A non-commutative notion of separate continuity

Matthew Daws

Leeds

November 2014

Matthew Daws (Leeds)

Separate continuity

November 2014 1 / 22

The Sec. 74

Locally compact spaces

Let X be a locally compact (Hausdorff) space.

- C₀(X) is the algebra of continuous functions "vanishing at infinity": {x ∈ X : |f(x)| ≥ ε} is compact for all ε > 0.
- We turn $C_0(X)$ into a vector space via pointwise operations.
- We turn $C_0(X)$ into an *algebra* via pointwise operations.
- We give $C_0(X)$ a norm via $||f|| = \sup_{x \in X} |f(x)|$.
- Then $C_0(X)$ is *complete*.
- We give C₀(X) an involution f → f* via pointwise complex conjugation.
- C^* -identity: $||f^*f|| = ||f||^2$.

イロト 不得 トイヨト イヨト 二日

Abstract C*-Algebras

- A complex algebra A,
- which has a norm,
- which is complete,
- which satisfies the *C*^{*}-condition: $||a^*a|| = ||a||^2$.

Theorem (Gelfand)

Let A be a commutative C^* -algebra. Then there is a locally compact Hausdorff space X such that A is isomorphic to $C_0(X)$.

• "isomorphic" means all the structure is preserved.

Gelfand theory

- A character on A is a non-zero homomorphism $\phi : A \to \mathbb{C}$.
- Characters are always continuous, indeed, $\|\phi\| \leq 1$ always.
- The collection of all characters forms our space *X*, and we use the (relative) weak*-topology to turn *X* into a toplogical space.
- Little exercise: If X is compact, then every character on C(X) is of the form: "evaluate at some point of X".

Example

Let X be a non-locally compact metric space. This is a "nice" space, and we can form $C_b(X)$ the algebra of *bounded* continuous functions. The "character space" of $C_b(X)$ is then the *Stone-Cech compactification* of X, the largest compact space containing a dense copy of X.

< ロ > < 同 > < 回 > < 回 >

A little category theory

Suppose *X* and *Y* are compact, and $\alpha : X \to Y$ is a continuous map. Then we get an algebra homomorphism $\alpha^* : C(Y) \to C(X)$ given by

$$\alpha^*(f)(x) = f(\alpha(x)) \qquad (f \in C(X), x \in X).$$

Theorem

Let $\phi : C(Y) \to C(X)$ be a unital *-homomorphism. Then there is a continuous map $\alpha : X \to Y$ with $\phi = \alpha^*$.

In this way, the category of compact Hausdorff spaces and the opposite to the category of unital commutative *C**-algebras are isomorphic.

To construct α , just observe that ϕ , composed with evaluation at $x \in X$, gives a character on C(Y), that is, a point $\alpha(x) \in Y$.

Locally compact case

Let $C^b(X)$ be the bounded continuous functions on X. Then $f : X \to Y$ induces a *-homomorphism $\theta : C_0(Y) \to C^b(X); a \mapsto a \circ f$. Not every *-homomorphism arises in this way: an arbitrary $\theta : C_0(Y) \to C^b(X)$ gives a continuous map $f : X \to Y_\infty$ to the one-point compactification of Y.

To single out those maps which "never take the value ∞ " you need to look at "non-degenerate *-homomorphisms":

$$\overline{\mathsf{lin}}\big\{\theta(a)b: a\in C_0(Y), b\in C_0(X)\big\}=C_0(X).$$

Then we get:

Multiplier algebras

The *multiplier algebra* of a C*-algebra A is the largest C*-algebra B which contains A as a two-sided ideal, in an "essential" way:

For
$$b \in B$$
, $ab = ba = 0$ $(a \in A) \implies b = 0$.

Write M(A) for the multiplier algebra (there are various constructions).

- If $A = C_0(X)$ then $M(A) = C^b(X)$.
- If A = K(H), compact operators on a Hilbert space, then M(A) = B(H), all operators on a Hilbert space.

A *-homomorphism $\theta : A \rightarrow M(B)$ is non-degenerate when

$$\overline{\text{lin}}\{\theta(a)b: a \in A, b \in B\} = B.$$

Then θ extends to a *-homomorphism $M(A) \to M(B)$ and in this way we can compose two non-degenerate *-homomorphisms, and get another non-degenerate *-homomorphism.

Matthew Daws (Leeds)

・ロト ・ 四ト ・ ヨト ・ ヨト

Intuition

- We say that a "morphism" (a la Woronowicz) $A \rightarrow B$ is a non-degenerate *-homomorphism $\theta : A \rightarrow M(B)$.
- Intuition: "This corresponds to a continuous function from the non-commutative space of B to the non-commutative space of A."

B N A B N

Motivation: semi-groups, compactifications

- A semitopological semigroup is a semigroup S which has a topology, such that the product map S × S → S is separately continuous.
- For example: take \mathbb{R}_{∞} the one-point compactification of \mathbb{R} , with algebraic operations $\infty + t = t + \infty = \infty$.
- E.g. let *S* be a sub-semigroup of the semigroup of contractive linear maps on a Hilbert space.
- Or any reflexive Banach space.
- In fact, all compact semitopological semigroups arise in this way.

Motivation: A tiny look at quantum groups

Question

How do we fit a group into the "Gelfand" framework?

- Let G be a compact group; so have $G \times G \rightarrow G$.
- Same as a *-homomorphism $\Delta: C(G) \rightarrow C(G \times G) = C(G) \otimes C(G).$
- The product is associative if and only if $(\Delta \otimes id)\Delta = (id \otimes \Delta)\Delta$.

Let $SC(S \times S)$ be the space of separately continuous functions on a compact space *S*. So for a compact semitopological semigroup, we can capture the product as a *-homomorphism $C(S) \rightarrow SC(S \times S)$.

Question

How can we think of $SC(S \times S)$ purely in terms of the commutative C^* -algebra C(S)?

э.

Fubini

Fix a compact space X. Let $M(X) = C(X)^*$ be the space of regular finite Borel measures.

Theorem (Grothendieck) Let $f \in SC(X \times X)$ and $\mu \in M(X)$. Then $(\operatorname{id} \otimes \mu)f : s \mapsto \int_X f(s,t) d\mu(t)$ are in C(X). $(\mu \otimes \operatorname{id})f : s \mapsto \int_X f(t,s) d\mu(t)$ are in C(X). For $\lambda \in M(X)$, we have $\lambda((\operatorname{id} \otimes \mu)(f)) = \mu((\lambda \otimes \operatorname{id})(f))$.

So each $f \in SC(X \times X)$ well-defines a bilinear map

 $M(X) \times M(X) \rightarrow \mathbb{C}.$

Furthermore, this is separately weak*-continuous in each variable.

Abstract picture of $SC(X \times X)$, take 1

We can reverse this:

$SC(X \times X) \cong Bil_{\sigma}(M(X), M(X); \mathbb{C})$

the space of separately weak*-continuous, bilinear maps. (For the other implication, just evaluate at points.)

- The projective tensor product of Banach spaces E, F is a completion of the vector space E ⊗ F.
- Universal property: $Bil(E, F; G) = \mathcal{B}(E \widehat{\otimes} F, G)$.
- If A, B are commutative C*-algebras, then this norm agrees with the norm on A* ⊗ B* induced by pairing with A ⊗ B, the minimal C*-tensor product.
- So, (A^{*} ⊗ B^{*})^{*} = A^{**} ⊗ B^{**} (consult your favourite book on tensor products of von Neumann algebras, aka W^{*}-algebras.)

< 口 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Abstract picture of $SC(X \times X)$, take 2

Setting A = C(X),

 $\textit{SC}(\textit{X} \times \textit{X}) = \{ \textit{x} \in \textit{A}^{**} \overline{\otimes} \textit{A}^{**} : (\mu \otimes id)\textit{x}, (id \otimes \mu)\textit{x} \in \textit{A} \ (\mu \in \textit{A}^{*}) \}.$

- The RHS makes sense for any *C**-algebra *A*.
- Do we win?
- What if $A = \mathcal{K}(H)$, compact operators?
- Then *A*^{*} is the trace-class operators, and *A*^{**} = *B*(*H*), all operators.
- So $A^{**}\overline{\otimes}A^{**} \cong \mathcal{B}(H \otimes H)$.
- Let $x \in \mathcal{B}(H \otimes H)$ be the "swap map".
- Then *x* slices into $\mathcal{K}(H)$, but $x^2 = 1$ does not.
- So RHS is not an algebra, in general.

From an idea from Ozawa

Let A be a unital (for convenience) C^* -algebra.

Write $SC(A \times A) = \{x \in A^{**} \otimes A^{**} : (\mu \otimes id)x, (id \otimes \mu)x \in A \ (\mu \in A^{*})\}.$

Theorem (D. 2014)

Let $A \subseteq \mathcal{B}(H)$ be the universal representation, so also $A^{**} \subseteq \mathcal{B}(H)$. For $x \in A^{**} \otimes A^{**}$, the following are equivalent:

1)
$$x, x^*x, xx^* \in SC(A \times A);$$

$$2 x \in M(A \otimes \mathcal{K}(H)) \cap M(\mathcal{K}(H) \otimes A);$$

³ pick o.n. basis $(e_i)_{i \in I}$ for H, so $\mathcal{B}(H) \cong \mathbb{M}_I$. Regarding $x \in A^{**} \overline{\otimes} \mathcal{B}(H) \cong \mathbb{M}_I(A^{**})$, we have that $x = (x_{ij}) \in \mathbb{M}_I(A)$, and that $\sum_i x_{ji} x_{ji}^*$ and $\sum_i x_{ij}^* x_{ij}$ converge in norm; and "the other way around".

The collection of such x forms a C^* -subalgebra of $SC(A \times A)$, denoted $A \overset{sc}{\otimes} A$, which contains all other C^* -subalgebras.

3

Sketch of the proof?

Matthew Daws (Leeds)

2

イロト イヨト イヨト イヨト

For von Neumann algebras

- A C*-algebra which is a dual space;
- equivalently, closed in the SOT on $\mathcal{B}(H)$.
- Commutative examples: $L^{\infty}(\mu)$ for a measure μ .
- By Gelfand, $L^{\infty}(\mu) \cong C(K)$, for a *Hyperstonian K*.
- E.g. ℓ[∞](ℕ) = C(βℕ) where βℕ is the Stone-Cech compactification.
- Problem: $SC(L^{\infty}(X) \times L^{\infty}(X)) \subseteq L^{\infty}(X)^{**} \overline{\otimes} L^{\infty}(X)^{**}$ which is "huge".
- Feels like L[∞](X × X) = L[∞](X) ⊗L[∞](X) should already be large enough to contain SC(K × K).
- (In fact, previous work shows it is, in the commutative case).

Pushing down

Let *M* be a von Neumann algebra, with predual M_* .

- L^{∞} and L^{1} duality; or $\mathcal{B}(H)$ and trace-class operators.
- Then $(M_*)^* = M$ and so M^* is the *bidual* of M_* .
- So there is the canonical map $M_* \to M^*$, from a Banach space to its bidual.
- You can check that the Banach space adjoint, *M*^{**} → *M*, is a (weak*-weak*-continuous) *-homomorphism.
- So we get a (weak*-weak*-continuous) *-homomorphism
 M** ⊗ M** → M⊗M.
- Restrict this to θ_{sc} : $SC(M \times M) \rightarrow M \overline{\otimes} M$.

Some slicing

Given $x \in M \overline{\otimes} M$, we can always "slice" by members of M_* :

$$\langle (\mu \otimes \mathsf{id})(\mathbf{x}), \lambda \rangle = \langle \mathbf{x}, \mu \otimes \lambda \rangle = \langle (\mathsf{id} \otimes \lambda)(\mathbf{x}), \mu \rangle.$$

This is analogous to integrating against one variable of an $L^{\infty}(X \times X)$ function.

We can do something similar for $\phi \in M^*$:

$$\langle (\phi \otimes \mathsf{id})(x), \mu \rangle := \langle \phi, (\mathsf{id} \otimes \mu)(x) \rangle \qquad (\mu \in M_*),$$

and similarly on the other side.

Finally, we define dual pairings between $M^* \widehat{\otimes} M^*$ and $M \overline{\otimes} M$:

イロト イポト イラト イラト

Links with weak compactness

For $x \in M \overline{\otimes} M$, consider the "orbit maps"

$$L_x, R_x: M_* \to M, \quad \mu \mapsto (\mu \otimes id)(x), \ (id \otimes \mu)(x).$$

Theorem (Arens, folklore)

We have that $\langle \phi \otimes_{\Box} \psi, x \rangle = \langle \phi \otimes_{\Diamond} \psi, x \rangle$ for all ϕ, ψ if and only if L_x (equivalently, R_x) is a weakly compact operator. Write wap($M \otimes M$) for such x.

This is linked to the Arens products: how do we extend the product on a Banach algebra *A* to its bidual A^{**} such that $A \rightarrow A^{**}$ is a homomorphism, and we have some sort of one-sided weak*-continuity.

4 3 5 4 3 5 5

Links with SC

- Given $x \in M \overline{\otimes} M$ we might try to "lift" to some $y \in SC(M \times M)$ such that $\theta_{sc}(y) = x$.
- E.g. define $\langle y, \phi \otimes \psi \rangle = \langle \phi \otimes_{\Box} \psi, x \rangle$.
- Or use ◊?

Theorem (D.)

This idea works if and only if $x \in wap(M \otimes M)$. Indeed, θ_{sc} maps into $wap(M \otimes M)$ and is a bijection between $SC(M \times M)$ and $wap(M \otimes M)$.

We can of course restrict θ_{sc} to $M \overset{sc}{\otimes} M$ and so view this as the maximal subalgebra of wap($M \overset{sc}{\otimes} M$).

3

A B A A B A

Apply to $L^{\infty}(G)$

• Let G be a locally compact group and form $L^1(G)$

$$\int_G |f| < \infty$$
 $(f * g)(s) = \int_G f(t)g(t^{-1}s) dt$

all with respect to the (left) Haar measure.

Then L¹(G) is a Banach algebra, and so the dual L¹(G)* = L[∞](G) becomes an L¹(G) module:

$$\langle f \cdot F, g \rangle = \langle F, g * f \rangle$$
 $(F \in L^{\infty}(G), f, g \in L^{1}(G)).$

- Classical theory: $F \in wap(G)$ if and only if the orbit map $L^1(G) \to L^{\infty}(G)$; $f \mapsto f \cdot F$ is weakly compact.
- Can equivalently use $F \cdot f$.

不可能 不可能

Into our framework

• We have that $L^{\infty}(G)\overline{\otimes}L^{\infty}(G) = L^{\infty}(G \times G)$.

• Define
$$\Delta: L^{\infty}(G) \to L^{\infty}(G \times G)$$
 by

$$\Delta(F)(s,t) = F(st)$$
 $(F \in L^{\infty}(G), s, t \in G).$

- Then $f \cdot F = (id \otimes f)\Delta(F)$ and $F \cdot f = (f \otimes id)\Delta(F)$.
- So $F \in wap(G)$ if and only if $\Delta(F) \in wap(L^{\infty}(G) \overline{\otimes} L^{\infty}(G))$.
- In this classical case, this is already an algebra.
- My motivation was to study analogues of wap for non-commutative algebras.
- So we now have a definition; just have to study it for e.g. the Fourier algebra, quantum groups etc.

イロト イポト イヨト イヨト 二日