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Banach spaces and duality

A first course in Banach spaces (not Hilbert spaces!) will introduce the
Banach spaces `1 = `1(N), and c0 = c0(N):

`1 =
{
(an) : ‖(an)‖1 =

∑
n

|an| <∞
}

c0 =
{
(an) : lim

n
an = 0

}
with ‖(an)‖∞ = sup

n
|an|.

Remember that the dual space E∗ is the collection of bounded linear
maps E → C. Then c∗0 = `1. To be precise, for each f ∈ c∗0 there exists
(fn) ∈ `1 such that

f ((an)) =
∑

n

fnan ((an) ∈ c0),

and with ‖f‖ = ‖(fn)‖1.
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Other preduals of `1

Let K be a compact Hausdorff space; let C(K ) be the Banach space of
continuous functions on K with the supremum norm; let M(K ) be the
space of regular Borel measures on K , with the total variation norm.
Then each member of C(K )∗ arising from integrating against a
member of M(K ). So we can write C(K )∗ = M(K ).
Now suppose that K is countable– we can enumerate K as
K = {kn : n ∈ N} say. Then any µ ∈ M(K ) is countably additive, and so
for f ∈ C(K ), ∫

K
f dµ =

∑
n

f (kn)µ({kn}).

Hence we have an isometric isomorphism θ : `1 → C(K )∗ which sends
a = (an) ∈ `1 to the functional θa ∈ C(K )∗ given by

θa(f ) =
∑

n

f (kn)an (f ∈ C(K )).
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The weak∗-topology
θ : `1 → C(K )∗;a = (an) 7→ θa

θa(f ) =
∑

n

f (kn)an (f ∈ C(K )).

To simplify notation, we shall write 〈·, ·〉 for the dual pairing
`1 × C(K )→ C, so 〈a, f 〉 = θa(f ).
So the isomorphism `1 ∼= C(K )∗ induces a weak∗-topology on `1. For
example, as K is compact, we have non-trivial limiting sequences– say
(kni )→ kn as i →∞.
Write δk for the “point-mass” in `1 at k– that is, the sequence which is 0
except for a 1 in the k th place. Thus for f ∈ C(K ),

lim
i
〈δkni

, f 〉 = lim
i

f
(
kni

)
= f (kn) = 〈δkn , f 〉,

and so δkni
→ δkn weak∗. Of course, this does not hold for the “usual”

weak∗-topology induced by c∗0 = `1.
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Think more abstractly about preduals

Given a Banach space E , a predual for E is a Banach space F
together with an isomorphism (not assumed isometric) θ : E → F ∗.

Note that the map θ is very important.
It seems reasonable to say that two preduals “are the same” if
they induce the same weak∗-topology on E .
As usual, we identify F with a closed subspace of its bidual F ∗∗,
and so we can talk about the image of F under the adjoint map
θ∗ : F ∗∗ → E∗. Call this F0.
Then F0 ⊆ E∗ is a closed subspace such that:

I F0 separates the points of E ;
I every functional µ ∈ F ∗

0 is given by some element of E .

We call such a subspace F0 ⊆ E∗ a concrete predual.
It’s not hard to see that two concrete preduals F0,F1 induce the
same weak∗-topology on E if and only if F0 = F1.
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An “exotic” predual of `1(Z)

I now want to describe, in detail, the construction of a concrete predual
for `1(Z) which has an unusual property– namely, the bilateral shift
S : `1(Z)→ `1(Z) will be weak∗-continuous.
This is joint work with Richard Haydon, Thomas Schlumprecht, and
Stuart White, see arXiv:1101.5696v1 [math.FA].

For an integer n ≥ 1, let b(n) be the number of ones in the binary
expansion of n, so b(1) = b(2) = b(4) = 1, b(3) = b(5) = b(6) = 2,
b(7) = 3 and so on. Set b(0) = 0, and for n < 0, set b(n) =∞.
Let x0 = (2−b(n))n∈Z ∈ `∞(Z), so

x0 =
(
· · · ,0,0,1, 1

2 ,
1
2 ,

1
4 ,

1
2 ,

1
4 ,

1
4 ,

1
8 ,

1
2 , · · ·

)
.

Let F be the closed, shift-invariant subspace of `∞(Z) generated by x0.
So F is the closed linear span of {Sk (x0) : k ∈ Z}.
This will be a predual for `1(Z)– but why?
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Separates points

Given x ∈ `∞(Z), we view x as a function x : Z→ C. Extend this
to a function x : Q→ C by setting x(q) = 0 for q ∈ Q \ Z.
Define τ : `∞(Z)→ `∞(Z) by τ(x)(n) = x(n/2).
We can check that τS = S2τ .
We claim that τ k (x0) ∈ F for every k ≥ 1.

I First prove the identity(
1− 1

2 S
)
(x0)(n) =

∑
j≥1 2−jτ j(x0)(n) (n ∈ Z).

I Then show that (
1− 1

2 S
)
(x0) =

(
1− 1

4 S2
)
τ(x0).

I Then invert to get

τ(x0) =
∑
j≥0

4−jS−2j(1− 1
2 S
)
(x0) ∈ F .
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Separates points ctd.

x0 =
(
· · · ,0,0,1, 1

2 ,
1
2 ,

1
4 ,

1
2 ,

1
4 ,

1
4 ,

1
8 ,

1
2 , · · ·

)
τ(x0) =

(
· · · ,0,0,1,0, 1

2 ,0,
1
2 ,0,

1
4 ,0,

1
2 ,0,

1
4 ,0,

1
4 ,0,

1
8 ,0,

1
2 , · · ·

)
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(
· · · ,0,0,1,0,0,0, 1

2 ,0,0,0,
1
2 ,0,0,0,

1
4 ,0,0,0,

1
2 , · · · )

So for any a = (an) ∈ `1(Z), we see that

lim
k
〈τ k (x0),a〉 = a0.

Hence if 〈x ,a〉 = 0 for all x ∈ F , then certainly a0 = 0.
By shift-invariance, ak = 0 for all k .
So F separates the points of `1(Z).
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Functionals on F
It is rather harder to show that every bounded linear functional F → C
is induced by a member of `1(Z).

For example, a “typical” functional on `∞(Z) which is not given by
an element `1(Z) is the functional

µ : x 7→ lim
n→∞

x(2n).

(To make this converge on all of `∞(Z), limit down an ultrafilter).
Let’s restrict µ to F . It’s enough to compute µ on Sk (x0) for k ∈ Z

µ(Sk (x0)) = lim
n

x0(2n − k) = lim
n

2−b(2n−k) = 2−1−b(−k).

But then note that

〈Sk (x0),
1
2δ0〉 =

1
2

Sk (x0)(0) =
1
2

x0(−k) =
1
2

2−b(−k).

So µ = 1
2δ0 on F .
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Shift-invariant preduals

So we conclude that F is a predual for `1(Z). By construction, it is
shift-invariant, so it follows that S is weak∗-continuous.

By the calculation on the previous slide, we see that

weak∗ − lim
n
δ2n =

1
2
δ0.

This gives but one example of a non-trivial weak∗-limit point.
In particular, F does not give the same weak∗-topology as c0(Z).
There was nothing special about using 2– this could have been
any λ ∈ C with |λ| > 1. So we get an uncountable number of
mutually non-isomorphic preduals.
There was nothing particularly special about using binary
expansion (though this is somewhat less obvious!)
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What Banach space is F?
If I were to give the actually proof that every functional on F is given by
`1(Z), then I would use that `∞(Z) = C(βZ). We’d then check that
there was a partition of βZ \ Z, say{

X (k)
t : t ∈ Z, k ≥ 1

}
∪
{

X (∞)
}
,

such that x ∈ F if and only if

x(ω) =

{
2−kx(t) : ω ∈ X (k)

t ,

0 : ω ∈ X (∞).

It follows that F is a “G-space”, in the sense of Benyamini (Israel J.
Math (1973)). Thus F is, as a Banach space, isomorphic to some
C(K ) space.
So we can calculate the Szlenk index to work out which C(K )
space F is isomorphic to.
Well, it turns out that F is isomorphic to c0.
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Algebraic constraints
Recall that (in the weak∗-topology) δ2n → 1

2δ0.
By shift-invariance, we must also have that δ2n+1 → 1

2δ1, and so
forth.
But then, consider

lim
n

lim
m
δ2n+2m = lim

n

1
2
δ2n =

1
4
δ0.

This is all fine, as {2n : n ∈ N} is sufficiently “sparse”.
But suppose, instead, we had that

lim
n
δ2n =

1
2
δ0.

Then we’d have that

lim
n
δ2n = lim

n
δ2(n+1) =

1
2
δ2,

which would be a contradiction!
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A general theorem

We shall say that J ⊆ Z is “additively sparse” if given t ∈ Z and
r , s ∈ N, we can find N such that, if

j1 + · · ·+ jr = l1 + · · ·+ ls + t ,

with (ji), (li) ⊆ J and N < |j1| < · · · < |jr |,N < |l1| < · · · < |ls|, then
necessarily r = s, t = 0 and ji = li for each i .
Define a multiplication on `1(Z) by δnδm = δn+m.

Theorem
Let J ⊆ Z be additively sparse, and let J = J(1) ∪ · · · ∪ J(r) be a
partition. For each i, let ai ∈ `1(Z) be a power-bounded element with
‖an

i ‖∞ → 0. Then there is a shift-invariant `1(Z) predual E such that
δn → ai weak∗ as n→∞ through J(i).

The example given before has J = {2n : n ∈ N}, r = 1 and a1 = 1
2δ0.
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Further examples

Let J = {2n} and r = 1. Let a1 = 1
2(δ0 + δ1). Thus

a2
1 =

1
4
(δ0 + 2δ1 + δ2), a3

2 =
1
8
(δ0 + 3δ1 + 3δ2 + δ3).

You can check that ‖an
1‖1 = 1 for any n, but that we do have

‖an
1‖∞ → 0.

Some fiddling with the Szlenk index shows that the resulting
predual, in this case, is not isomorphic to c0.
Now set a1 = 5−1/2(δ0 + δ1 − δ2). Then ‖a1‖ = 3/

√
5 > 1, but (if

you know where to look!) this is a power-bounded element. Taking
the Fourier transform shows that ‖an

1‖∞ → 0.
The predual E we construct in this case is only an isomorphic
predual, not an isometric one.
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Did we have to work that hard?

Hold on: I said that C(K ) spaces, for countable K , provide simple
examples of preduals of `1.

So could we cleverly choose a (compact, Hausdorff) topology on
Z such that C(Z) provided a shift-invariant predual?
Well, Z would then be countable and (locally) compact, so it would
be a Baire Space, and hence would have some k ∈ Z with {k}
being open.
The identification of C(Z) as a closed subspace of `∞(Z) is simply
the identification of functions. So C(Z) will be shift-invariant if and
only if the shift on Z is continuous.
But then, by shifting, {k} is open for every k .
So actually Z has the discrete topology, and we just get back
c0(Z).

(Hat tip to Yemon Choi for this simple argument).
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Original motivation

A Banach algebra is a Banach space with an algebra product which is
contractive: ‖ab‖ ≤ ‖a‖‖b‖.

For example, `1(Z) with the convolution product.
More generally, let G be a discrete group, and consider `1(G) with
the convolution product.
This example has a predual: c0(G). Furthermore, the algebra
product is (separately) weak∗-continuous. That is, if ai → a weak∗,
then also aib → ab weak∗, and similarly bai → ba.
We say that `1(G) is a dual Banach algebra (with respect to
c0(G)).
It’s not hard to see that a predual E of `1(Z) is shift-invariant if and
only if `1(Z) is a dual Banach algebra with respect to E .
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Unique preduals

A von Neumann algebra is a C∗-algebra A which is the isometric dual
of some Banach space E .

Sakai’s Theorem then says that A becomes a dual Banach
algebra with respect to E .
Furthermore, if also A = F ∗ isometrically, then E and F are
isometrically isomorphic, and induce the same weak∗-topology on
A.
Another way to state this is: if A and B are von Neumann algebras
and θ : A→ B is an isometric isomorphism, then necessarily θ is
weak∗-continuous.
Pełcynski showed that L∞[0,1] and `∞ are, as Banach space,
isomorphic. But of course, L1[0,1] and `1 are not isomorphic.
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Unique preduals (cont.)

Theorem (D., Le Pham, White)
Let A be a von Neumann algebra, and let B be a dual Banach algebra.
If θ : A→ B is an isomorphism (not necessarily isometric) which is also
an algebra homomorphism, then necessarily θ is weak∗-continuous.

Theorem (D.)
Let E be a reflexive Banach space with the approximation property,
and denote by B(E) the algebra of bounded operators on E. Let B be
a dual Banach algebra. If θ : B(E)→ B is an isomorphism (not
necessarily isometric) which is also an algebra homomorphism, then
necessarily θ is weak∗-continuous.
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Unique preduals (cont. 2)

Theorem (D., Le Pham, White)
Let G be a discrete group, and let E ⊆ `∞(G) be a concrete predual for
`1(G). Suppose that E is a subalgebra of `∞(G), and that `1(G)
becomes a dual Banach algebra with respect to E. Then E = c0(G).

Of course, the main task of this talk has been to show:

Theorem
`1(Z) has a predual, not equal to c0(Z), which turns `1(Z) into a dual
Banach algebra.

Matthew Daws (Leeds) Preduals February 2011 19 / 20



Unique preduals (cont. 2)

Theorem (D., Le Pham, White)
Let G be a discrete group, and let E ⊆ `∞(G) be a concrete predual for
`1(G). Suppose that E is a subalgebra of `∞(G), and that `1(G)
becomes a dual Banach algebra with respect to E. Then E = c0(G).

Of course, the main task of this talk has been to show:

Theorem
`1(Z) has a predual, not equal to c0(Z), which turns `1(Z) into a dual
Banach algebra.

Matthew Daws (Leeds) Preduals February 2011 19 / 20



For semigroups

Together with Le Pham and White, we showed that for semigroups, the
situation is very different.

Theorem
With S = Z× Z+, consider the Banach algebra `1(S). There is a
continuum of preduals of `1(S) which all turn `1(S) into a dual Banach
algebra, and which are all subalgebras of `∞(S).

Theorem
Let S = N equipped with the semigroup product max. Then `1(S) is a
dual Banach algebra with respect to c0(S). If B is a dual Banach
algebra and θ : `1(S)→ B is an isomorphism which is an algebra
homomorphism, then necessarily θ is weak∗-continuous.
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