Locally compact quantum groups
 4. Locally compact quantum groups, amenability, cohomological properties

Matthew Daws

Leeds

Fields, May 2014

Locally compact quantum groups

Definition (Kustermans, Vaes)

A locally compact quantum group \mathbb{G} is a Hopf von Neumann algebra (M, Δ) with invariant weights φ, ψ

$$
(\text { id } \otimes \varphi) \Delta(x)=\varphi(x) 1, \quad(\psi \otimes \mathrm{id}) \Delta(x)=\psi(x) 1
$$

- Means e.g. that if $x \in M^{+}$with $\varphi(x)<\infty$, and $\omega \in M_{*}^{+}$, then $\varphi((\omega \otimes \mathrm{id}) \Delta(x))=\varphi(x)\langle 1, \omega\rangle$.
- Write $M=L^{\infty}(\mathbb{G})$; let $L^{2}(\mathbb{G})$ be the GNS space of φ.
- Let $\mathfrak{n}_{\varphi}=\left\{x \in L^{\infty}(\mathbb{G}): \varphi\left(x^{*} x\right)<\infty\right\}$ and $\Lambda: \mathfrak{n}_{\varphi} \rightarrow L^{2}(\mathbb{G})$ be the GNS map: $(\Lambda(x) \mid \Lambda(y))=\varphi\left(y^{*} x\right)$.

Constructions

- Define W^{*} on $L^{2}(\mathbb{G}) \otimes L^{2}(\mathbb{G})$, as before, by

$$
W^{*}(\Lambda(a) \otimes \Lambda(b))=(\Lambda \otimes \Lambda)(\Delta(b)(a \otimes 1))
$$

- φ (left-)invariant implies W^{*} is an isometry.
- More subtle argument using ψ shows W is unitary.
- W is a corepresentation, $(\Delta \otimes \mathrm{id})(W)=W_{13} W_{23}$.
- $\Delta(x)=W^{*}(1 \otimes x) W$ for $x \in L^{\infty}(\mathbb{G})$.
- $L^{\infty}(\mathbb{G})$ is the weak*-closure of $\left\{(\right.$ id $\left.\otimes \omega)(W): \omega \in \mathcal{B}\left(L^{2}(\mathbb{G})\right)_{*}\right\}$.
- There is an unbounded antipode S defined by/ which satisfies

$$
S((\mathrm{id} \otimes \omega)(W))=(\mathrm{id} \otimes \omega)\left(W^{*}\right), \quad S\left(S(x)^{*}\right)^{*}=x \quad(x \in D(S)) .
$$

- Decompose S as $S=R \tau_{-i / 2}$ where R is an anti-*-isomorphism and $\left(\tau_{t}\right)$ a continuous one-parameter group.

Duality

$$
L^{\infty}(\widehat{\mathbb{G}})=\left\{(\omega \otimes \mathrm{id})(W): \omega \in L^{1}(\mathbb{G})\right\}^{\prime \prime}
$$

- W is multiplicative; $\widehat{W}=\sigma W^{*} \sigma, \widehat{\Delta}(x)=\widehat{W}(1 \otimes x) \widehat{W}$.
- $W \in L^{\infty}(\mathbb{G}) \bar{\otimes} L^{\infty}(\widehat{\mathbb{G}})$.
- Can construct invariant weights $\widehat{\varphi}, \widehat{\psi}$ so that $L^{\infty}(\widehat{\mathbb{G}})$ becomes a locally compact quantum group.
- Same duality interactions: e.g. $\widehat{J} x^{*} \widehat{J}=R(x)$ for $x \in L^{\infty}(\mathbb{G})$.
- $\widehat{\widehat{\mathbb{G}}}=\mathbb{G}$ canonically.
- Becomes a category (Ng, and Meyer-Roy-Woronowicz).

C^{*}-algebra considerations

$$
C_{0}(\mathbb{G})=\left\{(\mathrm{id} \otimes \omega)(W): \omega \in L^{1}(\widehat{\mathbb{G}})\right\}^{\|\cdot\|} .
$$

- This is a C^{*}-algebra, and $R,\left(\tau_{t}\right)$ restrict to it, and S becomes a norm-closed operator.
- The weights restrict to densely defined, faithful, KMS weights.
- $C_{0}(\mathbb{G})$ satisfies the cancellation laws.
- Can analogously axiomatise a C^{*}-algebraic version of the theory.
- This is a "reduced" theory: $C_{r}^{*}(G)$ is the cocommutative example.
- There is a procedure to form the "full" or "universal" C^{*}-completion, leading to $C_{0}^{\mu}(\mathbb{G})$: everything holds, but weights are no longer faithful.

Coamenability

Definition

\mathbb{G} is coamenable if $C_{0}(\mathbb{G})^{*}$ is a unital Banach algebra.

Theorem

The following are equivalent to \mathbb{G} being coamenable:
(1) $L^{1}(\mathbb{G})$ has a bounded approximate identity.
(2) there is a net of unit vectors $\left(\xi_{i}\right)$ with $\left\|W\left(\xi_{i} \otimes \xi\right)-\xi_{i} \otimes \xi\right\| \rightarrow 0$ for each $\xi \in H$.
(3) $C_{0}(\mathbb{G})=C_{0}^{u}(\mathbb{G})$.

Sketch proof of $(2) \Rightarrow(1)$.

For $\omega_{\xi, \eta} \in L^{1}(\mathbb{G})$ and $x \in L^{\infty}(\mathbb{G})$,

$$
\begin{aligned}
\left\langle x, \omega_{\xi_{i}, \xi_{i}} * \omega_{\xi, \eta}\right\rangle & =\left\langle W^{*}(1 \otimes x) W, \omega \xi_{i}, \xi_{i} \otimes \omega_{\xi, \eta}\right\rangle=\left((1 \otimes x) W\left(\xi_{i} \otimes \xi\right) \mid W\left(\xi_{i} \otimes \eta\right)\right) \\
& \approx\left((1 \otimes x)\left(\xi_{i} \otimes \xi\right) \mid \xi_{i} \otimes \eta\right)=(x \xi \mid \eta)=\left\langle x, \omega_{\xi, \eta}\right\rangle .
\end{aligned}
$$

Amenability

Definition

\mathbb{G} is amenable if there is a state $M \in L^{\infty}(\mathbb{G})^{*}$ with $(\mathrm{id} \otimes M) \Delta(x)=\langle M, x\rangle 1$ for $x \in L^{\infty}(\mathbb{G})$.

Theorem

$\widehat{\mathbb{G}}$ coamenable implies that \mathbb{G} is amenable.

Proof.

If $\left\|\widehat{W}\left(\xi_{i} \otimes \xi\right)-\xi_{i} \otimes \xi\right\| \rightarrow 0$ then W unitary, $\widehat{W}=\sigma W^{*} \sigma$ implies
$\left\|W\left(\xi \otimes \xi_{i}\right)-\xi \otimes \xi_{i}\right\| \rightarrow 0$. If M is a weak*-limit point of the net $\left(\omega_{\xi_{i}, \xi_{i}}\right)$ in $L^{1}(\mathbb{G})$ then for $x \in L^{\infty}(\mathbb{G})$,

$$
\left\langle(\operatorname{id} \otimes M) \Delta(x), \omega_{\xi, \eta}\right\rangle=\lim _{i}\left\langle W^{*}(1 \otimes x) W, \omega_{\xi, \eta} \otimes \omega_{\xi_{i}, \xi_{i}}\right\rangle=\cdots=\langle M, x\rangle\left\langle 1, \omega_{\xi, \eta}\right\rangle .
$$

How do you "reverse" the argument?
See Bédos-Tuset, Int. J. Math, 2003.

Amenability 2

Theorem
Let \mathbb{G} be compact with $\widehat{\mathbb{G}}$ amenable. Then \mathbb{G} is coamenable.

Proof.

See Tomatsu, J. Math. Soc. Japan, 2006 (or for Kac algebras, Ruan, JFA, 1996).

Open outside the compact/discrete case.

Cohomological condition: biprojectivity

Definition

A Banach algebra A is biprojective if the multiplication map $\Delta_{*}: A \widehat{\otimes} A \rightarrow A$ has a right inverse which is an A-bimodule map: i.e. $\rho: A \rightarrow A \widehat{\otimes} A$ with $\Delta_{*} \circ \rho=\mathrm{id}_{A}$.

Can also ask in the category of operator spaces.

Theorem (Helemskii)

A is amenable if and only if it has a bounded approximate identity and is biflat (\Leftarrow biprojective).

Theorem (Ruan/Xu, Aristov)

If $L^{1}(\mathbb{G})$ is operator biprojective then \mathbb{G} is compact. If \mathbb{G} is compact of Kac type, then $L^{1}(\mathbb{G})$ is operator biprojective.

Theorem (Caspers-Lee-Ricard)

If $L^{1}(\mathbb{G})$ is operator biprojective, then \mathbb{G} is compact of Kac type.

Proof: diagonalisation

Fix \mathbb{G} a compact quantum group.

- Have $u^{\alpha} \in M_{n_{\alpha}}(A) \cong A \otimes M_{n_{\alpha}}$ and associated " F matrix" F^{α}.
- By a change of (orthonormal) basis of $\mathbb{C}^{n_{\alpha}}$, say $u^{\alpha} \mapsto X^{*} u^{\alpha} X$, we can diagonalise F^{α}.
- Get strictly positive $\left(\lambda_{i}^{\alpha}\right)$ with $\sum_{i} \lambda_{i}^{\alpha}=\sum_{i}\left(\lambda_{i}^{\alpha}\right)^{-1}=m_{\alpha}$ the "quantum dimension",

$$
\varphi\left(\left(u_{i j}^{\beta}\right)^{*} u_{k l}^{\alpha}\right)=\delta_{\alpha, \beta} \delta_{j, 1} \delta_{k, i} \frac{1}{m_{\alpha} \lambda_{i}^{\alpha}}, \quad \varphi\left(u_{i j}^{\beta}\left(u_{k \mid}^{\alpha}\right)^{*}\right)=\delta_{\alpha, \beta} \delta_{j, l} \delta_{k, i} \frac{\lambda_{j}^{\alpha}}{m_{\alpha}} .
$$

- Set $Q^{\alpha}=t\left(F^{\alpha}\right)^{-1}$ with t chosen so that $\operatorname{Tr}\left(Q^{\alpha}\right)=\operatorname{Tr}\left(\left(Q^{\alpha}\right)^{-1}\right)=m_{\alpha}$.
- Cauchy-Schwarz:

$$
n_{\alpha}=\sum_{i}\left(\lambda_{i}^{\alpha}\right)^{1 / 2}\left(\lambda_{i}^{\alpha}\right)^{-1 / 2} \leq\left(\sum_{i} \lambda_{i}^{\alpha}\right)^{1 / 2}\left(\sum_{i}\left(\lambda_{i}^{\alpha}\right)^{-1}\right)^{1 / 2}=m_{\alpha}
$$

- So $n_{\alpha}=m_{\alpha}$ iff $\lambda_{i}^{\alpha}=1 \mathrm{iff} \mathbb{G}$ is of Kac type.

Structure theory of splitting map

Suppose $\rho: L^{1}(\mathbb{G}) \rightarrow L^{1}(\mathbb{G}) \widehat{\otimes} L^{1}(\mathbb{G})$ is a completely bounded splitting map, and set $\theta=\rho^{*}: L^{\infty}(\mathbb{G}) \bar{\otimes} L^{\infty}(\mathbb{G}) \rightarrow L^{\infty}(\mathbb{G})$.

Theorem (D.)

There exist matrices X^{α} with unit trace with

$$
\theta\left(u_{i j}^{\alpha} \otimes u_{k l}^{\beta}\right)=\delta_{\alpha, \beta} X_{j, k}^{\alpha} u_{i l}^{\alpha} .
$$

Caspers-Lee-Ricard showed this also works for biflatness (when θ is not assumed weak*-continuous).

Theorem (D.)

If θ is contractive (or completely positive), then \mathbb{G} is of Kac type.

General case

Theorem (Caspers-Lee-Ricard)

Always \mathbb{G} is of Kac type.

- $Q^{\alpha} \propto\left(F^{\alpha}\right)^{-1}$ is actually an intertwiner:

$$
\left(u^{\alpha}\right)^{t}\left(1 \otimes \overline{Q^{\alpha}}\right) \overline{u^{\alpha}}=1 \otimes \overline{Q^{\alpha}} .
$$

- Drop the " $1 \otimes$ " and regard \mathbb{M}_{n} as a subalgebra of $\mathbb{M}_{n}(A)$.
- Q^{α} is diagonal with positive entries.
- Hence $\left\|\left(Q^{\alpha}\right)^{-1 / 2}\left(u^{\alpha}\right)^{t}\left(Q^{\alpha}\right)^{1 / 2}\right\|=\left\|\left(Q^{\alpha}\right)^{-1 / 2}\left(u^{\alpha}\right)^{t} Q^{\alpha} \overline{u^{\alpha}}\left(Q^{\alpha}\right)^{-1 / 2}\right\|^{1 / 2}=1$.

$$
\left(Q^{\alpha}\right)^{-1 / 2}\left(u^{\alpha}\right)^{t}\left(Q^{\alpha}\right)^{1 / 2}=\sum_{i, j} \sqrt{\frac{\lambda_{j}^{\alpha}}{\lambda_{i}^{\alpha}}} u_{j i}^{\alpha} \otimes e_{i j} .
$$

Step II

Using that $M_{n}\left(L^{\infty}\right) \bar{\otimes} M_{n}\left(L^{\infty}\right) \cong M_{n} \otimes M_{n} \otimes L^{\infty} \bar{\otimes} L^{\infty}$ and that u^{α} unitary,

$$
\begin{aligned}
1 & =\left\|\left(Q^{\alpha}\right)^{-1 / 2}\left(u^{\alpha}\right)^{t}\left(Q^{\alpha}\right)^{1 / 2} \otimes u^{\alpha}\right\| \\
& =\left\|\sum e_{i j} \otimes e_{k l} \otimes \sqrt{\frac{\lambda_{j}^{\alpha}}{\lambda_{i}^{\alpha}}} u_{j i}^{\alpha} \otimes u_{k l}^{\alpha}\right\| .
\end{aligned}
$$

Then apply $\theta: u_{i j}^{\alpha} \otimes u_{k l}^{\alpha} \mapsto X_{j, k}^{\alpha} u_{i l}^{\alpha}$ to get

$$
\sum e_{i j} \otimes e_{k l} \otimes \sqrt{\frac{\lambda_{j}^{\alpha}}{\lambda_{i}^{\alpha}}} X_{i k}^{\alpha} u_{j l}^{\alpha}
$$

Then norm of this is $\leq\|\theta\|_{c b}$ so the aim is to bound $\|\theta\|_{c b}$ below.

Row/Column spaces

- Recall that C_{n} is the n-dim column Hilbert space, and R_{n} the row space.
- For an operator space $E \subseteq \mathcal{B}(H)$ we have

$$
\left\|\sum_{i=1}^{n} e_{i} \otimes x_{i}\right\|_{C_{n} \otimes E}=\left\|\sum x_{i}^{*} x_{i}\right\|_{\mathcal{B}(H)}, \quad\left\|\sum_{i=1}^{n} e_{i} \otimes x_{i}\right\|_{R_{n} \otimes E}=\left\|\sum x_{i} x_{i}^{*}\right\|_{\mathcal{B}(H)}
$$

- Then $\mathbb{M}_{n} \cong C_{n} \otimes R_{n}$ via $e_{i j} \leftrightarrow e_{i} \otimes e_{j}$.
- All tensor products are minimal/spacial Operator Space ones.
- $C_{n} \otimes C_{m}=C_{n \times m}$ and $R_{n} \otimes R_{m}=R_{n \times m}$.

Apply this

$$
\begin{aligned}
& \sum e_{i j} \otimes e_{k l} \otimes \sqrt{\frac{\lambda_{j}^{\alpha}}{\lambda_{i}^{\alpha}}} X_{i k}^{\alpha} u_{j l}^{\alpha} \rightsquigarrow\left(\sum_{i, k} \frac{X_{i k}^{\alpha}}{\sqrt{\lambda_{i}^{\alpha}}} e_{i} \otimes e_{k}\right) \otimes\left(\sum_{j, l} e_{j} \otimes e_{l} \otimes \sqrt{\lambda_{j}^{\alpha}} u_{j l}^{\alpha}\right) \\
& \in M_{n} \otimes M_{n} \otimes L^{\infty} \cong C_{n} \otimes R_{n} \otimes C_{n} \otimes R_{n} \otimes L^{\infty} \rightsquigarrow\left(C_{n} \otimes C_{n}\right) \otimes\left(R_{n} \otimes R_{n} \otimes L^{\infty}\right) .
\end{aligned}
$$

- All minimal tensor products, so "shuffle" is a complete isometry.
- 1st part in $C_{n^{2}}$ with norm

$$
\left(\sum_{i, k} \frac{\left|X_{i k}^{\alpha}\right|^{2}}{\lambda_{i}^{\alpha}}\right)^{1 / 2}
$$

- 2nd part in $R_{n^{2}} \otimes L^{\infty}$ with norm (as u^{α} unitary)

$$
\left\|\sum_{j, l} \lambda_{j}^{\alpha} u_{j l}^{\alpha}\left(u_{j l}^{\alpha}\right)^{*}\right\|^{1 / 2}=\left\|\sum_{j} \lambda_{j}^{\alpha} 1\right\|^{1 / 2}=\left(\sum_{j} \lambda_{j}^{\alpha}\right)^{1 / 2}=\sqrt{m_{\alpha}}
$$

First bound

$$
\|\theta\|_{c b} \geq\left(\sum_{i, k} \frac{\left|X_{i k}^{\alpha}\right|^{2}}{\lambda_{i}^{\alpha}}\right)^{1 / 2} \sqrt{m_{\alpha}} \geq\left(\sum_{i} \frac{\left|X_{i i}^{\alpha}\right|^{2}}{\lambda_{i}^{\alpha}}\right)^{1 / 2} \sqrt{m_{\alpha}}
$$

Now swap things around:

$$
1=\left\|u^{\alpha} \otimes\left(Q^{\alpha}\right)^{-1 / 2}\left(u^{\alpha}\right)^{t}\left(Q^{\alpha}\right)^{1 / 2}\right\|=\left\|\sum e_{i j} \otimes e_{k l} \otimes u_{i j}^{\alpha} \otimes \sqrt{\frac{\lambda_{l}^{\alpha}}{\lambda_{k}^{\alpha}}} u_{l k}^{\alpha}\right\| .
$$

Applying θ we get
$\sum \sum e_{i j} \otimes e_{k l} \otimes u_{i k}^{\alpha} X_{j l}^{\alpha} \sqrt{\frac{\lambda_{l}^{\alpha}}{\lambda_{k}^{\alpha}}} \rightsquigarrow\left(\sum_{i, k} e_{i} \otimes e_{k} \otimes u_{i k}^{\alpha} \frac{1}{\sqrt{\lambda_{k}^{\alpha}}}\right) \otimes\left(\sum_{j, l} e_{j} \otimes e_{l} \otimes X_{j l}^{\alpha} \sqrt{\lambda_{l}^{\alpha}}\right)$ in $\left(C_{n} \otimes C_{n} \otimes L^{\infty}\right) \otimes\left(R_{n} \otimes R_{n}\right)$.

Second bound

Repeat the argument (and use intertwining relations again) to get:

$$
\|\theta\|_{c b} \geq\left(\sum_{i}\left|X_{i i}^{\alpha}\right|^{2} \lambda_{i}^{\alpha}\right)^{1 / 2} \sqrt{m_{\alpha}}
$$

Then

$$
m_{\alpha} \sum_{i}\left|X_{i i}^{\alpha}\right|^{2} \leq\left(m_{\alpha} \sum_{i} \frac{\left|X_{i i}^{\alpha}\right|^{2}}{\lambda_{i}^{\alpha}}\right)^{1 / 2}\left(m_{\alpha} \sum_{i}\left|X_{i i}^{\alpha}\right|^{2} \lambda_{i}^{\alpha}\right)^{1 / 2} \leq\|\theta\|_{c b}^{2}
$$

by Cauchy-Schwarz. Again by C.-S.

$$
1=\sum_{i=1}^{n_{\alpha}} X_{i i}^{\alpha} \leq \sqrt{n_{\alpha}}\left(\sum_{i}\left|X_{i i}^{\alpha}\right|^{2}\right)^{1 / 2}
$$

so conclude

$$
\|\theta\|_{c b}^{2} \geq \frac{m_{\alpha}}{n_{\alpha}}
$$

The trick

- If V is any finite-dimensional unitary corepresentation then can write V as a sum of irreducibles:

$$
V=\sum_{i=1}^{m} u^{\alpha_{i}} .
$$

- Then if $Q=\bigoplus Q^{\alpha_{i}}$ we have $V^{t} Q \bar{V}=Q$.
- Estimate from before gives:

$$
\operatorname{Tr}(Q)=\sum_{i} \operatorname{Tr}\left(Q^{\alpha_{i}}\right)=\sum_{i} m_{\alpha_{i}} \leq \sum_{i}\|\theta\|_{c b}^{2} n_{\alpha_{i}}=\|\theta\|_{c b}^{2} \operatorname{dim}(V) .
$$

- Set $V=u^{\alpha}\left(\uparrow u^{\alpha}\left(\uparrow \cdots \backsim u^{\alpha}\right.\right.$ say d times.
- Fact: Q for V is equal to $\left(Q^{\alpha}\right)^{\otimes d}$.
- So $m_{\alpha}^{d}=\operatorname{Tr}\left(Q^{\alpha}\right)^{d} \leq\|\theta\|_{c b}^{2} n_{\alpha}^{d}$.
- $d \rightarrow \infty$ implies $m_{\alpha} \leq n_{\alpha}$ so \mathbb{G} Kac.

