Locally compact quantum groups 1. Locally compact groups from an (operator) algebra perspective

Matthew Daws

Leeds

Fields, May 2014

A .

Obligatory non-commutative topology

Theorem (Gelfand)

Let A be a unital commutative C^{*}-algebra, and let Φ_A be the collection of characters on A, given the relative weak^{*}-topology. Then Φ_A is a compact Hausdorff space, and the map

$$\mathcal{G}: \mathcal{A}
ightarrow \mathcal{C}(\Phi_{\mathcal{A}}); \quad \mathcal{G}(\mathbf{a})(\varphi) = \varphi(\mathbf{a}),$$

is an isometric isomorphism.

Furthermore, a *-homomorphism $\theta : A \to B$ between unital C*-algebras is always given by a continuous map $\phi : \Phi_B \to \Phi_A$ with

$$\mathcal{G}_B \circ \theta \circ \mathcal{G}_A^{-1}(f) = f \circ \phi \qquad (f \in C(\Phi_A)).$$

So, in principle, studying compact spaces and continuous maps between them is the same as studying commutative C^* -algebras.

Some (vague) motivation

- I'm going to come back to the ideas of the previous slide (repeatedly).
- But for now let's just take it as (vague) motivation for looking at various operator algebras.
- In particular, I'll look both a locally compact space G, for which we have a choice of C₀(G) and C^b(G);
- and at measured spaces (X, μ) where it's natural to look at $L^{\infty}(X)$.
- As the other talks in this series have looked at Banach algebras, I'll start instead there.

- 32

(人間) トイヨト イヨト

Locally compact groups

Let G be a locally compact group, and consider $C_0(G)$, $C^b(G)$ and $L^{\infty}(G)$ (left Haar measure). These are two C*-algebras and a von Neumann algebra: they depend only on the topological and measure space properties of G.

• For example, in the case when G is countable and discrete, these algebras capture nothing of interest about the *group*.

We turn $L^1(G)$ into a Banach algebra for the convolution product:

$$(f*g)(s) = \int_G f(t)g(t^{-1}s) dt.$$

This *does* remember the structure of G, in the following sense:

Theorem (Wendel)

If $L^1(G)$ and $L^1(H)$ are isometrically isomorphic as Banach algebras, then G is, as a topological group, isomorphic to H.

At the Operator algebra level

Can we equip $L^{\infty}(G)$ with "extra structure" so that it remembers G? Define a map $\Delta : L^{\infty}(G) \to L^{\infty}(G \times G)$ by

$$\Delta(F)(s,t) = F(st)$$
 $(F \in L^{\infty}(G), s, t \in G).$

This is a unital, injective, *-homomorphism which is normal (weak*-continuous). The pre-adjoint is a map $L^1(G \times G) \to L^1(G)$. As $L^1(G) \otimes L^1(G)$ embeds into $L^1(G \times G)$, we get a bilinear map on $L^1(G)$. This is actually the convolution product, as

$$\langle F, \Delta_*(f \otimes g) \rangle = \langle \Delta(F), f \otimes g \rangle = \int_{G \times G} F(st)f(s)g(t) \, ds \, dt \ = \int_G F(t) \int_G f(s)g(s^{-1}t) \, ds \, dt = \langle F, f * g \rangle.$$

Interpretation

- We can think of $(L^{\infty}(G), \Delta)$ as an object which remembers G.
- Indeed, Δ is "co-associative" in that $(\Delta \otimes id)\Delta = (id \otimes \Delta)\Delta$ as maps $L^{\infty}(G) \rightarrow L^{\infty}(G \times G \times G)$, as

 $(\Delta \otimes id)\Delta(F)(s,t,r) = F((st)r), \quad (id \otimes \Delta)\Delta(F)(s,t,r) = F(s(tr)).$

- A pair (M, Δ) with M a von Neumann algebra and Δ : M → M ⊗M coassociative is a "Hopf-von Neumann algebra".
- Not all commutative examples come from $L^{\infty}(G)$.
- Another interpretation is that L¹(G) is a particularly nice Banach algebra: it's dual is a von Neumann algebra, and the dual of the product "respects" the structure of L[∞](G). Compare the notion of an "F-algebra" ("Lau-algebra").

Amenability

- A topologically left invariant mean on G is a state M on $L^{\infty}(G)$ with M(f * F) = M(F) for $F \in L^{\infty}(G)$ and $f \in L^{1}(G)$ with $f \ge 0, \int f = 1$.
- Given f ∈ L¹(G) let f̃(s) = ∇(s⁻¹)f(s⁻¹) with ∇ the modular function; then f → f̃ is an isometric linear anti-homomorphism on L¹(G).
- We calculate:

$$f * F(s) = \int f(t)F(t^{-1}s) dt = \int f(t^{-1})\nabla(t^{-1})F(ts) dt = F \cdot \tilde{f},$$

the module action of $L^1(G)$ on $L^{\infty}(G)$.

- Using Δ this is $(\tilde{f} \otimes id)\Delta(F)$.
- So M is a state with, for any $f \in L^1(G), F \in L^{\infty}(G)$,

 $\langle M, (f \otimes \mathrm{id})\Delta(F) \rangle = \langle M, F \rangle \langle 1, f \rangle \quad \Leftrightarrow \quad (\mathrm{id} \otimes M)\Delta(F) = \langle M, F \rangle 1.$

• Non-commutative: Can't talk about points of course...

Towards the Fourier algebra: group algebras

We let G act on $L^2(G)$ by the left-regular representation:

$$ig(\lambda(s)\xiig)(t)=\xi(s^{-1}t)\qquad (\xi\in L^2(G),s,t\in G).$$

The s^{-1} arises to make $G \mapsto B(H)$; $s \mapsto \lambda(s)$ a group homomorphism.

We can integrate this to get a contractive homomorphism $\lambda : L^1(G) \to B(L^2(G))$. The action of $L^1(G)$ on $L^2(G)$ is just convolution:

$$\lambda(f)\xi(t) = \int_G f(s)\lambda(s)\xi(t) = \int_G f(s)\xi(s^{-1}t) \ ds.$$

Let the norm closure of $L^1(G)$ in $B(L^2(G))$ be $C_r^*(G)$, the (reduced) group C*-algebra. The weak-operator closure is VN(G), the group von Neumann algebra. Equivalently, VN(G) is $\{\lambda(s) : s \in G\}''$.

We can similarly form the right-regular representation $\rho(s)\xi(t) = \xi(ts)\nabla(s)^{1/2}$ leading to right group von Neumann algebra $VN_r(G)$. Then $VN(G)' = VN_r(G)$ and $VN_r(G)' = VN(G)$.

(Particularly short proofs of this may be sent to the speaker on a postcard.)

As a Hopf von Neumann algebra

We claim that there is a normal, unital injective *-homomorphism $\Delta: VN(G) \rightarrow VN(G \times G)$ satisfying

$$\Delta(\lambda(s)) = \lambda(s) \otimes \lambda(s) = \lambda(s,s).$$

Here we identify $VN(G) \otimes VN(G)$ with $VN(G \times G)$. If Δ exists, then it's uniquely defined by this property.

Define $\hat{W}: L^2(G \times G) \to L^2(G \times G)$ by

$$\hat{W}\xi(s,t) = \xi(ts,t) \qquad (\xi \in L^2(G \times G), \xi, \eta \in G).$$

Then \hat{W} is unitary, and

$$egin{aligned} & ig(\hat{W}^*(1\otimes\lambda(r))\hat{W}\xiig)(s,t) = ig((1\otimes\lambda(r))\hat{W}\xiig)(t^{-1}s,t) \ &= ig(\hat{W}\xiig)(t^{-1}s,r^{-1}t) = \xi(r^{-1}tt^{-1}s,r^{-1}t) \ &= (\lambda(r)\otimes\lambda(r))\xi(s,t). \end{aligned}$$

- 3

- 4 同 6 4 日 6 4 日 6

Definition of Δ

So we could *define* Δ by

$$\Delta(x) = \hat{W}^*(1 \otimes x)\hat{W} \qquad (x \in VN(G)).$$

Then obviously Δ is an injective, unital, normal *-homomorphism, and $\Delta(\lambda(s)) = \lambda(s) \otimes \lambda(s)$, so by normality, Δ must map into $VN(G \times G)$. Obviously $(\Delta \otimes id)\Delta = (id \otimes \Delta)\Delta$.

So $(VN(G), \Delta)$ is a Hopf von Neumann algebra, and hence the pre-adjoint of Δ turns the predual of VN(G) into a Banach algebra.

イロト イポト イヨト イヨト 二日

The Fourier Algebra

Let A(G) be the predual of VN(G).

- So A(G) is the (unique) Banach space such that $A(G)^* = VN(G)$.
- As {λ(s) : s ∈ G} has weak*-dense linear span in VN(G), for ω ∈ A(G), the values

$$\omega(s) := \langle \lambda(s), \omega \rangle \qquad (s \in G)$$

completely determine ω .

- As $G \to VN(G)$; $s \mapsto \lambda(s)$ is SOT continuous, $s \mapsto \omega(s)$ is continuous.
- We identify ω with this continuous function, and so realise A(G) as a space of continuous functions.
- Another concrete realisation of the predual is as a quotient of the trace-class operators on L²(G). For ξ, η ∈ L²(G) let ω_{ξ,η} be the normal functional VN(G) ∋ x ↦ (xξ|η).

Then

$$\omega_{\xi,\eta}(s) = (\lambda(s)\xi|\eta) = \int_G \xi(s^{-1}t)\overline{\eta(t)} \ dt \implies \omega_{\xi,\eta} \in C_0(G).$$

The Fourier Algebra

• So A(G) is a subspace of $C_0(G)$.

- But the norm comes from A(G)^{*} = VN(G); the map A(G) → C₀(G) is norm-decreasing and has dense range.
- We use the coproduct Δ to turn A(G) into a Banach algebra

$$\langle \lambda(\boldsymbol{s}), \omega_1 \star \omega_2 \rangle := \langle \Delta(\lambda(\boldsymbol{s})), \omega_1 \otimes \omega_2 \rangle = \langle \lambda(\boldsymbol{s}) \otimes \lambda(\boldsymbol{s}), \omega_1 \otimes \omega_2 \rangle = \omega_1(\boldsymbol{s}) \omega_2(\boldsymbol{s}).$$

Here I use " \star " for a product, not to denote convolution.

- Indeed, we see that the product is the point-wise product. $A(G) \rightarrow C_0(G)$ is also an algebra homomorphism.
- This is Eymard's Fourier algebra.
- [Walter] If A(G) and A(H) are isometrically isomorphic, then G is isomorphic to (maybe the opposite of) H. If we insist on *completely* isometric, we have that G is isomorphic to H.

For abelian groups

If G is abelian, we can form the Pontryagin dual \hat{G} :

- the collection of all continuous characters $G \to \mathbb{T}$;
- with group product the pointwise product $(\phi_1\phi_2)(s) = \phi_1(s)\phi_2(s)$.
- with topology given by uniform convergence on compacta.

We then have the Fourier transform:

$$\mathcal{F}: L^2(G) o L^2(\hat{G}); \qquad \mathcal{F}(f)(\phi) = \int_G f(s) \overline{\phi(s)} \, ds$$

If we normalise the Haar measures correctly, ${\cal F}$ is unitary.

- the dual of \mathbb{Z} is \mathbb{T} , where $\theta \in [0, 2\pi)$ parameterises the character $\mathbb{Z} \ni n \mapsto e^{in\theta}$;
- the dual of ℝ is ℝ, where x ∈ ℝ parameterises the character ℝ ∋ t → e^{itx}.
 You need a 2π somewhere to get the normalisation correct.

The Fourier Transform

We regard $L^{\infty}(\hat{G})$ as also acting on $L^{2}(\hat{G})$, by multiplication.

Then we have a *-isomorphism

$$VN(G) o L^{\infty}(\hat{G}) \qquad x \mapsto \mathcal{F} \circ x \circ \mathcal{F}^{-1},$$

(On integrable functions, this will reduce to (some variant of) the familiar Fourier transform formula.)

This *-isomorphism is normal, and so induces an isomorphism $A(G) \cong L^1(\hat{G})$.

Our intuition is that A(G), even for non-abelian G, can be thought of as being the L^1 algebra on the "group" \hat{G} .

Amenability for A(G)

Theorem (Dunkl-Ramirez, Granirer, Renaud)

For any G there is a state $M \in VN(G)^*$ with $(id \otimes M)\Delta(x) = \langle M, x \rangle 1$ for $x \in VN(G)$.

So \hat{G} is always amenable.

Theorem (Leptin)

A(G) has a bounded approximate identity if and only if G is amenable.

Of course, $L^1(G)$ always has a bounded approximate identity.

- 4 目 ト - 4 日 ト - 4 日 ト

Duality between G and \hat{G}

- Given a homomorphism $G \to H$ we can define a homomorphism $\hat{H} \to \hat{G}$. These establishes an anti-equivalence of categories.
- Pontryagin duality: $\hat{\hat{G}} = G$ in a canonical fashion (biduality functor is naturally equivalent to the identity.)
- We have seen that A(G) behaves "like" it is $L^1(\hat{G})$.
- Can we make this more precise? Single out a collection of objects, which include A(G) and $L^1(G)$, which has a (bi)duality theory, and forms a category.
- Work of e.g. Takesaki, Tatsuuma, Stinespring, later Enock, Schwarz, Kac, Vainermann lead to "Kac algebras": Hopf von Neumann algebras (M, Δ) with many other "gadgets".
- While this works, it is complicated, and Woronowicz's notion of a *compact quantum group* does not fit into this framework: this is where we next look.

Unitary implementing the coproduct

In defining Δ on VN(G) I made use of a unitary \hat{W} . Set

$$W = \sigma \hat{W}^* \sigma \implies W \xi(s, t) = \xi(s, s^{-1}t),$$

where $\sigma \in \mathcal{B}(L^2(G \times G))$ is the "swap map" $\sigma(\xi)(s, t) = \xi(t, s)$. For $F \in L^{\infty}(G)$ acting on $L^2(G)$ by multiplication,

 $W^*(1 \otimes F)W\xi(s,t) = (1 \otimes F)W\xi(s,st) = F(st)W\xi(s,st) = F(st)\xi(s,t),$

and so, again, $W^*(1 \otimes F)W = \Delta(F)$.

Where does *W* live?

$$W\xi(s,t) = \xi(s,s^{-1}t)$$

- Informally, given a von Neumann algebra M, we think of $L^{\infty}(G)\overline{\otimes}M$ as being bounded measurable functions $G \to M$.
- Then $s \mapsto \lambda(s)$ is even SOT continuous, so defines $\Lambda \in L^{\infty}(G) \otimes VN(G)$ say, which acts on $\xi \otimes \eta$ as

$$\begin{split} \Lambda(\xi \otimes \eta)(s) &= \xi(s)\lambda(s)\eta \text{ under } L^2(G \times G) = L^2(G, L^2(G)), \\ \implies \Lambda(\xi \otimes \eta)(s, t) = \xi(s)\eta(s^{-1}t) = W(\xi \otimes \eta)(s, t). \end{split}$$

- So W "is" the left-regular representation, and $W \in L^{\infty}(G) \overline{\otimes} VN(G)$.
- More carefully, we could use Tomita's theorem and check that W commutes with F ⊗ ρ(s) ∈ L[∞](G) ⊗ VN_r(G) so W ∈ L[∞](G)' ⊗ VN_r(G)' = L[∞](G) ⊗ VN(G).

Using $W \in L^{\infty}(G) \overline{\otimes} VN(G)$

The map $\lambda : L^1(G) \to VN(G)$ is actually

$$\lambda(f) = (f \otimes id)(W) \qquad (f \in L^1(G)).$$

• This should be true given the informal thinking on the previous slide! If $\xi, \eta \in L^2(G)$ and $f = \xi \overline{\eta} \in L^1(G)$, then f is $\omega_{\xi,\eta}$ restricted to $L^{\infty}(G) \subseteq \mathcal{B}(L^2(G))$ and

$$((\omega_{\xi,\eta} \otimes \mathrm{id})W\gamma|\delta) = (W(\xi \otimes \gamma)|\eta \otimes \delta) = \int_{G \times G} \xi(s)\gamma(s^{-1}t)\overline{\eta(s)\delta(t)} \, ds \, dt$$
$$= \int_{G \times G} f(s)\gamma(s^{-1}t)\overline{\delta(t)} \, ds \, dt = (f * \gamma|\delta).$$

Thus indeed $(\omega_{\xi,\eta} \otimes id)W = \lambda(f)$.

For the dual

 $\hat{W}\xi(s,t) = \xi(ts,t)$

Similarly, we calculate $(\omega_{\xi,\eta} \otimes id)(\hat{W})$:

$$\begin{aligned} &((\omega_{\xi,\eta}\otimes \mathsf{id})(\hat{W})\gamma\big|\delta\big) = \big(\hat{W}(\xi\otimes\gamma)\big|\eta\otimes\delta\big) \\ &= \int_{G\times G} \xi(ts)\gamma(t)\overline{\eta(s)}\delta(t) \,\,ds \,\,dt = \int_{G} (\lambda(t^{-1})\xi|\eta)\gamma(t)\overline{\delta(t)} \,\,dt. \end{aligned}$$

- So (ω_{ξ,η} ⊗ id)(Ŵ) is the operator on L²(G) of multiplication by the continuous function t → ω(t⁻¹) := (λ(t⁻¹)ξ|η).
- So up to an inverse, this is the embedding of A(G) into C₀(G) ⊆ L[∞](G).
- So W allows us to reconstruct L[∞](G), VN(G), L¹(G), A(G) their products and the maps between them.

- 4 同 6 4 日 6 4 日 6

Summary

- Introduced $L^1(G)$ and A(G) from a von Neumann algebra perspective.
- Motivated, a little, that these are "dual" to each other:
 - Both from quite a "formal" level;
 - Also at the level of how proofs works.
- Saw how a single unitary operator essentially stores all the information.

What's next:

- We've focused on von Neumann algebras: but arguably the *topology* is more basic than the *measure theory*. So we should be looking at C*-algebras.
- Haven't yet mentioned quantum groups.

- 31

くほと くほと くほと