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Group algebras

Let G be a finite group, and consider the group algebra C[G]. That is,
G forms a basis for a C vector space, with convolution as the product:(∑

s∈G

λss
)(∑

t∈G

µt t
)

=
∑
s,t

λsµtst =
∑

s

(∑
r

λrµr−1s

)
s.

Endow C[G] with the usual inner product〈∑
s

λss,
∑

t

µt t
〉

=
∑

s

λsµs.

We write `2(G) for the resulting (finite dimensional) Hilbert space.
Then C[G] acts on `2(G) by left multiplication (again, convolution).
Notice that the action of s ∈ G gives a surjective isometry on `2(G): so
is a unitary map. So this is a unitary representation of the group G.
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C∗-algebras

We can identify C[G] as an algebra of linear maps on `2(G) (so, if we
like, G ×G matrices). This induces the operator norm on C[G]:

‖x‖ = sup
{
‖xξ‖ = (xξ|xξ)1/2 : ξ ∈ `2(G), ‖ξ‖ ≤ 1

}
.

As we’re acting on a Hilbert space, an operator has an adjoint which
satisfies (xξ|η) = (ξ|x∗η). (Thinking of x as a matrix, x∗ is the
hermitian transpose). Then it’s possible to show that ‖x‖2 = ‖x∗x‖:
this is the C∗-condition.
For us,

x =
∑

s

λss =⇒ x∗ =
∑

s

λss−1.

Hence C[X ] is closed under the adjoint, and so we get a C∗-algebra,
denoted by C∗r (G).
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Dual spaces

Fix ξ, η ∈ `2(G). We can define a linear functional

ω = ωξ,η : C∗r (G)→ C; ω(x) = (xξ|η).

Let ξ =
∑

s ξss and η =
∑

t ηt t . Then

ω(r) = (rξ|η) =
∑
s,t

ξsηt (rs|t) =
∑

s

ξsηrs.

As C[G], and hence C∗r (G), are the span of G, it follows that
{ω(r) : r ∈ G} determines ω. So we can think of ω as being a function
G→ C.
The Fourier algebra A(G) is the subset of CG formed by
{ωξ,η : ξ, η ∈ `2(G)}.
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Why an algebra?
So why is A(G) an algebra? I want to build a bit of theory here.
Define a map ∆ : C[G]→ C[G]⊗ C[G] = C[G ×G] by

∆(s) = s ⊗ s,

and extend by linearity. Then ∆ is a homomorphism, and also
(∆⊗ ι)∆ = (ι⊗∆)∆, so ∆ is co-associative.
Actually ∆ gives a isometry C∗r (G)→ C∗r (G×G). (This is automatic by
some C∗-algebra theory, but. . . ) Define W : `2(G×G)→ `2(G×G) by

W (s ⊗ t) = t−1s ⊗ t .

This is just a permutation of the basis elements, so is a unitary map.
Then a calculation shows that

∆(x) = W ∗(1⊗ x)W .
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The dual becomes an algebra

Let C∗r (G)∗ be the space of all linear functionals C∗r (G)→ C. Then ∆
induces an algebra product on C∗r (G)∗ by

(ω1 · ω2)(x) = (ω1 ⊗ ω2)∆(x) (ω1, ω2 ∈ C∗r (G)∗, x ∈ C∗r (G)).

Every member of C∗r (G)∗ arises as ωξ,η for some ξ, η ∈ `2(G).
So A(G) = C∗r (G)∗. The product is then

(ωξ1,η1 · ωξ2,η2)(s) = (ωξ1,η1 ⊗ ωξ2,η2)∆(s) = ωξ1,η1(s)ωξ2,η2(s),

so we do just get the pointwise product.
(Mention Hopf algebras).
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Norms

Actually, as G is finite, really A(G) = CG.
However, A(G) carries a natural norm as the dual of C∗r (G).
The previous construction shows that this norm is an algebra
norm: ‖ω1 · ω2‖ ≤ ‖ω1‖‖ω2‖.

To get a handle on this norm, let’s look at some representation theory.
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Abelian case

Firstly, what if G is abelian? Then every irreducible representation is
one dimensional, and the collection of irreps forms a group: the dual
group of G:

Ĝ =
{
χ : G→ T is a homomorphism

}
.

We also have the Fourier transform

F : `2(G)→ `2(Ĝ); s 7→
∑
χ∈Ĝ

χ(s)χ.

We can also interpret this as a map C[G]→ CĜ; then we get an
isometry from C∗r (G) to C(Ĝ), the space of continuous functions of Ĝ
with the supremum (maximum) norm.
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Abelian case cont.

So if C∗r (G) ∼= C(Ĝ), then the duals are also isometric

A(G) = C∗r (G)∗ ∼= C(Ĝ)∗.

What is the dual of C(Ĝ)? As Ĝ is finite, it is just functions Ĝ→ C with
the 1-norm: ∥∥∥∑

χ∈Ĝ

λχχ
∥∥∥

1
=
∑
χ

|λχ|.

We denote this normed space by `1(Ĝ).
We can identify `1(Ĝ) with C[Ĝ]; then the 1-norm is an algebra norm.
So the Fourier algebra A(G) is isometrically isomorphic to the
convolution algebra C[Ĝ], with the 1-norm.
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So if C∗r (G) ∼= C(Ĝ), then the duals are also isometric

A(G) = C∗r (G)∗ ∼= C(Ĝ)∗.
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λχχ
∥∥∥

1
=
∑
χ

|λχ|.

We denote this normed space by `1(Ĝ).
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General case

Now let Ĝ be the collection of (isomorphism classes) of irreducible
representations of G; this is no longer a group in general.

We have the decomposition

C[G] ∼=
⊕
π∈Ĝ

nππ,

Here π is a representation of G on a finite dimensional Hilbert
space Hπ, and the notation nππ means that π occurs with
multiplicity nπ := dim(Hπ).
So we find that

C∗r (G) ∼=
⊕
π∈Ĝ

Mnπ .

(The multiplicity does not affect the norm, so we ignore it).
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Interlude: Dual spaces of matrices
We define a (bilinear) dual pairing between Mn and Mn by “trace
duality”:

〈x , y〉 = Tr(xy) (x , y ∈Mn).

So M∗n ∼= Mn.
We give Mn the operator norm: ‖x‖2 = ‖x∗x‖. Then x∗x is
positive (semi) definite, so it has positive eigenvalues, and so

‖x‖ = ‖x∗x‖1/2 = max
{
λ1/2 : λ is an eigenvalue of x∗x

}
.

It turns out that the dual norm induced on Mn is

‖y‖∗ := sup
{

Tr(xy) : ‖x‖ ≤ 1
}

=
∑{

λ1/2 : λ is an eigenvalue of y∗y
}
.

Write Tn for Mn with this norm: the “trace class” norm.

Matthew Daws (Leeds) The Fourier Algebra and homomorphisms December 2010 12 / 27



Interlude: Dual spaces of matrices
We define a (bilinear) dual pairing between Mn and Mn by “trace
duality”:

〈x , y〉 = Tr(xy) (x , y ∈Mn).

So M∗n ∼= Mn.
We give Mn the operator norm: ‖x‖2 = ‖x∗x‖. Then x∗x is
positive (semi) definite, so it has positive eigenvalues, and so

‖x‖ = ‖x∗x‖1/2 = max
{
λ1/2 : λ is an eigenvalue of x∗x

}
.

It turns out that the dual norm induced on Mn is

‖y‖∗ := sup
{

Tr(xy) : ‖x‖ ≤ 1
}

=
∑{

λ1/2 : λ is an eigenvalue of y∗y
}
.

Write Tn for Mn with this norm: the “trace class” norm.

Matthew Daws (Leeds) The Fourier Algebra and homomorphisms December 2010 12 / 27



Interlude: Dual spaces of matrices
We define a (bilinear) dual pairing between Mn and Mn by “trace
duality”:

〈x , y〉 = Tr(xy) (x , y ∈Mn).

So M∗n ∼= Mn.
We give Mn the operator norm: ‖x‖2 = ‖x∗x‖. Then x∗x is
positive (semi) definite, so it has positive eigenvalues, and so

‖x‖ = ‖x∗x‖1/2 = max
{
λ1/2 : λ is an eigenvalue of x∗x

}
.

It turns out that the dual norm induced on Mn is

‖y‖∗ := sup
{

Tr(xy) : ‖x‖ ≤ 1
}

=
∑{

λ1/2 : λ is an eigenvalue of y∗y
}
.

Write Tn for Mn with this norm: the “trace class” norm.

Matthew Daws (Leeds) The Fourier Algebra and homomorphisms December 2010 12 / 27



Interlude: Dual spaces of matrices
We define a (bilinear) dual pairing between Mn and Mn by “trace
duality”:

〈x , y〉 = Tr(xy) (x , y ∈Mn).

So M∗n ∼= Mn.
We give Mn the operator norm: ‖x‖2 = ‖x∗x‖. Then x∗x is
positive (semi) definite, so it has positive eigenvalues, and so

‖x‖ = ‖x∗x‖1/2 = max
{
λ1/2 : λ is an eigenvalue of x∗x

}
.

It turns out that the dual norm induced on Mn is

‖y‖∗ := sup
{

Tr(xy) : ‖x‖ ≤ 1
}

=
∑{

λ1/2 : λ is an eigenvalue of y∗y
}
.

Write Tn for Mn with this norm: the “trace class” norm.

Matthew Daws (Leeds) The Fourier Algebra and homomorphisms December 2010 12 / 27



Interlude: Dual spaces of matrices
We define a (bilinear) dual pairing between Mn and Mn by “trace
duality”:

〈x , y〉 = Tr(xy) (x , y ∈Mn).

So M∗n ∼= Mn.
We give Mn the operator norm: ‖x‖2 = ‖x∗x‖. Then x∗x is
positive (semi) definite, so it has positive eigenvalues, and so

‖x‖ = ‖x∗x‖1/2 = max
{
λ1/2 : λ is an eigenvalue of x∗x

}
.

It turns out that the dual norm induced on Mn is

‖y‖∗ := sup
{

Tr(xy) : ‖x‖ ≤ 1
}

=
∑{

λ1/2 : λ is an eigenvalue of y∗y
}
.

Write Tn for Mn with this norm: the “trace class” norm.

Matthew Daws (Leeds) The Fourier Algebra and homomorphisms December 2010 12 / 27



Fourier algebra

We saw that
C∗r (G) ∼=

⊕
π∈Ĝ

Mnπ .

Thus
A(G) = C∗r (G)∗ ∼=

⊕
π∈Ĝ

nπTnπ .

Notice that here we do need to worry about the multiplicities, as
we have a “sum” norm, not a “max” norm.
To be exact, nTn is the space Tn, but with the norm multiplied by n.
But what’s the product on A(G) in this picture?
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nπTnπ .

Notice that here we do need to worry about the multiplicities, as
we have a “sum” norm, not a “max” norm.
To be exact, nTn is the space Tn, but with the norm multiplied by n.
But what’s the product on A(G) in this picture?

Matthew Daws (Leeds) The Fourier Algebra and homomorphisms December 2010 13 / 27



The product
Suppose ω1 ∈ A(G) is given by a single irreducible π1 ∈ Ĝ, say

ω1(s) = (π1(s)ξ1|η1) (s ∈ G, ξ1, η1 ∈ Hπ1).

Similarly π2.

Then

(ω1 · ω2)(s) = ω1(s)ω2(s) =
(
(π1 ⊗ π2)(s)ξ1 ⊗ ξ2

∣∣η1 ⊗ η2
)
.

So to understand the product ω1 · ω2, we need to understand how
to write π1 ⊗ π2 as a sum of irreducibles. This can be done using
fusion rules etc.
This is obviously complicated: I generally tend to think of A(G) as
being a certain commutative algebra, and do not use the
representation theory picture.
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Locally compact groups

A locally compact group is a locally compact (Hausdorff) topological
space which is also a group, and with the group operations being
continuous.
Locally compact groups are essentially characterised as being those
groups which admit an invariant measure: the Haar measure:

µ(A) = µ(sA) (s ∈ G,A ⊆ G).

Any group with the discrete topology, and the counting measure.
Any compact group: T,SU(n),O(n) etc. Haar measure is a
probability measure.
Any Lie group: R,SLn(R) etc.
Not the unitary group of an infinite dimensional Hilbert space.
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Various group algebras
Let L1(G) be the (equivalence classes) of integrable functions on G,
which becomes a Banach algebra for the convolution product:

f ∗ g(s) =

∫
G

f (t)g(t−1s) dt (f ,g ∈ L1(G), s ∈ G).

There is a natural representation of L1(G) on L2(G) given by left
convolution: the norm closure of the image is C∗r (G), the
(reduced) group C∗-algebra.
To look at C∗r (G)∗ would give too large an algebra.
Instead, we take the weak operator topology closure of L1(G)
acting on L2(G)– this gives VN(G) the group von Neumann
algebra.
Write λ(s) for the left translation operator given by s ∈ G.
Then λ(s) ∈ VN(G), but λ(s) ∈ C∗r (G) only for discrete groups.
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The Fourier algebra

We now restrict attention to VN(G)∗, the functionals on VN(G)
which are weak operator topology continuous. So we set
A(G) = VN(G)∗.
The operators {λ(s) : s ∈ G} generate VN(G) for the weak
operator topology. So for ω ∈ A(G), the values

ω(s) = 〈λ(s), ω〉 (s ∈ G),

completely determine ω. Hence we can think of A(G) as a space
of functions G→ C.
As before, we have ∆ : VN(G)→ VN(G ×G) given by
λ(s) 7→ λ(s)⊗ λ(s).
The (pre)adjoint induces an associative algebra product on A(G).
As a space of functions, this is just the pointwise product. So A(G)
is a commutative Banach algebra.
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The Fourier algebra: which functions?
A bit of machinery shows that each ω ∈ A(G) is of the form

ω = ωξ,η : x 7→ (xξ|η) (x ∈ VN(G)),

for some ξ, η ∈ L2(G). (Not obvious why we don’t need linear
combinations etc.)

For s ∈ G we calculate

ω(s) = (λ(s)ξ|η) =

∫
G
ξ(s−1t)η(t) dt =

∫
G
η(t)ξ̌(t−1s) dt = (η∗ξ̌)(s),

where ξ̌(s) = ξ(s−1).
So each member of A(G) is the convolution of an L2 function with
a “checked” L2 function.
In particular, each member of A(G) is continuous, and vanishes at
infinity: A(G) ⊆ C0(G).
Unless G is finite, we don’t get all of C0(G).
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Abelian case revisited

If G is abelian, then we have a dual group Ĝ and the generalised
Fourier transform

F : L1(G)→ C0(Ĝ).

Any member of L1(G) is the pointwise product of two L2 functions,
and F turns the pointwise product into the convolution product.
So A(Ĝ) is precisely F(L1(G)).

Or A(G) ∼= L1(Ĝ), as ˆ̂G ∼= G.
In particular,

A(Z) ∼= L1(T), A(T) ∼= L1(Z), A(R) ∼= L1(R).
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Compact case

Remember that the representation theory of compact groups is very
similar to that for finite groups.

Each irreducible representation is finite dimensional, and we get
the isomorphisms

C∗r (G) ∼=
⊕
π∈Ĝ

Mnπ , VN(G) ∼=
∏
π∈Ĝ

Mnπ , A(G) ∼=
⊕
π∈Ĝ

Tnπ .

Again, the multiplication comes from tensoring irreps.
You can do similar things for, say, semisimple Lie groups, but
usually this is not productive (but see recent work of Losert on
SL2(R)).
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Tnπ .

Again, the multiplication comes from tensoring irreps.
You can do similar things for, say, semisimple Lie groups, but
usually this is not productive (but see recent work of Losert on
SL2(R)).

Matthew Daws (Leeds) The Fourier Algebra and homomorphisms December 2010 20 / 27



Homomorphisms

Let G and H be finite groups. When are A(G) and A(H)
isomorphism algebras? Well, A(G) ∼= CG and A(H) ∼= CH , so
A(G) ∼= A(H) if and only if |G| = |H|.
For infinite G, there are topological obstructions. As A(G) is a
commutative Banach algebra, it has a character space. Eymard
showed that this is precisely G.
So if A(G) ∼= A(H), then G ∼= H as topological spaces.
Let’s not forget the norm– so ask: when are A(G) and A(H)
isometrically isomorphic?
Any bijective algebra homomorphism θ : A(G)→ A(H) is of the
form

θ(ω)(h) = ω(τ(h)) (h ∈ H),

where h : H → G is continuous (Gelfand theory).
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Homomorphisms cont.

θ(ω)(h) = ω(τ(h)) (h ∈ H),

Walter (1972) proved that if θ is also an isometry, then τ is of the
form

τ(h) = g1φ(h) (h ∈ H),

where g1 ∈ G and φ : H → G is a group (anti)homomorphism.
Le Pham (2010) extended this in various ways. For example, if
θ : A(G)→ A(H) is a contractive homomorphism, then

θ(ω)(h) =

{
ω(g1φ(h1h)) : h1h ∈ Ω,

0 : h1h 6∈ Ω.

Here Ω ⊆ H is an open subgroup, g1 ∈ G,h1 ∈ H, and again
φ : Ω→ G is a group (anti)homomorphism.
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Annoying anti-homomorphisms

To remove the possibility of an anti-homomorphism, we need a more
“rigid” sense of isometry.

Given a bounded linear map θ : A(G)→ A(H), the adjoint gives a
map θ∗ : VN(H)→ VN(G).
We identify Mn ⊗ VN(H) with n × n matrices of elements of
VN(H). This acts naturally on L2(H)⊕ · · · ⊕ L2(H) (n times) and
so Mn ⊗ VN(H) is again a C∗-algebra.
So we can ask about the norm of

(θ∗)n := ι⊗ θ∗ : Mn ⊗ VN(H)→Mn ⊗ VN(G).

We say that θ is completely bounded if supn ‖(θ∗)n‖ <∞.
This rules out the anti-homomorphism case.
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A little bit of philosophy

Recall that if G is abelian, then A(G) ∼= L1(Ĝ).
So even if G is not abelian, we can still think of A(G) as being the
algebra L1(Ĝ), even though Ĝ doesn’t exist. (And we saw that in
the compact case, this is not insane).
An interesting thing to do with L1(G) is to study homomorphisms
θ : L1(G)→ B(H), where B(H) is the algebra of operators on a
Hilbert space H.
There is a one-one correspondence between such
(non-degenerate) homomorphisms and representations
π : G→ B(H), where

θ(f ) =

∫
G

f (s)π(s) ds.
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algebra L1(Ĝ), even though Ĝ doesn’t exist. (And we saw that in
the compact case, this is not insane).
An interesting thing to do with L1(G) is to study homomorphisms
θ : L1(G)→ B(H), where B(H) is the algebra of operators on a
Hilbert space H.
There is a one-one correspondence between such
(non-degenerate) homomorphisms and representations
π : G→ B(H), where

θ(f ) =

∫
G

f (s)π(s) ds.

Matthew Daws (Leeds) The Fourier Algebra and homomorphisms December 2010 24 / 27



Representations on a Hilbert space

An even more interesting thing to study is ∗-homomorphisms
L1(G)→ B(H); these correspond to looking at unitary
representations of G.
If G is finite, then given any representation of G on H, we can
always choose an invariant inner-product making the
representation unitary.
This corresponds to the following: if θ : L1(G)→ B(H) is a
homomorphism, then there is an invertible T ∈ B(H) with

L1(G)→ B(H); f 7→ T−1θ(f )T

being a ∗-homomorphism.
For general G, we can do this if (and only if?) G is amenable.
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For the Fourier algebra

So, we might look at homomorphisms θ : A(G)→ B(H).

The involution on A(G) is just pointwise conjugation of functions.
If θ : A(G)→ B(H) is a ∗-homomorphism, then you can
continuously extend it to a ∗-homomorphism C0(G)→ B(H), and
such things are well-understood.
So, we ask again: when is θ : A(G)→ B(H) similar to a
∗-homomorphism? This seems hopeless. . .
Instead, we restrict again to those θ such that the dilations

ι⊗ θ : Tn ⊗ A(G)→Mn ⊗ B(H)

are uniformly bounded in n. We say that θ is completely bounded.

Matthew Daws (Leeds) The Fourier Algebra and homomorphisms December 2010 26 / 27



For the Fourier algebra

So, we might look at homomorphisms θ : A(G)→ B(H).

The involution on A(G) is just pointwise conjugation of functions.
If θ : A(G)→ B(H) is a ∗-homomorphism, then you can
continuously extend it to a ∗-homomorphism C0(G)→ B(H), and
such things are well-understood.
So, we ask again: when is θ : A(G)→ B(H) similar to a
∗-homomorphism? This seems hopeless. . .
Instead, we restrict again to those θ such that the dilations

ι⊗ θ : Tn ⊗ A(G)→Mn ⊗ B(H)

are uniformly bounded in n. We say that θ is completely bounded.

Matthew Daws (Leeds) The Fourier Algebra and homomorphisms December 2010 26 / 27



For the Fourier algebra

So, we might look at homomorphisms θ : A(G)→ B(H).

The involution on A(G) is just pointwise conjugation of functions.
If θ : A(G)→ B(H) is a ∗-homomorphism, then you can
continuously extend it to a ∗-homomorphism C0(G)→ B(H), and
such things are well-understood.
So, we ask again: when is θ : A(G)→ B(H) similar to a
∗-homomorphism? This seems hopeless. . .
Instead, we restrict again to those θ such that the dilations

ι⊗ θ : Tn ⊗ A(G)→Mn ⊗ B(H)

are uniformly bounded in n. We say that θ is completely bounded.

Matthew Daws (Leeds) The Fourier Algebra and homomorphisms December 2010 26 / 27



For the Fourier algebra

So, we might look at homomorphisms θ : A(G)→ B(H).

The involution on A(G) is just pointwise conjugation of functions.
If θ : A(G)→ B(H) is a ∗-homomorphism, then you can
continuously extend it to a ∗-homomorphism C0(G)→ B(H), and
such things are well-understood.
So, we ask again: when is θ : A(G)→ B(H) similar to a
∗-homomorphism? This seems hopeless. . .
Instead, we restrict again to those θ such that the dilations

ι⊗ θ : Tn ⊗ A(G)→Mn ⊗ B(H)

are uniformly bounded in n. We say that θ is completely bounded.

Matthew Daws (Leeds) The Fourier Algebra and homomorphisms December 2010 26 / 27



For the Fourier algebra

So, we might look at homomorphisms θ : A(G)→ B(H).

The involution on A(G) is just pointwise conjugation of functions.
If θ : A(G)→ B(H) is a ∗-homomorphism, then you can
continuously extend it to a ∗-homomorphism C0(G)→ B(H), and
such things are well-understood.
So, we ask again: when is θ : A(G)→ B(H) similar to a
∗-homomorphism? This seems hopeless. . .
Instead, we restrict again to those θ such that the dilations

ι⊗ θ : Tn ⊗ A(G)→Mn ⊗ B(H)

are uniformly bounded in n. We say that θ is completely bounded.

Matthew Daws (Leeds) The Fourier Algebra and homomorphisms December 2010 26 / 27



For the Fourier algebra cont.

Still looking at a homomorphism θ : A(G)→ B(H).

For technical reasons, introduce θ̌ : A(G)→ B(H) defined by
θ̌(ω) = θ(ω̌). (Remember that ω̌(s) = ω(s−1)).
Brannan and Samei (2010) showed that θ is similar to a
∗-homomorphism if, and only if, both θ and θ̌ are completely
bounded.
Furthermore, if G is discrete (or more generally a SIN group) then
you don’t need to consider θ̌.
Conjecture: this is true for all G.
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