Locally compact quantum groups 4. Locally compact quantum groups, amenability, cohomological properties

Matthew Daws

Leeds

Fields, May 2014

Locally compact quantum groups

Definition (Kustermans, Vaes)

A locally compact quantum group \mathbb{G} is a Hopf von Neumann algebra (M, Δ) with invariant weights φ, ψ

 $(\mathrm{id}\otimes \varphi)\Delta(x)=\varphi(x)\mathbf{1},\qquad (\psi\otimes \mathrm{id})\Delta(x)=\psi(x)\mathbf{1}.$

- Means e.g. that if $x \in M^+$ with $\varphi(x) < \infty$, and $\omega \in M^+_*$, then $\varphi((\omega \otimes id)\Delta(x)) = \varphi(x)\langle 1, \omega \rangle$.
- Write $M = L^{\infty}(\mathbb{G})$; let $L^{2}(\mathbb{G})$ be the GNS space of φ .
- Let $\mathfrak{n}_{\varphi} = \{x \in L^{\infty}(\mathbb{G}) : \varphi(x^*x) < \infty\}$ and $\Lambda : \mathfrak{n}_{\varphi} \to L^2(\mathbb{G})$ be the GNS map: $(\Lambda(x)|\Lambda(y)) = \varphi(y^*x)$.

Constructions

• Define W^* on $L^2(\mathbb{G})\otimes L^2(\mathbb{G})$, as before, by

 $W^*(\Lambda(a)\otimes\Lambda(b))=(\Lambda\otimes\Lambda)(\Delta(b)(a\otimes1)).$

- φ (left-)invariant implies W^* is an isometry.
- More subtle argument using ψ shows W is unitary.
- W is a corepresentation, $(\Delta \otimes id)(W) = W_{13}W_{23}$.

•
$$\Delta(x) = W^*(1 \otimes x)W$$
 for $x \in L^{\infty}(\mathbb{G})$.

- L[∞](G) is the weak*-closure of {(id ⊗ω)(W) : ω ∈ B(L²(G))_{*}}.
- There is an unbounded antipode S defined by/ which satisfies

$$Sig((\operatorname{\mathsf{id}}\otimes\omega)(W)ig)=(\operatorname{\mathsf{id}}\otimes\omega)(W^*),\qquad S(S(x)^*)^*=x\quad (x\in D(S)).$$

• Decompose S as $S = R\tau_{-i/2}$ where R is an anti-*-isomorphism and (τ_t) a continuous one-parameter group.

(日) (同) (日) (日)

Duality

$$L^{\infty}(\widehat{\mathbb{G}}) = \{(\omega \otimes \mathsf{id})(W) : \omega \in L^1(\mathbb{G})\}''$$

- W is multiplicative; $\widehat{W} = \sigma W^* \sigma$, $\widehat{\Delta}(x) = \widehat{W}^* (1 \otimes x) \widehat{W}$.
- $W \in L^{\infty}(\mathbb{G})\overline{\otimes}L^{\infty}(\widehat{\mathbb{G}}).$
- Can construct invariant weights $\widehat{\varphi}, \widehat{\psi}$ so that $L^{\infty}(\widehat{\mathbb{G}})$ becomes a locally compact quantum group.
- Same duality interactions: e.g. *J*x**J* = R(x) for x ∈ L[∞](𝔅). *G*⁺_𝔅 = 𝔅 canonically.
- Becomes a category (Ng, and Meyer-Roy-Woronowicz).

C^* -algebra considerations

$$C_0(\mathbb{G}) = \{(\mathsf{id}\otimes\omega)(W): \omega\in L^1(\widehat{\mathbb{G}})\}^{\|\cdot\|}.$$

- This is a C^{*}-algebra, and R, (τ_t) restrict to it, and S becomes a norm-closed operator.
- The weights restrict to densely defined, faithful, KMS weights.
- $C_0(\mathbb{G})$ satisfies the cancellation laws.
- Can analogously axiomatise a C*-algebraic version of the theory.
- This is a "reduced" theory: $C_r^*(G)$ is the cocommutative example.
- There is a procedure to form the "full" or "universal" C^* -completion, leading to $C_0^u(\mathbb{G})$: everything holds, but weights are no longer faithful.

- 4 同 6 4 日 6 4 日 6

Coamenability

Definition

 \mathbb{G} is coamenable if $C_0(\mathbb{G})^*$ is a unital Banach algebra.

Theorem

The following are equivalent to $\mathbb G$ being coamenable:

- $L^1(\mathbb{G})$ has a bounded approximate identity.
- e there is a net of unit vectors (ξ_i) with ||W(ξ_i ⊗ ξ) − ξ_i ⊗ ξ|| → 0 for each ξ ∈ H.

Sketch proof of $(2) \Rightarrow (1)$.

For $\omega_{\xi,\eta}\in L^1(\mathbb{G})$ and $x\in L^\infty(\mathbb{G})$,

 $egin{aligned} &\langle x, \omega_{\xi_i,\xi_i}\star\omega_{\xi,\eta}
angle = \langle W^*(1\otimes x)W, \omega\xi_i,\xi_i\otimes\omega_{\xi,\eta}
angle = ((1\otimes x)W(\xi_i\otimes\xi)|W(\xi_i\otimes\eta))\ &pprox ((1\otimes x)(\xi_i\otimes\xi)|\xi_i\otimes\eta) = (x\xi|\eta) = \langle x, \omega_{\xi,\eta}
angle. \end{aligned}$

6 / 18

Amenability

Definition

 \mathbb{G} is amenable if there is a state $M \in L^{\infty}(\mathbb{G})^*$ with $(\mathrm{id} \otimes M)\Delta(x) = \langle M, x \rangle 1$ for $x \in L^{\infty}(\mathbb{G})$.

Theorem

 $\widehat{\mathbb{G}}$ coamenable implies that \mathbb{G} is amenable.

Proof.

If $\|\widehat{W}(\xi_i \otimes \xi) - \xi_i \otimes \xi\| \to 0$ then W unitary, $\widehat{W} = \sigma W^* \sigma$ implies $\|W(\xi \otimes \xi_i) - \xi \otimes \xi_i\| \to 0$. If M is a weak*-limit point of the net (ω_{ξ_i,ξ_i}) in $L^1(\mathbb{G})$ then for $x \in L^{\infty}(\mathbb{G})$,

$$\langle (\mathsf{id} \otimes \mathcal{M}) \Delta(x), \omega_{\xi,\eta}
angle = \lim_i \langle \mathcal{W}^*(1 \otimes x) \mathcal{W}, \omega_{\xi,\eta} \otimes \omega_{\xi_i,\xi_i}
angle = \dots = \langle \mathcal{M}, x
angle \langle 1, \omega_{\xi,\eta}
angle.$$

How do you "reverse" the argument?

See Bédos-Tuset, Int. J. Math, 2003.

Matthew Daws (Leeds)

LCQGS and amenability

(日) (同) (三) (三)

Amenability 2

Theorem

Let $\mathbb G$ be compact with $\widehat{\mathbb G}$ amenable. Then $\mathbb G$ is coamenable.

Proof.

See Tomatsu, J. Math. Soc. Japan, 2006 (or for Kac algebras, Ruan, JFA, 1996).

Open outside the compact/discrete case.

Cohomological condition: biprojectivity

Definition

A Banach algebra A is *biprojective* if the multiplication map $\Delta_* : A \widehat{\otimes} A \to A$ has a right inverse which is an A-bimodule map: i.e. $\rho : A \to A \widehat{\otimes} A$ with $\Delta_* \circ \rho = id_A$.

Can also ask in the category of operator spaces.

Theorem (Helemskii)

A is amenable if and only if it has a bounded approximate identity and is biflat (\Leftarrow biprojective).

Theorem (Ruan/Xu, Aristov)

If $L^1(\mathbb{G})$ is operator biprojective then \mathbb{G} is compact. If \mathbb{G} is compact of Kac type, then $L^1(\mathbb{G})$ is operator biprojective.

Theorem (Caspers–Lee–Ricard)

If $L^1(\mathbb{G})$ is operator biprojective, then \mathbb{G} is compact of Kac type.

Proof: diagonalisation

Fix $\mathbb G$ a compact quantum group.

- Have $u^{\alpha} \in M_{n_{\alpha}}(A) \cong A \otimes M_{n_{\alpha}}$ and associated "F matrix" F^{α} .
- By a change of (orthonormal) basis of $\mathbb{C}^{n_{\alpha}}$, say $u^{\alpha} \mapsto X^* u^{\alpha} X$, we can diagonalise F^{α} .
- Get strictly positive (λ_i^{α}) with $\sum_i \lambda_i^{\alpha} = \sum_i (\lambda_i^{\alpha})^{-1} = m_{\alpha}$ the "quantum dimension",

$$\varphi\big((u_{ij}^{\beta})^*u_{kl}^{\alpha}\big) = \delta_{\alpha,\beta}\delta_{j,l}\delta_{k,i}\frac{1}{m_{\alpha}\lambda_i^{\alpha}}, \quad \varphi\big(u_{ij}^{\beta}(u_{kl}^{\alpha})^*\big) = \delta_{\alpha,\beta}\delta_{j,l}\delta_{k,i}\frac{\lambda_j^{\alpha}}{m_{\alpha}}.$$

- Set $Q^{\alpha} = t(F^{\alpha})^{-1}$ with t chosen so that $\operatorname{Tr}(Q^{\alpha}) = \operatorname{Tr}((Q^{\alpha})^{-1}) = m_{\alpha}$.
- Cauchy-Schwarz:

$$n_{\alpha} = \sum_{i} (\lambda_{i}^{\alpha})^{1/2} (\lambda_{i}^{\alpha})^{-1/2} \leq \left(\sum_{i} \lambda_{i}^{\alpha}\right)^{1/2} \left(\sum_{i} (\lambda_{i}^{\alpha})^{-1}\right)^{1/2} = m_{\alpha}$$

• So $n_{\alpha} = m_{\alpha}$ iff $\lambda_i^{\alpha} = 1$ iff \mathbb{G} is of Kac type.

Structure theory of splitting map

Suppose $\rho : L^1(\mathbb{G}) \to L^1(\mathbb{G}) \widehat{\otimes} L^1(\mathbb{G})$ is a completely bounded splitting map, and set $\theta = \rho^* : L^{\infty}(\mathbb{G}) \overline{\otimes} L^{\infty}(\mathbb{G}) \to L^{\infty}(\mathbb{G})$.

Theorem (D.)

There exist matrices X^{α} with unit trace with

$$\theta(u_{ij}^{\alpha}\otimes u_{kl}^{\beta})=\delta_{\alpha,\beta}X_{j,k}^{\alpha}u_{il}^{\alpha}.$$

Caspers–Lee–Ricard showed this also works for biflatness (when θ is not assumed weak*-continuous).

Theorem (D.) If θ is contractive (or completely positive), then \mathbb{G} is of Kac type.

▲ロト ▲圖ト ▲画ト ▲画ト 三直 - のへで

General case

Theorem (Caspers–Lee–Ricard)

Always \mathbb{G} is of Kac type.

• $Q^lpha \propto ({\cal F}^lpha)^{-1}$ is actually an intertwiner:

$$(u^{\alpha})^t(1\otimes \overline{Q^{\alpha}})\overline{u^{lpha}}=1\otimes \overline{Q^{lpha}}.$$

- Drop the "1 \otimes " and regard \mathbb{M}_n as a subalgebra of $\mathbb{M}_n(A)$.
- Q^{α} is diagonal with positive entries.
- Hence $\|(Q^{\alpha})^{-1/2}(u^{\alpha})^t(Q^{\alpha})^{1/2}\| = \|(Q^{\alpha})^{-1/2}(u^{\alpha})^tQ^{\alpha}\overline{u^{\alpha}}(Q^{\alpha})^{-1/2}\|^{1/2} = 1.$

$$(Q^{lpha})^{-1/2}(u^{lpha})^t(Q^{lpha})^{1/2} = \sum_{i,j} \sqrt{rac{\lambda_j^{lpha}}{\lambda_i^{lpha}}} u_{ji}^{lpha} \otimes e_{ij}.$$

Step II

Using that $M_n(L^\infty)\overline{\otimes}M_n(L^\infty)\cong M_n\otimes M_n\otimes L^\infty\overline{\otimes}L^\infty$ and that u^α unitary,

$$1 = \|(Q^{\alpha})^{-1/2} (u^{\alpha})^{t} (Q^{\alpha})^{1/2} \otimes u^{\alpha}\|$$
$$= \left\|\sum e_{ij} \otimes e_{kl} \otimes \sqrt{\frac{\lambda_{j}^{\alpha}}{\lambda_{i}^{\alpha}}} u_{ji}^{\alpha} \otimes u_{kl}^{\alpha}\right\|$$

Then apply $heta:u_{ij}^lpha\otimes u_{kl}^lpha\mapsto X_{j,k}^lpha u_{il}^lpha$ to get

$$\sum e_{ij} \otimes e_{kl} \otimes \sqrt{\frac{\lambda_j^{lpha}}{\lambda_i^{lpha}}} X_{ik}^{lpha} u_{jl}^{lpha}.$$

Then norm of this is $\leq \|\theta\|_{cb}$ so the aim is to bound $\|\theta\|_{cb}$ below.

▲□▶ ▲□▶ ▲□▶ ▲□▶ = ののの

Row/Column spaces

- Recall that C_n is the *n*-dim column Hilbert space, and R_n the row space.
- For an operator space $E \subseteq \mathcal{B}(H)$ we have

$$\left\|\sum_{i=1}^{n} e_{i} \otimes x_{i}\right\|_{C_{n} \otimes E} = \left\|\sum x_{i}^{*} x_{i}\right\|_{\mathcal{B}(H)}, \quad \left\|\sum_{i=1}^{n} e_{i} \otimes x_{i}\right\|_{R_{n} \otimes E} = \left\|\sum x_{i} x_{i}^{*}\right\|_{\mathcal{B}(H)}.$$

- Then $\mathbb{M}_n \cong C_n \otimes R_n$ via $e_{ij} \leftrightarrow e_i \otimes e_j$.
- All tensor products are minimal/spacial Operator Space ones.

•
$$C_n \otimes C_m = C_{n \times m}$$
 and $R_n \otimes R_m = R_{n \times m}$.

Apply this

$$\sum e_{ij} \otimes e_{kl} \otimes \sqrt{\frac{\lambda_j^{\alpha}}{\lambda_i^{\alpha}}} X_{ik}^{\alpha} u_{jl}^{\alpha} \quad \rightsquigarrow \quad \left(\sum_{i,k} \frac{X_{ik}^{\alpha}}{\sqrt{\lambda_i^{\alpha}}} e_i \otimes e_k\right) \otimes \left(\sum_{j,l} e_j \otimes e_l \otimes \sqrt{\lambda_j^{\alpha}} u_{jl}^{\alpha}\right)$$
$$\in \mathcal{M}_n \otimes \mathcal{M}_n \otimes L^{\infty} \cong \mathcal{C}_n \otimes \mathcal{R}_n \otimes \mathcal{C}_n \otimes \mathcal{R}_n \otimes L^{\infty} \rightsquigarrow (\mathcal{C}_n \otimes \mathcal{C}_n) \otimes (\mathcal{R}_n \otimes \mathcal{R}_n \otimes L^{\infty}).$$

- All minimal tensor products, so "shuffle" is a complete isometry.
- 1st part in C_{n^2} with norm

$$\Big(\sum_{i,k}\frac{|X_{ik}^{\alpha}|^2}{\lambda_i^{\alpha}}\Big)^{1/2}.$$

• 2nd part in $R_{n^2}\otimes L^\infty$ with norm (as u^lpha unitary)

$$\left\|\sum_{j,l}\lambda_j^{\alpha}u_{jl}^{\alpha}(u_{jl}^{\alpha})^*\right\|^{1/2} = \left\|\sum_j\lambda_j^{\alpha}1\right\|^{1/2} = \left(\sum_j\lambda_j^{\alpha}\right)^{1/2} = \sqrt{m_{\alpha}}.$$

3

(日) (周) (三) (三)

First bound

$$\|\theta\|_{cb} \geq \Big(\sum_{i,k} \frac{|X_{ik}^{\alpha}|^2}{\lambda_i^{\alpha}}\Big)^{1/2} \sqrt{m_{\alpha}} \geq \Big(\sum_i \frac{|X_{ii}^{\alpha}|^2}{\lambda_i^{\alpha}}\Big)^{1/2} \sqrt{m_{\alpha}}.$$

Now swap things around:

$$1 = \|u^{\alpha} \otimes (Q^{\alpha})^{-1/2} (u^{\alpha})^{t} (Q^{\alpha})^{1/2}\| = \Big\|\sum e_{ij} \otimes e_{kl} \otimes u^{\alpha}_{ij} \otimes \sqrt{\frac{\lambda_{l}^{\alpha}}{\lambda_{k}^{\alpha}}} u^{\alpha}_{lk}\Big\|.$$

Applying θ we get

$$\sum \sum e_{ij} \otimes e_{kl} \otimes u_{ik}^{\alpha} X_{jl}^{\alpha} \sqrt{\frac{\lambda_l^{\alpha}}{\lambda_k^{\alpha}}} \rightsquigarrow \Big(\sum_{i,k} e_i \otimes e_k \otimes u_{ik}^{\alpha} \frac{1}{\sqrt{\lambda_k^{\alpha}}} \Big) \otimes \Big(\sum_{j,l} e_j \otimes e_l \otimes X_{jl}^{\alpha} \sqrt{\lambda_l^{\alpha}} \Big)$$

in $(C_n \otimes C_n \otimes L^{\infty}) \otimes (R_n \otimes R_n).$

- 2

<ロ> (日) (日) (日) (日) (日)

Second bound

Repeat the argument (and use intertwining relations again) to get:

$$\|\theta\|_{cb} \ge \left(\sum_{i} |X_{ii}^{\alpha}|^2 \lambda_i^{\alpha}\right)^{1/2} \sqrt{m_{\alpha}}.$$

Then

$$m_{\alpha}\sum_{i}|X_{ii}^{\alpha}|^{2} \leq \left(m_{\alpha}\sum_{i}\frac{|X_{ii}^{\alpha}|^{2}}{\lambda_{i}^{\alpha}}\right)^{1/2}\left(m_{\alpha}\sum_{i}|X_{ii}^{\alpha}|^{2}\lambda_{i}^{\alpha}\right)^{1/2} \leq \|\theta\|_{cb}^{2}$$

by Cauchy-Schwarz. Again by C.-S.

$$1 = \sum_{i=1}^{n_{\alpha}} X_{ii}^{\alpha} \leq \sqrt{n_{\alpha}} \left(\sum_{i} |X_{ii}^{\alpha}|^2\right)^{1/2}$$

so conclude

$$\|\theta\|_{cb}^2 \ge \frac{m_\alpha}{n_\alpha}$$

3

→ Ξ →

The trick

• If V is any finite-dimensional unitary corepresentation then can write V as a sum of irreducibles:

$$V=\sum_{i=1}^m u^{\alpha_i}$$

- Then if $Q = \bigoplus Q^{\alpha_i}$ we have $V^t Q \overline{V} = Q$.
- Estimate from before gives:

$$\operatorname{Tr}(Q) = \sum_{i} \operatorname{Tr}(Q^{\alpha_{i}}) = \sum_{i} m_{\alpha_{i}} \leq \sum_{i} \|\theta\|_{cb}^{2} n_{\alpha_{i}} = \|\theta\|_{cb}^{2} \operatorname{dim}(V).$$

- Set $V = u^{\alpha} \bigcirc u^{\alpha} \bigcirc \cdots \bigcirc u^{\alpha}$ say d times.
- Fact: Q for V is equal to $(Q^{\alpha})^{\otimes d}$.
- So $m^d_{lpha} = \operatorname{Tr}(Q^{lpha})^d \le \|\theta\|^2_{cb} n^d_{lpha}.$
- $d \to \infty$ implies $m_{\alpha} \leq n_{\alpha}$ so \mathbb{G} Kac.