Locally compact quantum groups
 2. C^{*}-algebras and compact quantum groups

Matthew Daws

Leeds

Fields, May 2014

Obligatory non-commutative topology 2

Theorem (Gelfand)

Let A be a commutative C^{*}-algebra, and let Φ_{A} be the collection of characters on A, given the relative weak*-topology. Then Φ_{A} is a locally compact Hausdorff space, and the map

$$
\mathcal{G}: A \rightarrow C_{0}\left(\Phi_{A}\right) ; \quad \mathcal{G}(a)(\varphi)=\varphi(a)
$$

is an isometric isomorphism.
But how do we capture the notion of a continuous map between Φ_{A} and Φ_{B} ?

- *-homomorphisms $A \rightarrow B$ correspond to proper continuous maps $\Phi_{B} \rightarrow\left(\Phi_{A}\right)_{\infty}$, the one-point compactification of Φ_{A}.

Multiplier algebras

Let A be a C^{*}-algebra.

- Regard A as acting non-degenerately (so $\operatorname{lin}\{a(\xi): a \in A, \xi \in H\}$ is dense in H) on H. Then

$$
M(A)=\{T \in \mathcal{B}(H): T a, a T \in A(a \in A)\} .
$$

- Regard A as a subalgebra of its bidual $A^{* *}$; then

$$
M(A)=\left\{x \in A^{* *}: x a, a x \in A(a \in A)\right\} .
$$

- These are isomorphic (and independent of H).

An abstract way to think of $M(A)$ is as the pairs of maps (L, R) from A to A with $a L(b)=R(a) b$. A little closed graph argument shows that L and R are bounded, and that

$$
L(a b)=L(a) b, \quad R(a b)=a R(b) \quad(a, b \in A)
$$

The involution in this picture is $(L, R)^{*}=\left(R^{*}, L^{*}\right)$ where $R^{*}(a)=R\left(a^{*}\right)^{*}$, $L^{*}(a)=L\left(a^{*}\right)^{*}$. You can move between these pictures by a bounded approximate identity argument.

Multiplier algebras 2

- $M(A)$ is the largest C^{*}-algebra containing A as an essential ideal: if $x \in M(A)$ and $a x b=0$ for all $a, b \in A$, then $x=0$.
- So $M(A)$ is the largest (sensible) unitisation of A.

Applied to $C_{0}(X)$, unitisations correspond to compactifications of X.

- Indeed, $M\left(C_{0}(X)\right)$ is isomorphic to $C^{b}(X)$ the algebra of all bounded continuous functions on X.
- The character space of $C^{b}(X)$ is βX, the Stone-Čech compactification.

Morphisms

A morphism $A \rightarrow B$ between C^{*}-algebras is a non-degenerate $*$-homomorphism $\theta: A \rightarrow M(B)$.

- θ is non-degenerate if $\{\theta(a) b: a \in A, b \in B\}$ is linearly dense in B.

The strict topology on $M(B)$ is:

$$
x_{\alpha} \rightarrow x \quad \Leftrightarrow \quad x_{\alpha} b \rightarrow x b, b x_{\alpha} \rightarrow b x \quad(b \in B) .
$$

Non-degeneracy is equivalent to:

- For any (or all) bounded approximate identity $\left(e_{\alpha}\right)$ in A, the net $\left(\theta\left(e_{\alpha}\right)\right)$ converges strictly to $1 \in M(B)$;
- θ is the restriction of a strictly continuous $*$-homomorphism $\tilde{\theta}: M(A) \rightarrow M(B)$.
We can construct the extension: $\tilde{\theta}(x) \theta(a) b=\theta(x a) b$ and so forth.

Application

Theorem

Let X, Y be locally compact spaces.

- Given a continuous map $\phi: Y \rightarrow X$, the map $\theta: C_{0}(X) \rightarrow C^{b}(Y) ; f \mapsto f \circ \phi$ is a morphism.
- Any morphism $C_{0}(X) \rightarrow C_{0}(Y)$ is induced in this way.

So we have some machinery: but it captures exactly what we want!

Compact quantum groups

Let G be a compact semigroup (associative, continuous product).

- Define $\Delta: C(G) \rightarrow C(G \times G) ; \Delta(f)(s, t)=f(s t)$ which is a unital *-homomorphism;
- again this is coassociative $(\Delta \otimes \mathrm{id}) \Delta=(\mathrm{id} \otimes \Delta) \Delta$;
- Every coassociative $\Delta: C(G) \rightarrow C(G \times G)$ arises in this way (from some product on G).

How do we capture the notion of a group?

- Write down the identity and inverse, as maps on $C(G)$?
- Inelegant; doesn't generalise.

Theorem

A compact semigroup G is a group if and only if satisfies cancellation:

$$
s t=s r \Longrightarrow t=r, \quad t s=r s \Longrightarrow t=r
$$

If you're bored: prove this.

Cancellation as density

Theorem
G satisfies cancellation if and only if

$$
\operatorname{lin}\{(a \otimes 1) \Delta(b): a, b \in C(G)\}, \quad \operatorname{lin}\{(1 \otimes a) \Delta(b): a, b \in C(G)\}
$$

are dense in $C(G \times G)=C(G) \otimes C(G)$.

Sketch proof.

- Commutative, so these are $*$-subalgebras, so can apply Stone-Weierstrauss: dense if and only if they separate points;
- $(a \otimes 1) \Delta(b)(s, t)=a(s) b(s t) ;$
- so $s t=s r$ if and only if $f(s, t)=f(s, r)$ for all f in the 1st set;
- so separates points if and only if cancellation.

Compact quantum groups

Definition (Woronowicz)

A compact quantum group is a unital C^{*}-algebra A with a coassociative unital *-homomorphism $\Delta: A \rightarrow A \otimes A$ with

$$
\{(a \otimes 1) \Delta(b): a, b \in A\}, \quad\{(1 \otimes a) \Delta(b): a, b \in A\}
$$

linearly dense in $A \otimes A$.

So if A is commutative, we exactly capture the notion of a compact group.
Let Γ be a discrete group, and $A=C_{r}^{*}(\Gamma)$ the reduced group C^{*}-algebra, say generated by $\{\lambda(s): s \in \Gamma\}$.

- Exactly as in the last lecture, can construct a coproduct $\Delta: \lambda(s) \mapsto \lambda(s) \otimes \lambda(s)$.
- Cancellation is easy to verify: $\left(\lambda\left(s t^{-1}\right) \otimes 1\right) \Delta(\lambda(t))=\lambda(s) \otimes \lambda(t)$.
- Every cocommutative $(\Delta=\sigma \Delta)$ compact quantum group is of this form.

Construction of Haar state

- From now on, (A, Δ) is a compact quantum group.
- Turn A^{*} into a (completely contractive) Banach algebra:

$$
\langle\mu \star \lambda, a\rangle=\langle\mu \otimes \lambda, \Delta(a)\rangle \quad\left(\mu, \lambda \in A^{*}, a \in A\right) .
$$

Theorem

There is a unique state φ with $(\varphi \otimes \mathrm{id}) \Delta(a)=(\mathrm{id} \otimes \varphi) \Delta(a)=\langle\varphi, a\rangle 1$.
Very sketch proof.

- Equivalent to $\varphi \star \mu=\mu \star \varphi=\langle\mu, 1\rangle \varphi$ for all $\mu \in A^{*}$.
- If want this for one state μ then $\varphi=\lim \frac{1}{n}\left(\mu+\mu^{2}+\cdots+\mu^{n}\right)$.

See van Daele, PAMS 1995.
For $a \in C(G)$:

$$
(\operatorname{id} \otimes \varphi) \Delta(a)(t)=\int_{G} a(t s) d \varphi(s), \quad\langle\varphi, a\rangle 1(t)=\int_{G} a(s) d \varphi(s)
$$

Regular representation

Let \mathbb{G} be the "object" which is our compact quantum group.

- Let $L^{2}(\mathbb{G})$ be the GNS space for the Haar state φ. Let $\pi_{\varphi}, \xi_{\varphi}$ be the representation and the cyclic vector.
Let $\pi: A \rightarrow \mathcal{B}(K)$ be some auxiliary non-degenerate $*$-representation.

Theorem

There is a unitary $U \in \mathcal{B}\left(K \otimes L^{2}(\mathbb{G})\right)$ with

$$
U^{*}\left(\xi \otimes \pi_{\varphi}(a) \xi_{\varphi}\right)=\left(\pi \otimes \pi_{\varphi}\right)(\Delta(a))\left(\xi \otimes \xi_{\varphi}\right) .
$$

(All this theory is due to Woronowicz; some presentation motivated by Maes, van Daele, Timmermann.)

Position, implementation, representations

- We have that U is a multiplier of $\pi(A) \otimes \mathcal{B}_{0}\left(L^{2}(\mathbb{G})\right)$.
- $\mathcal{B}_{0}\left(L^{2}(\mathbb{G})\right)$ is the compact operators on $L^{2}(\mathbb{G})$.
- Also $\left(\pi \otimes \pi_{\varphi}\right) \Delta(a)=U^{*}\left(1 \otimes \pi_{\varphi}(a)\right) U$.

A SOT continuous unitary representation π of a compact group G gives a map

$$
G \rightarrow \mathcal{B}(H)=M\left(\mathcal{B}_{0}(H)\right) ; \quad s \mapsto \pi(s) .
$$

This is continuous for the strict topology; given $f \in C_{0}\left(G, \mathcal{B}_{0}(H)\right)$ the map

$$
G \rightarrow \mathcal{B}_{0}(H) ; \quad s \mapsto \pi(s) f(s)
$$

is continuous. So

$$
(\pi(s))_{s \in G} \in M\left(C_{0}(G) \otimes \mathcal{B}_{0}(H)\right) .
$$

Given $V \in M\left(C_{0}(G) \otimes \mathcal{B}_{0}(H)\right)$ how do we recognise that it's a representation?

Representations continued

$$
\begin{array}{cc}
& C_{s t r}^{b}\left(G, \mathcal{B}_{0}(H)\right) \cong M\left(C_{0}(G) \otimes \mathcal{B}_{0}(H)\right) \\
(\pi(s)) \leftrightarrow V & (s \mapsto f(s) \pi(s) \xi) \leftrightarrow V(f \otimes \xi) \quad\left(f \in C_{0}(G), \xi \in H\right) .
\end{array}
$$

- $\pi(s)$ unitary for all s corresponds to V being a unitary operator.
- a representation means:

$$
(\Delta \otimes \mathrm{id}) V \leftrightarrow(\pi(s t))_{(s, t) \in G \times G}=(\pi(s) \pi(t))_{(s, t) \in G \times G} \leftrightarrow V_{13} V_{23} .
$$

- This is "leg-numbering notation": $V_{23}=1 \otimes V$ acts on the 2 nd $/ 3$ rd components; $V_{13}=\sigma_{12} V_{23} \sigma_{12}$.

Definition

A corepresentation of (A, Δ) is $V \in M\left(A \otimes \mathcal{B}_{0}(H)\right)$ with $(\Delta \otimes \mathrm{id})(V)=V_{13} V_{23}$.

Left regular representation

Theorem

If $\pi: A \rightarrow \mathcal{B}(K)$ is faithful, then $U \in M\left(\pi(A) \otimes \mathcal{B}_{0}\left(L^{2}(\mathbb{G})\right)\right)$ is a corepresentation.

- π faithful, so $M\left(\pi(A) \otimes \mathcal{B}_{0}\left(L^{2}(\mathbb{G})\right)\right) \cong M\left(A \otimes \mathcal{B}_{0}\left(L^{2}(\mathbb{G})\right)\right)$.

Theorem

For $a, b \in A$ set $\xi=\pi_{\varphi}(a) \xi_{\varphi}, \eta=\pi_{\varphi}(b) \xi_{\varphi}$. Then

$$
\begin{gathered}
\left(\text { id } \otimes \omega_{\xi, \eta}\right)(U)=(\text { id } \otimes \varphi)\left(\Delta\left(b^{*}\right)(1 \otimes a)\right) \\
\left(\text { id } \otimes \omega_{\xi, \eta}\right)\left(U^{*}\right)=(\text { id } \otimes \varphi)\left(\left(1 \otimes b^{*}\right) \Delta(a)\right)
\end{gathered}
$$

(Here I supress the π).

- By cancellation, such slices are hence dense in A.

Finite dimensional corepresentations

- If H finite dimensional then pick a basis, $H \cong \mathbb{C}^{n}$.
- $\mathcal{B}_{0}(H) \cong \mathbb{M}_{n}$ and $M\left(A \otimes \mathcal{B}_{0}(H)\right)=A \otimes \mathcal{B}_{0}(H) \cong \mathbb{M}_{n}(A)$.
- A unitary $V=\left(V_{i j}\right)$ is a corepresentation if and only if

$$
\Delta\left(V_{i j}\right)=\sum_{k=1}^{n} V_{i k} \otimes V_{k j}
$$

- A subspace $K \subseteq H$ is invariant for V if

$$
V(1 \otimes p)=(1 \otimes p) V(1 \otimes p)
$$

for $p: H \rightarrow K$ the orthogonal projection.

- Given $V \in M\left(A \otimes \mathcal{B}_{0}\left(H_{V}\right)\right)$ and $W \in M\left(A \otimes \mathcal{B}_{0}\left(H_{W}\right)\right)$ an operator $T: H_{V} \rightarrow H_{W}$ is an intertwiner if $W(1 \otimes T)=(1 \otimes T) V$.
- Hence have notions of being irreducible, a subcorepresentation, (unitary) equivalence and so forth.

Schur's lemma

Theorem (Schur's Lemma)

Let x intertwine corepresentations W, V. The kernel, and the closure of the image, of x are invariant subspaces of W, respectively, V. If

- W and V are irreducible; or
- W and V are finite-dimensional of the same dimension and one is irreducible,
then $x=0$ if W, V are not equivalent; if $x \neq 0$ then x is invertible. Then span of such invertibles is one-dimensional.

Averaging with the Haar state

Theorem

Let W, V be corepresentations, and let $x \in \mathcal{B}\left(H_{W}, H_{V}\right)$. Then

$$
y=(\varphi \otimes \mathrm{id})\left(V^{*}(1 \otimes x) W\right) \in \mathcal{B}\left(H_{W}, H_{V}\right)
$$

satisfies $V^{*}(1 \otimes y) W=1 \otimes y$. If x compact, so is y.

Proof.

Using $(\varphi \otimes \mathrm{id}) \Delta(\cdot)=\varphi(\cdot) 1$,
$(\varphi \otimes \mathrm{id} \otimes \mathrm{id})(\Delta \otimes \mathrm{id})\left(V^{*}(1 \otimes x) W\right)=1 \otimes(\varphi \otimes \mathrm{id})\left(V^{*}(1 \otimes x) W\right)=1 \otimes y$

$$
\begin{gathered}
(\Delta \otimes \mathrm{id})\left(V^{*}(1 \otimes x) W\right)=V_{23}^{*} V_{13}^{*}(1 \otimes 1 \otimes x) W_{13} W_{23} \\
(\varphi \otimes \mathrm{id} \otimes \mathrm{id})\left(V_{23}^{*} V_{13}^{*}(1 \otimes 1 \otimes x) W_{13} W_{23}\right)=V^{*}(1 \otimes y) W
\end{gathered}
$$

If V is unitary then $(1 \otimes y) W=V(1 \otimes y)$ so we have an intertwiner.

Applications 1

Theorem

An irreducible unitary corepresentation is finite-dimensional.

Proof.

Let V be the corepresentation.

- Pick a compact $x \in \mathcal{B}_{0}\left(H_{V}\right)$ and average to a compact intertwiner

$$
y=(\varphi \otimes \mathrm{id})\left(V^{*}(1 \otimes x) V\right) \in \mathcal{B}\left(H_{V}\right)
$$

- By Schur, $y=0$ or $y \in \mathbb{C} 1$.
- y is compact, so if $y=t 1$ for $t \neq 0$ we're done.
- Let x vary through a net of finite-dimensional orthogonal projections to see that y must be non-zero for some choice.

Applications 2

Theorem

Any unitary corepresentation V decomposes as the direct sum of irreducibles.

Sketch proof.

- If V is unitary then if K is an invariant subspace for V so is K^{\perp}.
- So the collection of intertwiners from V to itself is a C^{*}-algebra B say.
- The previous averaging argument shows that we can find a bounded approximate identity in B consisting of compact operators.
- So B is the direct sum of matrix algebras.
- So V decomposes as finite-dimensional corepresentations.
- Can obviously decompose finite-dimensional corepresentations into irreducibles.

Applications 3

Theorem

Let V be an irreducible unitary corepresentation of (A, Δ). Then V is equivalent to a subrepresentation of U.

Proof.

- Pick any $x \in \mathcal{B}\left(L^{2}(\mathbb{G}), H_{V}\right)$ and average to an intertwiner

$$
y=(\varphi \otimes \mathrm{id})\left(V^{*}(1 \otimes x) U\right) .
$$

- If y is non-zero, use Schur to conclude y is onto.
- As V, U are unitary, it follows that y^{*} is also an intertwiner, injective by Schur, so gives required equivalence.

Continued proof

$$
y=(\varphi \otimes \mathrm{id})\left(V^{*}(1 \otimes x) U\right)
$$

- Maybe $y=0$ for all x, so test on rank-one maps $x=\theta_{\xi, a \xi_{\varphi}}$, giving

$$
\begin{aligned}
0=\left(y b \xi_{\varphi} \mid \eta\right) & =\left\langle\varphi \otimes \omega_{b \xi_{\varphi}, \eta}, V^{*}\left(1 \otimes \theta_{\xi, a \xi_{\varphi}}\right) U\right\rangle \\
& =\varphi\left(\left(\operatorname{id} \otimes \omega_{\xi, \eta}\right)\left(V^{*}\right)\left(\mathrm{id} \otimes \omega_{b \xi_{\varphi}, a \xi_{\varphi}}\right)(U)\right) \\
& =\varphi\left(\left(\mathrm{id} \otimes \omega_{\xi, \eta}\right)\left(V^{*}\right)(\mathrm{id} \otimes \varphi)\left(\Delta\left(a^{*}\right)(1 \otimes b)\right)\right)
\end{aligned}
$$

- Think of $V=\left(V_{i j}\right) \in \mathbb{M}_{n}(A)$.
- By cancellation, and taking ξ, η to be basis vectors, conclude that $0=\varphi\left(V_{i j}^{*} a\right)$ for all $a \in A$.
- But V is unitary, so taking $a=V_{i j}$ gives

$$
0=\sum_{i} \varphi\left(V_{i j}^{*} V_{i j}\right)=\varphi(1)=1
$$

Algebra of "matrix elements"

Definition

Let $A_{0} \subseteq A$ be the linear span of matrix elements $V_{i j}$ arising from all finite-dimensional (irreducible) unitary corepresentations $V=\left(V_{i j}\right)$.

- U decomposes as a direct sum of (all the) irreducible (finite-dimensional) corepresentations.
- So also $L^{2}(\mathbb{G})$ decomposes as (finite-dimensional) invariant subspaces.
- Given $\xi, \eta \in L^{2}(\mathbb{G})$, approximate by vectors with "finite-support".
- So can approximate $\left(\mathrm{id} \otimes \omega_{\xi, \eta}\right)(U)$ by linear combination of matrix elements.
- So A_{0} dense in A.
- A_{0} is an algebra: tensor product of corepresentations $\left(V \oplus W=V_{12} W_{13}\right)$.
- Is A_{0} a $*$-algebra?

