A non-commutative notion of separate continuity

Matthew Daws
Leeds
November 2014

Locally compact spaces

Let X be a locally compact (Hausdorff) space.

- $C_{0}(X)$ is the algebra of continuous functions "vanishing at infinity": $\{x \in X:|f(x)| \geq \epsilon\}$ is compact for all $\epsilon>0$.
- We turn $C_{0}(X)$ into a vector space via pointwise operations.
- We turn $C_{0}(X)$ into an algebra via pointwise operations.
- We give $C_{0}(X)$ a norm via $\|f\|=\sup _{x \in X}|f(x)|$.
- Then $C_{0}(X)$ is complete.
- We give $C_{0}(X)$ an involution $f \mapsto f^{*}$ via pointwise complex conjugation.
- C^{*}-identity: $\left\|f^{*} f\right\|=\|f\|^{2}$.

Abstract C^{*}-Algebras

- A complex algebra A,
- which has a norm,
- which is complete,
- which satisfies the C^{*}-condition: $\left\|a^{*} a\right\|=\|a\|^{2}$.

Theorem (Gelfand)

Let A be a commutative C^{*}-algebra. Then there is a locally compact Hausdorff space X such that A is isomorphic to $C_{0}(X)$.

- "isomorphic" means all the structure is preserved.

Gelfand theory

- A character on A is a non-zero homomorphism $\phi: A \rightarrow \mathbb{C}$.
- Characters are always continuous, indeed, $\|\phi\| \leq 1$ always.
- The collection of all characters forms our space X, and we use the (relative) weak*-topology to turn X into a toplogical space.
- Little exercise: If X is compact, then every character on $C(X)$ is of the form: "evaluate at some point of X ".

Example

Let X be a non-locally compact metric space. This is a "nice" space, and we can form $C_{b}(X)$ the algebra of bounded continuous functions.
The "character space" of $C_{b}(X)$ is then the Stone-Cech compactification of X, the largest compact space containing a dense copy of X.

A little category theory

Suppose X and Y are compact, and $\alpha: X \rightarrow Y$ is a continuous map. Then we get an algebra homomorphism $\alpha^{*}: C(Y) \rightarrow \boldsymbol{C}(X)$ given by

$$
\alpha^{*}(f)(x)=f(\alpha(x)) \quad(f \in C(X), x \in X) .
$$

Abstract

Theorem Let $\phi: C(Y) \rightarrow C(X)$ be a unital $*$-homomorphism. Then there is a continuous map $\alpha: X \rightarrow Y$ with $\phi=\alpha^{*}$. In this way, the category of compact Hausdorff spaces and the opposite to the category of unital commutative C^{*}-algebras are isomorphic.

To construct α, just observe that ϕ, composed with evaluation at $x \in X$, gives a character on $C(Y)$, that is, a point $\alpha(x) \in Y$.

Locally compact case

Let $C^{b}(X)$ be the bounded continuous functions on X. Then $f: X \rightarrow Y$ induces a $*$-homomorphism $\theta: C_{0}(Y) \rightarrow C^{b}(X) ; a \mapsto a \circ f$. Not every *-homomorphism arises in this way: an arbitrary $\theta: C_{0}(Y) \rightarrow C^{b}(X)$ gives a continuous map $f: X \rightarrow Y_{\infty}$ to the one-point compactification of Y.
To single out those maps which "never take the value ∞ " you need to look at "non-degenerate *-homomorphisms":

$$
\overline{\operatorname{lin}}\left\{\theta(a) b: a \in C_{0}(Y), b \in C_{0}(X)\right\}=C_{0}(X) .
$$

Then we get:

The category of locally compact spaces with continuous maps	$\stackrel{\text { isomorphic }}{ }$

The category of commutative C^{*}-algebras and non-degenerate *-homomorphisms

Multiplier algebras

The multiplier algebra of a C^{*}-algebra A is the largest C^{*}-algebra B which contains A as a two-sided ideal, in an "essential" way:

$$
\text { For } b \in B, \quad a b=b a=0 \quad(a \in A) \Longrightarrow b=0
$$

Write $M(A)$ for the multiplier algebra (there are various constructions).

- If $A=C_{0}(X)$ then $M(A)=C^{b}(X)$.
- If $A=\mathcal{K}(H)$, compact operators on a Hilbert space, then $M(A)=\mathcal{B}(H)$, all operators on a Hilbert space.

A $*$-homomorphism $\theta: A \rightarrow M(B)$ is non-degenerate when

$$
\overline{\operatorname{lin}}\{\theta(a) b: a \in A, b \in B\}=B
$$

Then θ extends to a *-homomorphism $M(A) \rightarrow M(B)$ and in this way we can compose two non-degenerate $*$-homomorphisms, and get another non-degenerate $*$-homomorphism.

Intuition

- We say that a "morphism" (a la Woronowicz) $A \rightarrow B$ is a non-degenerate $*$-homomorphism $\theta: A \rightarrow M(B)$.
- Intuition: "This corresponds to a continuous function from the non-commutative space of B to the non-commutative space of A."

Motivation: semi-groups, compactifications

- A semitopological semigroup is a semigroup S which has a topology, such that the product map $S \times S \rightarrow S$ is separately continuous.
- For example: take \mathbb{R}_{∞} the one-point compactification of \mathbb{R}, with algebraic operations $\infty+t=t+\infty=\infty$.
- E.g. let S be a sub-semigroup of the semigroup of contractive linear maps on a Hilbert space.
- Or any reflexive Banach space.
- In fact, all compact semitopological semigroups arise in this way.

Motivation: A tiny look at quantum groups

Question

How do we fit a group into the "Gelfand" framework?

- Let G be a compact group; so have $G \times G \rightarrow G$.
- Same as a *-homomorphism

$$
\Delta: C(G) \rightarrow C(G \times G)=C(G) \otimes C(G) .
$$

- The product is associative if and only if $(\Delta \otimes \mathrm{id}) \Delta=(\mathrm{id} \otimes \Delta) \Delta$.

Let $S C(S \times S)$ be the space of separately continuous functions on a compact space S. So for a compact semitopological semigroup, we can capture the product as a $*$-homomorphism $C(S) \rightarrow S C(S \times S)$.

Question

How can we think of $S C(S \times S)$ purely in terms of the commutative C^{*}-algebra $C(S)$?

Fubini

Fix a compact space X. Let $M(X)=C(X)^{*}$ be the space of regular finite Borel measures.

Theorem (Grothendieck)
Let $f \in S C(X \times X)$ and $\mu \in M(X)$. Then

$$
\begin{aligned}
& (\text { id } \otimes \mu) f: s \mapsto \int_{X} f(s, t) d \mu(t) \\
& \left(\mu \otimes \text { id) } f: s \mapsto \int_{X} f(t, s) d \mu(t)\right.
\end{aligned} \quad \text { are in } C(X) .
$$

For $\lambda \in M(X)$, we have $\lambda(($ id $\otimes \mu)(f))=\mu((\lambda \otimes \mathrm{id})(f))$.
So each $f \in \operatorname{SC}(X \times X)$ well-defines a bilinear map

$$
M(X) \times M(X) \rightarrow \mathbb{C}
$$

Furthermore, this is separately weak*-continuous in each variable.

Abstract picture of $S C(X \times X)$, take 1

We can reverse this:

$$
S C(X \times X) \cong \operatorname{Bi}_{\sigma}(M(X), M(X) ; \mathbb{C})
$$

the space of separately weak*-continuous, bilinear maps. (For the other implication, just evaluate at points.)

- The projective tensor product of Banach spaces E, F is a completion of the vector space $E \otimes F$.
- Universal property: $\operatorname{Bil}(E, F ; G)=\mathcal{B}(E \widehat{\otimes} F, G)$.
- If A, B are commutative C^{*}-algebras, then this norm agrees with the norm on $A^{*} \otimes B^{*}$ induced by pairing with $A \otimes B$, the minimal C^{*}-tensor product.
- So, $\left(A^{*} \widehat{\otimes} B^{*}\right)^{*}=A^{* *} \bar{\otimes} B^{* *}$ (consult your favourite book on tensor products of von Neumann algebras, aka W^{*}-algebras.)

Abstract picture of $S C(X \times X)$, take 2

Setting $A=C(X)$,

$$
S C(X \times X)=\left\{x \in A^{* *} \bar{\otimes} \boldsymbol{A}^{* *}:(\mu \otimes \mathrm{id}) x,(\text { id } \otimes \mu) x \in A\left(\mu \in A^{*}\right)\right\} .
$$

- The RHS makes sense for any C^{*}-algebra A.
- Do we win?
- What if $A=\mathcal{K}(H)$, compact operators?
- Then A^{*} is the trace-class operators, and $A^{* *}=\mathcal{B}(H)$, all operators.
- So $A^{* *} \bar{\otimes} \boldsymbol{A}^{* *} \cong \mathcal{B}(H \otimes H)$.
- Let $x \in \mathcal{B}(H \otimes H)$ be the "swap map".
- Then x slices into $\mathcal{K}(H)$, but $x^{2}=1$ does not.
- So RHS is not an algebra, in general.

From an idea from Ozawa

Let A be a unital (for convenience) C^{*}-algebra.
Write $\operatorname{SC}(A \times A)=\left\{x \in A^{* *} \bar{\otimes} A^{* *}:(\mu \otimes \mathrm{id}) x,(\mathrm{id} \otimes \mu) x \in A\left(\mu \in A^{*}\right)\right\}$.

Theorem (D. 2014)

Let $A \subseteq \mathcal{B}(H)$ be the universal representation, so also $A^{* *} \subseteq \mathcal{B}(H)$. For $x \in A^{* *} \bar{\otimes} A^{* *}$, the following are equivalent:
(1) $x, x^{*} x, x x^{*} \in S C(A \times A)$;
(2) $x \in M(A \otimes \mathcal{K}(H)) \cap M(\mathcal{K}(H) \otimes A)$;
(0. pick o.n. basis $\left(e_{i}\right)_{i \in 1}$ for H, so $\mathcal{B}(H) \cong \mathbb{M}_{1}$. Regarding $x \in A^{* *} \bar{\otimes} \mathcal{B}(H) \cong \mathbb{M}_{l}\left(A^{* *}\right)$, we have that $x=\left(x_{i j}\right) \in \mathbb{M}_{l}(A)$, and that $\sum_{i} x_{j i} x_{j i}^{*}$ and $\sum_{i} x_{i j}^{*} x_{i j}$ converge in norm; and "the other way around".
The collection of such x forms a C^{*}-subalgebra of $\operatorname{SC}(A \times A)$, denoted $A \stackrel{\text { sc }}{\otimes} A$, which contains all other C^{*}-subalgebras.

Sketch of the proof?

For von Neumann algebras

- A C^{*}-algebra which is a dual space;
- equivalently, closed in the SOT on $\mathcal{B}(H)$.
- Commutative examples: $L^{\infty}(\mu)$ for a measure μ.
- By Gelfand, $L^{\infty}(\mu) \cong C(K)$, for a Hyperstonian K.
- E.g. $\ell^{\infty}(\mathbb{N})=C(\beta \mathbb{N})$ where $\beta \mathbb{N}$ is the Stone-Cech compactification.
- Problem: $S C\left(L^{\infty}(X) \times L^{\infty}(X)\right) \subseteq L^{\infty}(X)^{* *} \bar{\otimes} L^{\infty}(X)^{* *}$ which is "huge".
- Feels like $L^{\infty}(X \times X)=L^{\infty}(X) \bar{\otimes} L^{\infty}(X)$ should already be large enough to contain $S C(K \times K)$.
- (In fact, previous work shows it is, in the commutative case).

Pushing down

Let M be a von Neumann algebra, with predual M_{*}.

- L^{∞} and L^{1} duality; or $\mathcal{B}(H)$ and trace-class operators.
- Then $\left(M_{*}\right)^{*}=M$ and so M^{*} is the bidual of M_{*}.
- So there is the canonical map $M_{*} \rightarrow M^{*}$, from a Banach space to its bidual.
- You can check that the Banach space adjoint, $M^{* *} \rightarrow M$, is a (weak*-weak*-continuous) *-homomorphism.
- So we get a (weak*-weak*-continuous) $*$-homomorphism $M^{* *} \bar{\otimes} M^{* *} \rightarrow M \bar{\otimes} M$.
- Restrict this to $\theta_{s c}: S C(M \times M) \rightarrow M \bar{\otimes} M$.

Some slicing

Given $x \in M \bar{\otimes} M$, we can always "slice" by members of M_{*} :

$$
\langle(\mu \otimes \mathrm{id})(x), \lambda\rangle=\langle x, \mu \otimes \lambda\rangle=\langle(\mathrm{id} \otimes \lambda)(x), \mu\rangle
$$

This is analogous to integrating against one variable of an $L^{\infty}(X \times X)$ function.
We can do something similar for $\phi \in M^{*}$:

$$
\langle(\phi \otimes \mathrm{id})(x), \mu\rangle:=\langle\phi,(\mathrm{id} \otimes \mu)(x)\rangle \quad\left(\mu \in M_{*}\right)
$$

and similarly on the other side.
Finally, we define dual pairings between $M^{*} \widehat{\otimes} M^{*}$ and $M \otimes M$:

$$
\begin{aligned}
& \left\langle\phi \otimes_{\square} \psi, x\right\rangle=\langle\phi,(\mathrm{id} \otimes \psi)(x)\rangle \\
& \left\langle\phi \otimes_{\diamond} \psi, x\right\rangle=\langle\psi,(\phi \otimes \mathrm{id})(x)\rangle
\end{aligned}
$$

Links with weak compactness

For $x \in M \bar{\otimes} M$, consider the "orbit maps"

$$
L_{x}, R_{x}: M_{*} \rightarrow M, \quad \mu \mapsto(\mu \otimes \mathrm{id})(x),(\mathrm{id} \otimes \mu)(x)
$$

Theorem (Arens, folklore)

We have that $\left\langle\phi \otimes_{\square} \psi, x\right\rangle=\left\langle\phi \otimes_{\diamond} \psi, x\right\rangle$ for all ϕ, ψ if and only if L_{x} (equivalently, R_{X}) is a weakly compact operator. Write wap $(M \bar{\otimes} M)$ for such x.

This is linked to the Arens products: how do we extend the product on a Banach algebra A to its bidual $A^{* *}$ such that $A \rightarrow A^{* *}$ is a homomorphism, and we have some sort of one-sided weak*-continuity.

Links with SC

- Given $x \in M \bar{\otimes} M$ we might try to "lift" to some $y \in S C(M \times M)$ such that $\theta_{s c}(y)=x$.
- E.g. define $\langle y, \phi \otimes \psi\rangle=\left\langle\phi \otimes_{\square} \psi, x\right\rangle$.
- Or use \diamond ?

Theorem (D.)

This idea works if and only if $x \in \operatorname{wap}(M \otimes M)$. Indeed, $\theta_{s c}$ maps into wap $(M \otimes M)$ and is a bijection between $S C(M \times M)$ and wap $(M \bar{\otimes} M)$.

We can of course restrict $\theta_{s c}$ to $M \stackrel{\text { sc }}{\otimes} M$ and so view this as the maximal subalgebra of $\operatorname{wap}(M \otimes M)$.

Apply to $L^{\infty}(G)$

- Let G be a locally compact group and form $L^{1}(G)$

$$
\int_{G}|f|<\infty \quad(f * g)(s)=\int_{G} f(t) g\left(t^{-1} s\right) d t
$$

all with respect to the (left) Haar measure.

- Then $L^{1}(G)$ is a Banach algebra, and so the dual $L^{1}(G)^{*}=L^{\infty}(G)$ becomes an $L^{1}(G)$ module:

$$
\langle f \cdot F, g\rangle=\langle F, g * f\rangle \quad\left(F \in L^{\infty}(G), f, g \in L^{1}(G)\right) .
$$

- Classical theory: $F \in \operatorname{wap}(G)$ if and only if the orbit map $L^{1}(G) \rightarrow L^{\infty}(G) ; f \mapsto f \cdot F$ is weakly compact.
- Can equivalently use $F \cdot f$.

Into our framework

- We have that $L^{\infty}(G) \bar{\otimes} L^{\infty}(G)=L^{\infty}(G \times G)$.
- Define $\Delta: L^{\infty}(G) \rightarrow L^{\infty}(G \times G)$ by

$$
\Delta(F)(s, t)=F(s t) \quad\left(F \in L^{\infty}(G), s, t \in G\right)
$$

- Then $f \cdot F=(\mathrm{id} \otimes f) \Delta(F)$ and $F \cdot f=(f \otimes \mathrm{id}) \Delta(F)$.
- So $F \in \operatorname{wap}(G)$ if and only if $\Delta(F) \in \operatorname{wap}\left(L^{\infty}(G) \bar{\otimes} L^{\infty}(G)\right)$.
- In this classical case, this is already an algebra.
- My motivation was to study analogues of wap for non-commutative algebras.
- So we now have a definition; just have to study it for e.g. the Fourier algebra, quantum groups etc.

