The Fourier Algebra and homomorphisms

Matthew Daws

Leeds

December 2010

Matthew Daws (Leeds)

The Fourier Algebra and homomorphisms

December 2010 1 / 27

3 > 4 3

Outline

2 For general groups

-

< A

Let *G* be a finite group, and consider the group algebra $\mathbb{C}[G]$. That is, *G* forms a basis for a \mathbb{C} vector space, with convolution as the product:

$$\Big(\sum_{s\in G}\lambda_s s\Big)\Big(\sum_{t\in G}\mu_t t\Big)=\sum_{s,t}\lambda_s\mu_t st=\sum_s\Big(\sum_r\lambda_r\mu_{r^{-1}s}\Big)s.$$

Endow $\mathbb{C}[G]$ with the usual inner product

$$\left\langle \sum_{s} \lambda_{s} s, \sum_{t} \mu_{t} t \right\rangle = \sum_{s} \lambda_{s} \overline{\mu_{s}}.$$

We write $\ell^2(G)$ for the resulting (finite dimensional) Hilbert space. Then $\mathbb{C}[G]$ acts on $\ell^2(G)$ by left multiplication (again, convolution). Notice that the action of $s \in G$ gives a surjective isometry on $\ell^2(G)$: so is a *unitary* map. So this is a *unitary* representation of the group *G*.

< 回 > < 三 > < 三 >

Let *G* be a finite group, and consider the group algebra $\mathbb{C}[G]$. That is, *G* forms a basis for a \mathbb{C} vector space, with convolution as the product:

$$\Big(\sum_{s\in G}\lambda_s s\Big)\Big(\sum_{t\in G}\mu_t t\Big)=\sum_{s,t}\lambda_s\mu_t st=\sum_s\Big(\sum_r\lambda_r\mu_{r^{-1}s}\Big)s.$$

Endow $\mathbb{C}[G]$ with the usual inner product

$$\left\langle \sum_{s} \lambda_{s} s, \sum_{t} \mu_{t} t \right\rangle = \sum_{s} \lambda_{s} \overline{\mu_{s}}.$$

We write $\ell^2(G)$ for the resulting (finite dimensional) Hilbert space. Then $\mathbb{C}[G]$ acts on $\ell^2(G)$ by left multiplication (again, convolution). Notice that the action of $s \in G$ gives a surjective isometry on $\ell^2(G)$: so is a *unitary* map. So this is a *unitary* representation of the group *G*.

Let *G* be a finite group, and consider the group algebra $\mathbb{C}[G]$. That is, *G* forms a basis for a \mathbb{C} vector space, with convolution as the product:

$$\Big(\sum_{s\in G}\lambda_s s\Big)\Big(\sum_{t\in G}\mu_t t\Big)=\sum_{s,t}\lambda_s\mu_t st=\sum_s\Big(\sum_r\lambda_r\mu_{r^{-1}s}\Big)s.$$

Endow $\mathbb{C}[G]$ with the usual inner product

$$\left\langle \sum_{s} \lambda_{s} s, \sum_{t} \mu_{t} t \right\rangle = \sum_{s} \lambda_{s} \overline{\mu_{s}}.$$

We write $\ell^2(G)$ for the resulting (finite dimensional) Hilbert space. Then $\mathbb{C}[G]$ acts on $\ell^2(G)$ by left multiplication (again, convolution). Notice that the action of $s \in G$ gives a surjective isometry on $\ell^2(G)$: so is a *unitary* map. So this is a *unitary* representation of the group *G*.

Let *G* be a finite group, and consider the group algebra $\mathbb{C}[G]$. That is, *G* forms a basis for a \mathbb{C} vector space, with convolution as the product:

$$\Big(\sum_{s\in G}\lambda_s s\Big)\Big(\sum_{t\in G}\mu_t t\Big)=\sum_{s,t}\lambda_s\mu_t st=\sum_s\Big(\sum_r\lambda_r\mu_{r^{-1}s}\Big)s.$$

Endow $\mathbb{C}[G]$ with the usual inner product

$$\left\langle \sum_{s} \lambda_{s} s, \sum_{t} \mu_{t} t \right\rangle = \sum_{s} \lambda_{s} \overline{\mu_{s}}.$$

We write $\ell^2(G)$ for the resulting (finite dimensional) Hilbert space. Then $\mathbb{C}[G]$ acts on $\ell^2(G)$ by left multiplication (again, convolution). Notice that the action of $s \in G$ gives a surjective isometry on $\ell^2(G)$: so is a *unitary* map. So this is a *unitary* representation of the group *G*.

C*-algebras

We can identify $\mathbb{C}[G]$ as an algebra of linear maps on $\ell^2(G)$ (so, if we like, $G \times G$ matrices). This induces the operator norm on $\mathbb{C}[G]$:

$$||x|| = \sup \{ ||x\xi|| = (x\xi|x\xi)^{1/2} : \xi \in \ell^2(G), ||\xi|| \le 1 \}.$$

As we're acting on a Hilbert space, an operator has an adjoint which satisfies $(x\xi|\eta) = (\xi|x^*\eta)$. (Thinking of *x* as a matrix, x^* is the hermitian transpose). Then it's possible to show that $||x||^2 = ||x^*x||$: this is the C*-condition.

For us,

$$x = \sum_{s} \lambda_s s \implies x^* = \sum_{s} \overline{\lambda_s} s^{-1}.$$

Hence $\mathbb{C}[X]$ is closed under the adjoint, and so we get a C*-algebra, denoted by $C_r^*(G)$.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

C*-algebras

We can identify $\mathbb{C}[G]$ as an algebra of linear maps on $\ell^2(G)$ (so, if we like, $G \times G$ matrices). This induces the operator norm on $\mathbb{C}[G]$:

$$||x|| = \sup \{ ||x\xi|| = (x\xi|x\xi)^{1/2} : \xi \in \ell^2(G), ||\xi|| \le 1 \}.$$

As we're acting on a Hilbert space, an operator has an adjoint which satisfies $(x\xi|\eta) = (\xi|x^*\eta)$. (Thinking of *x* as a matrix, x^* is the hermitian transpose). Then it's possible to show that $||x||^2 = ||x^*x||$: this is the C^{*}-condition.

For us,

$$x = \sum_{s} \lambda_s s \implies x^* = \sum_{s} \overline{\lambda_s} s^{-1}.$$

Hence $\mathbb{C}[X]$ is closed under the adjoint, and so we get a C*-algebra, denoted by $C_r^*(G)$.

C*-algebras

We can identify $\mathbb{C}[G]$ as an algebra of linear maps on $\ell^2(G)$ (so, if we like, $G \times G$ matrices). This induces the operator norm on $\mathbb{C}[G]$:

$$||x|| = \sup \{ ||x\xi|| = (x\xi|x\xi)^{1/2} : \xi \in \ell^2(G), ||\xi|| \le 1 \}.$$

As we're acting on a Hilbert space, an operator has an adjoint which satisfies $(x\xi|\eta) = (\xi|x^*\eta)$. (Thinking of *x* as a matrix, x^* is the hermitian transpose). Then it's possible to show that $||x||^2 = ||x^*x||$: this is the C*-condition.

For us,

$$\mathbf{x} = \sum_{\mathbf{s}} \lambda_{\mathbf{s}} \mathbf{s} \implies \mathbf{x}^* = \sum_{\mathbf{s}} \overline{\lambda_{\mathbf{s}}} \mathbf{s}^{-1}.$$

Hence $\mathbb{C}[X]$ is closed under the adjoint, and so we get a C*-algebra, denoted by $C_r^*(G)$.

Fix $\xi, \eta \in \ell^2(G)$. We can define a linear functional

$$\omega = \omega_{\xi,\eta} : C^*_r(G) \to \mathbb{C}; \quad \omega(x) = (x\xi|\eta).$$

Let $\xi = \sum_{s} \xi_{s} s$ and $\eta = \sum_{t} \eta_{t} t$. Then

$$\omega(\mathbf{r}) = (\mathbf{r}\xi|\eta) = \sum_{s,t} \xi_s \overline{\eta_t}(\mathbf{r}s|t) = \sum_s \xi_s \overline{\eta_{rs}}.$$

As $\mathbb{C}[G]$, and hence $C_r^*(G)$, are the span of G, it follows that $\{\omega(r) : r \in G\}$ determines ω . So we can think of ω as being a function $G \to \mathbb{C}$.

The *Fourier algebra* A(G) is the subset of \mathbb{C}^G formed by $\{\omega_{\xi,\eta} : \xi, \eta \in \ell^2(G)\}.$

Fix $\xi, \eta \in \ell^2(G)$. We can define a linear functional

$$\omega = \omega_{\xi,\eta} : C^*_r(G) \to \mathbb{C}; \quad \omega(x) = (x\xi|\eta).$$

Let $\xi = \sum_{s} \xi_{s} s$ and $\eta = \sum_{t} \eta_{t} t$. Then

$$\omega(\mathbf{r}) = (\mathbf{r}\xi|\eta) = \sum_{\mathbf{s},t} \xi_{\mathbf{s}} \overline{\eta_t}(\mathbf{r}\mathbf{s}|t) = \sum_{\mathbf{s}} \xi_{\mathbf{s}} \overline{\eta_{\mathbf{r}\mathbf{s}}}.$$

As $\mathbb{C}[G]$, and hence $C_r^*(G)$, are the span of G, it follows that $\{\omega(r) : r \in G\}$ determines ω . So we can think of ω as being a function $G \to \mathbb{C}$.

The *Fourier algebra* A(G) is the subset of \mathbb{C}^G formed by $\{\omega_{\xi,\eta} : \xi, \eta \in \ell^2(G)\}.$

A (10) A (10)

Fix $\xi, \eta \in \ell^2(G)$. We can define a linear functional

$$\omega = \omega_{\xi,\eta} : C^*_r(G) \to \mathbb{C}; \quad \omega(x) = (x\xi|\eta).$$

Let $\xi = \sum_{s} \xi_{s} s$ and $\eta = \sum_{t} \eta_{t} t$. Then

$$\omega(\mathbf{r}) = (\mathbf{r}\xi|\eta) = \sum_{\mathbf{s},t} \xi_{\mathbf{s}} \overline{\eta_t}(\mathbf{r}\mathbf{s}|t) = \sum_{\mathbf{s}} \xi_{\mathbf{s}} \overline{\eta_{\mathbf{r}\mathbf{s}}}.$$

As $\mathbb{C}[G]$, and hence $C_r^*(G)$, are the span of G, it follows that $\{\omega(r) : r \in G\}$ determines ω . So we can think of ω as being a function $G \to \mathbb{C}$.

The *Fourier algebra* A(G) is the subset of \mathbb{C}^G formed by $\{\omega_{\xi,\eta} : \xi, \eta \in \ell^2(G)\}.$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Fix $\xi, \eta \in \ell^2(G)$. We can define a linear functional

$$\omega = \omega_{\xi,\eta} : C^*_r(G) \to \mathbb{C}; \quad \omega(\mathbf{x}) = (\mathbf{x}\xi|\eta).$$

Let $\xi = \sum_{s} \xi_{s} s$ and $\eta = \sum_{t} \eta_{t} t$. Then

$$\omega(\mathbf{r}) = (\mathbf{r}\xi|\eta) = \sum_{\mathbf{s},t} \xi_{\mathbf{s}} \overline{\eta_t}(\mathbf{r}\mathbf{s}|t) = \sum_{\mathbf{s}} \xi_{\mathbf{s}} \overline{\eta_{\mathbf{r}\mathbf{s}}}.$$

As $\mathbb{C}[G]$, and hence $C_r^*(G)$, are the span of *G*, it follows that $\{\omega(r) : r \in G\}$ determines ω . So we can think of ω as being a function $G \to \mathbb{C}$.

The *Fourier algebra* A(G) is the subset of \mathbb{C}^G formed by $\{\omega_{\xi,\eta} : \xi, \eta \in \ell^2(G)\}.$

・ 同 ト ・ ヨ ト ・ ヨ ト

So why is A(G) an algebra? I want to build a bit of theory here. Define a map $\Delta : \mathbb{C}[G] \to \mathbb{C}[G] \otimes \mathbb{C}[G] = \mathbb{C}[G \times G]$ by

 $\Delta(s)=s\otimes s,$

and extend by linearity. Then Δ is a homomorphism, and also $(\Delta \otimes \iota)\Delta = (\iota \otimes \Delta)\Delta$, so Δ is *co-associative*. Actually Δ gives a isometry $C_r^*(G) \to C_r^*(G \times G)$. (This is automatic by some C*-algebra theory, but...) Define $W : \ell^2(G \times G) \to \ell^2(G \times G)$ by

$$W(s\otimes t)=t^{-1}s\otimes t.$$

This is just a permutation of the basis elements, so is a unitary map. Then a calculation shows that

$$\Delta(x) = W^*(1 \otimes x)W.$$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

So why is A(G) an algebra? I want to build a bit of theory here. Define a map $\Delta : \mathbb{C}[G] \to \mathbb{C}[G] \otimes \mathbb{C}[G] = \mathbb{C}[G \times G]$ by

 $\Delta(s) = s \otimes s,$

and extend by linearity. Then Δ is a homomorphism, and also $(\Delta \otimes \iota)\Delta = (\iota \otimes \Delta)\Delta$, so Δ is *co-associative*. Actually Δ gives a isometry $C^*_{\ell}(G) \rightarrow C^*_{\ell}(G \times G)$. (This is automati

some C^* -algebra theory, but. . .) Define $W: \ell^2(G \times G) o \ell^2(G imes G)$ by

$$W(s\otimes t)=t^{-1}s\otimes t.$$

This is just a permutation of the basis elements, so is a unitary map. Then a calculation shows that

$$\Delta(x) = W^*(1 \otimes x)W.$$

So why is A(G) an algebra? I want to build a bit of theory here. Define a map $\Delta : \mathbb{C}[G] \to \mathbb{C}[G] \otimes \mathbb{C}[G] = \mathbb{C}[G \times G]$ by

$$\Delta(s)=s\otimes s,$$

and extend by linearity. Then Δ is a homomorphism, and also $(\Delta \otimes \iota)\Delta = (\iota \otimes \Delta)\Delta$, so Δ is *co-associative*. Actually Δ gives a isometry $C_r^*(G) \to C_r^*(G \times G)$. (This is automatic by some C*-algebra theory, but...) Define $W : \ell^2(G \times G) \to \ell^2(G \times G)$ by

$$W(s\otimes t)=t^{-1}s\otimes t.$$

This is just a permutation of the basis elements, so is a unitary map. Then a calculation shows that

$$\Delta(x) = W^*(1 \otimes x)W.$$

So why is A(G) an algebra? I want to build a bit of theory here. Define a map $\Delta : \mathbb{C}[G] \to \mathbb{C}[G] \otimes \mathbb{C}[G] = \mathbb{C}[G \times G]$ by

$$\Delta(s)=s\otimes s,$$

and extend by linearity. Then Δ is a homomorphism, and also $(\Delta \otimes \iota)\Delta = (\iota \otimes \Delta)\Delta$, so Δ is *co-associative*. Actually Δ gives a isometry $C_r^*(G) \to C_r^*(G \times G)$. (This is automatic by some C*-algebra theory, but...) Define $W : \ell^2(G \times G) \to \ell^2(G \times G)$ by

$$W(s\otimes t)=t^{-1}s\otimes t.$$

This is just a permutation of the basis elements, so is a unitary map. Then a calculation shows that

$$\Delta(x) = W^*(1 \otimes x)W.$$

Let $C_r^*(G)^*$ be the space of all linear functionals $C_r^*(G) \to \mathbb{C}$. Then Δ induces an algebra product on $C_r^*(G)^*$ by

$$(\omega_1 \cdot \omega_2)(x) = (\omega_1 \otimes \omega_2)\Delta(x) \qquad (\omega_1, \omega_2 \in C^*_r(G)^*, x \in C^*_r(G)).$$

Every member of $C_r^*(G)^*$ arises as $\omega_{\xi,\eta}$ for some $\xi, \eta \in \ell^2(G)$. So $A(G) = C_r^*(G)^*$. The product is then

 $(\omega_{\xi_1,\eta_1}\cdot\omega_{\xi_2,\eta_2})(\boldsymbol{s})=(\omega_{\xi_1,\eta_1}\otimes\omega_{\xi_2,\eta_2})\Delta(\boldsymbol{s})=\omega_{\xi_1,\eta_1}(\boldsymbol{s})\omega_{\xi_2,\eta_2}(\boldsymbol{s}),$

so we do just get the pointwise product. (Mention Hopf algebras).

イロト 不得 トイヨト イヨト

Let $C_r^*(G)^*$ be the space of all linear functionals $C_r^*(G) \to \mathbb{C}$. Then Δ induces an algebra product on $C_r^*(G)^*$ by

 $(\omega_1 \cdot \omega_2)(x) = (\omega_1 \otimes \omega_2)\Delta(x) \qquad (\omega_1, \omega_2 \in C^*_r(G)^*, x \in C^*_r(G)).$

Every member of $C_r^*(G)^*$ arises as $\omega_{\xi,\eta}$ for some $\xi, \eta \in \ell^2(G)$. So $A(G) = C_r^*(G)^*$. The product is then

 $(\omega_{\xi_1,\eta_1}\cdot\omega_{\xi_2,\eta_2})(\boldsymbol{s})=(\omega_{\xi_1,\eta_1}\otimes\omega_{\xi_2,\eta_2})\Delta(\boldsymbol{s})=\omega_{\xi_1,\eta_1}(\boldsymbol{s})\omega_{\xi_2,\eta_2}(\boldsymbol{s}),$

so we do just get the pointwise product. (Mention Hopf algebras).

Let $C_r^*(G)^*$ be the space of all linear functionals $C_r^*(G) \to \mathbb{C}$. Then Δ induces an algebra product on $C_r^*(G)^*$ by

$$(\omega_1 \cdot \omega_2)(x) = (\omega_1 \otimes \omega_2)\Delta(x) \qquad (\omega_1, \omega_2 \in C^*_r(G)^*, x \in C^*_r(G)).$$

Every member of $C_r^*(G)^*$ arises as $\omega_{\xi,\eta}$ for some $\xi, \eta \in \ell^2(G)$. So $A(G) = C_r^*(G)^*$. The product is then

$$(\omega_{\xi_1,\eta_1}\cdot\omega_{\xi_2,\eta_2})(\boldsymbol{s})=(\omega_{\xi_1,\eta_1}\otimes\omega_{\xi_2,\eta_2})\Delta(\boldsymbol{s})=\omega_{\xi_1,\eta_1}(\boldsymbol{s})\omega_{\xi_2,\eta_2}(\boldsymbol{s}),$$

so we do just get the pointwise product. (Mention Hopf algebras).

< ロ > < 同 > < 回 > < 回 > < 回 > <

Let $C_r^*(G)^*$ be the space of all linear functionals $C_r^*(G) \to \mathbb{C}$. Then Δ induces an algebra product on $C_r^*(G)^*$ by

$$(\omega_1 \cdot \omega_2)(x) = (\omega_1 \otimes \omega_2)\Delta(x) \qquad (\omega_1, \omega_2 \in C^*_r(G)^*, x \in C^*_r(G)).$$

Every member of $C_r^*(G)^*$ arises as $\omega_{\xi,\eta}$ for some $\xi, \eta \in \ell^2(G)$. So $A(G) = C_r^*(G)^*$. The product is then

$$(\omega_{\xi_1,\eta_1}\cdot\omega_{\xi_2,\eta_2})(\boldsymbol{s})=(\omega_{\xi_1,\eta_1}\otimes\omega_{\xi_2,\eta_2})\Delta(\boldsymbol{s})=\omega_{\xi_1,\eta_1}(\boldsymbol{s})\omega_{\xi_2,\eta_2}(\boldsymbol{s}),$$

so we do just get the pointwise product. (Mention Hopf algebras).

4 **A** N A **B** N A **B** N

• Actually, as G is finite, really $A(G) = \mathbb{C}^G$.

- However, A(G) carries a natural norm as the dual of $C_r^*(G)$.
- The previous construction shows that this norm is an algebra norm: ||ω₁ · ω₂|| ≤ ||ω₁||||ω₂||.

- Actually, as G is finite, really $A(G) = \mathbb{C}^G$.
- However, A(G) carries a natural norm as the dual of $C_r^*(G)$.
- The previous construction shows that this norm is an algebra norm: ||ω₁ · ω₂|| ≤ ||ω₁||||ω₂||.

- Actually, as G is finite, really $A(G) = \mathbb{C}^G$.
- However, A(G) carries a natural norm as the dual of $C_r^*(G)$.
- The previous construction shows that this norm is an algebra norm: ||ω₁ · ω₂|| ≤ ||ω₁|||ω₂||.

- Actually, as G is finite, really $A(G) = \mathbb{C}^G$.
- However, A(G) carries a natural norm as the dual of $C_r^*(G)$.
- The previous construction shows that this norm is an algebra norm: ||ω₁ · ω₂|| ≤ ||ω₁|||ω₂||.

Abelian case

Firstly, what if G is abelian? Then every irreducible representation is one dimensional, and the collection of irreps forms a group: the *dual group* of G:

$$\hat{\boldsymbol{G}} = \{ \chi : \boldsymbol{G}
ightarrow \mathbb{T} \text{ is a homomorphism } \}.$$

We also have the Fourier transform

$$\mathcal{F}: \ell^2(G) o \ell^2(\hat{G}); \quad s \mapsto \sum_{\chi \in \hat{G}} \chi(s) \chi.$$

We can also interpret this as a map $\mathbb{C}[G] \to \mathbb{C}^G$; then we get an isometry from $C_r^*(G)$ to $C(\hat{G})$, the space of continuous functions of \hat{G} with the supremum (maximum) norm.

不得る とうちょうちょ

Abelian case

Firstly, what if G is abelian? Then every irreducible representation is one dimensional, and the collection of irreps forms a group: the *dual* group of G:

$$\hat{\boldsymbol{G}} = \{ \chi : \boldsymbol{G}
ightarrow \mathbb{T} \text{ is a homomorphism } \}.$$

We also have the Fourier transform

$$\mathcal{F}: \ell^2(\mathcal{G}) o \ell^2(\hat{\mathcal{G}}); \quad \mathcal{\pmb{s}} \mapsto \sum_{\chi \in \hat{\mathcal{G}}} \chi(\mathcal{\pmb{s}}) \chi.$$

We can also interpret this as a map $\mathbb{C}[G] \to \mathbb{C}^G$; then we get an isometry from $C_r^*(G)$ to $C(\hat{G})$, the space of continuous functions of \hat{G} with the supremum (maximum) norm.

不得る とうちょうちょ

Abelian case

Firstly, what if G is abelian? Then every irreducible representation is one dimensional, and the collection of irreps forms a group: the *dual* group of G:

$$\hat{\boldsymbol{G}} = ig\{ \chi: \boldsymbol{G}
ightarrow \mathbb{T} ext{ is a homomorphism } ig\}.$$

We also have the Fourier transform

$$\mathcal{F}: \ell^2(\mathcal{G}) o \ell^2(\hat{\mathcal{G}}); \quad oldsymbol{s} \mapsto \sum_{\chi \in \hat{\mathcal{G}}} \chi(oldsymbol{s}) \chi.$$

We can also interpret this as a map $\mathbb{C}[G] \to \mathbb{C}^{\hat{G}}$; then we get an isometry from $C_r^*(G)$ to $C(\hat{G})$, the space of continuous functions of \hat{G} with the supremum (maximum) norm.

A B K A B K

So if $C_r^*(G) \cong C(\hat{G})$, then the duals are also isometric

$$A(G) = C_r^*(G)^* \cong C(\hat{G})^*.$$

What is the dual of $C(\hat{G})$? As \hat{G} is finite, it is just functions $\hat{G} \to \mathbb{C}$ with the 1-norm:

 $\left\|\sum_{\chi\in\widehat{G}}\lambda_{\chi}\chi\right\|_{1}=\sum_{\chi}|\lambda_{\chi}|.$

We denote this normed space by $\ell^1(\hat{G})$. We can identify $\ell^1(\hat{G})$ with $\mathbb{C}[\hat{G}]$; then the 1-norm is an algebra norm. So the Fourier algebra A(G) is isometrically isomorphic to the convolution algebra $\mathbb{C}[\hat{G}]$, with the 1-norm.

So if $C_r^*(G) \cong C(\hat{G})$, then the duals are also isometric

$$A(G) = C_r^*(G)^* \cong C(\hat{G})^*.$$

What is the dual of $C(\hat{G})$? As \hat{G} is finite, it is just functions $\hat{G} \to \mathbb{C}$ with the 1-norm:

$$\left\|\sum_{\chi\in\hat{\boldsymbol{G}}}\lambda_{\chi}\chi\right\|_{1}=\sum_{\chi}|\lambda_{\chi}|.$$

We denote this normed space by $\ell^1(\hat{G})$.

We can identify $\ell^1(\hat{G})$ with $\mathbb{C}[\hat{G}]$; then the 1-norm is an algebra norm. So the Fourier algebra A(G) is isometrically isomorphic to the convolution algebra $\mathbb{C}[\hat{G}]$, with the 1-norm.

So if $C_r^*(G) \cong C(\hat{G})$, then the duals are also isometric

$$A(G) = C_r^*(G)^* \cong C(\hat{G})^*.$$

What is the dual of $C(\hat{G})$? As \hat{G} is finite, it is just functions $\hat{G} \to \mathbb{C}$ with the 1-norm:

$$\left\|\sum_{\chi\in\hat{G}}\lambda_{\chi}\chi\right\|_{1}=\sum_{\chi}|\lambda_{\chi}|.$$

We denote this normed space by $\ell^1(\hat{G})$. We can identify $\ell^1(\hat{G})$ with $\mathbb{C}[\hat{G}]$; then the 1-norm is an algebra norm. So the Fourier algebra A(G) is isometrically isomorphic to the convolution algebra $\mathbb{C}[\hat{G}]$, with the 1-norm.

So if $C_r^*(G) \cong C(\hat{G})$, then the duals are also isometric

$$A(G) = C_r^*(G)^* \cong C(\hat{G})^*.$$

What is the dual of $C(\hat{G})$? As \hat{G} is finite, it is just functions $\hat{G} \to \mathbb{C}$ with the 1-norm:

$$\left\|\sum_{\chi\in\hat{\boldsymbol{G}}}\lambda_{\chi}\chi\right\|_{1}=\sum_{\chi}|\lambda_{\chi}|.$$

We denote this normed space by $\ell^1(\hat{G})$. We can identify $\ell^1(\hat{G})$ with $\mathbb{C}[\hat{G}]$; then the 1-norm is an algebra norm. So the Fourier algebra A(G) is isometrically isomorphic to the convolution algebra $\mathbb{C}[\hat{G}]$, with the 1-norm.

Now let \hat{G} be the collection of (isomorphism classes) of irreducible representations of *G*; this is no longer a group in general.

• We have the decomposition

$$\mathbb{C}[G] \cong \bigoplus_{\pi \in \widehat{G}} n_{\pi}\pi,$$

• Here π is a representation of *G* on a finite dimensional Hilbert space H_{π} , and the notation $n_{\pi}\pi$ means that π occurs with multiplicity $n_{\pi} := \dim(H_{\pi})$.

So we find that

$$\mathcal{C}^*_r(G)\cong \bigoplus_{\pi\in \hat{G}}\mathbb{M}_{n_\pi}.$$

(The multiplicity does not affect the norm, so we ignore it).

イロト イポト イラト イラト

Now let \hat{G} be the collection of (isomorphism classes) of irreducible representations of G; this is no longer a group in general.

• We have the decomposition

$$\mathbb{C}[G] \cong \bigoplus_{\pi \in \hat{G}} n_{\pi}\pi,$$

• Here π is a representation of *G* on a finite dimensional Hilbert space H_{π} , and the notation $n_{\pi}\pi$ means that π occurs with multiplicity $n_{\pi} := \dim(H_{\pi})$.

So we find that

$$\mathcal{C}^*_r(G)\cong \bigoplus_{\pi\in \hat{G}}\mathbb{M}_{n_\pi}.$$

(The multiplicity does not affect the norm, so we ignore it).

イロト イヨト イヨト イヨト

Now let \hat{G} be the collection of (isomorphism classes) of irreducible representations of *G*; this is no longer a group in general.

• We have the decomposition

$$\mathbb{C}[G]\cong\bigoplus_{\pi\in\hat{G}}n_{\pi}\pi,$$

• Here π is a representation of *G* on a finite dimensional Hilbert space H_{π} , and the notation $n_{\pi}\pi$ means that π occurs with multiplicity $n_{\pi} := \dim(H_{\pi})$.

So we find that

$$C^*_r(G)\cong \bigoplus_{\pi\in \hat{G}}\mathbb{M}_{n_\pi}.$$

(The multiplicity does not affect the norm, so we ignore it).

4 D N 4 B N 4 B N 4 B N

Now let \hat{G} be the collection of (isomorphism classes) of irreducible representations of *G*; this is no longer a group in general.

• We have the decomposition

$$\mathbb{C}[G]\cong\bigoplus_{\pi\in\hat{G}}n_{\pi}\pi,$$

- Here π is a representation of *G* on a finite dimensional Hilbert space H_{π} , and the notation $n_{\pi}\pi$ means that π occurs with multiplicity $n_{\pi} := \dim(H_{\pi})$.
- So we find that

$$\mathcal{C}^*_r(\mathcal{G})\cong igoplus_{\pi\in \hat{\mathcal{G}}}\mathbb{M}_{n_\pi}.$$

(The multiplicity does not affect the norm, so we ignore it).

4 D N 4 B N 4 B N 4 B N

We define a (bilinear) dual pairing between \mathbb{M}_n and \mathbb{M}_n by "trace duality":

$$\langle x,y\rangle = \operatorname{Tr}(xy) \qquad (x,y\in \mathbb{M}_n).$$

• So $\mathbb{M}_n^* \cong \mathbb{M}_n$.

• We give \mathbb{M}_n the operator norm: $||x||^2 = ||x^*x||$. Then x^*x is positive (semi) definite, so it has positive eigenvalues, and so

 $||x|| = ||x^*x||^{1/2} = \max \{\lambda^{1/2} : \lambda \text{ is an eigenvalue of } x^*x\}.$

• It turns out that the dual norm induced on M_n is

 $\|y\|^* := \sup \left\{ \operatorname{Tr}(xy) : \|x\| \le 1 \right\}$ $= \sum \left\{ \lambda^{1/2} : \lambda \text{ is an eigenvalue of } y^*y \right\}.$

• Write \mathbb{T}_n for \mathbb{M}_n with this norm: the "trace class" norm.

We define a (bilinear) dual pairing between \mathbb{M}_n and \mathbb{M}_n by "trace duality":

$$\langle x,y\rangle = \operatorname{Tr}(xy) \qquad (x,y\in \mathbb{M}_n).$$

• So $\mathbb{M}_n^* \cong \mathbb{M}_n$.

• We give \mathbb{M}_n the operator norm: $||x||^2 = ||x^*x||$. Then x^*x is positive (semi) definite, so it has positive eigenvalues, and so

 $||x|| = ||x^*x||^{1/2} = \max \{\lambda^{1/2} : \lambda \text{ is an eigenvalue of } x^*x\}.$

• It turns out that the dual norm induced on M_n is

$$\|y\|^* := \sup \left\{ \operatorname{Tr}(xy) : \|x\| \le 1 \right\}$$
$$= \sum \left\{ \lambda^{1/2} : \lambda \text{ is an eigenvalue of } y^*y \right\}.$$

• Write \mathbb{T}_n for \mathbb{M}_n with this norm: the "trace class" norm.

-

イヨト イモト イモト

We define a (bilinear) dual pairing between \mathbb{M}_n and \mathbb{M}_n by "trace duality":

$$\langle x,y\rangle = \operatorname{Tr}(xy) \qquad (x,y\in \mathbb{M}_n).$$

• So $\mathbb{M}_n^* \cong \mathbb{M}_n$.

• We give \mathbb{M}_n the operator norm: $||x||^2 = ||x^*x||$. Then x^*x is positive (semi) definite, so it has positive eigenvalues, and so

$$||x|| = ||x^*x||^{1/2} = \max \{\lambda^{1/2} : \lambda \text{ is an eigenvalue of } x^*x\}.$$

• It turns out that the dual norm induced on M_n is

 $\|y\|^* := \sup \left\{ \operatorname{Tr}(xy) : \|x\| \le 1 \right\}$ $= \sum \left\{ \lambda^{1/2} : \lambda \text{ is an eigenvalue of } y^*y \right\}.$

• Write \mathbb{T}_n for \mathbb{M}_n with this norm: the "trace class" norm.

We define a (bilinear) dual pairing between \mathbb{M}_n and \mathbb{M}_n by "trace duality":

$$\langle x,y\rangle = \operatorname{Tr}(xy) \qquad (x,y\in \mathbb{M}_n).$$

• So $\mathbb{M}_n^* \cong \mathbb{M}_n$.

• We give \mathbb{M}_n the operator norm: $||x||^2 = ||x^*x||$. Then x^*x is positive (semi) definite, so it has positive eigenvalues, and so

$$||x|| = ||x^*x||^{1/2} = \max \{\lambda^{1/2} : \lambda \text{ is an eigenvalue of } x^*x\}.$$

● It turns out that the dual norm induced on M_n is

$$\begin{split} \|y\|^* &:= \sup \big\{ \operatorname{Tr}(xy) : \|x\| \leq 1 \big\} \\ &= \sum \big\{ \lambda^{1/2} : \lambda \text{ is an eigenvalue of } y^*y \big\}. \end{split}$$

• Write \mathbb{T}_n for \mathbb{M}_n with this norm: the "trace class" norm.

We define a (bilinear) dual pairing between \mathbb{M}_n and \mathbb{M}_n by "trace duality":

$$\langle x,y\rangle = \operatorname{Tr}(xy) \qquad (x,y\in \mathbb{M}_n).$$

• So $\mathbb{M}_n^* \cong \mathbb{M}_n$.

• We give \mathbb{M}_n the operator norm: $||x||^2 = ||x^*x||$. Then x^*x is positive (semi) definite, so it has positive eigenvalues, and so

$$\|x\| = \|x^*x\|^{1/2} = \max\left\{\lambda^{1/2} : \lambda \text{ is an eigenvalue of } x^*x\right\}.$$

● It turns out that the dual norm induced on M_n is

$$\begin{split} \|y\|^* &:= \sup \big\{ \operatorname{Tr}(xy) : \|x\| \leq 1 \big\} \\ &= \sum \big\{ \lambda^{1/2} : \lambda \text{ is an eigenvalue of } y^*y \big\}. \end{split}$$

• Write \mathbb{T}_n for \mathbb{M}_n with this norm: the "trace class" norm.

4 E N 4 E N

We saw that

$$\mathcal{C}^*_r(\mathcal{G})\cong \bigoplus_{\pi\in \hat{\mathcal{G}}}\mathbb{M}_{n_\pi}.$$

Thus

$$A(G) = C_r^*(G)^* \cong \bigoplus_{\pi \in \hat{G}} n_\pi \mathbb{T}_{n_\pi}.$$

- Notice that here we *do* need to worry about the multiplicities, as we have a "sum" norm, not a "max" norm.
- To be exact, $n\mathbb{T}_n$ is the space \mathbb{T}_n , but with the norm multiplied by *n*.
- But what's the product on *A*(*G*) in this picture?

A (1) > A (2) > A (2)

We saw that

$$\mathcal{C}^*_r(G)\cong igoplus_{\pi\in \hat{G}}\mathbb{M}_{n_\pi}.$$

Thus

$$A(G) = C^*_r(G)^* \cong \bigoplus_{\pi \in \hat{G}} n_\pi \mathbb{T}_{n_\pi}.$$

- Notice that here we do need to worry about the multiplicities, as we have a "sum" norm, not a "max" norm.
- To be exact, $n\mathbb{T}_n$ is the space \mathbb{T}_n , but with the norm multiplied by *n*.
- But what's the product on *A*(*G*) in this picture?

A (1) > A (2) > A (2)

We saw that

$$\mathcal{C}^*_r(G)\cong \bigoplus_{\pi\in \widehat{G}}\mathbb{M}_{n_\pi}.$$

Thus

$$A(G) = C^*_r(G)^* \cong \bigoplus_{\pi \in \hat{G}} n_\pi \mathbb{T}_{n_\pi}.$$

- Notice that here we do need to worry about the multiplicities, as we have a "sum" norm, not a "max" norm.
- To be exact, $n\mathbb{T}_n$ is the space \mathbb{T}_n , but with the norm multiplied by n.
- But what's the product on A(G) in this picture?

A (1) > A (2) > A (2)

We saw that

$$\mathcal{C}^*_r(G)\cong igoplus_{\pi\in \hat{G}}\mathbb{M}_{n_\pi}.$$

Thus

$$A(G) = C^*_r(G)^* \cong \bigoplus_{\pi \in \hat{G}} n_\pi \mathbb{T}_{n_\pi}.$$

- Notice that here we do need to worry about the multiplicities, as we have a "sum" norm, not a "max" norm.
- To be exact, $n\mathbb{T}_n$ is the space \mathbb{T}_n , but with the norm multiplied by *n*.
- But what's the product on *A*(*G*) in this picture?

4 3 5 4 3

We saw that

$$\mathcal{C}^*_r(G)\cong igoplus_{\pi\in \hat{G}}\mathbb{M}_{n_\pi}.$$

Thus

$$A(G) = C^*_r(G)^* \cong \bigoplus_{\pi \in \hat{G}} n_\pi \mathbb{T}_{n_\pi}.$$

- Notice that here we do need to worry about the multiplicities, as we have a "sum" norm, not a "max" norm.
- To be exact, $n\mathbb{T}_n$ is the space \mathbb{T}_n , but with the norm multiplied by *n*.
- But what's the product on *A*(*G*) in this picture?

Suppose $\omega_1 \in A(G)$ is given by a single irreducible $\pi_1 \in \hat{G}$, say

$$\omega_1(s) = (\pi_1(s)\xi_1|\eta_1) \qquad (s \in G, \xi_1, \eta_1 \in H_{\pi_1}).$$

Similarly π_2 .

Then

$$(\omega_1 \cdot \omega_2)(s) = \omega_1(s)\omega_2(s) = ((\pi_1 \otimes \pi_2)(s)\xi_1 \otimes \xi_2 | \eta_1 \otimes \eta_2).$$

- So to understand the product $\omega_1 \cdot \omega_2$, we need to understand how to write $\pi_1 \otimes \pi_2$ as a sum of irreducibles. This can be done using fusion rules etc.
- This is obviously complicated: I generally tend to think of *A*(*G*) as being a certain commutative algebra, and do not use the representation theory picture.

Suppose $\omega_1 \in A(G)$ is given by a single irreducible $\pi_1 \in \hat{G}$, say

$$\omega_1(s) = (\pi_1(s)\xi_1|\eta_1) \qquad (s \in G, \xi_1, \eta_1 \in H_{\pi_1}).$$

Similarly π_2 .

Then

$$(\omega_1 \cdot \omega_2)(s) = \omega_1(s)\omega_2(s) = ((\pi_1 \otimes \pi_2)(s)\xi_1 \otimes \xi_2 | \eta_1 \otimes \eta_2).$$

- So to understand the product $\omega_1 \cdot \omega_2$, we need to understand how to write $\pi_1 \otimes \pi_2$ as a sum of irreducibles. This can be done using fusion rules etc.
- This is obviously complicated: I generally tend to think of *A*(*G*) as being a certain commutative algebra, and do not use the representation theory picture.

Suppose $\omega_1 \in A(G)$ is given by a single irreducible $\pi_1 \in \hat{G}$, say

$$\omega_1(s) = (\pi_1(s)\xi_1|\eta_1) \qquad (s \in G, \xi_1, \eta_1 \in H_{\pi_1}).$$

Similarly π_2 .

Then

$$(\omega_1 \cdot \omega_2)(s) = \omega_1(s)\omega_2(s) = ((\pi_1 \otimes \pi_2)(s)\xi_1 \otimes \xi_2 | \eta_1 \otimes \eta_2).$$

- So to understand the product ω₁ · ω₂, we need to understand how to write π₁ ⊗ π₂ as a sum of irreducibles. This can be done using fusion rules etc.
- This is obviously complicated: I generally tend to think of *A*(*G*) as being a certain commutative algebra, and do not use the representation theory picture.

-

イロト イポト イラト イラト

Suppose $\omega_1 \in A(G)$ is given by a single irreducible $\pi_1 \in \hat{G}$, say

$$\omega_1(s) = (\pi_1(s)\xi_1|\eta_1) \qquad (s \in G, \xi_1, \eta_1 \in H_{\pi_1}).$$

Similarly π_2 .

Then

$$(\omega_1 \cdot \omega_2)(s) = \omega_1(s)\omega_2(s) = ((\pi_1 \otimes \pi_2)(s)\xi_1 \otimes \xi_2 | \eta_1 \otimes \eta_2).$$

- So to understand the product ω₁ · ω₂, we need to understand how to write π₁ ⊗ π₂ as a sum of irreducibles. This can be done using fusion rules etc.
- This is obviously complicated: I generally tend to think of *A*(*G*) as being a certain commutative algebra, and do not use the representation theory picture.

3

イロト イポト イラト イラト

A *locally compact group* is a locally compact (Hausdorff) topological space which is also a group, and with the group operations being continuous.

Locally compact groups are essentially characterised as being those groups which admit an invariant measure: the Haar measure:

$$\mu(A) = \mu(sA) \qquad (s \in G, A \subseteq G).$$

- Any group with the discrete topology, and the counting measure.
- Any compact group: T, *SU*(*n*), *O*(*n*) etc. Haar measure is a probability measure.
- Any Lie group: \mathbb{R} , $SL_n(\mathbb{R})$ etc.
- Not the unitary group of an infinite dimensional Hilbert space.

A *locally compact group* is a locally compact (Hausdorff) topological space which is also a group, and with the group operations being continuous.

Locally compact groups are essentially characterised as being those groups which admit an invariant measure: the Haar measure:

$$\mu(A) = \mu(sA)$$
 ($s \in G, A \subseteq G$).

- Any group with the discrete topology, and the counting measure.
- Any compact group: T, *SU*(*n*), *O*(*n*) etc. Haar measure is a probability measure.
- Any Lie group: \mathbb{R} , $SL_n(\mathbb{R})$ etc.
- Not the unitary group of an infinite dimensional Hilbert space.

3

A *locally compact group* is a locally compact (Hausdorff) topological space which is also a group, and with the group operations being continuous.

Locally compact groups are essentially characterised as being those groups which admit an invariant measure: the Haar measure:

$$\mu(A) = \mu(sA)$$
 $(s \in G, A \subseteq G).$

- Any group with the discrete topology, and the counting measure.
- Any compact group: T, *SU*(*n*), *O*(*n*) etc. Haar measure is a probability measure.
- Any Lie group: \mathbb{R} , $SL_n(\mathbb{R})$ etc.
- Not the unitary group of an infinite dimensional Hilbert space.

A *locally compact group* is a locally compact (Hausdorff) topological space which is also a group, and with the group operations being continuous.

Locally compact groups are essentially characterised as being those groups which admit an invariant measure: the Haar measure:

$$\mu(A) = \mu(sA)$$
 $(s \in G, A \subseteq G).$

- Any group with the discrete topology, and the counting measure.
- Any compact group: T, *SU*(*n*), *O*(*n*) etc. Haar measure is a probability measure.
- Any Lie group: \mathbb{R} , $SL_n(\mathbb{R})$ etc.
- Not the unitary group of an infinite dimensional Hilbert space.

A *locally compact group* is a locally compact (Hausdorff) topological space which is also a group, and with the group operations being continuous.

Locally compact groups are essentially characterised as being those groups which admit an invariant measure: the Haar measure:

$$\mu(A) = \mu(sA)$$
 $(s \in G, A \subseteq G).$

- Any group with the discrete topology, and the counting measure.
- Any compact group: T, SU(n), O(n) etc. Haar measure is a probability measure.
- Any Lie group: \mathbb{R} , $SL_n(\mathbb{R})$ etc.
- Not the unitary group of an infinite dimensional Hilbert space.

A *locally compact group* is a locally compact (Hausdorff) topological space which is also a group, and with the group operations being continuous.

Locally compact groups are essentially characterised as being those groups which admit an invariant measure: the Haar measure:

$$\mu(A) = \mu(sA)$$
 $(s \in G, A \subseteq G).$

- Any group with the discrete topology, and the counting measure.
- Any compact group: T, *SU*(*n*), *O*(*n*) etc. Haar measure is a probability measure.
- Any Lie group: \mathbb{R} , $SL_n(\mathbb{R})$ etc.
- Not the unitary group of an infinite dimensional Hilbert space.

Let $L^1(G)$ be the (equivalence classes) of integrable functions on *G*, which becomes a Banach algebra for the convolution product:

$$f * g(s) = \int_G f(t)g(t^{-1}s) dt$$
 $(f,g \in L^1(G), s \in G).$

- There is a natural representation of L¹(G) on L²(G) given by left convolution: the norm closure of the image is C^{*}_r(G), the (reduced) group C*-algebra.
- To look at $C_r^*(G)^*$ would give too large an algebra.
- Instead, we take the *weak operator topology* closure of L¹(G) acting on L²(G) this gives VN(G) the group von Neumann algebra.
- Write $\lambda(s)$ for the left translation operator given by $s \in G$.
- Then $\lambda(s) \in VN(G)$, but $\lambda(s) \in C_r^*(G)$ only for discrete groups.

3

イロト 不得 トイヨト イヨト

Let $L^1(G)$ be the (equivalence classes) of integrable functions on *G*, which becomes a Banach algebra for the convolution product:

$$f * g(s) = \int_G f(t)g(t^{-1}s) dt$$
 $(f,g \in L^1(G), s \in G).$

- There is a natural representation of L¹(G) on L²(G) given by left convolution: the norm closure of the image is C^{*}_r(G), the (reduced) group C*-algebra.
- To look at $C_r^*(G)^*$ would give too large an algebra.
- Instead, we take the *weak operator topology* closure of L¹(G) acting on L²(G) this gives VN(G) the group von Neumann algebra.
- Write $\lambda(s)$ for the left translation operator given by $s \in G$.
- Then λ(s) ∈ VN(G), but λ(s) ∈ C^{*}_r(G) only for discrete groups.

Let $L^1(G)$ be the (equivalence classes) of integrable functions on *G*, which becomes a Banach algebra for the convolution product:

$$f * g(s) = \int_G f(t)g(t^{-1}s) dt$$
 $(f,g \in L^1(G), s \in G).$

There is a natural representation of L¹(G) on L²(G) given by left convolution: the norm closure of the image is C^{*}_r(G), the (reduced) group C*-algebra.

• To look at $C_r^*(G)^*$ would give too large an algebra.

- Instead, we take the *weak operator topology* closure of L¹(G) acting on L²(G) this gives VN(G) the group von Neumann algebra.
- Write $\lambda(s)$ for the left translation operator given by $s \in G$.
- Then λ(s) ∈ VN(G), but λ(s) ∈ C^{*}_r(G) only for discrete groups.

Let $L^1(G)$ be the (equivalence classes) of integrable functions on *G*, which becomes a Banach algebra for the convolution product:

$$f * g(s) = \int_G f(t)g(t^{-1}s) dt$$
 $(f,g \in L^1(G), s \in G).$

- There is a natural representation of L¹(G) on L²(G) given by left convolution: the norm closure of the image is C^{*}_r(G), the (reduced) group C*-algebra.
- To look at $C_r^*(G)^*$ would give too large an algebra.
- Instead, we take the *weak operator topology* closure of L¹(G) acting on L²(G) this gives VN(G) the group von Neumann algebra.
- Write $\lambda(s)$ for the left translation operator given by $s \in G$.
- Then $\lambda(s) \in VN(G)$, but $\lambda(s) \in C_r^*(G)$ only for discrete groups.

Let $L^1(G)$ be the (equivalence classes) of integrable functions on *G*, which becomes a Banach algebra for the convolution product:

$$f * g(s) = \int_G f(t)g(t^{-1}s) dt$$
 $(f,g \in L^1(G), s \in G).$

- There is a natural representation of L¹(G) on L²(G) given by left convolution: the norm closure of the image is C^{*}_r(G), the (reduced) group C*-algebra.
- To look at $C_r^*(G)^*$ would give too large an algebra.
- Instead, we take the *weak operator topology* closure of L¹(G) acting on L²(G) this gives VN(G) the group von Neumann algebra.
- Write $\lambda(s)$ for the left translation operator given by $s \in G$.

• Then $\lambda(s) \in VN(G)$, but $\lambda(s) \in C_r^*(G)$ only for discrete groups.

Let $L^1(G)$ be the (equivalence classes) of integrable functions on *G*, which becomes a Banach algebra for the convolution product:

$$f * g(s) = \int_G f(t)g(t^{-1}s) dt$$
 $(f,g \in L^1(G), s \in G).$

- There is a natural representation of L¹(G) on L²(G) given by left convolution: the norm closure of the image is C^{*}_r(G), the (reduced) group C*-algebra.
- To look at $C_r^*(G)^*$ would give too large an algebra.
- Instead, we take the *weak operator topology* closure of L¹(G) acting on L²(G) this gives VN(G) the group von Neumann algebra.
- Write $\lambda(s)$ for the left translation operator given by $s \in G$.
- Then $\lambda(s) \in VN(G)$, but $\lambda(s) \in C^*_r(G)$ only for discrete groups.

3

- We now restrict attention to VN(G)*, the functionals on VN(G) which are weak operator topology continuous. So we set A(G) = VN(G)*.
- The operators {λ(s) : s ∈ G} generate VN(G) for the weak operator topology. So for ω ∈ A(G), the values

 $\omega(s) = \langle \lambda(s), \omega \rangle$ $(s \in G),$

completely determine ω . Hence we can think of A(G) as a space of functions $G \to \mathbb{C}$.

- As before, we have $\Delta : VN(G) \rightarrow VN(G \times G)$ given by $\lambda(s) \mapsto \lambda(s) \otimes \lambda(s)$.
- The (pre)adjoint induces an associative algebra product on A(G).
- As a space of functions, this is just the pointwise product. So *A*(*G*) is a commutative Banach algebra.

- We now restrict attention to VN(G)*, the functionals on VN(G) which are weak operator topology continuous. So we set A(G) = VN(G)*.
- The operators {λ(s) : s ∈ G} generate VN(G) for the weak operator topology. So for ω ∈ A(G), the values

$$\omega(s) = \langle \lambda(s), \omega \rangle$$
 $(s \in G),$

completely determine ω . Hence we can think of A(G) as a space of functions $G \to \mathbb{C}$.

- As before, we have $\Delta : VN(G) \rightarrow VN(G \times G)$ given by $\lambda(s) \mapsto \lambda(s) \otimes \lambda(s)$.
- The (pre)adjoint induces an associative algebra product on A(G).
- As a space of functions, this is just the pointwise product. So *A*(*G*) is a commutative Banach algebra.

- We now restrict attention to VN(G)*, the functionals on VN(G) which are weak operator topology continuous. So we set A(G) = VN(G)*.
- The operators {λ(s) : s ∈ G} generate VN(G) for the weak operator topology. So for ω ∈ A(G), the values

$$\omega(s) = \langle \lambda(s), \omega \rangle$$
 $(s \in G),$

completely determine ω . Hence we can think of A(G) as a space of functions $G \to \mathbb{C}$.

• As before, we have $\Delta : VN(G) \rightarrow VN(G \times G)$ given by $\lambda(s) \mapsto \lambda(s) \otimes \lambda(s)$.

• The (pre)adjoint induces an associative algebra product on A(G).

• As a space of functions, this is just the pointwise product. So *A*(*G*) is a commutative Banach algebra.

- We now restrict attention to VN(G)*, the functionals on VN(G) which are weak operator topology continuous. So we set A(G) = VN(G)*.
- The operators {λ(s) : s ∈ G} generate VN(G) for the weak operator topology. So for ω ∈ A(G), the values

$$\omega(s) = \langle \lambda(s), \omega \rangle$$
 $(s \in G),$

completely determine ω . Hence we can think of A(G) as a space of functions $G \to \mathbb{C}$.

• As before, we have $\Delta : VN(G) \rightarrow VN(G \times G)$ given by $\lambda(s) \mapsto \lambda(s) \otimes \lambda(s)$.

• The (pre)adjoint induces an associative algebra product on *A*(*G*).

• As a space of functions, this is just the pointwise product. So *A*(*G*) is a commutative Banach algebra.

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ.

- We now restrict attention to VN(G)*, the functionals on VN(G) which are weak operator topology continuous. So we set A(G) = VN(G)*.
- The operators {λ(s) : s ∈ G} generate VN(G) for the weak operator topology. So for ω ∈ A(G), the values

$$\omega(s) = \langle \lambda(s), \omega \rangle$$
 $(s \in G),$

completely determine ω . Hence we can think of A(G) as a space of functions $G \to \mathbb{C}$.

- As before, we have $\Delta : VN(G) \rightarrow VN(G \times G)$ given by $\lambda(s) \mapsto \lambda(s) \otimes \lambda(s)$.
- The (pre)adjoint induces an associative algebra product on A(G).
- As a space of functions, this is just the pointwise product. So *A*(*G*) is a commutative Banach algebra.

$$\omega = \omega_{\xi,\eta} : \quad \mathbf{X} \mapsto (\mathbf{X}\xi|\eta) \qquad (\mathbf{X} \in VN(G)),$$

for some $\xi, \eta \in L^2(G)$. (Not obvious why we don't need linear combinations etc.)

• For $s \in G$ we calculate

$$\omega(s) = (\lambda(s)\xi|\eta) = \int_{G} \xi(s^{-1}t)\overline{\eta(t)} \, dt = \int_{G} \overline{\eta(t)}\check{\xi}(t^{-1}s) \, dt = (\overline{\eta}*\check{\xi})(s),$$

where $\xi(s) = \xi(s^{-1})$.

- So each member of *A*(*G*) is the convolution of an *L*² function with a "checked" *L*² function.
- In particular, each member of A(G) is continuous, and vanishes at infinity: A(G) ⊆ C₀(G).
- Unless G is finite, we don't get all of $C_0(G)$.

$$\omega = \omega_{\xi,\eta} : \quad \mathbf{X} \mapsto (\mathbf{X}\xi|\eta) \qquad (\mathbf{X} \in VN(G)),$$

for some $\xi, \eta \in L^2(G)$. (Not obvious why we don't need linear combinations etc.)

• For $s \in G$ we calculate

$$\omega(s) = (\lambda(s)\xi|\eta) = \int_{G} \xi(s^{-1}t)\overline{\eta(t)} \, dt = \int_{G} \overline{\eta(t)}\check{\xi}(t^{-1}s) \, dt = (\overline{\eta} * \check{\xi})(s),$$

where
$$\check{\xi}(s) = \xi(s^{-1})$$
.

- So each member of *A*(*G*) is the convolution of an *L*² function with a "checked" *L*² function.
- In particular, each member of A(G) is continuous, and vanishes at infinity: A(G) ⊆ C₀(G).
- Unless G is finite, we don't get all of $C_0(G)$.

$$\omega = \omega_{\xi,\eta} : \quad \mathbf{X} \mapsto (\mathbf{X}\xi|\eta) \qquad (\mathbf{X} \in VN(G)),$$

for some $\xi, \eta \in L^2(G)$. (Not obvious why we don't need linear combinations etc.)

• For $s \in G$ we calculate

$$\omega(s) = (\lambda(s)\xi|\eta) = \int_{G} \xi(s^{-1}t)\overline{\eta(t)} \, dt = \int_{G} \overline{\eta(t)}\check{\xi}(t^{-1}s) \, dt = (\overline{\eta}*\check{\xi})(s),$$

where $\check{\xi}(s) = \xi(s^{-1})$.

- So each member of *A*(*G*) is the convolution of an *L*² function with a "checked" *L*² function.
- In particular, each member of A(G) is continuous, and vanishes at infinity: A(G) ⊆ C₀(G).
- Unless G is finite, we don't get all of $C_0(G)$.

$$\omega = \omega_{\xi,\eta} : \quad \mathbf{X} \mapsto (\mathbf{X}\xi|\eta) \qquad (\mathbf{X} \in VN(G)),$$

for some $\xi, \eta \in L^2(G)$. (Not obvious why we don't need linear combinations etc.)

• For $s \in G$ we calculate

$$\omega(s) = (\lambda(s)\xi|\eta) = \int_{G} \xi(s^{-1}t)\overline{\eta(t)} \, dt = \int_{G} \overline{\eta(t)}\check{\xi}(t^{-1}s) \, dt = (\overline{\eta}*\check{\xi})(s),$$

where $\check{\xi}(s) = \xi(s^{-1})$.

- So each member of A(G) is the convolution of an L² function with a "checked" L² function.
- In particular, each member of A(G) is continuous, and vanishes at infinity: A(G) ⊆ C₀(G).
- Unless G is finite, we don't get all of $C_0(G)$.

$$\omega = \omega_{\xi,\eta} : \quad \mathbf{X} \mapsto (\mathbf{X}\xi|\eta) \qquad (\mathbf{X} \in VN(G)),$$

for some $\xi, \eta \in L^2(G)$. (Not obvious why we don't need linear combinations etc.)

• For $s \in G$ we calculate

$$\omega(s) = (\lambda(s)\xi|\eta) = \int_{G} \xi(s^{-1}t)\overline{\eta(t)} \, dt = \int_{G} \overline{\eta(t)}\check{\xi}(t^{-1}s) \, dt = (\overline{\eta}*\check{\xi})(s),$$

where $\check{\xi}(s) = \xi(s^{-1})$.

- So each member of A(G) is the convolution of an L² function with a "checked" L² function.
- In particular, each member of A(G) is continuous, and vanishes at infinity: A(G) ⊆ C₀(G).
- Unless G is finite, we don't get all of $C_0(G)$.

If G is abelian, then we have a dual group \hat{G} and the generalised Fourier transform

 $\mathcal{F}: L^1(G) \to C_0(\hat{G}).$

- Any member of L¹(G) is the pointwise product of two L² functions, and F turns the pointwise product into the convolution product.
- So $A(\hat{G})$ is precisely $\mathcal{F}(L^1(G))$.
- Or $A(G) \cong L^1(\hat{G})$, as $\hat{G} \cong G$.

• In particular,

$A(\mathbb{Z}) \cong L^1(\mathbb{T}), \quad A(\mathbb{T}) \cong L^1(\mathbb{Z}), \quad A(\mathbb{R}) \cong L^1(\mathbb{R}).$

4 **A** N A **B** N A **B** N

If G is abelian, then we have a dual group \hat{G} and the generalised Fourier transform

 $\mathcal{F}: L^1(G) \to C_0(\hat{G}).$

- Any member of $L^1(G)$ is the pointwise product of two L^2 functions, and \mathcal{F} turns the pointwise product into the convolution product.
- So $A(\hat{G})$ is precisely $\mathcal{F}(L^1(G))$.
- Or $A(G) \cong L^1(\hat{G})$, as $\hat{G} \cong G$.

• In particular,

$A(\mathbb{Z}) \cong L^1(\mathbb{T}), \quad A(\mathbb{T}) \cong L^1(\mathbb{Z}), \quad A(\mathbb{R}) \cong L^1(\mathbb{R}).$

4 **A** N A **B** N A **B** N

If G is abelian, then we have a dual group \hat{G} and the generalised Fourier transform

 $\mathcal{F}: L^1(G) \to C_0(\hat{G}).$

- Any member of *L*¹(*G*) is the pointwise product of two *L*² functions, and *F* turns the pointwise product into the convolution product.
- So $A(\hat{G})$ is precisely $\mathcal{F}(L^1(G))$.
- Or $A(G) \cong L^1(\hat{G})$, as $\hat{G} \cong G$.

• In particular,

 $A(\mathbb{Z}) \cong L^1(\mathbb{T}), \quad A(\mathbb{T}) \cong L^1(\mathbb{Z}), \quad A(\mathbb{R}) \cong L^1(\mathbb{R}).$

If G is abelian, then we have a dual group \hat{G} and the generalised Fourier transform

$$\mathcal{F}: L^1(G) \to C_0(\hat{G}).$$

- Any member of L¹(G) is the pointwise product of two L² functions, and F turns the pointwise product into the convolution product.
- So $A(\hat{G})$ is precisely $\mathcal{F}(L^1(G))$.

• Or
$$A(G) \cong L^1(\hat{G})$$
, as $\hat{G} \cong G$.

• In particular,

$$A(\mathbb{Z}) \cong L^1(\mathbb{T}), \quad A(\mathbb{T}) \cong L^1(\mathbb{Z}), \quad A(\mathbb{R}) \cong L^1(\mathbb{R}).$$

If G is abelian, then we have a dual group \hat{G} and the generalised Fourier transform

$$\mathcal{F}: L^1(G) \to C_0(\hat{G}).$$

- Any member of *L*¹(*G*) is the pointwise product of two *L*² functions, and *F* turns the pointwise product into the convolution product.
- So $A(\hat{G})$ is precisely $\mathcal{F}(L^1(G))$.

• Or
$$A(G) \cong L^1(\hat{G})$$
, as $\hat{G} \cong G$.

• In particular,

$$A(\mathbb{Z}) \cong L^1(\mathbb{T}), \quad A(\mathbb{T}) \cong L^1(\mathbb{Z}), \quad A(\mathbb{R}) \cong L^1(\mathbb{R}).$$

Remember that the representation theory of compact groups is very similar to that for finite groups.

• Each irreducible representation is finite dimensional, and we get the isomorphisms

$$\mathcal{C}^*_r(G)\cong igoplus_{\pi\in \hat{G}}\mathbb{M}_{n_\pi}, \quad \mathcal{VN}(G)\cong \prod_{\pi\in \hat{G}}\mathbb{M}_{n_\pi}, \quad \mathcal{A}(G)\cong igoplus_{\pi\in \hat{G}}\mathbb{T}_{n_\pi}.$$

- Again, the multiplication comes from tensoring irreps.
- You can do similar things for, say, semisimple Lie groups, but *usually* this is not productive (but see recent work of Losert on $SL_2(\mathbb{R})$).

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Remember that the representation theory of compact groups is very similar to that for finite groups.

 Each irreducible representation is finite dimensional, and we get the isomorphisms

$$\mathcal{C}^*_r(G) \cong \bigoplus_{\pi \in \hat{G}} \mathbb{M}_{n_\pi}, \quad \mathcal{VN}(G) \cong \prod_{\pi \in \hat{G}} \mathbb{M}_{n_\pi}, \quad \mathcal{A}(G) \cong \bigoplus_{\pi \in \hat{G}} \mathbb{T}_{n_\pi}.$$

- Again, the multiplication comes from tensoring irreps.
- You can do similar things for, say, semisimple Lie groups, but *usually* this is not productive (but see recent work of Losert on $SL_2(\mathbb{R})$).

Remember that the representation theory of compact groups is very similar to that for finite groups.

 Each irreducible representation is finite dimensional, and we get the isomorphisms

$$\mathcal{C}^*_r(G)\cong igoplus_{\pi\in \hat{G}}\mathbb{M}_{n_\pi}, \quad \mathcal{VN}(G)\cong \prod_{\pi\in \hat{G}}\mathbb{M}_{n_\pi}, \quad \mathcal{A}(G)\cong igoplus_{\pi\in \hat{G}}\mathbb{T}_{n_\pi}.$$

- Again, the multiplication comes from tensoring irreps.
- You can do similar things for, say, semisimple Lie groups, but *usually* this is not productive (but see recent work of Losert on $SL_2(\mathbb{R})$).

3

Remember that the representation theory of compact groups is very similar to that for finite groups.

• Each irreducible representation is finite dimensional, and we get the isomorphisms

$$\mathcal{C}^*_r(G)\cong igoplus_{\pi\in \hat{G}}\mathbb{M}_{n_\pi}, \quad \mathcal{VN}(G)\cong \prod_{\pi\in \hat{G}}\mathbb{M}_{n_\pi}, \quad \mathcal{A}(G)\cong igoplus_{\pi\in \hat{G}}\mathbb{T}_{n_\pi}.$$

- Again, the multiplication comes from tensoring irreps.
- You can do similar things for, say, semisimple Lie groups, but *usually* this is not productive (but see recent work of Losert on $SL_2(\mathbb{R})$).

3

イロト イポト イラト イラト

- Let *G* and *H* be finite groups. When are A(G) and A(H) isomorphism algebras? Well, $A(G) \cong \mathbb{C}^G$ and $A(H) \cong \mathbb{C}^H$, so $A(G) \cong A(H)$ if and only if |G| = |H|.
- For infinite *G*, there are topological obstructions. As *A*(*G*) is a commutative Banach algebra, it has a character space. Eymard showed that this is precisely *G*.
- So if $A(G) \cong A(H)$, then $G \cong H$ as topological spaces.
- Let's not forget the norm- so ask: when are *A*(*G*) and *A*(*H*) *isometrically* isomorphic?
- Any bijective algebra homomorphism $\theta : A(G) \rightarrow A(H)$ is of the form

$$\theta(\omega)(h) = \omega(\tau(h)) \qquad (h \in H),$$

where $h: H \rightarrow G$ is continuous (Gelfand theory).

- Let *G* and *H* be finite groups. When are A(G) and A(H) isomorphism algebras? Well, $A(G) \cong \mathbb{C}^G$ and $A(H) \cong \mathbb{C}^H$, so $A(G) \cong A(H)$ if and only if |G| = |H|.
- For infinite *G*, there are topological obstructions. As *A*(*G*) is a commutative Banach algebra, it has a character space. Eymard showed that this is precisely *G*.
- So if $A(G) \cong A(H)$, then $G \cong H$ as topological spaces.
- Let's not forget the norm- so ask: when are *A*(*G*) and *A*(*H*) *isometrically* isomorphic?
- Any bijective algebra homomorphism $\theta : A(G) \rightarrow A(H)$ is of the form

$$\theta(\omega)(h) = \omega(\tau(h)) \qquad (h \in H),$$

where $h: H \rightarrow G$ is continuous (Gelfand theory).

3

- Let *G* and *H* be finite groups. When are A(G) and A(H) isomorphism algebras? Well, $A(G) \cong \mathbb{C}^G$ and $A(H) \cong \mathbb{C}^H$, so $A(G) \cong A(H)$ if and only if |G| = |H|.
- For infinite *G*, there are topological obstructions. As *A*(*G*) is a commutative Banach algebra, it has a character space. Eymard showed that this is precisely *G*.
- So if $A(G) \cong A(H)$, then $G \cong H$ as topological spaces.
- Let's not forget the norm– so ask: when are *A*(*G*) and *A*(*H*) *isometrically* isomorphic?
- Any bijective algebra homomorphism $\theta : A(G) \rightarrow A(H)$ is of the form

$$\theta(\omega)(h) = \omega(\tau(h)) \qquad (h \in H),$$

where $h: H \rightarrow G$ is continuous (Gelfand theory).

- Let *G* and *H* be finite groups. When are A(G) and A(H) isomorphism algebras? Well, $A(G) \cong \mathbb{C}^G$ and $A(H) \cong \mathbb{C}^H$, so $A(G) \cong A(H)$ if and only if |G| = |H|.
- For infinite *G*, there are topological obstructions. As *A*(*G*) is a commutative Banach algebra, it has a character space. Eymard showed that this is precisely *G*.
- So if $A(G) \cong A(H)$, then $G \cong H$ as topological spaces.
- Let's not forget the norm- so ask: when are *A*(*G*) and *A*(*H*) *isometrically* isomorphic?
- Any bijective algebra homomorphism $\theta : A(G) \rightarrow A(H)$ is of the form

$$\theta(\omega)(h) = \omega(\tau(h)) \qquad (h \in H),$$

where $h: H \rightarrow G$ is continuous (Gelfand theory).

- Let *G* and *H* be finite groups. When are A(G) and A(H) isomorphism algebras? Well, $A(G) \cong \mathbb{C}^G$ and $A(H) \cong \mathbb{C}^H$, so $A(G) \cong A(H)$ if and only if |G| = |H|.
- For infinite *G*, there are topological obstructions. As *A*(*G*) is a commutative Banach algebra, it has a character space. Eymard showed that this is precisely *G*.
- So if $A(G) \cong A(H)$, then $G \cong H$ as topological spaces.
- Let's not forget the norm– so ask: when are *A*(*G*) and *A*(*H*) *isometrically* isomorphic?
- Any bijective algebra homomorphism θ : A(G) → A(H) is of the form

$$\theta(\omega)(h) = \omega(\tau(h)) \qquad (h \in H),$$

where $h: H \rightarrow G$ is continuous (Gelfand theory).

Homomorphisms cont.

$$\theta(\omega)(h) = \omega(\tau(h)) \qquad (h \in H),$$

 Walter (1972) proved that if θ is also an isometry, then τ is of the form

$$\tau(h) = g_1 \phi(h) \qquad (h \in H),$$

where $g_1 \in G$ and $\phi : H \rightarrow G$ is a group (anti)homomorphism.

• Le Pham (2010) extended this in various ways. For example, if $\theta : A(G) \rightarrow A(H)$ is a *contractive* homomorphism, then

$$\theta(\omega)(h) = \begin{cases} \omega(g_1\phi(h_1h)) & : h_1h \in \Omega, \\ 0 & : h_1h \notin \Omega. \end{cases}$$

Here $\Omega \subseteq H$ is an open subgroup, $g_1 \in G, h_1 \in H$, and again $\phi : \Omega \to G$ is a group (anti)homomorphism.

4 D K 4 B K 4 B K 4 B K

Homomorphisms cont.

$$\theta(\omega)(h) = \omega(\tau(h)) \qquad (h \in H),$$

 Walter (1972) proved that if θ is also an isometry, then τ is of the form

$$\tau(h) = g_1 \phi(h) \qquad (h \in H),$$

where $g_1 \in G$ and $\phi : H \rightarrow G$ is a group (anti)homomorphism.

• Le Pham (2010) extended this in various ways. For example, if $\theta : A(G) \rightarrow A(H)$ is a *contractive* homomorphism, then

$$\theta(\omega)(h) = \begin{cases} \omega(g_1\phi(h_1h)) & : h_1h \in \Omega, \\ 0 & : h_1h \notin \Omega. \end{cases}$$

Here $\Omega \subseteq H$ is an open subgroup, $g_1 \in G, h_1 \in H$, and again $\phi : \Omega \to G$ is a group (anti)homomorphism.

イロト 不得 トイヨト イヨト

Homomorphisms cont.

$$\theta(\omega)(h) = \omega(\tau(h)) \qquad (h \in H),$$

 Walter (1972) proved that if θ is also an isometry, then τ is of the form

$$\tau(h) = g_1 \phi(h) \qquad (h \in H),$$

where $g_1 \in G$ and $\phi : H \rightarrow G$ is a group (anti)homomorphism.

• Le Pham (2010) extended this in various ways. For example, if $\theta : A(G) \rightarrow A(H)$ is a *contractive* homomorphism, then

$$heta(\omega)(h) = egin{cases} \omega(g_1\phi(h_1h)) & :h_1h\in\Omega, \ 0 & :h_1h
ot\in\Omega. \end{cases}$$

Here $\Omega \subseteq H$ is an open subgroup, $g_1 \in G, h_1 \in H$, and again $\phi : \Omega \rightarrow G$ is a group (anti)homomorphism.

4 D N 4 B N 4 B N 4 B N

To remove the possibility of an anti-homomorphism, we need a more "rigid" sense of isometry.

- Given a bounded linear map θ : A(G) → A(H), the adjoint gives a map θ* : VN(H) → VN(G).
- We identify M_n ⊗ VN(H) with n × n matrices of elements of VN(H). This acts naturally on L²(H) ⊕ · · · ⊕ L²(H) (n times) and so M_n ⊗ VN(H) is again a C*-algebra.
- So we can ask about the norm of

$$(\theta^*)_n := \iota \otimes \theta^* : \mathbb{M}_n \otimes VN(H) \to \mathbb{M}_n \otimes VN(G).$$

- We say that θ is *completely bounded* if $\sup_n ||(\theta^*)_n|| < \infty$.
- This rules out the anti-homomorphism case.

To remove the possibility of an anti-homomorphism, we need a more "rigid" sense of isometry.

- Given a bounded linear map θ : A(G) → A(H), the adjoint gives a map θ* : VN(H) → VN(G).
- We identify M_n ⊗ VN(H) with n × n matrices of elements of VN(H). This acts naturally on L²(H) ⊕ · · · ⊕ L²(H) (n times) and so M_n ⊗ VN(H) is again a C*-algebra.
- So we can ask about the norm of

$$(\theta^*)_n := \iota \otimes \theta^* : \mathbb{M}_n \otimes VN(H) \to \mathbb{M}_n \otimes VN(G).$$

- We say that θ is *completely bounded* if $\sup_n ||(\theta^*)_n|| < \infty$.
- This rules out the anti-homomorphism case.

To remove the possibility of an anti-homomorphism, we need a more "rigid" sense of isometry.

- Given a bounded linear map θ : A(G) → A(H), the adjoint gives a map θ* : VN(H) → VN(G).
- We identify M_n ⊗ VN(H) with n × n matrices of elements of VN(H). This acts naturally on L²(H) ⊕ · · · ⊕ L²(H) (n times) and so M_n ⊗ VN(H) is again a C*-algebra.

So we can ask about the norm of

 $(\theta^*)_n := \iota \otimes \theta^* : \mathbb{M}_n \otimes VN(H) \to \mathbb{M}_n \otimes VN(G).$

• We say that θ is *completely bounded* if $\sup_n ||(\theta^*)_n|| < \infty$.

• This rules out the anti-homomorphism case.

To remove the possibility of an anti-homomorphism, we need a more "rigid" sense of isometry.

- Given a bounded linear map θ : A(G) → A(H), the adjoint gives a map θ* : VN(H) → VN(G).
- We identify M_n ⊗ VN(H) with n × n matrices of elements of VN(H). This acts naturally on L²(H) ⊕ · · · ⊕ L²(H) (n times) and so M_n ⊗ VN(H) is again a C*-algebra.
- So we can ask about the norm of

$$(\theta^*)_n := \iota \otimes \theta^* : \mathbb{M}_n \otimes VN(H) \to \mathbb{M}_n \otimes VN(G).$$

• We say that θ is *completely bounded* if $\sup_n ||(\theta^*)_n|| < \infty$.

• This rules out the anti-homomorphism case.

To remove the possibility of an anti-homomorphism, we need a more "rigid" sense of isometry.

- Given a bounded linear map θ : A(G) → A(H), the adjoint gives a map θ* : VN(H) → VN(G).
- We identify M_n ⊗ VN(H) with n × n matrices of elements of VN(H). This acts naturally on L²(H) ⊕ · · · ⊕ L²(H) (n times) and so M_n ⊗ VN(H) is again a C*-algebra.
- So we can ask about the norm of

$$(\theta^*)_n := \iota \otimes \theta^* : \mathbb{M}_n \otimes VN(H) \to \mathbb{M}_n \otimes VN(G).$$

• We say that θ is *completely bounded* if $\sup_n ||(\theta^*)_n|| < \infty$.

• This rules out the anti-homomorphism case.

To remove the possibility of an anti-homomorphism, we need a more "rigid" sense of isometry.

- Given a bounded linear map θ : A(G) → A(H), the adjoint gives a map θ* : VN(H) → VN(G).
- We identify M_n ⊗ VN(H) with n × n matrices of elements of VN(H). This acts naturally on L²(H) ⊕ · · · ⊕ L²(H) (n times) and so M_n ⊗ VN(H) is again a C*-algebra.
- So we can ask about the norm of

$$(\theta^*)_n := \iota \otimes \theta^* : \mathbb{M}_n \otimes VN(H) \to \mathbb{M}_n \otimes VN(G).$$

- We say that θ is *completely bounded* if $\sup_n ||(\theta^*)_n|| < \infty$.
- This rules out the anti-homomorphism case.

• Recall that if *G* is abelian, then $A(G) \cong L^1(\hat{G})$.

- So even if G is not abelian, we can still think of A(G) as being the algebra L¹(Ĝ), even though Ĝ doesn't exist. (And we saw that in the compact case, this is not insane).
- An interesting thing to do with $L^1(G)$ is to study homomorphisms $\theta : L^1(G) \to \mathcal{B}(H)$, where $\mathcal{B}(H)$ is the algebra of operators on a Hilbert space *H*.
- There is a one-one correspondence between such (non-degenerate) homomorphisms and representations π : G → B(H), where

$$heta(f) = \int_G f(s) \pi(s) \ ds.$$

4 **A** N A **B** N A **B** N

• Recall that if *G* is abelian, then $A(G) \cong L^1(\hat{G})$.

- So even if G is not abelian, we can still think of A(G) as being the algebra L¹(Ĝ), even though Ĝ doesn't exist. (And we saw that in the compact case, this is not insane).
- An interesting thing to do with $L^1(G)$ is to study homomorphisms $\theta : L^1(G) \to \mathcal{B}(H)$, where $\mathcal{B}(H)$ is the algebra of operators on a Hilbert space *H*.
- There is a one-one correspondence between such (non-degenerate) homomorphisms and representations π : G → B(H), where

$$heta(f) = \int_G f(s)\pi(s) \ ds.$$

4 **A** N A **B** N A **B** N

- Recall that if *G* is abelian, then $A(G) \cong L^1(\hat{G})$.
- So even if G is not abelian, we can still think of A(G) as being the algebra L¹(Ĝ), even though Ĝ doesn't exist. (And we saw that in the compact case, this is not insane).
- An interesting thing to do with $L^1(G)$ is to study homomorphisms $\theta : L^1(G) \to \mathcal{B}(H)$, where $\mathcal{B}(H)$ is the algebra of operators on a Hilbert space *H*.
- There is a one-one correspondence between such (non-degenerate) homomorphisms and representations π : G → B(H), where

$$heta(f) = \int_G f(s)\pi(s) \ ds.$$

A (10) A (10)

• Recall that if *G* is abelian, then $A(G) \cong L^1(\hat{G})$.

- So even if G is not abelian, we can still think of A(G) as being the algebra L¹(Ĝ), even though Ĝ doesn't exist. (And we saw that in the compact case, this is not insane).
- An interesting thing to do with $L^1(G)$ is to study homomorphisms $\theta : L^1(G) \to \mathcal{B}(H)$, where $\mathcal{B}(H)$ is the algebra of operators on a Hilbert space H.
- There is a one-one correspondence between such (non-degenerate) homomorphisms and representations $\pi : G \rightarrow \mathcal{B}(H)$, where

$$heta(f) = \int_G f(s)\pi(s) \ ds.$$

3

イロト 不得 トイヨト イヨト

- Recall that if *G* is abelian, then $A(G) \cong L^1(\hat{G})$.
- So even if G is not abelian, we can still think of A(G) as being the algebra L¹(Ĝ), even though Ĝ doesn't exist. (And we saw that in the compact case, this is not insane).
- An interesting thing to do with $L^1(G)$ is to study homomorphisms $\theta : L^1(G) \to \mathcal{B}(H)$, where $\mathcal{B}(H)$ is the algebra of operators on a Hilbert space H.
- There is a one-one correspondence between such (non-degenerate) homomorphisms and representations π : G → B(H), where

$$heta(f) = \int_G f(s)\pi(s) \ ds.$$

3

4 E N 4 E N

- An even more interesting thing to study is *-homomorphisms L¹(G) → B(H); these correspond to looking at unitary representations of G.
- If *G* is finite, then given any representation of *G* on *H*, we can always choose an invariant inner-product making the representation unitary.
- This corresponds to the following: if $\theta : L^1(G) \to \mathcal{B}(H)$ is a homomorphism, then there is an invertible $T \in \mathcal{B}(H)$ with

$$L^1(G) \to \mathcal{B}(H); \quad f \mapsto T^{-1}\theta(f)T$$

being a *-homomorphism.

• For general *G*, we can do this if (and only if?) *G* is amenable.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

- An even more interesting thing to study is *-homomorphisms L¹(G) → B(H); these correspond to looking at unitary representations of G.
- If *G* is finite, then given any representation of *G* on *H*, we can always choose an invariant inner-product making the representation unitary.
- This corresponds to the following: if $\theta : L^1(G) \to \mathcal{B}(H)$ is a homomorphism, then there is an invertible $T \in \mathcal{B}(H)$ with

$$L^1(G) \to \mathcal{B}(H); \quad f \mapsto T^{-1}\theta(f)T$$

being a *-homomorphism.

• For general *G*, we can do this if (and only if?) *G* is amenable.

- An even more interesting thing to study is *-homomorphisms L¹(G) → B(H); these correspond to looking at unitary representations of G.
- If *G* is finite, then given any representation of *G* on *H*, we can always choose an invariant inner-product making the representation unitary.
- This corresponds to the following: if θ : L¹(G) → B(H) is a homomorphism, then there is an invertible T ∈ B(H) with

$$L^1(G) \to \mathcal{B}(H); \quad f \mapsto T^{-1}\theta(f)T$$

being a *-homomorphism.

• For general *G*, we can do this if (and only if?) *G* is amenable.

イロト 不得 トイヨト イヨト

- An even more interesting thing to study is *-homomorphisms L¹(G) → B(H); these correspond to looking at unitary representations of G.
- If *G* is finite, then given any representation of *G* on *H*, we can always choose an invariant inner-product making the representation unitary.
- This corresponds to the following: if θ : L¹(G) → B(H) is a homomorphism, then there is an invertible T ∈ B(H) with

$$L^1(G) \to \mathcal{B}(H); \quad f \mapsto T^{-1}\theta(f)T$$

being a *-homomorphism.

• For general *G*, we can do this if (and only if?) *G* is amenable.

So, we might look at homomorphisms $\theta : A(G) \rightarrow B(H)$.

- The involution on A(G) is just pointwise conjugation of functions.
- If θ : A(G) → B(H) is a *-homomorphism, then you can continuously extend it to a *-homomorphism C₀(G) → B(H), and such things are well-understood.
- So, we ask again: when is θ : A(G) → B(H) similar to a *-homomorphism? This seems hopeless...
- Instead, we restrict again to those θ such that the dilations

 $\iota \otimes \theta : \mathbb{T}_n \otimes A(G) \to \mathbb{M}_n \otimes \mathcal{B}(H)$

are uniformly bounded in *n*. We say that θ is *completely bounded*.

-

< 日 > < 同 > < 回 > < 回 > < 回 > <

So, we might look at homomorphisms $\theta : A(G) \rightarrow \mathcal{B}(H)$.

- The involution on A(G) is just pointwise conjugation of functions.
- If θ : A(G) → B(H) is a *-homomorphism, then you can continuously extend it to a *-homomorphism C₀(G) → B(H), and such things are well-understood.
- So, we ask again: when is θ : A(G) → B(H) similar to a *-homomorphism? This seems hopeless...
- Instead, we restrict again to those θ such that the dilations

 $\iota \otimes \theta : \mathbb{T}_n \otimes A(G) \to \mathbb{M}_n \otimes \mathcal{B}(H)$

are uniformly bounded in *n*. We say that θ is *completely bounded*.

3

イロト 不得 トイヨト イヨト

So, we might look at homomorphisms $\theta : A(G) \rightarrow B(H)$.

- The involution on A(G) is just pointwise conjugation of functions.
- If θ : A(G) → B(H) is a *-homomorphism, then you can continuously extend it to a *-homomorphism C₀(G) → B(H), and such things are well-understood.
- So, we ask again: when is θ : A(G) → B(H) similar to a *-homomorphism? This seems hopeless...
- Instead, we restrict again to those θ such that the dilations

 $\iota \otimes \theta : \mathbb{T}_n \otimes A(G) \to \mathbb{M}_n \otimes \mathcal{B}(H)$

are uniformly bounded in *n*. We say that θ is *completely bounded*.

So, we might look at homomorphisms $\theta : A(G) \rightarrow B(H)$.

- The involution on A(G) is just pointwise conjugation of functions.
- If θ : A(G) → B(H) is a *-homomorphism, then you can continuously extend it to a *-homomorphism C₀(G) → B(H), and such things are well-understood.
- So, we ask again: when is θ : A(G) → B(H) similar to a *-homomorphism? This seems hopeless...

• Instead, we restrict again to those θ such that the dilations

 $\iota \otimes \theta : \mathbb{T}_n \otimes A(G) \to \mathbb{M}_n \otimes \mathcal{B}(H)$

are uniformly bounded in *n*. We say that θ is *completely bounded*.

So, we might look at homomorphisms $\theta : A(G) \rightarrow B(H)$.

- The involution on A(G) is just pointwise conjugation of functions.
- If θ : A(G) → B(H) is a *-homomorphism, then you can continuously extend it to a *-homomorphism C₀(G) → B(H), and such things are well-understood.
- So, we ask again: when is θ : A(G) → B(H) similar to a *-homomorphism? This seems hopeless...
- Instead, we restrict again to those θ such that the dilations

 $\iota \otimes \theta : \mathbb{T}_n \otimes A(G) \to \mathbb{M}_n \otimes \mathcal{B}(H)$

are uniformly bounded in *n*. We say that θ is *completely bounded*.

イロト 不得 トイヨト イヨト ニヨー

Still looking at a homomorphism $\theta : A(G) \rightarrow \mathcal{B}(H)$.

- For technical reasons, introduce $\check{\theta} : A(G) \to \mathcal{B}(H)$ defined by $\check{\theta}(\omega) = \theta(\check{\omega})$. (Remember that $\check{\omega}(s) = \omega(s^{-1})$).
- Brannan and Samei (2010) showed that θ is similar to a *-homomorphism if, and only if, both θ and $\check{\theta}$ are completely bounded.
- Furthermore, if *G* is discrete (or more generally a SIN group) then you don't need to consider *δ*.
- Conjecture: this is true for all G.

4 **A** N A **B** N A **B** N

Still looking at a homomorphism $\theta : A(G) \rightarrow B(H)$.

- For technical reasons, introduce $\check{\theta} : A(G) \to \mathcal{B}(H)$ defined by $\check{\theta}(\omega) = \theta(\check{\omega})$. (Remember that $\check{\omega}(s) = \omega(s^{-1})$).
- Brannan and Samei (2010) showed that θ is similar to a *-homomorphism if, and only if, both θ and $\check{\theta}$ are completely bounded.
- Furthermore, if *G* is discrete (or more generally a SIN group) then you don't need to consider *δ*.
- Conjecture: this is true for all G.

4 **A** N A **B** N A **B** N

Still looking at a homomorphism $\theta : A(G) \rightarrow \mathcal{B}(H)$.

- For technical reasons, introduce $\check{\theta} : A(G) \to \mathcal{B}(H)$ defined by $\check{\theta}(\omega) = \theta(\check{\omega})$. (Remember that $\check{\omega}(s) = \omega(s^{-1})$).
- Brannan and Samei (2010) showed that θ is similar to a *-homomorphism if, and only if, both θ and $\check{\theta}$ are completely bounded.
- Furthermore, if G is discrete (or more generally a SIN group) then you don't need to consider *θ*.
- Conjecture: this is true for all G.

イベト イラト イラト・

Still looking at a homomorphism $\theta : A(G) \rightarrow \mathcal{B}(H)$.

- For technical reasons, introduce $\check{\theta} : A(G) \to \mathcal{B}(H)$ defined by $\check{\theta}(\omega) = \theta(\check{\omega})$. (Remember that $\check{\omega}(s) = \omega(s^{-1})$).
- Brannan and Samei (2010) showed that θ is similar to a *-homomorphism if, and only if, both θ and $\check{\theta}$ are completely bounded.
- Furthermore, if G is discrete (or more generally a SIN group) then you don't need to consider *δ*.
- Conjecture: this is true for all G.

3

イベト イラト イラト・

Still looking at a homomorphism $\theta : A(G) \rightarrow \mathcal{B}(H)$.

- For technical reasons, introduce $\check{\theta} : A(G) \to \mathcal{B}(H)$ defined by $\check{\theta}(\omega) = \theta(\check{\omega})$. (Remember that $\check{\omega}(s) = \omega(s^{-1})$).
- Brannan and Samei (2010) showed that θ is similar to a *-homomorphism if, and only if, both θ and $\check{\theta}$ are completely bounded.
- Furthermore, if G is discrete (or more generally a SIN group) then you don't need to consider *θ*.
- Conjecture: this is true for all G.

3

く 戸 と く ヨ と く ヨ と …