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Locally compact quantum groups

Definition (Kustermans, Vaes)

A locally compact quantum group G is a Hopf von Neumann algebra (M,∆) with
invariant weights ϕ,ψ

(id⊗ϕ)∆(x) = ϕ(x)1, (ψ ⊗ id)∆(x) = ψ(x)1.

Means e.g. that if x ∈ M+ with ϕ(x) <∞, and ω ∈ M+
∗ , then

ϕ((ω ⊗ id)∆(x)) = ϕ(x)〈1, ω〉.

Write M = L∞(G); let L2(G) be the GNS space of ϕ.

Let nϕ = {x ∈ L∞(G) : ϕ(x∗x) <∞} and Λ : nϕ → L2(G) be the GNS
map: (Λ(x)|Λ(y)) = ϕ(y∗x).
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Constructions

Define W ∗ on L2(G)⊗ L2(G), as before, by

W ∗(Λ(a)⊗ Λ(b)) = (Λ⊗ Λ)(∆(b)(a⊗ 1)).

ϕ (left-)invariant implies W ∗ is an isometry.

More subtle argument using ψ shows W is unitary.

W is a corepresentation, (∆⊗ id)(W ) = W13W23.

∆(x) = W ∗(1⊗ x)W for x ∈ L∞(G).

L∞(G) is the weak∗-closure of {(id⊗ω)(W ) : ω ∈ B(L2(G))∗}.

There is an unbounded antipode S defined by/ which satisfies

S
(
(id⊗ω)(W )

)
= (id⊗ω)(W ∗), S(S(x)∗)∗ = x (x ∈ D(S)).

Decompose S as S = Rτ−i/2 where R is an anti-∗-isomorphism and (τt) a
continuous one-parameter group.
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Duality

L∞(Ĝ) = {(ω ⊗ id)(W ) : ω ∈ L1(G)}′′

W is multiplicative; Ŵ = σW ∗σ, ∆̂(x) = Ŵ ∗(1⊗ x)Ŵ .

W ∈ L∞(G)⊗L∞(Ĝ).

Can construct invariant weights ϕ̂, ψ̂ so that L∞(Ĝ) becomes a locally
compact quantum group.

Same duality interactions: e.g. Ĵx∗Ĵ = R(x) for x ∈ L∞(G).̂̂G = G canonically.

Becomes a category (Ng, and Meyer–Roy–Woronowicz).
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C ∗-algebra considerations

C0(G) = {(id⊗ω)(W ) : ω ∈ L1(Ĝ)}‖·‖.

This is a C∗-algebra, and R, (τt) restrict to it, and S becomes a norm-closed
operator.

The weights restrict to densely defined, faithful, KMS weights.

C0(G) satisfies the cancellation laws.

Can analogously axiomatise a C∗-algebraic version of the theory.

This is a “reduced” theory: C∗r (G ) is the cocommutative example.

There is a procedure to form the “full” or “universal” C∗-completion,
leading to C u

0 (G): everything holds, but weights are no longer faithful.
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Coamenability

Definition

G is coamenable if C0(G)∗ is a unital Banach algebra.

Theorem
The following are equivalent to G being coamenable:

1 L1(G) has a bounded approximate identity.

2 there is a net of unit vectors (ξi ) with ‖W (ξi ⊗ ξ)− ξi ⊗ ξ‖ → 0 for each
ξ ∈ H.

3 C0(G) = C u
0 (G).

Sketch proof of (2)⇒(1).

For ωξ,η ∈ L1(G) and x ∈ L∞(G),

〈x , ωξi ,ξi ? ωξ,η〉 = 〈W ∗(1⊗ x)W , ωξi , ξi ⊗ ωξ,η〉 = ((1⊗ x)W (ξi ⊗ ξ)|W (ξi ⊗ η))

≈ ((1⊗ x)(ξi ⊗ ξ)|ξi ⊗ η) = (xξ|η) = 〈x , ωξ,η〉.
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Amenability

Definition

G is amenable if there is a state M ∈ L∞(G)∗ with (id⊗M)∆(x) = 〈M, x〉1 for
x ∈ L∞(G).

Theorem

Ĝ coamenable implies that G is amenable.

Proof.

If ‖Ŵ (ξi ⊗ ξ)− ξi ⊗ ξ‖ → 0 then W unitary, Ŵ = σW ∗σ implies
‖W (ξ ⊗ ξi )− ξ ⊗ ξi‖ → 0. If M is a weak∗-limit point of the net (ωξi ,ξi ) in L1(G)
then for x ∈ L∞(G),

〈(id⊗M)∆(x), ωξ,η〉 = lim
i
〈W ∗(1⊗ x)W , ωξ,η ⊗ ωξi ,ξi 〉 = · · · = 〈M, x〉〈1, ωξ,η〉.

How do you “reverse” the argument?

See Bédos–Tuset, Int. J. Math, 2003.
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Amenability 2

Theorem

Let G be compact with Ĝ amenable. Then G is coamenable.

Proof.

See Tomatsu, J. Math. Soc. Japan, 2006 (or for Kac algebras, Ruan, JFA,
1996).

Open outside the compact/discrete case.

Matthew Daws (Leeds) LCQGS and amenability Fields, May 2014 8 / 18



Cohomological condition: biprojectivity

Definition

A Banach algebra A is biprojective if the multiplication map ∆∗ : A⊗̂A→ A has a
right inverse which is an A-bimodule map: i.e. ρ : A→ A⊗̂A with ∆∗ ◦ ρ = idA.

Can also ask in the category of operator spaces.

Theorem (Helemskii)

A is amenable if and only if it has a bounded approximate identity and is biflat
(⇐ biprojective).

Theorem (Ruan/Xu, Aristov)

If L1(G) is operator biprojective then G is compact. If G is compact of Kac type,
then L1(G) is operator biprojective.

Theorem (Caspers–Lee–Ricard)

If L1(G) is operator biprojective, then G is compact of Kac type.
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Proof: diagonalisation

Fix G a compact quantum group.

Have uα ∈ Mnα(A) ∼= A⊗Mnα and associated “F matrix” Fα.

By a change of (orthonormal) basis of Cnα , say uα 7→ X ∗uαX , we can
diagonalise Fα.

Get strictly positive (λαi ) with
∑

i λ
α
i =

∑
i (λ

α
i )−1 = mα the “quantum

dimension”,

ϕ
(
(uβij )∗uαkl

)
= δα,βδj,lδk,i

1

mαλαi
, ϕ

(
uβij (uαkl)

∗) = δα,βδj,lδk,i
λαj
mα

.

Set Qα = t(Fα)−1 with t chosen so that Tr(Qα) = Tr((Qα)−1) = mα.

Cauchy-Schwarz:

nα =
∑

i (λ
α
i )1/2(λαi )−1/2 ≤

(∑
i λ
α
i

)1/2(∑
i (λ

α
i )−1

)1/2
= mα.

So nα = mα iff λαi = 1 iff G is of Kac type.
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Structure theory of splitting map

Suppose ρ : L1(G)→ L1(G)⊗̂L1(G) is a completely bounded splitting map, and
set θ = ρ∗ : L∞(G)⊗L∞(G)→ L∞(G).

Theorem (D.)

There exist matrices Xα with unit trace with

θ
(
uαij ⊗ uβkl

)
= δα,βXα

j,kuαil .

Caspers–Lee–Ricard showed this also works for biflatness (when θ is not assumed
weak∗-continuous).

Theorem (D.)

If θ is contractive (or completely positive), then G is of Kac type.
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General case

Theorem (Caspers–Lee–Ricard)

Always G is of Kac type.

Qα ∝ (Fα)−1 is actually an intertwiner:

(uα)t(1⊗ Qα)uα = 1⊗ Qα.

Drop the “1⊗” and regard Mn as a subalgebra of Mn(A).

Qα is diagonal with positive entries.

Hence ‖(Qα)−1/2(uα)t(Qα)1/2‖ = ‖(Qα)−1/2(uα)tQαuα(Qα)−1/2‖1/2 = 1.

(Qα)−1/2(uα)t(Qα)1/2 =
∑
i,j

√
λαj
λαi

uαji ⊗ eij .
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Step II

Using that Mn(L∞)⊗Mn(L∞) ∼= Mn ⊗Mn ⊗ L∞⊗L∞ and that uα unitary,

1 = ‖(Qα)−1/2(uα)t(Qα)1/2 ⊗ uα‖

=
∥∥∥∑ eij ⊗ ekl ⊗

√
λαj
λαi

uαji ⊗ uαkl

∥∥∥.
Then apply θ : uαij ⊗ uαkl 7→ Xα

j,kuαil to get

∑
eij ⊗ ekl ⊗

√
λαj
λαi

Xα
ik uαjl .

Then norm of this is ≤ ‖θ‖cb so the aim is to bound ‖θ‖cb below.

Matthew Daws (Leeds) LCQGS and amenability Fields, May 2014 13 / 18



Row/Column spaces

Recall that Cn is the n-dim column Hilbert space, and Rn the row space.

For an operator space E ⊆ B(H) we have∥∥∥ n∑
i=1

ei ⊗xi

∥∥∥
Cn⊗E

=
∥∥∥∑ x∗i xi

∥∥∥
B(H)

,
∥∥∥ n∑

i=1

ei ⊗xi

∥∥∥
Rn⊗E

=
∥∥∥∑ xix

∗
i

∥∥∥
B(H)

.

Then Mn
∼= Cn ⊗ Rn via eij ↔ ei ⊗ ej .

All tensor products are minimal/spacial Operator Space ones.

Cn ⊗ Cm = Cn×m and Rn ⊗ Rm = Rn×m.
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Apply this

∑
eij ⊗ ekl ⊗

√
λαj
λαi

Xα
ik uαjl  

(∑
i,k

Xα
ik√
λαi

ei ⊗ ek
)
⊗
(∑

j,l

ej ⊗ el ⊗
√
λαj uαjl

)
∈ Mn ⊗Mn ⊗ L∞ ∼= Cn ⊗ Rn ⊗ Cn ⊗ Rn ⊗ L∞  (Cn ⊗ Cn)⊗ (Rn ⊗ Rn ⊗ L∞).

All minimal tensor products, so “shuffle” is a complete isometry.

1st part in Cn2 with norm (∑
i,k

|Xα
ik |2

λαi

)1/2
.

2nd part in Rn2 ⊗ L∞ with norm (as uα unitary)∥∥∥∑
j,l

λαj uαjl (uαjl )∗
∥∥∥1/2 =

∥∥∥∑
j

λαj 1
∥∥∥1/2 =

(∑
j

λαj

)1/2
=
√

mα.
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First bound

‖θ‖cb ≥
(∑

i,k

|Xα
ik |2

λαi

)1/2√
mα ≥

(∑
i

|Xα
ii |2

λαi

)1/2√
mα.

Now swap things around:

1 = ‖uα ⊗ (Qα)−1/2(uα)t(Qα)1/2‖ =
∥∥∥∑ eij ⊗ ekl ⊗ uαij ⊗

√
λαl
λαk

uαlk

∥∥∥.
Applying θ we get

∑∑
eij⊗ekl⊗uαikXα

jl

√
λαl
λαk
 
(∑

i,k

ei⊗ek⊗uαik
1√
λαk

)
⊗
(∑

j,l

ej⊗el⊗Xα
jl

√
λαl

)
in (Cn ⊗ Cn ⊗ L∞)⊗ (Rn ⊗ Rn).
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Second bound

Repeat the argument (and use intertwining relations again) to get:

‖θ‖cb ≥
(∑

i

|Xα
ii |2λαi

)1/2√
mα.

Then

mα

∑
i

|Xα
ii |2 ≤

(
mα

∑
i

|Xα
ii |2

λαi

)1/2(
mα

∑
i

|Xα
ii |2λαi

)1/2
≤ ‖θ‖2cb

by Cauchy-Schwarz. Again by C.-S.

1 =

nα∑
i=1

Xα
ii ≤

√
nα
(∑

i

|Xα
ii |2
)1/2

so conclude
‖θ‖2cb ≥

mα

nα
.
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The trick

If V is any finite-dimensional unitary corepresentation then can write V as a
sum of irreducibles:

V =
m∑
i=1

uαi .

Then if Q =
⊕

Qαi we have V tQV = Q.

Estimate from before gives:

Tr(Q) =
∑
i

Tr(Qαi ) =
∑
i

mαi ≤
∑
i

‖θ‖2cbnαi = ‖θ‖2cb dim(V ).

Set V = uα > uα > · · · > uα say d times.

Fact: Q for V is equal to (Qα)⊗d .

So md
α = Tr(Qα)d ≤ ‖θ‖2cbnd

α.

d →∞ implies mα ≤ nα so G Kac.
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