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Obligatory non-commutative topology

Theorem (Gelfand)

Let A be a unital commutative C∗-algebra, and let ΦA be the collection of
characters on A, given the relative weak∗-topology. Then ΦA is a compact
Hausdorff space, and the map

G : A→ C (ΦA); G(a)(ϕ) = ϕ(a),

is an isometric isomorphism.

Furthermore, a ∗-homomorphism θ : A→ B between unital C∗-algebras is always
given by a continuous map φ : ΦB → ΦA with

GB ◦ θ ◦ G−1A (f ) = f ◦ φ (f ∈ C (ΦA)).

So, in principle, studying compact spaces and continuous maps between them is
the same as studying commutative C∗-algebras.
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Some (vague) motivation

I’m going to come back to the ideas of the previous slide (repeatedly).

But for now let’s just take it as (vague) motivation for looking at various
operator algebras.

In particular, I’ll look both a locally compact space G , for which we have a
choice of C0(G ) and C b(G );

and at measured spaces (X , µ) where it’s natural to look at L∞(X ).

As the other talks in this series have looked at Banach algebras, I’ll start
instead there.
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Locally compact groups

Let G be a locally compact group, and consider C0(G ), C b(G ) and L∞(G ) (left
Haar measure). These are two C∗-algebras and a von Neumann algebra: they
depend only on the topological and measure space properties of G .

For example, in the case when G is countable and discrete, these algebras
capture nothing of interest about the group.

We turn L1(G ) into a Banach algebra for the convolution product:

(f ∗ g)(s) =

∫
G

f (t)g(t−1s) dt.

This does remember the structure of G , in the following sense:

Theorem (Wendel)

If L1(G ) and L1(H) are isometrically isomorphic as Banach algebras, then G is, as
a topological group, isomorphic to H.
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At the Operator algebra level

Can we equip L∞(G ) with “extra structure” so that it remembers G ?

Define a map ∆ : L∞(G )→ L∞(G × G ) by

∆(F )(s, t) = F (st) (F ∈ L∞(G ), s, t ∈ G ).

This is a unital, injective, ∗-homomorphism which is normal (weak∗-continuous).

The pre-adjoint is a map L1(G × G )→ L1(G ). As L1(G )⊗ L1(G ) embeds into
L1(G × G ), we get a bilinear map on L1(G ). This is actually the convolution
product, as

〈F ,∆∗(f ⊗ g)〉 = 〈∆(F ), f ⊗ g〉 =

∫
G×G

F (st)f (s)g(t) ds dt

=

∫
G

F (t)

∫
G

f (s)g(s−1t) ds dt = 〈F , f ∗ g〉.
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Interpretation

We can think of (L∞(G ),∆) as an object which remembers G .

Indeed, ∆ is “co-associative” in that (∆⊗ id)∆ = (id⊗∆)∆ as maps
L∞(G )→ L∞(G × G × G ), as

(∆⊗ id)∆(F )(s, t, r) = F ((st)r), (id⊗∆)∆(F )(s, t, r) = F (s(tr)).

A pair (M,∆) with M a von Neumann algebra and ∆ : M → M⊗M
coassociative is a “Hopf-von Neumann algebra”.

Not all commutative examples come from L∞(G ).

Another interpretation is that L1(G ) is a particularly nice Banach algebra:
it’s dual is a von Neumann algebra, and the dual of the product “respects”
the structure of L∞(G ). Compare the notion of an “F-algebra”
(“Lau-algebra”).
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Amenability

A topologically left invariant mean on G is a state M on L∞(G ) with
M(f ∗ F ) = M(F ) for F ∈ L∞(G ) and f ∈ L1(G ) with f ≥ 0,

∫
f = 1.

Given f ∈ L1(G ) let f̃ (s) = ∇(s−1)f (s−1) with ∇ the modular function;
then f 7→ f̃ is an isometric linear anti-homomorphism on L1(G ).

We calculate:

f ∗ F (s) =

∫
f (t)F (t−1s) dt =

∫
f (t−1)∇(t−1)F (ts) dt = F · f̃ ,

the module action of L1(G ) on L∞(G ).

Using ∆ this is (f̃ ⊗ id)∆(F ).

So M is a state with, for any f ∈ L1(G ),F ∈ L∞(G ),

〈M, (f ⊗ id)∆(F )〉 = 〈M,F 〉〈1, f 〉 ⇔ (id⊗M)∆(F ) = 〈M,F 〉1.

Non-commutative: Can’t talk about points of course. . .
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Towards the Fourier algebra: group algebras

We let G act on L2(G ) by the left-regular representation:(
λ(s)ξ

)
(t) = ξ(s−1t) (ξ ∈ L2(G ), s, t ∈ G ).

The s−1 arises to make G 7→ B(H); s 7→ λ(s) a group homomorphism.

We can integrate this to get a contractive homomorphism
λ : L1(G )→ B(L2(G )). The action of L1(G ) on L2(G ) is just convolution:

λ(f )ξ(t) =

∫
G

f (s)λ(s)ξ(t) =

∫
G

f (s)ξ(s−1t) ds.

Let the norm closure of L1(G ) in B(L2(G )) be C∗r (G ), the (reduced) group
C∗-algebra. The weak-operator closure is VN(G ), the group von Neumann
algebra. Equivalently, VN(G ) is {λ(s) : s ∈ G}′′.

We can similarly form the right-regular representation ρ(s)ξ(t) = ξ(ts)∇(s)1/2

leading to right group von Neumann algebra VNr (G ). Then VN(G )′ = VNr (G )
and VNr (G )′ = VN(G ).
(Particularly short proofs of this may be sent to the speaker on a postcard.)
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As a Hopf von Neumann algebra

We claim that there is a normal, unital injective ∗-homomorphism
∆ : VN(G )→ VN(G × G ) satisfying

∆(λ(s)) = λ(s)⊗ λ(s) = λ(s, s).

Here we identify VN(G )⊗VN(G ) with VN(G × G ). If ∆ exists, then it’s uniquely
defined by this property.

Define Ŵ : L2(G × G )→ L2(G × G ) by

Ŵ ξ(s, t) = ξ(ts, t) (ξ ∈ L2(G × G ), ξ, η ∈ G ).

Then Ŵ is unitary, and(
Ŵ ∗(1⊗ λ(r))Ŵ ξ

)
(s, t) =

(
(1⊗ λ(r))Ŵ ξ

)
(t−1s, t)

= (Ŵ ξ)(t−1s, r−1t) = ξ(r−1tt−1s, r−1t)

= (λ(r)⊗ λ(r))ξ(s, t).
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Definition of ∆

So we could define ∆ by

∆(x) = Ŵ ∗(1⊗ x)Ŵ (x ∈ VN(G )).

Then obviously ∆ is an injective, unital, normal ∗-homomorphism, and
∆(λ(s)) = λ(s)⊗ λ(s), so by normality, ∆ must map into VN(G × G ).

Obviously (∆⊗ id)∆ = (id⊗∆)∆.

So (VN(G ),∆) is a Hopf von Neumann algebra, and hence the pre-adjoint of ∆
turns the predual of VN(G ) into a Banach algebra.
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The Fourier Algebra
Let A(G ) be the predual of VN(G ).

So A(G ) is the (unique) Banach space such that A(G )∗ = VN(G ).

As {λ(s) : s ∈ G} has weak∗-dense linear span in VN(G ), for ω ∈ A(G ), the
values

ω(s) := 〈λ(s), ω〉 (s ∈ G )

completely determine ω.

As G → VN(G ); s 7→ λ(s) is SOT continuous, s 7→ ω(s) is continuous.

We identify ω with this continuous function, and so realise A(G ) as a space
of continuous functions.

Another concrete realisation of the predual is as a quotient of the trace-class
operators on L2(G ). For ξ, η ∈ L2(G ) let ωξ,η be the normal functional
VN(G ) 3 x 7→ (xξ|η).

Then

ωξ,η(s) = (λ(s)ξ|η) =

∫
G

ξ(s−1t)η(t) dt =⇒ ωξ,η ∈ C0(G ).
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The Fourier Algebra

So A(G ) is a subspace of C0(G ).

But the norm comes from A(G )∗ = VN(G ); the map A(G )→ C0(G ) is
norm-decreasing and has dense range.

We use the coproduct ∆ to turn A(G ) into a Banach algebra

〈λ(s), ω1 ? ω2〉 := 〈∆(λ(s)), ω1 ⊗ ω2〉 = 〈λ(s)⊗ λ(s), ω1 ⊗ ω2〉 = ω1(s)ω2(s).

Here I use “?” for a product, not to denote convolution.

Indeed, we see that the product is the point-wise product. A(G )→ C0(G ) is
also an algebra homomorphism.

This is Eymard’s Fourier algebra.

[Walter] If A(G ) and A(H) are isometrically isomorphic, then G is
isomorphic to (maybe the opposite of) H. If we insist on completely
isometric, we have that G is isomorphic to H.
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For abelian groups

If G is abelian, we can form the Pontryagin dual Ĝ :

the collection of all continuous characters G → T;

with group product the pointwise product (φ1φ2)(s) = φ1(s)φ2(s).

with topology given by uniform convergence on compacta.

We then have the Fourier transform:

F : L2(G )→ L2(Ĝ ); F(f )(φ) =

∫
G

f (s)φ(s) ds

If we normalise the Haar measures correctly, F is unitary.

the dual of Z is T, where θ ∈ [0, 2π) parameterises the character
Z 3 n 7→ e inθ;

the dual of R is R, where x ∈ R parameterises the character R 3 t 7→ e itx .
You need a 2π somewhere to get the normalisation correct.
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The Fourier Transform

We regard L∞(Ĝ ) as also acting on L2(Ĝ ), by multiplication.

Then we have a ∗-isomorphism

VN(G )→ L∞(Ĝ ) x 7→ F ◦ x ◦ F−1,

(On integrable functions, this will reduce to (some variant of) the familiar Fourier
transform formula.)

This ∗-isomorphism is normal, and so induces an isomorphism A(G ) ∼= L1(Ĝ ).

Our intuition is that A(G ), even for non-abelian G , can be thought of as being
the L1 algebra on the “group” Ĝ .
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Amenability for A(G )

Theorem (Dunkl–Ramirez, Granirer, Renaud)

For any G there is a state M ∈ VN(G )∗ with (id⊗M)∆(x) = 〈M, x〉1 for
x ∈ VN(G ).

So Ĝ is always amenable.

Theorem (Leptin)

A(G ) has a bounded approximate identity if and only if G is amenable.

Of course, L1(G ) always has a bounded approximate identity.
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Duality between G and Ĝ

Given a homomorphism G → H we can define a homomorphism Ĥ → Ĝ .
These establishes an anti-equivalence of categories.

Pontryagin duality: ˆ̂G = G in a canonical fashion (biduality functor is
naturally equivalent to the identity.)

We have seen that A(G ) behaves “like” it is L1(Ĝ ).

Can we make this more precise? Single out a collection of objects, which
include A(G ) and L1(G ), which has a (bi)duality theory, and forms a
category.

Work of e.g. Takesaki, Tatsuuma, Stinespring, later Enock, Schwarz, Kac,
Vainermann lead to “Kac algebras”: Hopf von Neumann algebras (M,∆)
with many other “gadgets”.

While this works, it is complicated, and Woronowicz’s notion of a compact
quantum group does not fit into this framework: this is where we next look.
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Unitary implementing the coproduct

In defining ∆ on VN(G ) I made use of a unitary Ŵ . Set

W = σŴ ∗σ =⇒ W ξ(s, t) = ξ(s, s−1t),

where σ ∈ B(L2(G × G )) is the “swap map” σ(ξ)(s, t) = ξ(t, s).

For F ∈ L∞(G ) acting on L2(G ) by multiplication,

W ∗(1⊗ F )W ξ(s, t) = (1⊗ F )W ξ(s, st) = F (st)W ξ(s, st) = F (st)ξ(s, t),

and so, again, W ∗(1⊗ F )W = ∆(F ).
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Where does W live?

W ξ(s, t) = ξ(s, s−1t)

Informally, given a von Neumann algebra M, we think of L∞(G )⊗M as
being bounded measurable functions G → M.

Then s 7→ λ(s) is even SOT continuous, so defines Λ ∈ L∞(G )⊗VN(G ) say,
which acts on ξ ⊗ η as

Λ(ξ ⊗ η)(s) = ξ(s)λ(s)η under L2(G × G ) = L2(G , L2(G )),

=⇒ Λ(ξ ⊗ η)(s, t) = ξ(s)η(s−1t) = W (ξ ⊗ η)(s, t).

So W “is” the left-regular representation, and W ∈ L∞(G )⊗VN(G ).

More carefully, we could use Tomita’s theorem and check that W commutes
with F ⊗ ρ(s) ∈ L∞(G )⊗VNr (G ) so
W ∈ L∞(G )′⊗VNr (G )′ = L∞(G )⊗VN(G ).
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Using W ∈ L∞(G )⊗VN(G )

The map λ : L1(G )→ VN(G ) is actually

λ(f ) = (f ⊗ id)(W ) (f ∈ L1(G )).

This should be true given the informal thinking on the previous slide!

If ξ, η ∈ L2(G ) and f = ξη ∈ L1(G ), then f is ωξ,η restricted to
L∞(G ) ⊆ B(L2(G )) and

(
(ωξ,η ⊗ id)W γ

∣∣δ) =
(
W (ξ ⊗ γ)

∣∣η ⊗ δ) =

∫
G×G

ξ(s)γ(s−1t)η(s)δ(t) ds dt

=

∫
G×G

f (s)γ(s−1t)δ(t) ds dt =
(
f ∗ γ

∣∣δ).
Thus indeed (ωξ,η ⊗ id)W = λ(f ).
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For the dual

Ŵ ξ(s, t) = ξ(ts, t)

Similarly, we calculate (ωξ,η ⊗ id)(Ŵ ):(
(ωξ,η ⊗ id)(Ŵ )γ

∣∣δ) =
(
Ŵ (ξ ⊗ γ)

∣∣η ⊗ δ)
=

∫
G×G

ξ(ts)γ(t)η(s)δ(t) ds dt =

∫
G

(λ(t−1)ξ|η)γ(t)δ(t) dt.

So (ωξ,η ⊗ id)(Ŵ ) is the operator on L2(G ) of multiplication by the
continuous function t 7→ ω(t−1) := (λ(t−1)ξ|η).

So up to an inverse, this is the embedding of A(G ) into C0(G ) ⊆ L∞(G ).

So W allows us to reconstruct L∞(G ),VN(G ), L1(G ),A(G ) their products
and the maps between them.
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Summary

Introduced L1(G ) and A(G ) from a von Neumann algebra perspective.

Motivated, a little, that these are “dual” to each other:

I Both from quite a “formal” level;
I Also at the level of how proofs works.

Saw how a single unitary operator essentially stores all the information.

What’s next:

We’ve focused on von Neumann algebras: but arguably the topology is more
basic than the measure theory. So we should be looking at C∗-algebras.

Haven’t yet mentioned quantum groups.
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