why?

Separates points

- Given $x \in \ell^{\infty}(\mathbb{Z})$, we view x as a function $x: \mathbb{Z} \rightarrow \mathbb{C}$. Extend this to a function $x: \mathbb{Q} \rightarrow \mathbb{C}$ by setting $x(q)=0$ for $q \in \mathbb{Q} \backslash \mathbb{Z}$.
- Define $\tau: \ell^{\infty}(\mathbb{Z}) \rightarrow \ell^{\infty}(\mathbb{Z})$ by $\tau(x)(n)=x(n / 2)$.
- We can check that $\tau S=S^{2} \tau$.
- We claim that $\tau^{k}\left(x_{0}\right) \in F$ for every $k \geq 1$.
- First prove the identity

$$
\left(1-\frac{1}{2} S\right)\left(x_{0}\right)(n)=\sum_{j \geq 1} 2^{-j} \tau^{j}\left(x_{0}\right)(n) \quad(n \in \mathbb{Z}) .
$$

- Then show that

$$
\left(1-\frac{1}{2} S\right)\left(x_{0}\right)=\left(1-\frac{1}{4} S^{2}\right) \tau\left(x_{0}\right)
$$

- Then invert to get

Separates points

- Given $x \in \ell^{\infty}(\mathbb{Z})$, we view x as a function $x: \mathbb{Z} \rightarrow \mathbb{C}$. Extend this to a function $x: \mathbb{Q} \rightarrow \mathbb{C}$ by setting $x(q)=0$ for $q \in \mathbb{Q} \backslash \mathbb{Z}$.
- Define $\tau: \ell^{\infty}(\mathbb{Z}) \rightarrow \ell^{\infty}(\mathbb{Z})$ by $\tau(x)(n)=x(n / 2)$.

- We can check that $\tau S=S^{2} \tau$.

- We claim that $\tau^{k}\left(x_{0}\right) \in F$ for every $k \geq 1$.
- First prove the identity

$$
\left(1-\frac{1}{2} S\right)\left(x_{0}\right)(n)=\sum_{j \geq 1} 2^{-j} \tau^{j}\left(x_{0}\right)(n) \quad(n \in \mathbb{Z})
$$

- Then show that

$$
\left(1-\frac{1}{2} S\right)\left(x_{0}\right)=\left(1-\frac{1}{4} S^{2}\right) \tau\left(x_{0}\right) .
$$

- Then invert to get

Separates points

- Given $x \in \ell^{\infty}(\mathbb{Z})$, we view x as a function $x: \mathbb{Z} \rightarrow \mathbb{C}$. Extend this to a function $x: \mathbb{Q} \rightarrow \mathbb{C}$ by setting $x(q)=0$ for $q \in \mathbb{Q} \backslash \mathbb{Z}$.
- Define $\tau: \ell^{\infty}(\mathbb{Z}) \rightarrow \ell^{\infty}(\mathbb{Z})$ by $\tau(x)(n)=x(n / 2)$.
- We can check that $\tau S=S^{2} \tau$.
- We claim that $\tau^{k}\left(x_{0}\right) \in F$ for every $k \geq 1$.
- First prove the identity

$$
\left(1-\frac{1}{2} S\right)\left(x_{0}\right)(n)=\sum_{j \geq 1} 2^{-j} \pi^{j}\left(x_{0}\right)(n) \quad(n \in \mathbb{Z})
$$

- Then show that

$$
\left(1-\frac{1}{2} S\right)\left(x_{0}\right)=\left(1-\frac{1}{4} S^{2}\right) \tau\left(x_{0}\right) .
$$

- Then invert to get

Separates points

- Given $x \in \ell^{\infty}(\mathbb{Z})$, we view x as a function $x: \mathbb{Z} \rightarrow \mathbb{C}$. Extend this to a function $x: \mathbb{Q} \rightarrow \mathbb{C}$ by setting $x(q)=0$ for $q \in \mathbb{Q} \backslash \mathbb{Z}$.
- Define $\tau: \ell^{\infty}(\mathbb{Z}) \rightarrow \ell^{\infty}(\mathbb{Z})$ by $\tau(x)(n)=x(n / 2)$.
- We can check that $\tau S=S^{2} \tau$.
- We claim that $\tau^{k}\left(x_{0}\right) \in F$ for every $k \geq 1$.

- First prove the identity

- Then show that

$$
\left(1-\frac{1}{2} S\right)\left(x_{0}\right)=\left(1-\frac{1}{4} S^{2}\right) \tau\left(x_{0}\right) .
$$

- Then invert to get

Separates points

- Given $x \in \ell^{\infty}(\mathbb{Z})$, we view x as a function $x: \mathbb{Z} \rightarrow \mathbb{C}$. Extend this to a function $x: \mathbb{Q} \rightarrow \mathbb{C}$ by setting $x(q)=0$ for $q \in \mathbb{Q} \backslash \mathbb{Z}$.
- Define $\tau: \ell^{\infty}(\mathbb{Z}) \rightarrow \ell^{\infty}(\mathbb{Z})$ by $\tau(x)(n)=x(n / 2)$.
- We can check that $\tau S=S^{2} \tau$.
- We claim that $\tau^{k}\left(x_{0}\right) \in F$ for every $k \geq 1$.
- First prove the identity

$$
\left(1-\frac{1}{2} S\right)\left(x_{0}\right)(n)=\sum_{j \geq 1} 2^{-j} \tau^{j}\left(x_{0}\right)(n) \quad(n \in \mathbb{Z})
$$

- Then show that

$$
\left(1-\frac{1}{2} S\right)\left(x_{0}\right)=\left(1-\frac{1}{4} S^{2}\right) \tau\left(x_{0}\right)
$$

- Then invert to get

$$
\tau\left(x_{0}\right)=\sum_{j \geq 0} 4^{-j} S^{-2 j}\left(1-\frac{1}{2} S\right)\left(x_{0}\right) \in F
$$

Separates points ctd.

$$
\begin{aligned}
x_{0} & =\left(\cdots, 0,0,1, \frac{1}{2}, \frac{1}{2}, \frac{1}{4}, \frac{1}{2}, \frac{1}{4}, \frac{1}{4}, \frac{1}{8}, \frac{1}{2}, \cdots\right) \\
\tau\left(x_{0}\right) & =\left(\cdots, 0,0,1,0, \frac{1}{2}, 0, \frac{1}{2}, 0, \frac{1}{4}, 0, \frac{1}{2}, 0, \frac{1}{4}, 0, \frac{1}{4}, 0, \frac{1}{8}, 0, \frac{1}{2}, \cdots\right) \\
\tau^{2}\left(x_{0}\right) & =\left(\cdots, 0,0,1,0,0,0, \frac{1}{2}, 0,0,0, \frac{1}{2}, 0,0,0, \frac{1}{4}, 0,0,0, \frac{1}{2}, \cdots\right)
\end{aligned}
$$

- So for any $a=\left(a_{n}\right) \in \ell^{1}(\mathbb{Z})$, we see that

$$
\lim _{k}\left\langle\tau^{k}\left(x_{0}\right), a\right\rangle=a_{0}
$$

- Hence if $\langle x, a\rangle=0$ for all $x \in F$, then certainly $a_{0}=0$.
- By shift-invariance, $a_{k}=0$ for all k.
- So F separates the points of $\ell^{1}(\mathbb{Z})$.

Separates points ctd.

$$
\begin{aligned}
x_{0} & =\left(\cdots, 0,0,1, \frac{1}{2}, \frac{1}{2}, \frac{1}{4}, \frac{1}{2}, \frac{1}{4}, \frac{1}{4}, \frac{1}{8}, \frac{1}{2}, \cdots\right) \\
\tau\left(x_{0}\right) & =\left(\cdots, 0,0,1,0, \frac{1}{2}, 0, \frac{1}{2}, 0, \frac{1}{4}, 0, \frac{1}{2}, 0, \frac{1}{4}, 0, \frac{1}{4}, 0, \frac{1}{8}, 0, \frac{1}{2}, \cdots\right) \\
\tau^{2}\left(x_{0}\right) & =\left(\cdots, 0,0,1,0,0,0, \frac{1}{2}, 0,0,0, \frac{1}{2}, 0,0,0, \frac{1}{4}, 0,0,0, \frac{1}{2}, \cdots\right)
\end{aligned}
$$

- So for any $a=\left(a_{n}\right) \in \ell^{1}(\mathbb{Z})$, we see that

$$
\lim _{k}\left\langle\tau^{k}\left(x_{0}\right), a\right\rangle=a_{0}
$$

- Hence if $\langle x, a\rangle=0$ for all $x \in F$, then certainly $a_{0}=0$.
- By shift-invariance, $a_{k}=0$ for all k.
- So F separates the points of $\ell^{1}(\mathbb{Z})$.

Separates points ctd.

$$
\begin{aligned}
x_{0} & =\left(\cdots, 0,0,1, \frac{1}{2}, \frac{1}{2}, \frac{1}{4}, \frac{1}{2}, \frac{1}{4}, \frac{1}{4}, \frac{1}{8}, \frac{1}{2}, \cdots\right) \\
\tau\left(x_{0}\right) & =\left(\cdots, 0,0,1,0, \frac{1}{2}, 0, \frac{1}{2}, 0, \frac{1}{4}, 0, \frac{1}{2}, 0, \frac{1}{4}, 0, \frac{1}{4}, 0, \frac{1}{8}, 0, \frac{1}{2}, \cdots\right) \\
\tau^{2}\left(x_{0}\right) & =\left(\cdots, 0,0,1,0,0,0, \frac{1}{2}, 0,0,0, \frac{1}{2}, 0,0,0, \frac{1}{4}, 0,0,0, \frac{1}{2}, \cdots\right)
\end{aligned}
$$

- So for any $a=\left(a_{n}\right) \in \ell^{1}(\mathbb{Z})$, we see that

$$
\lim _{k}\left\langle\tau^{k}\left(x_{0}\right), a\right\rangle=a_{0}
$$

- Hence if $\langle x, a\rangle=0$ for all $x \in F$, then certainly $a_{0}=0$.
- By shift-invariance, $a_{k}=0$ for all k.
- So F separates the points of $\ell^{1}(\mathbb{Z})$.

Separates points ctd.

$$
\begin{aligned}
x_{0} & =\left(\cdots, 0,0,1, \frac{1}{2}, \frac{1}{2}, \frac{1}{4}, \frac{1}{2}, \frac{1}{4}, \frac{1}{4}, \frac{1}{8}, \frac{1}{2}, \cdots\right) \\
\tau\left(x_{0}\right) & =\left(\cdots, 0,0,1,0, \frac{1}{2}, 0, \frac{1}{2}, 0, \frac{1}{4}, 0, \frac{1}{2}, 0, \frac{1}{4}, 0, \frac{1}{4}, 0, \frac{1}{8}, 0, \frac{1}{2}, \cdots\right) \\
\tau^{2}\left(x_{0}\right) & =\left(\cdots, 0,0,1,0,0,0, \frac{1}{2}, 0,0,0, \frac{1}{2}, 0,0,0, \frac{1}{4}, 0,0,0, \frac{1}{2}, \cdots\right)
\end{aligned}
$$

- So for any $a=\left(a_{n}\right) \in \ell^{1}(\mathbb{Z})$, we see that

$$
\lim _{k}\left\langle\tau^{k}\left(x_{0}\right), a\right\rangle=a_{0}
$$

- Hence if $\langle x, a\rangle=0$ for all $x \in F$, then certainly $a_{0}=0$.
- By shift-invariance, $a_{k}=0$ for all k.
- So F separates the points of $\ell^{1}(\mathbb{Z})$.

Separates points ctd.

$$
\begin{aligned}
x_{0} & =\left(\cdots, 0,0,1, \frac{1}{2}, \frac{1}{2}, \frac{1}{4}, \frac{1}{2}, \frac{1}{4}, \frac{1}{4}, \frac{1}{8}, \frac{1}{2}, \cdots\right) \\
\tau\left(x_{0}\right) & =\left(\cdots, 0,0,1,0, \frac{1}{2}, 0, \frac{1}{2}, 0, \frac{1}{4}, 0, \frac{1}{2}, 0, \frac{1}{4}, 0, \frac{1}{4}, 0, \frac{1}{8}, 0, \frac{1}{2}, \cdots\right) \\
\tau^{2}\left(x_{0}\right) & =\left(\cdots, 0,0,1,0,0,0, \frac{1}{2}, 0,0,0, \frac{1}{2}, 0,0,0, \frac{1}{4}, 0,0,0, \frac{1}{2}, \cdots\right)
\end{aligned}
$$

- So for any $a=\left(a_{n}\right) \in \ell^{1}(\mathbb{Z})$, we see that

$$
\lim _{k}\left\langle\tau^{k}\left(x_{0}\right), a\right\rangle=a_{0}
$$

- Hence if $\langle x, a\rangle=0$ for all $x \in F$, then certainly $a_{0}=0$.
- By shift-invariance, $a_{k}=0$ for all k.
- So F separates the points of $\ell^{1}(\mathbb{Z})$.

Functionals on F

It is rather harder to show that every bounded linear functional $F \rightarrow \mathbb{C}$ is induced by a member of $\ell^{1}(\mathbb{Z})$.

- For example, a "typical" functional on $\ell^{\infty}(\mathbb{Z})$ which is not given by an element $\ell^{1}(\mathbb{Z})$ is the functional
(To make this converge on all of $\ell^{\infty}(\mathbb{Z})$, limit down an ultrafilter).

$$
\mu\left(S^{k}\left(x_{0}\right)\right)=\lim _{n} x_{0}\left(2^{n}-k\right)=\lim _{n} 2^{-b\left(2^{n}-k\right)}=2^{-1-b(-k)} .
$$

- But then note that

$$
\left\langle S^{k}\left(x_{0}\right), \frac{1}{2} \delta_{0}\right\rangle=\frac{1}{2} S^{k}\left(x_{0}\right)(0)=\frac{1}{2} x_{0}(-k)=\frac{1}{2} 2^{-b(-k)} .
$$

$$
\text { So } \mu=\frac{1}{2} \delta_{0} \text { on } F \text {. }
$$

Functionals on F

It is rather harder to show that every bounded linear functional $F \rightarrow \mathbb{C}$ is induced by a member of $\ell^{1}(\mathbb{Z})$.

- For example, a "typical" functional on $\ell^{\infty}(\mathbb{Z})$ which is not given by an element $\ell^{1}(\mathbb{Z})$ is the functional

$$
\mu: x \mapsto \lim _{n \rightarrow \infty} x\left(2^{n}\right)
$$

(To make this converge on all of $\ell^{\infty}(\mathbb{Z})$, limit down an ultrafilter).

- But then note that

So $\mu=\frac{1}{2} \delta_{0}$ on F.

Functionals on F

It is rather harder to show that every bounded linear functional $F \rightarrow \mathbb{C}$ is induced by a member of $\ell^{1}(\mathbb{Z})$.

- For example, a "typical" functional on $\ell^{\infty}(\mathbb{Z})$ which is not given by an element $\ell^{1}(\mathbb{Z})$ is the functional

$$
\mu: x \mapsto \lim _{n \rightarrow \infty} x\left(2^{n}\right) .
$$

(To make this converge on all of $\ell^{\infty}(\mathbb{Z})$, limit down an ultrafilter).

- Let's restrict μ to F. It's enough to compute μ on $S^{k}\left(x_{0}\right)$ for $k \in \mathbb{Z}$

$$
\mu\left(S^{k}\left(x_{0}\right)\right)=\lim _{n} x_{0}\left(2^{n}-k\right)=\lim _{n} 2^{-b\left(2^{n}-k\right)}=2^{-1-b(-k)} .
$$

- But then note that

Functionals on F

It is rather harder to show that every bounded linear functional $F \rightarrow \mathbb{C}$ is induced by a member of $\ell^{1}(\mathbb{Z})$.

- For example, a "typical" functional on $\ell^{\infty}(\mathbb{Z})$ which is not given by an element $\ell^{1}(\mathbb{Z})$ is the functional

$$
\mu: x \mapsto \lim _{n \rightarrow \infty} x\left(2^{n}\right) .
$$

(To make this converge on all of $\ell^{\infty}(\mathbb{Z})$, limit down an ultrafilter).

- Let's restrict μ to F. It's enough to compute μ on $S^{k}\left(x_{0}\right)$ for $k \in \mathbb{Z}$

$$
\mu\left(S^{k}\left(x_{0}\right)\right)=\lim _{n} x_{0}\left(2^{n}-k\right)=\lim _{n} 2^{-b\left(2^{n}-k\right)}=2^{-1-b(-k)} .
$$

- But then note that

$$
\left\langle S^{k}\left(x_{0}\right), \frac{1}{2} \delta_{0}\right\rangle=\frac{1}{2} S^{k}\left(x_{0}\right)(0)=\frac{1}{2} x_{0}(-k)=\frac{1}{2} 2^{-b(-k)} .
$$

So $\mu=\frac{1}{2} \delta_{0}$ on F.

Shift-invariant preduals

So we conclude that F is a predual for $\ell^{1}(\mathbb{Z})$. By construction, it is shift-invariant, so it follows that S is weak*-continuous.

- By the calculation on the previous slide, we see that

This gives but one example of a non-trivial weak*-limit point.

- In particular, F does not give the same weak*-topology as $c_{0}(\mathbb{Z})$.
- There was nothing special about using 2- this could have been any $\lambda \in \mathbb{C}$ with $|\lambda|>1$. So we get an uncountable number of mutually non-isomorphic preduals.
- There was nothing particularly special about using binary expansion (though this is somewhat less obvious!)

Shift-invariant preduals

So we conclude that F is a predual for $\ell^{1}(\mathbb{Z})$. By construction, it is shift-invariant, so it follows that S is weak*-continuous.

- By the calculation on the previous slide, we see that

$$
\text { weak }^{*}-\lim _{n} \delta_{2^{n}}=\frac{1}{2} \delta_{0} .
$$

This gives but one example of a non-trivial weak*-limit point.

- In particular, F does not give the same weak*-topology as $c_{0}(\mathbb{Z})$
- There was nothing special about using 2 - this could have been any $\lambda \in \mathbb{C}$ with $|\lambda|>1$. So we get an uncountable number of mutually non-isomorphic preduals.
- There was nothing particularly special about using binary expansion (though this is somewhat less obvious!)

Shift-invariant preduals

So we conclude that F is a predual for $\ell^{1}(\mathbb{Z})$. By construction, it is shift-invariant, so it follows that S is weak*-continuous.

- By the calculation on the previous slide, we see that

$$
\text { weak }^{*}-\lim _{n} \delta_{2^{n}}=\frac{1}{2} \delta_{0} .
$$

This gives but one example of a non-trivial weak*-limit point.

- In particular, F does not give the same weak*-topology as $c_{0}(\mathbb{Z})$.

Shift-invariant preduals

So we conclude that F is a predual for $\ell^{1}(\mathbb{Z})$. By construction, it is shift-invariant, so it follows that S is weak*-continuous.

- By the calculation on the previous slide, we see that

$$
\text { weak }^{*}-\lim _{n} \delta_{2^{n}}=\frac{1}{2} \delta_{0} .
$$

This gives but one example of a non-trivial weak*-limit point.

- In particular, F does not give the same weak*-topology as $c_{0}(\mathbb{Z})$.
- There was nothing special about using 2 - this could have been any $\lambda \in \mathbb{C}$ with $|\lambda|>1$. So we get an uncountable number of mutually non-isomorphic preduals.
- There was nothing particularly special about using binary expansion (though this is somewhat less obvious!)

Shift-invariant preduals

So we conclude that F is a predual for $\ell^{1}(\mathbb{Z})$. By construction, it is shift-invariant, so it follows that S is weak*-continuous.

- By the calculation on the previous slide, we see that

$$
\text { weak }^{*}-\lim _{n} \delta_{2^{n}}=\frac{1}{2} \delta_{0} .
$$

This gives but one example of a non-trivial weak*-limit point.

- In particular, F does not give the same weak*-topology as $c_{0}(\mathbb{Z})$.
- There was nothing special about using 2 - this could have been any $\lambda \in \mathbb{C}$ with $|\lambda|>1$. So we get an uncountable number of mutually non-isomorphic preduals.
- There was nothing particularly special about using binary expansion (though this is somewhat less obvious!)

What Banach space is F ?

If I were to give the actually proof that every functional on F is given by $\ell^{1}(\mathbb{Z})$, then I would use that $\ell^{\infty}(\mathbb{Z})=C(\beta \mathbb{Z})$. We'd then check that there was a partition of $\beta \mathbb{Z} \backslash \mathbb{Z}$, say

$$
\left\{X_{t}^{(k)}: t \in \mathbb{Z}, k \geq 1\right\} \cup\left\{X^{(\infty)}\right\}
$$

such that $x \in F$ if and only if

$$
x(\omega)= \begin{cases}2^{-k} x(t) & : \omega \in X_{t}^{(k)}, \\ 0 & : \omega \in X^{(\infty)} .\end{cases}
$$

- It follows that F is a " G -space", in the sense of Benyamini (Israel J. Math (1973)). Thus F is, as a Banach space, isomorphic to some $C(K)$ space.
- So we can calculate the Szlenk index to work out which C(K) space F is isomorphic to.
- Well, it turns out that F is isomorphic to c_{0}.

What Banach space is F ?

If I were to give the actually proof that every functional on F is given by $\ell^{1}(\mathbb{Z})$, then I would use that $\ell^{\infty}(\mathbb{Z})=C(\beta \mathbb{Z})$. We'd then check that there was a partition of $\beta \mathbb{Z} \backslash \mathbb{Z}$, say

$$
\left\{X_{t}^{(k)}: t \in \mathbb{Z}, k \geq 1\right\} \cup\left\{X^{(\infty)}\right\}
$$

such that $x \in F$ if and only if

$$
x(\omega)= \begin{cases}2^{-k} x(t) & : \omega \in X_{t}^{(k)}, \\ 0 & : \omega \in X^{(\infty)} .\end{cases}
$$

- It follows that F is a "G-space", in the sense of Benyamini (Israel J. Math (1973)). Thus F is, as a Banach space, isomorphic to some $C(K)$ space.
- So we can calculate the Szlenk index to work out which $C(K)$
space F is isomorphic to.
- Well, it turns out that F is isomorphic to c_{0}.

What Banach space is F ?

If I were to give the actually proof that every functional on F is given by $\ell^{1}(\mathbb{Z})$, then I would use that $\ell^{\infty}(\mathbb{Z})=C(\beta \mathbb{Z})$. We'd then check that there was a partition of $\beta \mathbb{Z} \backslash \mathbb{Z}$, say

$$
\left\{X_{t}^{(k)}: t \in \mathbb{Z}, k \geq 1\right\} \cup\left\{X^{(\infty)}\right\}
$$

such that $x \in F$ if and only if

$$
x(\omega)= \begin{cases}2^{-k} x(t) & : \omega \in X_{t}^{(k)}, \\ 0 & : \omega \in X^{(\infty)} .\end{cases}
$$

- It follows that F is a " G-space", in the sense of Benyamini (Israel J. Math (1973)). Thus F is, as a Banach space, isomorphic to some $C(K)$ space.
- So we can calculate the Szlenk index to work out which $C(K)$ space F is isomorphic to.

What Banach space is F ?

If I were to give the actually proof that every functional on F is given by $\ell^{1}(\mathbb{Z})$, then I would use that $\ell^{\infty}(\mathbb{Z})=C(\beta \mathbb{Z})$. We'd then check that there was a partition of $\beta \mathbb{Z} \backslash \mathbb{Z}$, say

$$
\left\{X_{t}^{(k)}: t \in \mathbb{Z}, k \geq 1\right\} \cup\left\{X^{(\infty)}\right\}
$$

such that $x \in F$ if and only if

$$
x(\omega)= \begin{cases}2^{-k} x(t) & : \omega \in X_{t}^{(k)}, \\ 0 & : \omega \in X^{(\infty)} .\end{cases}
$$

- It follows that F is a " G-space", in the sense of Benyamini (Israel J. Math (1973)). Thus F is, as a Banach space, isomorphic to some $C(K)$ space.
- So we can calculate the Szlenk index to work out which $C(K)$ space F is isomorphic to.
- Well, it turns out that F is isomorphic to c_{0}.

Algebraic constraints

- Recall that (in the weak*-topology) $\delta_{2^{n}} \rightarrow \frac{1}{2} \delta_{0}$.
- By shift-invariance, we must also have that $\delta_{2^{n+1}} \rightarrow \frac{1}{2} \delta_{1}$, and so forth.
- But then consider

- This is all fine, as $\left\{2^{n}: n \in \mathbb{N}\right\}$ is sufficiently "sparse".
- But suppose, instead, we had that

- Then we'd have that

which would be a contradiction!

Algebraic constraints

- Recall that (in the weak*-topology) $\delta_{2^{n}} \rightarrow \frac{1}{2} \delta_{0}$.
- By shift-invariance, we must also have that $\delta_{2^{n}+1} \rightarrow \frac{1}{2} \delta_{1}$, and so forth.
- But then, consider

- This is all fine, as $\left\{2^{n}: n \in \mathbb{N}\right\}$ is sufficiently "sparse".
- But suppose, instead, we had that

- Then we'd have that

which would be a contradiction!

Algebraic constraints

- Recall that (in the weak*-topology) $\delta_{2^{n}} \rightarrow \frac{1}{2} \delta_{0}$.
- By shift-invariance, we must also have that $\delta_{2^{n}+1} \rightarrow \frac{1}{2} \delta_{1}$, and so forth.
- But then, consider

$$
\lim _{n} \lim _{m} \delta_{2^{n}+2^{m}}=\lim _{n} \frac{1}{2} \delta_{2^{n}}=\frac{1}{4} \delta_{0} .
$$

- This is all fine, as $\left\{2^{n}: n \in \mathbb{N}\right\}$ is sufficiently "sparse".
- But suppose, instead, we had that

- Then we'd have that

which would be a contradiction!

Algebraic constraints

- Recall that (in the weak*-topology) $\delta_{2^{n}} \rightarrow \frac{1}{2} \delta_{0}$.
- By shift-invariance, we must also have that $\delta_{2^{n}+1} \rightarrow \frac{1}{2} \delta_{1}$, and so forth.
- But then, consider

$$
\lim _{n} \lim _{m} \delta_{2^{n}+2^{m}}=\lim _{n} \frac{1}{2} \delta_{2^{n}}=\frac{1}{4} \delta_{0} .
$$

- This is all fine, as $\left\{2^{n}: n \in \mathbb{N}\right\}$ is sufficiently "sparse".
- But suppose, instead, we had that
- Then we'd have that

which would be a contradiction!

Algebraic constraints

- Recall that (in the weak*-topology) $\delta_{2^{n}} \rightarrow \frac{1}{2} \delta_{0}$.
- By shift-invariance, we must also have that $\delta_{2^{n}+1} \rightarrow \frac{1}{2} \delta_{1}$, and so forth.
- But then, consider

$$
\lim _{n} \lim _{m} \delta_{2^{n}+2^{m}}=\lim _{n} \frac{1}{2} \delta_{2^{n}}=\frac{1}{4} \delta_{0} .
$$

- This is all fine, as $\left\{2^{n}: n \in \mathbb{N}\right\}$ is sufficiently "sparse".
- But suppose, instead, we had that

$$
\lim _{n} \delta_{2 n}=\frac{1}{2} \delta_{0}
$$

- Then we'd have that

Algebraic constraints

- Recall that (in the weak*-topology) $\delta_{2^{n}} \rightarrow \frac{1}{2} \delta_{0}$.
- By shift-invariance, we must also have that $\delta_{2^{n}+1} \rightarrow \frac{1}{2} \delta_{1}$, and so forth.
- But then, consider

$$
\lim _{n} \lim _{m} \delta_{2^{n}+2^{m}}=\lim _{n} \frac{1}{2} \delta_{2^{n}}=\frac{1}{4} \delta_{0} .
$$

- This is all fine, as $\left\{2^{n}: n \in \mathbb{N}\right\}$ is sufficiently "sparse".
- But suppose, instead, we had that

$$
\lim _{n} \delta_{2 n}=\frac{1}{2} \delta_{0}
$$

- Then we'd have that

$$
\lim _{n} \delta_{2 n}=\lim _{n} \delta_{2(n+1)}=\frac{1}{2} \delta_{2},
$$

which would be a contradiction!

A general theorem

We shall say that $J \subseteq \mathbb{Z}$ is "additively sparse" if given $t \in \mathbb{Z}$ and $r, s \in \mathbb{N}$, we can find N such that, if

$$
j_{1}+\cdots+j_{r}=l_{1}+\cdots+l_{s}+t
$$

with $\left(j_{i}\right),\left(l_{i}\right) \subseteq J$ and $N<\left|j_{1}\right|<\cdots<\left|j_{r}\right|, N<\left|l_{1}\right|<\cdots<\left|l_{s}\right|$, then necessarily $r=s, t=0$ and $j_{i}=l_{i}$ for each i.
\square

A general theorem

We shall say that $J \subseteq \mathbb{Z}$ is "additively sparse" if given $t \in \mathbb{Z}$ and $r, s \in \mathbb{N}$, we can find N such that, if

$$
j_{1}+\cdots+j_{r}=l_{1}+\cdots+l_{s}+t
$$

with $\left(j_{i}\right),\left(l_{i}\right) \subseteq J$ and $N<\left|j_{1}\right|<\cdots<\left|j_{r}\right|, N<\left|l_{1}\right|<\cdots<\left|l_{s}\right|$, then necessarily $r=s, t=0$ and $j_{i}=l_{i}$ for each i.
Define a multiplication on $\ell^{1}(\mathbb{Z})$ by $\delta_{n} \delta_{m}=\delta_{n+m}$.

\square

A general theorem

We shall say that $J \subseteq \mathbb{Z}$ is "additively sparse" if given $t \in \mathbb{Z}$ and $r, s \in \mathbb{N}$, we can find N such that, if

$$
j_{1}+\cdots+j_{r}=l_{1}+\cdots+l_{s}+t
$$

with $\left(j_{i}\right),\left(l_{i}\right) \subseteq J$ and $N<\left|j_{1}\right|<\cdots<\left|j_{r}\right|, N<\left|l_{1}\right|<\cdots<\left|l_{s}\right|$, then necessarily $r=s, t=0$ and $j_{i}=l_{i}$ for each i.
Define a multiplication on $\ell^{1}(\mathbb{Z})$ by $\delta_{n} \delta_{m}=\delta_{n+m}$.

Theorem

Let $J \subseteq \mathbb{Z}$ be additively sparse, and let $J=J^{(1)} \cup \cdots \cup J^{(r)}$ be a partition. For each i, let $a_{i} \in \ell^{1}(\mathbb{Z})$ be a power-bounded element with $\left\|a_{i}^{n}\right\|_{\infty} \rightarrow 0$. Then there is a shift-invariant $\ell^{1}(\mathbb{Z})$ predual E such that $\delta_{n} \rightarrow a_{i}$ weak* as $n \rightarrow \infty$ through $\mathrm{J}^{(i)}$.

A general theorem

We shall say that $J \subseteq \mathbb{Z}$ is "additively sparse" if given $t \in \mathbb{Z}$ and $r, s \in \mathbb{N}$, we can find N such that, if

$$
j_{1}+\cdots+j_{r}=l_{1}+\cdots+l_{s}+t
$$

with $\left(j_{i}\right),\left(l_{i}\right) \subseteq J$ and $N<\left|j_{1}\right|<\cdots<\left|j_{r}\right|, N<\left|l_{1}\right|<\cdots<\left|l_{s}\right|$, then necessarily $r=s, t=0$ and $j_{i}=l_{i}$ for each i.
Define a multiplication on $\ell^{1}(\mathbb{Z})$ by $\delta_{n} \delta_{m}=\delta_{n+m}$.

Theorem

Let $J \subseteq \mathbb{Z}$ be additively sparse, and let $J=J^{(1)} \cup \cdots \cup J^{(r)}$ be a partition. For each i, let $a_{i} \in \ell^{1}(\mathbb{Z})$ be a power-bounded element with $\left\|a_{i}^{n}\right\|_{\infty} \rightarrow 0$. Then there is a shift-invariant $\ell^{1}(\mathbb{Z})$ predual E such that $\delta_{n} \rightarrow a_{i}$ weak* as $n \rightarrow \infty$ through $\mathrm{J}^{(i)}$.

The example given before has $J=\left\{2^{n}: n \in \mathbb{N}\right\}, r=1$ and $a_{1}=\frac{1}{2} \delta_{0}$.

Further examples

- Let $J=\left\{2^{n}\right\}$ and $r=1$. Let $a_{1}=\frac{1}{2}\left(\delta_{0}+\delta_{1}\right)$. Thus

$$
a_{1}^{2}=\frac{1}{4}\left(\delta_{0}+2 \delta_{1}+\delta_{2}\right), \quad a_{2}^{3}=\frac{1}{8}\left(\delta_{0}+3 \delta_{1}+3 \delta_{2}+\delta_{3}\right)
$$

You can check that $\left\|a_{1}^{n}\right\|_{1}=1$ for any n, but that we do have $\left\|a_{1}^{n}\right\|_{\infty} \rightarrow 0$.

- Some fiddling with the Szlenk index shows that the resulting predual, in this case, is not isomorphic to c_{0}.
- Now set $a_{1}=5^{-1 / 2}\left(\delta_{0}+\delta_{1}-\delta_{2}\right)$. Then $\left\|a_{1}\right\|=3 / \sqrt{5}>1$, but (if you know where to look!) this is a power-bounded element. Taking the Fourier transform shows that $\left\|a_{1}^{n}\right\|_{\infty} \rightarrow 0$.
- The predual E we construct in this case is only an isomorphic predual, not an isometric one.

Further examples

- Let $J=\left\{2^{n}\right\}$ and $r=1$. Let $a_{1}=\frac{1}{2}\left(\delta_{0}+\delta_{1}\right)$. Thus

$$
a_{1}^{2}=\frac{1}{4}\left(\delta_{0}+2 \delta_{1}+\delta_{2}\right), \quad a_{2}^{3}=\frac{1}{8}\left(\delta_{0}+3 \delta_{1}+3 \delta_{2}+\delta_{3}\right)
$$

You can check that $\left\|a_{1}^{n}\right\|_{1}=1$ for any n, but that we do have $\left\|a_{1}^{n}\right\|_{\infty} \rightarrow 0$.

- Some fiddling with the Szlenk index shows that the resulting predual, in this case, is not isomorphic to c_{0}.
you know where to look!) this is a power-bounded element. Taking the Fourier transform shows that $\left\|a_{1}^{n}\right\|_{\infty} \rightarrow 0$.
- The predual E we construct in this case is only an isomorphic predual, not an isometric one.

Further examples

- Let $J=\left\{2^{n}\right\}$ and $r=1$. Let $a_{1}=\frac{1}{2}\left(\delta_{0}+\delta_{1}\right)$. Thus

$$
a_{1}^{2}=\frac{1}{4}\left(\delta_{0}+2 \delta_{1}+\delta_{2}\right), \quad a_{2}^{3}=\frac{1}{8}\left(\delta_{0}+3 \delta_{1}+3 \delta_{2}+\delta_{3}\right)
$$

You can check that $\left\|a_{1}^{n}\right\|_{1}=1$ for any n, but that we do have $\left\|a_{1}^{n}\right\|_{\infty} \rightarrow 0$.

- Some fiddling with the Szlenk index shows that the resulting predual, in this case, is not isomorphic to c_{0}.
- Now set $a_{1}=5^{-1 / 2}\left(\delta_{0}+\delta_{1}-\delta_{2}\right)$. Then $\left\|a_{1}\right\|=3 / \sqrt{5}>1$, but (if you know where to look!) this is a power-bounded element. Taking the Fourier transform shows that $\left\|a_{1}^{n}\right\|_{\infty} \rightarrow 0$.
predual, not an isometric one.

Further examples

- Let $J=\left\{2^{n}\right\}$ and $r=1$. Let $a_{1}=\frac{1}{2}\left(\delta_{0}+\delta_{1}\right)$. Thus

$$
a_{1}^{2}=\frac{1}{4}\left(\delta_{0}+2 \delta_{1}+\delta_{2}\right), \quad a_{2}^{3}=\frac{1}{8}\left(\delta_{0}+3 \delta_{1}+3 \delta_{2}+\delta_{3}\right)
$$

You can check that $\left\|a_{1}^{n}\right\|_{1}=1$ for any n, but that we do have $\left\|a_{1}^{n}\right\|_{\infty} \rightarrow 0$.

- Some fiddling with the Szlenk index shows that the resulting predual, in this case, is not isomorphic to c_{0}.
- Now set $a_{1}=5^{-1 / 2}\left(\delta_{0}+\delta_{1}-\delta_{2}\right)$. Then $\left\|a_{1}\right\|=3 / \sqrt{5}>1$, but (if you know where to look!) this is a power-bounded element. Taking the Fourier transform shows that $\left\|a_{1}^{n}\right\|_{\infty} \rightarrow 0$.
- The predual E we construct in this case is only an isomorphic predual, not an isometric one.

Did we have to work that hard?

Hold on: I said that $C(K)$ spaces, for countable K, provide simple examples of preduals of ℓ^{1}.

- So could we cleverly choose a (compact, Hausdorff) topology on \mathbb{Z} such that $C(\mathbb{Z})$ provided a shift-invariant predual?
- Well, \mathbb{T} would then be countable and (locally) compact, so it would be a Baire Space, and hence would have some $k \in \mathbb{Z}$ with $\{k\}$ being open.
- The identification of $C(\mathbb{Z})$ as a closed subspace of $\ell^{\infty}(\mathbb{Z})$ is simply the identification of functions. So $C(\mathbb{Z})$ will be shift-invariant if and only if the shift on \mathbb{Z} is continuous.
- But then by shifting, $\{k\}$ is onen for every k.
- So actually \mathbb{Z} has the discrete topology, and we just get back $c_{0}(\mathbb{Z})$.

(Hat tip to Vemon Choi for this simple argument).

Did we have to work that hard?

Hold on: I said that $C(K)$ spaces, for countable K, provide simple examples of preduals of ℓ^{1}.

- So could we cleverly choose a (compact, Hausdorff) topology on \mathbb{Z} such that $C(\mathbb{Z})$ provided a shift-invariant predual?

\square

Did we have to work that hard?

Hold on: I said that $C(K)$ spaces, for countable K, provide simple examples of preduals of ℓ^{1}.

- So could we cleverly choose a (compact, Hausdorff) topology on \mathbb{Z} such that $C(\mathbb{Z})$ provided a shift-invariant predual?
- Well, \mathbb{Z} would then be countable and (locally) compact, so it would be a Baire Space, and hence would have some $k \in \mathbb{Z}$ with $\{k\}$ being open.
- The identification of $C(\mathbb{Z})$ as a closed subspace of $\ell^{\infty}(\mathbb{Z})$ is simply
the identification of functions. So $C(\mathbb{Z})$ will be shift-invariant if and
only if the shift on \mathbb{Z} is continuous.
- But then, by shifting, $\{k\}$ is open for every k.
- So actually \mathbb{Z} has the discrete topology, and we just get back
$c_{0}(\mathbb{Z})$.
(Hat tip to Yemon Choi for this simple argument).

Did we have to work that hard?

Hold on: I said that $C(K)$ spaces, for countable K, provide simple examples of preduals of ℓ^{1}.

- So could we cleverly choose a (compact, Hausdorff) topology on \mathbb{Z} such that $C(\mathbb{Z})$ provided a shift-invariant predual?
- Well, \mathbb{Z} would then be countable and (locally) compact, so it would be a Baire Space, and hence would have some $k \in \mathbb{Z}$ with $\{k\}$ being open.
- The identification of $C(\mathbb{Z})$ as a closed subspace of $\ell^{\infty}(\mathbb{Z})$ is simply the identification of functions. So $C(\mathbb{Z})$ will be shift-invariant if and only if the shift on \mathbb{Z} is continuous.
- But then, by shifting, $\{k\}$ is open for every k.
- So actually \mathbb{Z} has the discrete topology, and we just get back $c_{0}(\mathbb{Z})$.
(Hat tip to Yemon Choi for this simple argument)

Did we have to work that hard?

Hold on: I said that $C(K)$ spaces, for countable K, provide simple examples of preduals of ℓ^{1}.

- So could we cleverly choose a (compact, Hausdorff) topology on \mathbb{Z} such that $C(\mathbb{Z})$ provided a shift-invariant predual?
- Well, \mathbb{Z} would then be countable and (locally) compact, so it would be a Baire Space, and hence would have some $k \in \mathbb{Z}$ with $\{k\}$ being open.
- The identification of $C(\mathbb{Z})$ as a closed subspace of $\ell^{\infty}(\mathbb{Z})$ is simply the identification of functions. So $C(\mathbb{Z})$ will be shift-invariant if and only if the shift on \mathbb{Z} is continuous.
- But then, by shifting, $\{k\}$ is open for every k.
- So actually \mathbb{Z} has the discrete topology, and we just get back

> (Hat tip to Yemon Choi for this simple argument).

Did we have to work that hard?

Hold on: I said that $C(K)$ spaces, for countable K, provide simple examples of preduals of ℓ^{1}.

- So could we cleverly choose a (compact, Hausdorff) topology on \mathbb{Z} such that $C(\mathbb{Z})$ provided a shift-invariant predual?
- Well, \mathbb{Z} would then be countable and (locally) compact, so it would be a Baire Space, and hence would have some $k \in \mathbb{Z}$ with $\{k\}$ being open.
- The identification of $C(\mathbb{Z})$ as a closed subspace of $\ell^{\infty}(\mathbb{Z})$ is simply the identification of functions. So $C(\mathbb{Z})$ will be shift-invariant if and only if the shift on \mathbb{Z} is continuous.
- But then, by shifting, $\{k\}$ is open for every k.
- So actually \mathbb{Z} has the discrete topology, and we just get back $c_{0}(\mathbb{Z})$.
(Hat tip to Yemon Choi for this simple argument).

Did we have to work that hard?

Hold on: I said that $C(K)$ spaces, for countable K, provide simple examples of preduals of ℓ^{1}.

- So could we cleverly choose a (compact, Hausdorff) topology on \mathbb{Z} such that $C(\mathbb{Z})$ provided a shift-invariant predual?
- Well, \mathbb{Z} would then be countable and (locally) compact, so it would be a Baire Space, and hence would have some $k \in \mathbb{Z}$ with $\{k\}$ being open.
- The identification of $C(\mathbb{Z})$ as a closed subspace of $\ell^{\infty}(\mathbb{Z})$ is simply the identification of functions. So $C(\mathbb{Z})$ will be shift-invariant if and only if the shift on \mathbb{Z} is continuous.
- But then, by shifting, $\{k\}$ is open for every k.
- So actually \mathbb{Z} has the discrete topology, and we just get back $c_{0}(\mathbb{Z})$.
(Hat tip to Yemon Choi for this simple argument).

Original motivation

A Banach algebra is a Banach space with an algebra product which is contractive: $\|a b\| \leq\|a\|\|b\|$.

- For example, $\ell^{1}(\mathbb{Z})$ with the convolution product.
- More generally, let G be a discrete group, and consider $\ell^{1}(G)$ with the convolution product.
- This example has a predual: $c_{0}(G)$. Furthermore, the algebra product is (separately) weak*-continuous. That is, if $a_{i} \rightarrow$ a weak*, then also $a_{i} b \rightarrow a b$ weak* *, and similarly $b a_{i} \rightarrow b a$.
- We say that $\ell^{1}(G)$ is a dual Banach algebra (with respect to $\left.c_{0}(G)\right)$.
- It's not hard to see that a predual E of $\ell^{1}(\mathbb{Z})$ is shift-invariant if and only if $\ell^{-1}(\mathbb{Z})$ is a dual Banach algebra with respect to E.

Original motivation

A Banach algebra is a Banach space with an algebra product which is contractive: $\|a b\| \leq\|a\|\|b\|$.

- For example, $\ell^{1}(\mathbb{Z})$ with the convolution product.
- More generally, let G be a discrete group, and consider $\ell^{1}(G)$ with the convolution product.
- This example has a predual: $c_{0}(G)$. Furthermore, the algebra product is (separately) weak*-continuous. That is, if $a_{i} \rightarrow$ a weak* then also $a_{j} \mathrm{~b} \rightarrow \mathrm{a}^{\prime}$ weak*, and similarly $\mathrm{Da}_{j} \rightarrow \mathrm{ba}$.
- We say that $\ell^{1}(G)$ is a dual Banach algebra (with respect to $\left.c_{0}(G)\right)$.
- It's not hard to see that a predual E of $\ell^{1}(\mathbb{Z})$ is shift-invariant if and only if $\ell^{1}(\mathbb{Z})$ is a dual Banach algebra with respect to E.

Original motivation

A Banach algebra is a Banach space with an algebra product which is contractive: $\|a b\| \leq\|a\|\|b\|$.

- For example, $\ell^{1}(\mathbb{Z})$ with the convolution product.
- More generally, let G be a discrete group, and consider $\ell^{1}(G)$ with the convolution product.

Original motivation

A Banach algebra is a Banach space with an algebra product which is contractive: $\|a b\| \leq\|a\|\|b\|$.

- For example, $\ell^{1}(\mathbb{Z})$ with the convolution product.
- More generally, let G be a discrete group, and consider $\ell^{1}(G)$ with the convolution product.
- This example has a predual: $c_{0}(G)$. Furthermore, the algebra product is (separately) weak*-continuous. That is, if $a_{i} \rightarrow$ a weak ${ }^{*}$, then also $a_{i} b \rightarrow a b$ weak*, and similarly $b a_{i} \rightarrow b a$.
- We say that $\ell^{1}(G)$ is a dual Banach algebra (with respect to
- It's not hard to see that a predual E of $\ell^{1}(\mathbb{Z})$ is shift-invariant if and only if $\ell^{1}(\mathbb{Z})$ is a dual Banach algebra with respect to E.

Original motivation

A Banach algebra is a Banach space with an algebra product which is contractive: $\|a b\| \leq\|a\|\|b\|$.

- For example, $\ell^{1}(\mathbb{Z})$ with the convolution product.
- More generally, let G be a discrete group, and consider $\ell^{1}(G)$ with the convolution product.
- This example has a predual: $c_{0}(G)$. Furthermore, the algebra product is (separately) weak*-continuous. That is, if $a_{i} \rightarrow$ a weak ${ }^{*}$, then also $a_{i} b \rightarrow a b$ weak *, and similarly $b a_{i} \rightarrow b a$.
- We say that $\ell^{1}(G)$ is a dual Banach algebra (with respect to $\left.c_{0}(G)\right)$.

Original motivation

A Banach algebra is a Banach space with an algebra product which is contractive: $\|a b\| \leq\|a\|\|b\|$.

- For example, $\ell^{1}(\mathbb{Z})$ with the convolution product.
- More generally, let G be a discrete group, and consider $\ell^{1}(G)$ with the convolution product.
- This example has a predual: $c_{0}(G)$. Furthermore, the algebra product is (separately) weak*-continuous. That is, if $a_{i} \rightarrow$ a weak ${ }^{*}$, then also $a_{i} b \rightarrow a b$ weak*, and similarly $b a_{i} \rightarrow b a$.
- We say that $\ell^{1}(G)$ is a dual Banach algebra (with respect to $\left.c_{0}(G)\right)$.
- It's not hard to see that a predual E of $\ell^{1}(\mathbb{Z})$ is shift-invariant if and only if $\ell^{1}(\mathbb{Z})$ is a dual Banach algebra with respect to E.

Unique preduals

A von Neumann algebra is a C^{*}-algebra A which is the isometric dual of some Banach space E.

- Sakai's Theorem then says that A becomes a dual Banach algebra with respect to E.
- Furthermore if also $A=F^{*}$ isometrically, then E and F are isometrically isomorphic, and induce the same weak*-topology on A.
- Another way to state this is: if A and B are von Neumann algebras and $\theta: A \rightarrow B$ is an isometric isomorphism, then necessarily θ is weak*-continuous.
- Pełcynski showed that $L^{\infty}[0,1]$ and ℓ^{∞} are, as Banach space, isomorphic. But of course, $L^{1}[0,1]$ and ℓ^{1} are not isomorphic.

Unique preduals

A von Neumann algebra is a C^{*}-algebra A which is the isometric dual of some Banach space E.

- Sakai's Theorem then says that A becomes a dual Banach algebra with respect to E.
- Furthermore, if also $A=F^{*}$ isometrically, then E and F are isometrically isomorphic, and induce the same weak*-topology on A.
- Another way to state this is: if A and B are von Neumann algebras and $\theta: A \rightarrow B$ is an isometric isomorphism, then necessarily θ is weak*-continuous.
- Pełcynski showed that $L^{\infty}[0,1]$ and ℓ^{∞} are, as Banach space, isomorphic. But of course, $L^{1}[0,1]$ and ℓ^{1} are not isomorphic.

Unique preduals

A von Neumann algebra is a C^{*}-algebra A which is the isometric dual of some Banach space E.

- Sakai's Theorem then says that A becomes a dual Banach algebra with respect to E.
- Furthermore, if also $A=F^{*}$ isometrically, then E and F are isometrically isomorphic, and induce the same weak*-topology on A.
- Another way to state this is: if A and B are von Neumann algebras and $\theta: A \rightarrow B$ is an isometric isomorphism, then necessarily θ is weak*-continuous.
- Pełcynski showed that $L^{\infty}[0,1]$ and ℓ^{∞} are, as Banach space, isomorphic. But of course, $L^{1}[0,1]$ and ℓ^{1} are not isomorphic.

Unique preduals

A von Neumann algebra is a C^{*}-algebra A which is the isometric dual of some Banach space E.

- Sakai's Theorem then says that A becomes a dual Banach algebra with respect to E.
- Furthermore, if also $A=F^{*}$ isometrically, then E and F are isometrically isomorphic, and induce the same weak*-topology on A.
- Another way to state this is: if A and B are von Neumann algebras and $\theta: A \rightarrow B$ is an isometric isomorphism, then necessarily θ is weak*-continuous.
- Pełcynski showed that $L^{\infty}[0,1]$ and ℓ^{∞} are, as Banach space,
isomorphic. But of course, $L^{1}[0,1]$ and ℓ^{1} are not isomorphic.

Unique preduals

A von Neumann algebra is a C^{*}-algebra A which is the isometric dual of some Banach space E.

- Sakai's Theorem then says that A becomes a dual Banach algebra with respect to E.
- Furthermore, if also $A=F^{*}$ isometrically, then E and F are isometrically isomorphic, and induce the same weak*-topology on A.
- Another way to state this is: if A and B are von Neumann algebras and $\theta: A \rightarrow B$ is an isometric isomorphism, then necessarily θ is weak*-continuous.
- Pełcynski showed that $L^{\infty}[0,1]$ and ℓ^{∞} are, as Banach space, isomorphic. But of course, $L^{1}[0,1]$ and ℓ^{1} are not isomorphic.

Unique preduals (cont.)

Theorem (D., Le Pham, White)

Let A be a von Neumann algebra, and let B be a dual Banach algebra. If $\theta: A \rightarrow B$ is an isomorphism (not necessarily isometric) which is also an algebra homomorphism, then necessarily θ is weak*-continuous.

Unique preduals (cont.)

Theorem (D., Le Pham, White)

Let A be a von Neumann algebra, and let B be a dual Banach algebra. If $\theta: A \rightarrow B$ is an isomorphism (not necessarily isometric) which is also an algebra homomorphism, then necessarily θ is weak*-continuous.

Theorem (D.)

Let E be a reflexive Banach space with the approximation property, and denote by $\mathcal{B}(E)$ the algebra of bounded operators on E. Let B be a dual Banach algebra. If $\theta: \mathcal{B}(E) \rightarrow B$ is an isomorphism (not necessarily isometric) which is also an algebra homomorphism, then necessarily θ is weak ${ }^{*}$-continuous.

Unique preduals (cont. 2)

Theorem (D., Le Pham, White)
Let G be a discrete group, and let $E \subseteq \ell^{\infty}(G)$ be a concrete predual for $\ell^{1}(G)$. Suppose that E is a subalgebra of $\ell^{\infty}(G)$, and that $\ell^{1}(G)$ becomes a dual Banach algebra with respect to E. Then $E=c_{0}(G)$.

Of course, the main task of this talk has been to show:
Theorem
$\ell^{1}(\mathbb{Z})$ has a predual, not equal to $c_{0}(\mathbb{Z})$, which turns $\ell^{1}(\mathbb{Z})$ into a dual Banach algebra.

Unique preduals (cont. 2)

Theorem (D., Le Pham, White)
Let G be a discrete group, and let $E \subseteq \ell^{\infty}(G)$ be a concrete predual for $\ell^{1}(G)$. Suppose that E is a subalgebra of $\ell^{\infty}(G)$, and that $\ell^{1}(G)$ becomes a dual Banach algebra with respect to E. Then $E=c_{0}(G)$.

Of course, the main task of this talk has been to show:

Theorem

$\ell^{1}(\mathbb{Z})$ has a predual, not equal to $c_{0}(\mathbb{Z})$, which turns $\ell^{1}(\mathbb{Z})$ into a dual Banach algebra.

For semigroups

Together with Le Pham and White, we showed that for semigroups, the situation is very different.

Theorem

With $S=\mathbb{Z} \times \mathbb{Z}_{+}$, consider the Banach algebra $\ell^{1}(S)$. There is a continuum of preduals of $\ell^{1}(S)$ which all turn $\ell^{1}(S)$ into a dual Banach algebra, and which are all subalgebras of $\ell^{\infty}(S)$.
\square

For semigroups

Together with Le Pham and White, we showed that for semigroups, the situation is very different.

Theorem

With $S=\mathbb{Z} \times \mathbb{Z}_{+}$, consider the Banach algebra $\ell^{1}(S)$. There is a continuum of preduals of $\ell^{1}(S)$ which all turn $\ell^{1}(S)$ into a dual Banach algebra, and which are all subalgebras of $\ell^{\infty}(S)$.

Theorem

Let $S=\mathbb{N}$ equipped with the semigroup product max. Then $\ell^{1}(S)$ is a dual Banach algebra with respect to $c_{0}(S)$. If B is a dual Banach algebra and $\theta: \ell^{1}(S) \rightarrow B$ is an isomorphism which is an algebra homomorphism, then necessarily θ is weak*-continuous.

