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Locally compact spaces

Let X be a locally compact (Hausdorff) space.

C0(X ) is the algebra of continuous functions “vanishing at infinity”:
{x ∈ X : |f (x)| ≥ ε} is compact for all ε > 0.
We turn C0(X ) into a vector space via pointwise operations.
We turn C0(X ) into an algebra via pointwise operations.
We give C0(X ) a norm via ‖f‖ = supx∈X |f (x)|.
Then C0(X ) is complete.
We give C0(X ) an involution f 7→ f ∗ via pointwise complex
conjugation.
C∗-identity: ‖f ∗f‖ = ‖f‖2.
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Abstract C∗-Algebras

A complex algebra A,
which has a norm,
which is complete,
which satisfies the C∗-condition: ‖a∗a‖ = ‖a‖2.

Theorem (Gelfand)
Let A be a commutative C∗-algebra. Then there is a locally compact
Hausdorff space X such that A is isomorphic to C0(X ).

“isomorphic” means all the structure is preserved.
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Gelfand theory

A character on A is a non-zero homomorphism φ : A→ C.
Characters are always continuous, indeed, ‖φ‖ ≤ 1 always.
The collection of all characters forms our space X , and we use the
(relative) weak∗-topology to turn X into a toplogical space.
Little exercise: If X is compact, then every character on C(X ) is of
the form: “evaluate at some point of X ”.

Example
Let X be a non-locally compact metric space. This is a “nice” space,
and we can form Cb(X ) the algebra of bounded continuous functions.
The “character space” of Cb(X ) is then the Stone-Cech
compactification of X , the largest compact space containing a dense
copy of X .
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A little category theory

Suppose X and Y are compact, and α : X → Y is a continuous map.
Then we get an algebra homomorphism α∗ : C(Y )→ C(X ) given by

α∗(f )(x) = f (α(x)) (f ∈ C(X ), x ∈ X ).

Theorem
Let φ : C(Y )→ C(X ) be a unital ∗-homomorphism. Then there is a
continuous map α : X → Y with φ = α∗.
In this way, the category of compact Hausdorff spaces and the
opposite to the category of unital commutative C∗-algebras are
isomorphic.

To construct α, just observe that φ, composed with evaluation at x ∈ X ,
gives a character on C(Y ), that is, a point α(x) ∈ Y .
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Locally compact case
Let Cb(X ) be the bounded continuous functions on X . Then f : X → Y
induces a ∗-homomorphism θ : C0(Y )→ Cb(X ); a 7→ a ◦ f .
Not every ∗-homomorphism arises in this way: an arbitrary
θ : C0(Y )→ Cb(X ) gives a continuous map f : X → Y∞ to the
one-point compactification of Y .
To single out those maps which “never take the value∞” you need to
look at “non-degenerate ∗-homomorphisms”:

lin
{
θ(a)b : a ∈ C0(Y ),b ∈ C0(X )

}
= C0(X ).

Then we get:

The category of locally
compact spaces with
continuous maps

anti←−−−−−→
isomorphic

The category of com-
mutative C∗-algebras
and non-degenerate
∗-homomorphisms
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Multiplier algebras
The multiplier algebra of a C∗-algebra A is the largest C∗-algebra B
which contains A as a two-sided ideal, in an “essential” way:

For b ∈ B, ab = ba = 0 (a ∈ A) =⇒ b = 0.

Write M(A) for the multiplier algebra (there are various constructions).

If A = C0(X ) then M(A) = Cb(X ).
If A = K(H), compact operators on a Hilbert space, then
M(A) = B(H), all operators on a Hilbert space.

A ∗-homomorphism θ : A→ M(B) is non-degenerate when

lin
{
θ(a)b : a ∈ A,b ∈ B

}
= B.

Then θ extends to a ∗-homomorphism M(A)→ M(B) and in this way
we can compose two non-degenerate ∗-homomorphisms, and get
another non-degenerate ∗-homomorphism.
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Intuition

We say that a “morphism” (a la Woronowicz) A→ B is a
non-degenerate ∗-homomorphism θ : A→ M(B).
Intuition: “This corresponds to a continuous function from the
non-commutative space of B to the non-commutative space of A.”
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Motivation: semi-groups, compactifications

A semitopological semigroup is a semigroup S which has a
topology, such that the product map S × S → S is separately
continuous.
For example: take R∞ the one-point compactification of R, with
algebraic operations∞+ t = t +∞ =∞.
E.g. let S be a sub-semigroup of the semigroup of contractive
linear maps on a Hilbert space.
Or any reflexive Banach space.
In fact, all compact semitopological semigroups arise in this way.
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Motivation: A tiny look at quantum groups

Question
How do we fit a group into the “Gelfand” framework?

Let G be a compact group; so have G ×G→ G.
Same as a ∗-homomorphism
∆ : C(G)→ C(G ×G) = C(G)⊗ C(G).
The product is associative if and only if (∆⊗ id)∆ = (id⊗∆)∆.

Let SC(S × S) be the space of separately continuous functions on a
compact space S. So for a compact semitopological semigroup, we
can capture the product as a ∗-homomorphism C(S)→ SC(S × S).

Question
How can we think of SC(S × S) purely in terms of the commutative
C∗-algebra C(S)?
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Fubini

Fix a compact space X . Let M(X ) = C(X )∗ be the space of regular
finite Borel measures.

Theorem (Grothendieck)
Let f ∈ SC(X × X ) and µ ∈ M(X ). Then

(id⊗µ)f : s 7→
∫

X f (s, t) dµ(t)
(µ⊗ id)f : s 7→

∫
X f (t , s) dµ(t)

are in C(X ).

For λ ∈ M(X ), we have λ((id⊗µ)(f )) = µ((λ⊗ id)(f )).

So each f ∈ SC(X × X ) well-defines a bilinear map

M(X )×M(X )→ C.

Furthermore, this is separately weak∗-continuous in each variable.
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Abstract picture of SC(X × X ), take 1

We can reverse this:

SC(X × X ) ∼= Bilσ(M(X ),M(X ); C)

the space of separately weak∗-continuous, bilinear maps. (For the
other implication, just evaluate at points.)

The projective tensor product of Banach spaces E ,F is a
completion of the vector space E ⊗ F .
Universal property: Bil(E ,F ; G) = B(E⊗̂F ,G).
If A,B are commutative C∗-algebras, then this norm agrees with
the norm on A∗ ⊗ B∗ induced by pairing with A⊗ B, the minimal
C∗-tensor product.
So, (A∗⊗̂B∗)∗ = A∗∗⊗B∗∗ (consult your favourite book on tensor
products of von Neumann algebras, aka W ∗-algebras.)

Matthew Daws (Leeds) Separate continuity November 2014 12 / 22



Abstract picture of SC(X × X ), take 2

Setting A = C(X ),

SC(X × X ) = {x ∈ A∗∗⊗A∗∗ : (µ⊗ id)x , (id⊗µ)x ∈ A (µ ∈ A∗)}.

The RHS makes sense for any C∗-algebra A.
Do we win?
What if A = K(H), compact operators?
Then A∗ is the trace-class operators, and A∗∗ = B(H), all
operators.
So A∗∗⊗A∗∗ ∼= B(H ⊗ H).
Let x ∈ B(H ⊗ H) be the “swap map”.
Then x slices into K(H), but x2 = 1 does not.
So RHS is not an algebra, in general.
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From an idea from Ozawa

Let A be a unital (for convenience) C∗-algebra.
Write SC(A× A) = {x ∈ A∗∗⊗A∗∗ : (µ⊗ id)x , (id⊗µ)x ∈ A (µ ∈ A∗)}.

Theorem (D. 2014)
Let A ⊆ B(H) be the universal representation, so also A∗∗ ⊆ B(H). For
x ∈ A∗∗⊗A∗∗, the following are equivalent:

1 x , x∗x , xx∗ ∈ SC(A× A);
2 x ∈ M(A⊗K(H)) ∩M(K(H)⊗ A);
3 pick o.n. basis (ei)i∈I for H, so B(H) ∼= MI . Regarding

x ∈ A∗∗⊗B(H) ∼= MI(A∗∗), we have that x = (xij) ∈MI(A), and
that

∑
i xjix∗ji and

∑
i x∗ij xij converge in norm; and “the other way

around”.
The collection of such x forms a C∗-subalgebra of SC(A× A), denoted

A
sc
⊗ A, which contains all other C∗-subalgebras.
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Sketch of the proof?
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For von Neumann algebras

A C∗-algebra which is a dual space;
equivalently, closed in the SOT on B(H).
Commutative examples: L∞(µ) for a measure µ.
By Gelfand, L∞(µ) ∼= C(K ), for a Hyperstonian K .
E.g. `∞(N) = C(βN) where βN is the Stone-Cech
compactification.
Problem: SC(L∞(X )× L∞(X )) ⊆ L∞(X )∗∗⊗L∞(X )∗∗ which is
“huge”.
Feels like L∞(X × X ) = L∞(X )⊗L∞(X ) should already be large
enough to contain SC(K × K ).
(In fact, previous work shows it is, in the commutative case).

Matthew Daws (Leeds) Separate continuity November 2014 16 / 22



Pushing down

Let M be a von Neumann algebra, with predual M∗.
L∞ and L1 duality; or B(H) and trace-class operators.
Then (M∗)∗ = M and so M∗ is the bidual of M∗.
So there is the canonical map M∗ → M∗, from a Banach space to
its bidual.
You can check that the Banach space adjoint, M∗∗ → M, is a
(weak∗-weak∗-continuous) ∗-homomorphism.
So we get a (weak∗-weak∗-continuous) ∗-homomorphism
M∗∗⊗M∗∗ → M⊗M.
Restrict this to θsc : SC(M ×M)→ M⊗M.
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Some slicing

Given x ∈ M⊗M, we can always “slice” by members of M∗:

〈(µ⊗ id)(x), λ〉 = 〈x , µ⊗ λ〉 = 〈(id⊗λ)(x), µ〉.

This is analogous to integrating against one variable of an L∞(X × X )
function.
We can do something similar for φ ∈ M∗:

〈(φ⊗ id)(x), µ〉 := 〈φ, (id⊗µ)(x)〉 (µ ∈ M∗),

and similarly on the other side.
Finally, we define dual pairings between M∗⊗̂M∗ and M⊗M:

〈φ⊗� ψ, x〉 = 〈φ, (id⊗ψ)(x)〉
〈φ⊗♦ ψ, x〉 = 〈ψ, (φ⊗ id)(x)〉
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Links with weak compactness

For x ∈ M⊗M, consider the “orbit maps”

Lx ,Rx : M∗ → M, µ 7→ (µ⊗ id)(x), (id⊗µ)(x).

Theorem (Arens, folklore)
We have that 〈φ⊗� ψ, x〉 = 〈φ⊗♦ ψ, x〉 for all φ, ψ if and only if Lx
(equivalently, Rx ) is a weakly compact operator. Write wap(M⊗M) for
such x.

This is linked to the Arens products: how do we extend the product on
a Banach algebra A to its bidual A∗∗ such that A→ A∗∗ is a
homomorphism, and we have some sort of one-sided weak∗-continuity.
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Links with SC

Given x ∈ M⊗M we might try to “lift” to some y ∈ SC(M ×M)
such that θsc(y) = x .
E.g. define 〈y , φ⊗ ψ〉 = 〈φ⊗� ψ, x〉.
Or use ♦?

Theorem (D.)
This idea works if and only if x ∈ wap(M⊗M). Indeed, θsc maps into
wap(M⊗M) and is a bijection between SC(M ×M) and wap(M⊗M).

We can of course restrict θsc to M
sc
⊗ M and so view this as the

maximal subalgebra of wap(M⊗M).
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Apply to L∞(G)

Let G be a locally compact group and form L1(G)∫
G
|f | <∞ (f ∗ g)(s) =

∫
G

f (t)g(t−1s) dt

all with respect to the (left) Haar measure.
Then L1(G) is a Banach algebra, and so the dual L1(G)∗ = L∞(G)
becomes an L1(G) module:

〈f · F ,g〉 = 〈F ,g ∗ f 〉 (F ∈ L∞(G), f ,g ∈ L1(G)).

Classical theory: F ∈ wap(G) if and only if the orbit map
L1(G)→ L∞(G); f 7→ f · F is weakly compact.
Can equivalently use F · f .
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Into our framework

We have that L∞(G)⊗L∞(G) = L∞(G ×G).
Define ∆ : L∞(G)→ L∞(G ×G) by

∆(F )(s, t) = F (st) (F ∈ L∞(G), s, t ∈ G).

Then f · F = (id⊗f )∆(F ) and F · f = (f ⊗ id)∆(F ).
So F ∈ wap(G) if and only if ∆(F ) ∈ wap(L∞(G)⊗L∞(G)).
In this classical case, this is already an algebra.
My motivation was to study analogues of wap for
non-commutative algebras.
So we now have a definition; just have to study it for e.g. the
Fourier algebra, quantum groups etc.
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