Locally compact quantum groups 3. Further aspects of Compact Quantum Groups

Matthew Daws

Leeds

Fields, May 2014

Matthew Daws (Leeds)

Compact quantum groups 2

Fields, May 2014 1 / 19

CQGs: Recap

Unital C*-algebra A with coproduct Δ, satisfying "cancellation":

 $\overline{\mathsf{lin}}\{(a\otimes 1)\Delta(b): a, b\in A\} = \overline{\mathsf{lin}}\{(1\otimes a)\Delta(b): a, b\in A\} = A\otimes A.$

- There exists an invariant Haar state φ with GNS (L²(G), π_φ, ξ_φ).
- Formed "left-regular corepresentation" U ∈ M(A ⊗ B₀(L²(G))):

$$U^*(\xi\otimes\pi_{\varphi}(a)\xi_{\varphi})=(\pi\otimes\pi_{\varphi})(\Delta(a))(\xi\otimes\xi_{\varphi})$$

- Studied category of corepresentations.
- U decomposes as direct sum of all the irreducibles.
- $A_0 \subseteq A$ algebra of matrix coefficients.

Is A_0 a *-algebra?

- Typical element $V_{ij} \in A_0$; so is $V_{ij}^* \in A_0$?
- Motivates looking at $\overline{V} := (V_{ij}^*)$. Still a corepresentation:

$$\Delta(V_{ij}^*) = \Delta(V_{ij})^* = \Big(\sum_k V_{ik} \otimes V_{kj}\Big)^* = \sum_k V_{ik}^* \otimes V_{kj}^*.$$

Theorem

Let V be an irreducible corepresentation. Then \overline{V} is equivalent to a unitary corepresentation. In particular, $V_{ij}^* \in A_0$.

Proof.

Show that \overline{V} is a sub-corepresentation of U. Same game: choose $x \in \mathcal{B}(L^2(\mathbb{G}), H_V)$ and set

$$y = (\varphi \otimes \mathsf{id})(\overline{V}^*(1 \otimes x)U),$$

argue that if $y \neq 0$ then y^* implements an isomorphism; if y = 0 for all x then derive contradiction.

Matthew Daws (Leeds)

"F-matrices"

Let $Irr(\mathbb{G})$ be the collection of equivalence classes of irreducible representations of (A, Δ) . Choose representatives u^{α} .

Theorem

For each α there is a positive, invertible, trace 1 matrix ${\sf F}^\alpha$ with

$$arphiig((u^eta_{ip})^*u^lpha_{jq}ig)=egin{cases} {\sf F}^lpha_{ji}&:lpha=eta,{\sf p}={\sf q},\ {\sf 0}&:\mathit{otherwise}. \end{cases}$$

Sketch proof.

We apply our averaging argument to $x = e_{ij}$ a matrix unit:

$$y = (\varphi \otimes \mathsf{id})((u^{\beta})^*(1 \otimes x)u^{\alpha}) = \cdots = \sum_{p,q} \varphi((u^{\beta}_{ip})^*u^{\alpha}_{jq})e_{pq}.$$

Then y intertwines u^{α} , u^{β} so is 0 if $\alpha \neq \beta$; otherwise $y = F_{ii}^{\alpha} 1$. Then ...

・ロン ・四 ・ ・ ヨン ・ ヨン

Application: A basis

$$\varphi\bigl((u_{ip}^{\beta})^*u_{jq}^{\alpha}\bigr)=\delta_{\alpha,\beta}\delta_{p,q}F_{ji}^{\alpha}.$$

Theorem

The set $\{u_{ii}^{\alpha} : \alpha \in Irr(\mathbb{G}), 1 \leq i, j \leq n_{\alpha}\}$ is a basis for A_0 .

Proof.

By definition this spans A_0 . If $\sum t_{ij}^{\alpha} u_{ij}^{\alpha} = 0$ for some scalars (t_{ij}^{α}) then for any β, p, q ,

$$0 = \sum_{\alpha,i,j} t^{\alpha}_{ij} \varphi((u^{\beta}_{\rho q})^* u^{\alpha}_{ij}) = \sum_i F^{\beta}_{i\rho} t^{\beta}_{iq}.$$

As F^{β} is invertible, this implies that $t_{iq}^{\beta} = 0$ for all i, q, β , as required.

イロト イポト イヨト イヨト

A Hopf *-algebra

We define $\epsilon: A_0 \to \mathbb{C}$ and $S: A_0 \to A_0$ by

$$\epsilon(u_{ij}^{\alpha}) = \delta_{i,j}, \qquad S(u_{ij}^{\alpha}) = (u_{ji}^{\alpha})^*.$$

Or equivalently, for any (finite-dimensional) unitary corepresentation V,

$$(S \otimes id)(V) = V^*, \qquad (\epsilon \otimes id)(V) = I.$$

Theorem

Then $(A_0, \Delta, \epsilon, S)$ is a Hopf *-algebra.

This gives a purely *algebraic* approach to compact quantum groups: the Hopf *-algebras which can arise are exactly those which are spanned by matrix coefficients of *unitary* corepresentations.

(日) (周) (三) (三)

What happens in the commutative case?

V corresponds to a unitary group representation $\pi: G \to \mathbb{M}_n$:

$$V \in C(G) \otimes \mathbb{M}_n \cong C(G, \mathbb{M}_n), \qquad V = (\pi(s))_{s \in G}.$$

(id $\otimes \omega_{\xi,\eta}$) $(V) = ((\pi(s)\xi|\eta))_{s \in G} \in C(G),$
(id $\otimes \omega_{\xi,\eta}$) $(V^*) = ((\pi(s^{-1})\xi|\eta))_{s \in G} \in C(G).$

Such continuous functions are linearly dense in C(G).

$$(\epsilon \otimes \mathrm{id})(V) = I \iff \langle \epsilon, (\pi(s)\xi|\eta)_{s\in G} \rangle = (\xi|\eta)$$

so we conclude that $\epsilon \in C(G)^*$ is the functional: "evaluate at the group identity".

$$(S \otimes \mathrm{id})(V) = V^* \iff S((\pi(s)\xi|\eta)_{s \in G}) = (\pi(s^{-1})\xi|\eta)_{s \in G}$$

so $S : C(G) \rightarrow C(G)$ is the *-homomorphism induced by the group inverse. In general ϵ and S are unbounded.

(日) (周) (三) (三)

Characters

Theorem

$$\varphi\left(u_{ip}^{\alpha}(u_{jq}^{\beta})^{*}\right) = \delta_{\alpha,\beta}\delta_{i,j}\frac{(F^{\alpha})_{qp}^{-1}}{\mathsf{Tr}((F^{\alpha})^{-1})}.$$

Set $t_{\alpha} = \text{Tr}((F^{\alpha})^{-1}) > 0$ and define a linear map by

$$f_z: A_0 \to \mathbb{C}; \qquad u_{ij}^{\alpha} \mapsto ((F^{\alpha})^{-z})_{ij} t_{\alpha}^{-z/2}.$$

Turn A_0^* into an algebra via $\langle \mu \star \lambda, a \rangle = \langle \mu \otimes \lambda, \Delta(a) \rangle$.

Theorem

Each f_z is a character on A_0 , $f_0 = \epsilon$, $f_z(a^*) = f_{\overline{z}}(a)^*$ and $f_z \star f_w = f_{z+w}$. If we define

$$\sigma(a) = f_i \star a \star f_i := (f_i \otimes \mathsf{id} \otimes f_i) \Delta^2(a) \qquad (a \in A_0),$$

then $\varphi(ab) = \varphi(b\sigma(a))$. (Note: $\Delta^2 = (\Delta \otimes id)\Delta = (id \otimes \Delta)\Delta$).

 φ is not a *trace* but it nearly is.

▲ロト ▲圖ト ▲画ト ▲画ト 三直 - のへで

Properties of Haar state on A

Theorem

$$\varphi$$
 is "faithful" on A_0 ($\varphi(a^*a) = 0 \implies a = 0$).

Proof.

If $\varphi(a^*a) = 0$ then $\varphi(a^*b) = 0$ for all $b \in A_0$ (Cauchy-Schwarz). Set $b = u_{pq}^{\beta}$ and use an F-matrix argument again.

Theorem

For
$$a \in A$$
, $\varphi(a^*a) = 0 \Leftrightarrow \varphi(aa^*) = 0$.

Proof.

- Cauchy-Schwarz $\implies \varphi(a^*b) = 0$ for all $b \in A$.
- Find $(a_n) \subseteq A_0$ converging to a in norm.
- Recall automorphism σ ; then $0 = \lim_{n} \varphi(a_n^* \sigma(b)) = \lim_{n} \varphi(ba_n^*) = \varphi(ba^*)$.

Further conclusions

Theorem

 $N_{\varphi} = \{a \in A : \varphi(a^*a) = 0\}$ is a two-sided ideal in A. If $\Lambda : A \to L^2(\mathbb{G})$; $a \mapsto \pi_{\varphi}(a)\xi_{\varphi}$ is the GNS map, then ker $\Lambda = \ker \pi_{\varphi} = N_{\varphi}$.

Proof.

- Standard C^{*}-theory: N_{φ} is a left ideal.
- Previous theorem shows N_{ω} self-adjoint, so an ideal.
- By definition ker $\Lambda = N_{\varphi}$ and ker $\pi_{\varphi} \subseteq \ker \Lambda$.
- $a \in N_{\omega} \implies b^*a \in N_{\omega} \implies a^*b \in N_{\omega} \implies \pi_{\omega}(a^*) = 0 \implies \pi_{\omega}(a) = 0.$

 φ really "looks like" it is a trace!

"Reduced" C*-algebras

$$\ker \Lambda = \ker \pi_{\varphi} = \ker \varphi = \textit{N}_{\varphi}.$$

Let $C(\mathbb{G}) = A/N_{\varphi}$ a C*-algebra; φ drops to $C(\mathbb{G})$ and is faithful.

Theorem

The GNS space for φ on $C(\mathbb{G})$ is isomorphic to $L^2(\mathbb{G})$, and $C(\mathbb{G}) \cong \pi_{\varphi}(A)$. There is a unital *-homomorphism $\Delta : C(\mathbb{G}) \to C(\mathbb{G}) \otimes C(\mathbb{G})$ turning $C(\mathbb{G})$ into a compact quantum group.

Proof.

Form the left-regular representation, but this time use $\pi = \pi_{\varphi}$ to get $W \in M(\pi_{\varphi}(A) \otimes \mathcal{B}_0(L^2(\mathbb{G}))) = M(C(\mathbb{G}) \otimes \mathcal{B}_0(L^2(\mathbb{G})))$ with

$$W^*(1\otimes \pi_{\varphi}(a))W = (\pi_{\varphi}\otimes \pi_{\varphi})\Delta(a) \qquad (a\in A).$$

So define Δ on $C(\mathbb{G})$ by $\Delta(x) = W^*(1 \otimes x)W$. Density of A_0 in $C(\mathbb{G})$ shows that Δ does map to $C(\mathbb{G}) \otimes C(\mathbb{G})$; similarly cancellation holds for $C(\mathbb{G})$.

イロト 不得下 イヨト イヨト 二日

von Neumann algebra

Let $L^{\infty}(\mathbb{G}) = C(\mathbb{G})''$ in $\mathcal{B}(L^2(\mathbb{G}))$. Again define

 $\Delta(x) = W^*(1 \otimes x)W \qquad (x \in L^\infty(\mathbb{G})),$

which by weak*-continuity maps into $L^{\infty}(\mathbb{G})\overline{\otimes}L^{\infty}(\mathbb{G})$.

Theorem

The normal extension of φ to $L^{\infty}(\mathbb{G})$ is faithful.

Proof.

• Let
$$\varphi(x^*x) = 0$$
 so $x\varphi_{\xi} = 0$.

• Kaplansky Density: bounded net (a_i) in $C(\mathbb{G})$ with converges strongly to x. For $b, c \in A_0$,

$$\begin{aligned} (x\sigma(b)\xi_{\varphi}|c\xi_{\varphi}) &= \lim_{i} \varphi(c^*a_i\sigma(b)) = \lim_{i} \varphi(bc^*a_i) = \lim_{i} (a_i\xi_{\varphi}|cb^*\xi_{\varphi}) \\ &= (x\xi_{\varphi}|cb^*\xi_{\varphi}) = 0. \end{aligned}$$

• Density: $(x\xi|\eta) = 0$ for $\xi, \eta \in L^2(\mathbb{G})$, so x = 0.

Discussion of amenability and $C^*(\Gamma)$

Let Γ be a discrete group, so $\widehat{\Gamma} := C_r^*(\Gamma)$ is a compact quantum group, $\Delta(\lambda(s)) = \lambda(s) \otimes \lambda(s)$

$$\varphi(\lambda(s)) = \delta_{s,e} \implies L^2(\widehat{\Gamma}) = \ell^2(\Gamma).$$

- Could also work with $C^*(\Gamma)$
- Existence of Δ follows from universal property, as s → λ(s) ⊗ λ(s) is a unitary representation.
- φ is now faithful if and only if Γ is *amenable*.
- $C_r^*(\Gamma) = C^*(\Gamma)$ if and only if Γ is amenable.
- $A_0 = \mathbb{C}[\Gamma]$ and $\epsilon : \lambda(s) \mapsto 1$ is bounded on $C^*(\Gamma)$.
- ϵ bounded on $C_r^*(\Gamma)$ if and only if Γ is amenable.

Duality

As
$$\Delta(\cdot) = W^*(1 \otimes \cdot)W$$
 and $(\Delta \otimes id)(W) = W_{13}W_{23}$,
 $W_{12}^*W_{23}W_{12} = W_{13}W_{23} \implies W_{23}W_{12} = W_{12}W_{13}W_{23}$.

- This says that W is multiplicative.
- See Baaj-Skandalis, Woronowicz and Sołtan-Woronowicz.
- $\widehat{W} := \sigma W^* \sigma$ is also multiplicative.

$$c_{0}(\widehat{\mathbb{G}}) = \left\{ (\omega \otimes \mathsf{id})(W) \right\}^{\|\cdot\|} = \left\{ (\mathsf{id} \otimes \omega)(\widehat{W}) \right\}^{\|\cdot\|} \qquad \ell^{\infty}(\widehat{\mathbb{G}}) = c_{0}(\widehat{\mathbb{G}})''$$

are a C^* -algebra and a von Neumann algbera with a coproduct

$$\widehat{\Delta}(x) = \widehat{W}^*(1 \otimes x)\widehat{W} \qquad (x \in c_0(\mathbb{G}), \ell^{\infty}(\mathbb{G})).$$

But here $\widehat{\Delta} : c_0(\widehat{\mathbb{G}}) \to M(c_0(\widehat{\mathbb{G}}) \otimes c_0(\widehat{\mathbb{G}}))$ is a morphism.

$$W \in L^{\infty}(\mathbb{G})\overline{\otimes}\ell^{\infty}(\widehat{\mathbb{G}}) \qquad W \in M(C(\mathbb{G}) \otimes c_0(\widehat{\mathbb{G}})).$$

Identifying $c_0(\widehat{\mathbb{G}})$

$$\varphi((u_{i\rho}^{\beta})^*u_{jq}^{\alpha}) = \delta_{\alpha,\beta}\delta_{\rho,q}F_{ji}^{\alpha} \implies (u_{jq}^{\alpha}\xi_{\varphi}|u_{i\rho}^{\beta}\xi_{\varphi}) = \delta_{\alpha,\beta}\delta_{\rho,q}F_{ji}^{\alpha}.$$

- For fixed α , $\lim\{u_{jq}^{\alpha}\xi_{\varphi}\}$ is isomorphic to $\mathbb{C}^{n_{\alpha}}\otimes\mathbb{C}^{n_{\alpha}}$.
- So $L^2(\mathbb{G}) \cong \bigoplus_{\alpha \in \mathsf{Irr}(\mathbb{G})} \mathbb{C}^{n_\alpha} \otimes \mathbb{C}^{n_\alpha}$.
- Under this isomorphism,

$$W = \sum_lpha \sum_{i,j} u^lpha_{ij} \otimes e^lpha_{ij}$$

where $e_{ij}^{\alpha} \in \mathbb{M}_{n_{\alpha}}$ acts on the (e.g.) first variable of $\mathbb{C}^{n_{\alpha}} \otimes \mathbb{C}^{n_{\alpha}}$.

- Now easy to see that $c_0(\widehat{\mathbb{G}}) = \{(\omega \otimes id)(W)\}^{\|\cdot\|}$ is isomorphic to $\bigoplus_{\alpha} \mathbb{M}_{n_{\alpha}}$.
- So as an algebra c₀(Ĝ) is easy; but is complicated (essentially encodes how u^α ⊕u^β is written as irreducibles.)

Discrete/Compact duality

G is a discrete quantum group. (van Daele: axiomatisation not in terms of compact G.)

• There are *weights*
$$\widehat{arphi}, \widehat{\psi}$$
 on $\ell^\infty(\widehat{\mathbb{G}})$

$$(\mathrm{id}\otimes\widehat{\varphi})\widehat{\Delta}(x)=\widehat{\varphi}(x)\mathbf{1},\qquad (\widehat{\psi}\otimes\mathrm{id})\widehat{\Delta}(x)=\widehat{\psi}(x)\mathbf{1}.$$

• For $x = (x^{\alpha}) \in \ell^{\infty}(\widehat{\mathbb{G}}) = \prod_{\alpha} \mathbb{M}_{n_{\alpha}}$,

$$\widehat{\varphi}(x) = \sum_{\alpha} \Lambda_{\alpha}^2 \operatorname{Tr}_{\alpha}(F^{\alpha} x^{\alpha})$$

where $\Lambda^2_{\alpha} = \operatorname{Tr}((F^{\alpha})^{-1}).$

• Tomita-Takesaki theory: $\widehat{\nabla}$ on $L^2(\mathbb{G})$ implements the modular automorphism group $\widehat{\sigma}_t(x) = \widehat{\nabla}^{-it} x \widehat{\nabla}^{it}$ and conjugation $\ell^{\infty}(\widehat{\mathbb{G}}) \to \ell^{\infty}(\widehat{\mathbb{G}})'; x \mapsto \widehat{J} x^* \widehat{J}$. (Generalises modular function on *G* and behaviour of VN(G)).

イロト 不得下 イヨト イヨト 二日

Antipode

- The map $x \mapsto \widehat{\nabla}^{-it} x \widehat{\nabla}^{it}$ also maps $C(\mathbb{G})$ into itself, and implements a continuous automorphism group (τ_t) , the scaling group.
- On A_0 we can express this using the characters f_{it} .
- Recall the antipode

$$S((\mathsf{id}\otimes\omega)(W)) = (\mathsf{id}\otimes\omega)(W^*).$$

- Define R(x) = Ĵx*Ĵ for x ∈ C(𝔅), which also maps C(𝔅) into itself. An anti-*-homomorphism which commutes with (τ_t).
- We get an (unbounded) analytic extension $\tau_{-i/2}$ and $S = R\tau_{-i/2}$.
- R = S iff $\tau_t = id$ iff $\hat{\varphi} = \hat{\psi}$ iff φ is tracial iff \mathbb{G} is a Kac algebra.

Examples/Buzzwords

- Deformations of compact Lie groups: $SU_q(2)$ (Woronowicz). Non-Kac type.
- Quantum permutation groups S_n^+ and quantum orthogonal groups O_n^+ (Wang).
- "Universal quantum groups". (Wang, van Daele).
- Liberation of quantum groups; Easy quantum Groups $S_n \subseteq \mathbb{G} \subseteq O_n^+$ (Banica, Speicher).
- Easy quantum groups now well classified (e.g. Curran, Weber, Raum, Freslon).
- Key tool is to study the representation category $Irr(\mathbb{G})$ and Woronowicz's generalisation of Tannaka-Krein duality.
- Mostly of Kac type: L[∞](G) finite von Neumann algebra, lots of work on von Neumann algebra properties of L[∞](G). (e.g. Brannan, Freslon).
- Next time: what can we say for $L^1(\mathbb{G})$?

▲ロト ▲圖ト ▲画ト ▲画ト 三直 - のへで

Time allowing: S_n^+

Let $(a_{ij})_{i,i=1}^n$ be a matrix of functions on some space X with:

- $a_{ij} = a_{ij}^* = a_{ij}^2$ (so a_{ij} is 0, 1-valued);
- for all i, $\sum_{j} a_{ij} = 1$ and for all j, $\sum_{i} a_{ij} = 1$ (so at each point of X, if we evaluate, we get a permutation matrix).

The maximal commutative C^* -algebra generated by such matrices is just the collection of all permutation matrices, i.e. $C(S_n)$.

- Let $C(S_n^+)$ be the non-commutative C^* -algebra generated by such matrices.
- Universal property: if A any C*-algebra and $\hat{a}_{ij} \in A$ elements with the relations, there is a unique *-homomorphism $\theta : C(S_n^+) \to A$ with $\theta(a_{ij}) = \hat{a}_{ij}$.
- Apply with $A = C(S_n^+) \otimes C(S_n^+)$ and $\hat{a}_{ij} = \sum_k a_{ik} \otimes a_{kj}$.
- Gives $\Delta : A \rightarrow A \otimes A$ coproduct.
- Can manually check the cancellation conditions.