The Fourier Algebra and homomorphisms

Matthew Daws
Leeds
December 2010

Outline

(1) The Fourier Algebra - Finite groups

(2) For general groups
(3) Homomorphisms

Group algebras

Let G be a finite group, and consider the group algebra $\mathbb{C}[G]$. That is, G forms a basis for a \mathbb{C} vector space, with convolution as the product:

$$
\left(\sum_{s \in G} \lambda_{s} s\right)\left(\sum_{t \in G} \mu_{t} t\right)=\sum_{s, t} \lambda_{s} \mu_{t} s t=\sum_{s}\left(\sum_{r} \lambda_{r} \mu_{r-1} s\right) s
$$

Endow $\mathbb{C}[G]$ with the usual inner product

> We write $\ell^{2}(G)$ for the resulting (finite dimensional) Hilbert space. Then $\mathbb{C}[G]$ acts on $\ell^{2}(G)$ by left multiplication (again, convolution). Notice that the action of $s \in G$ gives a surjective isometry on $\ell^{2}(G)$: so is a unitary map. So this is a unitary representation of the group G.

Group algebras

Let G be a finite group, and consider the group algebra $\mathbb{C}[G]$. That is, G forms a basis for a \mathbb{C} vector space, with convolution as the product:

$$
\left(\sum_{s \in G} \lambda_{s} s\right)\left(\sum_{t \in G} \mu_{t} t\right)=\sum_{s, t} \lambda_{s} \mu_{t} s t=\sum_{s}\left(\sum_{r} \lambda_{r} \mu_{r^{-1} s}\right) s .
$$

Endow $\mathbb{C}[G]$ with the usual inner product

$$
\left\langle\sum_{s} \lambda_{s} s, \sum_{t} \mu_{t} t\right\rangle=\sum_{s} \lambda_{s} \overline{\mu_{s}}
$$

We write $\ell^{2}(G)$ for the resulting (finite dimensional) Hilbert space.
\square is a unitary map. So this is a unitary representation of the group G.

Group algebras

Let G be a finite group, and consider the group algebra $\mathbb{C}[G]$. That is, G forms a basis for a \mathbb{C} vector space, with convolution as the product:

$$
\left(\sum_{s \in G} \lambda_{s} s\right)\left(\sum_{t \in G} \mu_{t} t\right)=\sum_{s, t} \lambda_{s} \mu_{t} s t=\sum_{s}\left(\sum_{r} \lambda_{r} \mu_{r^{-1} s}\right) s .
$$

Endow $\mathbb{C}[G]$ with the usual inner product

$$
\left\langle\sum_{s} \lambda_{s} s, \sum_{t} \mu_{t} t\right\rangle=\sum_{s} \lambda_{s} \overline{\mu_{s}}
$$

We write $\ell^{2}(G)$ for the resulting (finite dimensional) Hilbert space. Then $\mathbb{C}[G]$ acts on $\ell^{2}(G)$ by left multiplication (again, convolution).

Group algebras

Let G be a finite group, and consider the group algebra $\mathbb{C}[G]$. That is, G forms a basis for a \mathbb{C} vector space, with convolution as the product:

$$
\left(\sum_{s \in G} \lambda_{s} s\right)\left(\sum_{t \in G} \mu_{t} t\right)=\sum_{s, t} \lambda_{s} \mu_{t} s t=\sum_{s}\left(\sum_{r} \lambda_{r} \mu_{r^{-1} s}\right) s
$$

Endow $\mathbb{C}[G]$ with the usual inner product

$$
\left\langle\sum_{s} \lambda_{s} s, \sum_{t} \mu_{t} t\right\rangle=\sum_{s} \lambda_{s} \overline{\mu_{s}}
$$

We write $\ell^{2}(G)$ for the resulting (finite dimensional) Hilbert space. Then $\mathbb{C}[G]$ acts on $\ell^{2}(G)$ by left multiplication (again, convolution). Notice that the action of $s \in G$ gives a surjective isometry on $\ell^{2}(G)$: so is a unitary map. So this is a unitary representation of the group G.

C*-algebras

We can identify $\mathbb{C}[G]$ as an algebra of linear maps on $\ell^{2}(G)$ (so, if we like, $G \times G$ matrices). This induces the operator norm on $\mathbb{C}[G]$:

$$
\|x\|=\sup \left\{\|x \xi\|=(x \xi \mid x \xi)^{1 / 2}: \xi \in \ell^{2}(G),\|\xi\| \leq 1\right\} .
$$

As we're acting on a Hilbert space, an operator has an adjoint which satisfies $(x \xi \mid \eta)=\left(\xi \mid x^{*} \eta\right)$. (Thinking of x as a matrix, x^{*} is the hermitian transpose). Then it's possible to show that $\|x\|^{2}=\left\|x^{*} x\right\|$: this is the C^{*}-condition.
For us,

Hence $\mathbb{C}[X]$ is closed under the adjoint, and so we get a C^{*}-algebra, denoted by $C_{r}^{*}(G)$.

C*-algebras

We can identify $\mathbb{C}[G]$ as an algebra of linear maps on $\ell^{2}(G)$ (so, if we like, $G \times G$ matrices). This induces the operator norm on $\mathbb{C}[G]$:

$$
\|x\|=\sup \left\{\|x \xi\|=(x \xi \mid x \xi)^{1 / 2}: \xi \in \ell^{2}(G),\|\xi\| \leq 1\right\} .
$$

As we're acting on a Hilbert space, an operator has an adjoint which satisfies $(x \xi \mid \eta)=\left(\xi \mid x^{*} \eta\right)$. (Thinking of x as a matrix, x^{*} is the hermitian transpose). Then it's possible to show that $\|x\|^{2}=\left\|x^{*} x\right\|$: this is the C^{*}-condition.
For us,

Hence $\mathbb{C}[X]$ is closed under the adjoint, and so we get a C^{*}-algebra,

C*-algebras

We can identify $\mathbb{C}[G]$ as an algebra of linear maps on $\ell^{2}(G)$ (so, if we like, $G \times G$ matrices). This induces the operator norm on $\mathbb{C}[G]$:

$$
\|x\|=\sup \left\{\|x \xi\|=(x \xi \mid x \xi)^{1 / 2}: \xi \in \ell^{2}(G),\|\xi\| \leq 1\right\} .
$$

As we're acting on a Hilbert space, an operator has an adjoint which satisfies $(x \xi \mid \eta)=\left(\xi \mid x^{*} \eta\right)$. (Thinking of x as a matrix, x^{*} is the hermitian transpose). Then it's possible to show that $\|x\|^{2}=\left\|x^{*} x\right\|$: this is the C^{*}-condition.
For us,

$$
x=\sum_{s} \lambda_{s} s \Longrightarrow x^{*}=\sum_{s} \overline{\lambda_{s}} s^{-1}
$$

Hence $\mathbb{C}[X]$ is closed under the adjoint, and so we get a C^{*}-algebra, denoted by $C_{r}^{*}(G)$.

Dual spaces

Fix $\xi, \eta \in \ell^{2}(G)$. We can define a linear functional

$$
\omega=\omega_{\xi, \eta}: C_{r}^{*}(G) \rightarrow \mathbb{C} ; \quad \omega(x)=(x \xi \mid \eta) .
$$

Let $\xi=\sum_{s} \xi_{s} s$ and $\eta=\sum_{t} \eta_{t} t$. Then $\omega(r)=(r \xi \mid \eta)=\sum_{s, t} \xi_{s} \overline{\eta_{t}}(r s \mid t)=\sum_{s} \xi_{s} \overline{\eta_{r s}}$.

As $\mathbb{C}[G]$, and hence $C_{r}^{*}(G)$, are the span of G, it follows that $\{\omega(r): r \in G\}$ determines ω. So we can think of ω as being a function $G \rightarrow \mathbb{C}$.
 The Fourier algebra $A(G)$ is the subset of C^{G} formed by $\left\{\omega_{\xi, \eta}: \xi, \eta \in \ell^{2}(G)\right\}$.

Dual spaces

Fix $\xi, \eta \in \ell^{2}(G)$. We can define a linear functional

$$
\omega=\omega_{\xi, \eta}: C_{r}^{*}(G) \rightarrow \mathbb{C} ; \quad \omega(x)=(x \xi \mid \eta) .
$$

Let $\xi=\sum_{s} \xi_{s} s$ and $\eta=\sum_{t} \eta_{t} t$. Then

$$
\omega(r)=(r \xi \mid \eta)=\sum_{s, t} \xi_{s} \overline{\eta_{t}}(r s \mid t)=\sum_{s} \xi_{s} \overline{\eta_{r s}}
$$

As $\mathbb{C}[G]$, and hence $C_{r}^{*}(G)$, are the span of G, it follows that $\{\omega(r): r \in G\}$ determines ω. So we can think of ω as being a function

The Fourier algebra $A(G)$ is the subset of \mathbb{C}^{G} formed by $\left\{\omega_{\xi, \eta}: \xi, \eta \in \ell^{2}(G)\right\}$.

Dual spaces

Fix $\xi, \eta \in \ell^{2}(G)$. We can define a linear functional

$$
\omega=\omega_{\xi, \eta}: C_{r}^{*}(G) \rightarrow \mathbb{C} ; \quad \omega(x)=(x \xi \mid \eta) .
$$

Let $\xi=\sum_{s} \xi_{s} s$ and $\eta=\sum_{t} \eta_{t} t$. Then

$$
\omega(r)=(r \xi \mid \eta)=\sum_{s, t} \xi_{s} \overline{\eta_{t}}(r s \mid t)=\sum_{s} \xi_{s} \overline{\eta_{r s}} .
$$

As $\mathbb{C}[G]$, and hence $C_{r}^{*}(G)$, are the span of G, it follows that $\{\omega(r): r \in G\}$ determines ω. So we can think of ω as being a function $G \rightarrow \mathbb{C}$.
The Fourier algebra $A(G)$ is the subset of \mathbb{C}^{G} formed by

Dual spaces

Fix $\xi, \eta \in \ell^{2}(G)$. We can define a linear functional

$$
\omega=\omega_{\xi, \eta}: C_{r}^{*}(G) \rightarrow \mathbb{C} ; \quad \omega(x)=(x \xi \mid \eta)
$$

Let $\xi=\sum_{s} \xi_{s} s$ and $\eta=\sum_{t} \eta_{t} t$. Then

$$
\omega(r)=(r \xi \mid \eta)=\sum_{s, t} \xi_{s} \overline{\eta_{t}}(r s \mid t)=\sum_{s} \xi_{s} \overline{\eta_{r s}}
$$

As $\mathbb{C}[G]$, and hence $C_{r}^{*}(G)$, are the span of G, it follows that $\{\omega(r): r \in G\}$ determines ω. So we can think of ω as being a function $G \rightarrow \mathbb{C}$.
The Fourier algebra $A(G)$ is the subset of \mathbb{C}^{G} formed by $\left\{\omega_{\xi, \eta}: \xi, \eta \in \ell^{2}(G)\right\}$.

Why an algebra?

So why is $A(G)$ an algebra? I want to build a bit of theory here. Define a map $\Delta: \mathbb{C}[G] \rightarrow \mathbb{C}[G] \otimes \mathbb{C}[G]=\mathbb{C}[G \times G]$ by

$$
\Delta(s)=s \otimes s,
$$

$$
W(s \otimes t)=t^{-1} s \otimes t .
$$

This is just a permutation of the basis elements, so is a unitary map. Then a calculation shows that

$$
\Delta(x)=W^{*}(1 \otimes x) W
$$

Why an algebra?

So why is $A(G)$ an algebra? I want to build a bit of theory here. Define a map $\Delta: \mathbb{C}[G] \rightarrow \mathbb{C}[G] \otimes \mathbb{C}[G]=\mathbb{C}[G \times G]$ by

$$
\Delta(s)=s \otimes s
$$

and extend by linearity. Then Δ is a homomorphism, and also $(\Delta \otimes \iota) \Delta=(\iota \otimes \Delta) \Delta$, so Δ is co-associative.

This is just a permutation of the basis elements, so is a unitary map. Then a calculation shows that

Why an algebra?

So why is $A(G)$ an algebra? I want to build a bit of theory here. Define a map $\Delta: \mathbb{C}[G] \rightarrow \mathbb{C}[G] \otimes \mathbb{C}[G]=\mathbb{C}[G \times G]$ by

$$
\Delta(s)=s \otimes s,
$$

and extend by linearity. Then Δ is a homomorphism, and also $(\Delta \otimes \iota) \Delta=(\iota \otimes \Delta) \Delta$, so Δ is co-associative. Actually Δ gives a isometry $C_{r}^{*}(G) \rightarrow C_{r}^{*}(G \times G)$. (This is automatic by some C ${ }^{*}$-algebra theory, but...) Define $W: \ell^{2}(G \times G) \rightarrow \ell^{2}(G \times G)$ by

$$
W(s \otimes t)=t^{-1} s \otimes t
$$

This is just a permutation of the basis elements, so is a unitary map.

Why an algebra?

So why is $A(G)$ an algebra? I want to build a bit of theory here. Define a map $\Delta: \mathbb{C}[G] \rightarrow \mathbb{C}[G] \otimes \mathbb{C}[G]=\mathbb{C}[G \times G]$ by

$$
\Delta(s)=s \otimes s
$$

and extend by linearity. Then Δ is a homomorphism, and also $(\Delta \otimes \iota) \Delta=(\iota \otimes \Delta) \Delta$, so Δ is co-associative. Actually Δ gives a isometry $C_{r}^{*}(G) \rightarrow C_{r}^{*}(G \times G)$. (This is automatic by some C^{*}-algebra theory, but...) Define $W: \ell^{2}(G \times G) \rightarrow \ell^{2}(G \times G)$ by

$$
W(s \otimes t)=t^{-1} s \otimes t
$$

This is just a permutation of the basis elements, so is a unitary map. Then a calculation shows that

$$
\Delta(x)=W^{*}(1 \otimes x) W
$$

The dual becomes an algebra

Let $C_{r}^{*}(G)^{*}$ be the space of all linear functionals $C_{r}^{*}(G) \rightarrow \mathbb{C}$. Then Δ induces an algebra product on $C_{r}^{*}(G)^{*}$ by

$$
\left(\omega_{1} \cdot \omega_{2}\right)(x)=\left(\omega_{1} \otimes \omega_{2}\right) \Delta(x) \quad\left(\omega_{1}, \omega_{2} \in C_{r}^{*}(G)^{*}, x \in C_{r}^{*}(G)\right)
$$

Every member of $C_{r}^{*}(G)^{*}$ arises as $\omega_{\xi, \eta}$ for some $\xi, \eta \in \ell^{2}(G)$. So $A(G)=C_{r}^{*}(G)^{*}$. The product is then

so we do just get the pointwise product.
(Mention Hopf algebras).

The dual becomes an algebra

Let $C_{r}^{*}(G)^{*}$ be the space of all linear functionals $C_{r}^{*}(G) \rightarrow \mathbb{C}$. Then Δ induces an algebra product on $C_{r}^{*}(G)^{*}$ by

$$
\left(\omega_{1} \cdot \omega_{2}\right)(x)=\left(\omega_{1} \otimes \omega_{2}\right) \Delta(x) \quad\left(\omega_{1}, \omega_{2} \in C_{r}^{*}(G)^{*}, x \in C_{r}^{*}(G)\right) .
$$

Every member of $C_{r}^{*}(G)^{*}$ arises as $\omega_{\xi, \eta}$ for some $\xi, \eta \in \ell^{2}(G)$.
\square
so we do just get the pointwise product.
(Mention Hopf algebras).

The dual becomes an algebra

Let $C_{r}^{*}(G)^{*}$ be the space of all linear functionals $C_{r}^{*}(G) \rightarrow \mathbb{C}$. Then Δ induces an algebra product on $C_{r}^{*}(G)^{*}$ by

$$
\left(\omega_{1} \cdot \omega_{2}\right)(x)=\left(\omega_{1} \otimes \omega_{2}\right) \Delta(x) \quad\left(\omega_{1}, \omega_{2} \in C_{r}^{*}(G)^{*}, x \in C_{r}^{*}(G)\right)
$$

Every member of $C_{r}^{*}(G)^{*}$ arises as $\omega_{\xi, \eta}$ for some $\xi, \eta \in \ell^{2}(G)$. So $A(G)=C_{r}^{*}(G)^{*}$. The product is then

$$
\left(\omega_{\xi_{1}, \eta_{1}} \cdot \omega_{\xi_{2}, \eta_{2}}\right)(s)=\left(\omega_{\xi_{1}, \eta_{1}} \otimes \omega_{\xi_{2}, \eta_{2}}\right) \Delta(s)=\omega_{\xi_{1}, \eta_{1}}(s) \omega_{\xi_{2}, \eta_{2}}(s)
$$

so we do just get the pointwise product.
(Mention Hopf algebras)

The dual becomes an algebra

Let $C_{r}^{*}(G)^{*}$ be the space of all linear functionals $C_{r}^{*}(G) \rightarrow \mathbb{C}$. Then Δ induces an algebra product on $C_{r}^{*}(G)^{*}$ by

$$
\left(\omega_{1} \cdot \omega_{2}\right)(x)=\left(\omega_{1} \otimes \omega_{2}\right) \Delta(x) \quad\left(\omega_{1}, \omega_{2} \in C_{r}^{*}(G)^{*}, x \in C_{r}^{*}(G)\right)
$$

Every member of $C_{r}^{*}(G)^{*}$ arises as $\omega_{\xi, \eta}$ for some $\xi, \eta \in \ell^{2}(G)$. So $A(G)=C_{r}^{*}(G)^{*}$. The product is then

$$
\left(\omega_{\xi_{1}, \eta_{1}} \cdot \omega_{\xi_{2}, \eta_{2}}\right)(s)=\left(\omega_{\xi_{1}, \eta_{1}} \otimes \omega_{\xi_{2}, \eta_{2}}\right) \Delta(s)=\omega_{\xi_{1}, \eta_{1}}(s) \omega_{\xi_{2}, \eta_{2}}(s)
$$

so we do just get the pointwise product.
(Mention Hopf algebras).

Norms

- Actually, as G is finite, really $A(G)=\mathbb{C}^{G}$.
- However, $A(G)$ carries a natural norm as the dual of $C_{r}^{*}(G)$. - The previous construction shows that this norm is an algebra norm: $\left\|\omega_{1} \cdot \omega_{2}\right\| \leq\left\|\omega_{1}\right\|\left\|\omega_{2}\right\|$.

To get a handle on this norm, let's look at some representation theory.

Norms

- Actually, as G is finite, really $A(G)=\mathbb{C}^{G}$.
- However, $A(G)$ carries a natural norm as the dual of $C_{r}^{*}(G)$.
- The previous construction shows that this norm is an algebra norm: $\left\|\omega_{1} \cdot \omega_{2}\right\| \leq\left\|\omega_{1}\right\|\left\|\omega_{2}\right\|$.

To get a handle on this norm let's look at some representation theory.

Norms

- Actually, as G is finite, really $A(G)=\mathbb{C}^{G}$.
- However, $A(G)$ carries a natural norm as the dual of $C_{r}^{*}(G)$.
- The previous construction shows that this norm is an algebra norm: $\left\|\omega_{1} \cdot \omega_{2}\right\| \leq\left\|\omega_{1}\right\|\left\|\omega_{2}\right\|$.
To get a handle on this norm, let's look at some representation theory.

Norms

- Actually, as G is finite, really $A(G)=\mathbb{C}^{G}$.
- However, $A(G)$ carries a natural norm as the dual of $C_{r}^{*}(G)$.
- The previous construction shows that this norm is an algebra norm: $\left\|\omega_{1} \cdot \omega_{2}\right\| \leq\left\|\omega_{1}\right\|\left\|\omega_{2}\right\|$.

To get a handle on this norm, let's look at some representation theory.

Abelian case

Firstly, what if G is abelian? Then every irreducible representation is one dimensional, and the collection of irreps forms a group: the dual group of G :

$$
\hat{G}=\{\chi: G \rightarrow \mathbb{T} \text { is a homomorphism }\} .
$$

We also have the Fourier transform

We can also interpret this as a map $\mathbb{C}[G] \rightarrow \mathbb{C}^{\hat{G}}$; then we get an isometry from $C_{r}^{*}(G)$ to $C(\hat{G})$, the space of continuous functions of \widehat{G} with the supremum (maximum) norm.

Abelian case

Firstly, what if G is abelian? Then every irreducible representation is one dimensional, and the collection of irreps forms a group: the dual group of G :

$$
\hat{G}=\{\chi: G \rightarrow \mathbb{T} \text { is a homomorphism }\} .
$$

We also have the Fourier transform

$$
\mathcal{F}: \ell^{2}(G) \rightarrow \ell^{2}(\hat{G}) ; \quad s \mapsto \sum_{\chi \in \hat{G}} \chi(s) \chi .
$$

We can also interpret this as a map $\mathbb{C}[G] \rightarrow \mathbb{C}^{G}$; then we get an isometry from $C_{r}^{*}(G)$ to $C(\hat{G})$, the space of continuous functions of \hat{G} with the supremum (maximum) norm.

Abelian case

Firstly, what if G is abelian? Then every irreducible representation is one dimensional, and the collection of irreps forms a group: the dual group of G :

$$
\hat{G}=\{\chi: G \rightarrow \mathbb{T} \text { is a homomorphism }\} .
$$

We also have the Fourier transform

$$
\mathcal{F}: \ell^{2}(G) \rightarrow \ell^{2}(\hat{G}) ; \quad s \mapsto \sum_{\chi \in \hat{G}} \chi(s) \chi .
$$

We can also interpret this as a map $\mathbb{C}[G] \rightarrow \mathbb{C}^{\hat{G}}$; then we get an isometry from $C_{r}^{*}(G)$ to $C(\hat{G})$, the space of continuous functions of \hat{G} with the supremum (maximum) norm.

Abelian case cont.

So if $C_{r}^{*}(G) \cong C(\hat{G})$, then the duals are also isometric

$$
A(G)=C_{r}^{*}(G)^{*} \cong C(\hat{G})^{*} .
$$

What is the dual of $C(\hat{G})$? As \hat{G} is finite, it is just functions $\hat{G} \rightarrow \mathbb{C}$ with the 1-norm:

> We denote this normed space by $\ell^{1}(\hat{G})$.
> We can identify $\ell^{1}(\hat{G})$ with $\mathbb{C}[\hat{G}]$; then the 1 -norm is an algebra norm.
> So the Fourier algebra $A(G)$ is isometrically isomorphic to the convolution algebra $\mathbb{C}[\hat{G}]$, with the 1-norm.

Abelian case cont.

So if $C_{r}^{*}(G) \cong C(\hat{G})$, then the duals are also isometric

$$
A(G)=C_{r}^{*}(G)^{*} \cong C(\hat{G})^{*} .
$$

What is the dual of $C(\hat{G})$? As \hat{G} is finite, it is just functions $\hat{G} \rightarrow \mathbb{C}$ with the 1 -norm:

$$
\left\|\sum_{\chi \in \hat{G}} \lambda_{\chi} \chi\right\|_{1}=\sum_{\chi}\left|\lambda_{\chi}\right| .
$$

We denote this normed space by $\ell^{1}(\hat{G})$.

> We can identify $\ell^{1}(G)$ with $\mathbb{C}[G]$; then the 1-norm is an algebra norm.
> So the Fourier algebra $A(G)$ is isometrically isomorphic to the convolution algebra $\mathbb{C}[\hat{G}]$, with the 1-norm.

Abelian case cont.

So if $C_{r}^{*}(G) \cong C(\hat{G})$, then the duals are also isometric

$$
A(G)=C_{r}^{*}(G)^{*} \cong C(\hat{G})^{*} .
$$

What is the dual of $C(\hat{G})$? As \hat{G} is finite, it is just functions $\hat{G} \rightarrow \mathbb{C}$ with the 1 -norm:

$$
\left\|\sum_{\chi \in \hat{G}} \lambda_{\chi} \chi\right\|_{1}=\sum_{\chi}\left|\lambda_{\chi}\right| .
$$

We denote this normed space by $\ell^{1}(\hat{G})$.
We can identify $\ell^{1}(\hat{G})$ with $\mathbb{C}[\hat{G}]$; then the 1 -norm is an algebra norm.
So the Fourier algebra $A(G)$ is isometrically isomorphic to the convolution algebra $\mathbb{C}[\hat{G}]$, with the 1 -norm.

Abelian case cont.

So if $C_{r}^{*}(G) \cong C(\hat{G})$, then the duals are also isometric

$$
A(G)=C_{r}^{*}(G)^{*} \cong C(\hat{G})^{*} .
$$

What is the dual of $C(\hat{G})$? As \hat{G} is finite, it is just functions $\hat{G} \rightarrow \mathbb{C}$ with the 1 -norm:

$$
\left\|\sum_{\chi \in \hat{G}} \lambda_{\chi} \chi\right\|_{1}=\sum_{\chi}\left|\lambda_{\chi}\right| .
$$

We denote this normed space by $\ell^{1}(\hat{G})$.
We can identify $\ell^{1}(\hat{G})$ with $\mathbb{C}[\hat{G}]$; then the 1 -norm is an algebra norm. So the Fourier algebra $A(G)$ is isometrically isomorphic to the convolution algebra $\mathbb{C}[\hat{G}]$, with the 1 -norm.

General case

Now let \hat{G} be the collection of (isomorphism classes) of irreducible representations of G; this is no longer a group in general.

- We have the decomposition

- Here π is a representation of G on a finite dimensional Hilbert space H_{π}, and the notation $n_{\pi} \pi$ means that π occurs with multiplicity $n_{\pi}:=\operatorname{dim}\left(H_{\pi}\right)$.
- So we find that

(The multiplicity does not affect the norm, so we ignore it).

General case

Now let \hat{G} be the collection of (isomorphism classes) of irreducible representations of G; this is no longer a group in general.

- We have the decomposition

$$
\mathbb{C}[G] \cong \bigoplus_{\pi \in \hat{G}} n_{\pi} \pi
$$

- Here π is a representation of G on a finite dimensional Hilbert space H_{π}, and the notation $n_{\pi} \pi$ means that π occurs with multiplicity $n_{\pi}:=\operatorname{dim}\left(H_{\pi}\right)$.
- So we find that

(The multiplicity does not affect the norm, so we ignore it).

General case

Now let \hat{G} be the collection (isomorphism classes) of irreducible representations of G; this is no longer a group in general.

- We have the decomposition

$$
\mathbb{C}[G] \cong \bigoplus_{\pi \in \hat{G}} n_{\pi} \pi
$$

- Here π is a representation of G on a finite dimensional Hilbert space H_{π}, and the notation $n_{\pi} \pi$ means that π occurs with multiplicity $n_{\pi}:=\operatorname{dim}\left(H_{\pi}\right)$.
- So we find that

(The multiplicity does not affect the norm, so we ignore it).

General case

Now let \hat{G} be the collection of (isomorphism classes) of irreducible representations of G; this is no longer a group in general.

- We have the decomposition

$$
\mathbb{C}[G] \cong \bigoplus_{\pi \in \hat{G}} n_{\pi} \pi
$$

- Here π is a representation of G on a finite dimensional Hilbert space H_{π}, and the notation $n_{\pi} \pi$ means that π occurs with multiplicity $n_{\pi}:=\operatorname{dim}\left(H_{\pi}\right)$.
- So we find that

$$
C_{r}^{*}(G) \cong \bigoplus_{\pi \in \hat{G}} \mathbb{M}_{n_{\pi}}
$$

(The multiplicity does not affect the norm, so we ignore it).

Interlude: Dual spaces of matrices
We define a (bilinear) dual pairing between \mathbb{M}_{n} and \mathbb{M}_{n} by "trace duality":

$$
\langle x, y\rangle=\operatorname{Tr}(x y) \quad\left(x, y \in \mathbb{M}_{n}\right)
$$

- So $\mathbb{M}_{n}^{*} \cong \mathbb{M}_{n}$.
- We give \mathbb{M}_{n} the operator norm: $\|x\|^{2}=\left\|x^{*} x\right\|$. Then $x^{*} x$ is positive (semi) definite, so it has positive eigenvalues, and so
- It turns out that the dual norm induced on \mathbb{M}_{n} is

$$
\begin{aligned}
\|y\|^{*}: & =\sup \{\operatorname{Tr}(x y):\|x\| \leq 1\} \\
& =\sum\left\{\lambda^{1 / 2}: \lambda \text { is an eigenvalue of } y^{*} y\right\} .
\end{aligned}
$$

- Write \mathbb{T}_{n} for \mathbb{M}_{n} with this norm: the "trace class" norm.

Interlude: Dual spaces of matrices
We define a (bilinear) dual pairing between \mathbb{M}_{n} and \mathbb{M}_{n} by "trace duality":

$$
\langle x, y\rangle=\operatorname{Tr}(x y) \quad\left(x, y \in \mathbb{M}_{n}\right)
$$

- So $\mathbb{M}_{n}^{*} \cong \mathbb{M}_{n}$.
- We give \mathbb{M}_{n} the operator norm: $\|x\|^{2}=\left\|x^{*} x\right\|$. Then $x^{*} x$ is positive (semi) definite, so it has positive eigenvalues, and so
- It turns out that the dual norm induced on \mathbb{M}_{n} is

$$
\begin{aligned}
\|y\|^{*}: & =\sup \{\operatorname{Tr}(x y):\|x\| \leq 1\} \\
& =\sum\left\{\lambda^{1 / 2}: \lambda \text { is an eigenvalue of } y^{*} y\right\} .
\end{aligned}
$$

- Write \mathbb{T}_{n} for \mathbb{M}_{n} with this norm: the "trace class" norm.

Interlude: Dual spaces of matrices

We define a (bilinear) dual pairing between \mathbb{M}_{n} and \mathbb{M}_{n} by "trace duality":

$$
\langle x, y\rangle=\operatorname{Tr}(x y) \quad\left(x, y \in \mathbb{M}_{n}\right) .
$$

- So $\mathbb{M}_{n}^{*} \cong \mathbb{M}_{n}$.
- We give \mathbb{M}_{n} the operator norm: $\|x\|^{2}=\left\|x^{*} x\right\|$. Then $x^{*} x$ is positive (semi) definite, so it has positive eigenvalues, and so

$$
\|x\|=\left\|x^{*} x\right\|^{1 / 2}=\max \left\{\lambda^{1 / 2}: \lambda \text { is an eigenvalue of } x^{*} x\right\} .
$$

- It turns out that the dual norm induced on \mathbb{M}_{n} is

- Write \mathbb{T}_{n} for \mathbb{M}_{n} with this norm: the "trace class" norm.

Interlude: Dual spaces of matrices

We define a (bilinear) dual pairing between \mathbb{M}_{n} and \mathbb{M}_{n} by "trace duality":

$$
\langle x, y\rangle=\operatorname{Tr}(x y) \quad\left(x, y \in \mathbb{M}_{n}\right) .
$$

- So $\mathbb{M}_{n}^{*} \cong \mathbb{M}_{n}$.
- We give \mathbb{M}_{n} the operator norm: $\|x\|^{2}=\left\|x^{*} x\right\|$. Then $x^{*} x$ is positive (semi) definite, so it has positive eigenvalues, and so

$$
\|x\|=\left\|x^{*} x\right\|^{1 / 2}=\max \left\{\lambda^{1 / 2}: \lambda \text { is an eigenvalue of } x^{*} x\right\} .
$$

- It turns out that the dual norm induced on \mathbb{M}_{n} is

$$
\begin{aligned}
\|y\|^{*} & :=\sup \{\operatorname{Tr}(x y):\|x\| \leq 1\} \\
& =\sum\left\{\lambda^{1 / 2}: \lambda \text { is an eigenvalue of } y^{*} y\right\} .
\end{aligned}
$$

- Write \mathbb{T}_{n} for \mathbb{M}_{n} with this norm: the "trace class" norm.

Interlude: Dual spaces of matrices

We define a (bilinear) dual pairing between \mathbb{M}_{n} and \mathbb{M}_{n} by "trace duality":

$$
\langle x, y\rangle=\operatorname{Tr}(x y) \quad\left(x, y \in \mathbb{M}_{n}\right) .
$$

- So $\mathbb{M}_{n}^{*} \cong \mathbb{M}_{n}$.
- We give \mathbb{M}_{n} the operator norm: $\|x\|^{2}=\left\|x^{*} x\right\|$. Then $x^{*} x$ is positive (semi) definite, so it has positive eigenvalues, and so

$$
\|x\|=\left\|x^{*} x\right\|^{1 / 2}=\max \left\{\lambda^{1 / 2}: \lambda \text { is an eigenvalue of } x^{*} x\right\} .
$$

- It turns out that the dual norm induced on \mathbb{M}_{n} is

$$
\begin{aligned}
\|y\|^{*} & :=\sup \{\operatorname{Tr}(x y):\|x\| \leq 1\} \\
& =\sum\left\{\lambda^{1 / 2}: \lambda \text { is an eigenvalue of } y^{*} y\right\} .
\end{aligned}
$$

- Write \mathbb{T}_{n} for \mathbb{M}_{n} with this norm: the "trace class" norm.

Fourier algebra

We saw that

$$
C_{r}^{*}(G) \cong \bigoplus_{\pi \in \hat{G}} \mathbb{M}_{n_{\pi}}
$$

- Thus

$$
A(G)=C_{r}^{*}(G)^{*} \cong \bigoplus_{\pi \in \hat{G}} n_{\pi} \mathbb{T}_{n_{\pi}}
$$

- Notice that here we do need to worry about the multiplicities, as we have a "sum" norm, not a "max" norm.
- To be exact, $n \mathbb{T}_{n}$ is the space \mathbb{T}_{n}, but with the norm multiplied by n.
- But what's the product on $A(G)$ in this picture?

Fourier algebra

We saw that

$$
C_{r}^{*}(G) \cong \bigoplus_{\pi \in \hat{G}} \mathbb{M}_{n_{\pi}} .
$$

- Thus

$$
A(G)=C_{r}^{*}(G)^{*} \cong \bigoplus_{\pi \in \hat{G}} n_{\pi} \mathbb{T}_{n_{\pi}}
$$

- Notice that here we do need to worry about the multiplicities, as we have a "sum" norm, not a "max" norm.
- To be exact, $n \mathbb{T}_{n}$ is the space \mathbb{T}_{n}, but with the norm multiplied by n.
- But what's the product on $A(G)$ in this picture?

Fourier algebra

We saw that

$$
C_{r}^{*}(G) \cong \bigoplus_{\pi \in \hat{G}} \mathbb{M}_{n_{\pi}}
$$

- Thus

$$
A(G)=C_{r}^{*}(G)^{*} \cong \bigoplus_{\pi \in \hat{G}} n_{\pi} \mathbb{T}_{n_{\pi}}
$$

- Notice that here we do need to worry about the multiplicities, as we have a "sum" norm, not a "max" norm.
- To be exact, $n \mathbb{T}_{n}$ is the space \mathbb{T}_{n}, but with the norm multiplied by n.
- But what's the product on $A(G)$ in this picture?

Fourier algebra

We saw that

$$
C_{r}^{*}(G) \cong \bigoplus_{\pi \in \hat{G}} \mathbb{M}_{n_{\pi}}
$$

- Thus

$$
A(G)=C_{r}^{*}(G)^{*} \cong \bigoplus_{\pi \in \hat{G}} n_{\pi} \mathbb{T}_{n_{\pi}}
$$

- Notice that here we do need to worry about the multiplicities, as we have a "sum" norm, not a "max" norm.
- To be exact, $n \mathbb{T}_{n}$ is the space \mathbb{T}_{n}, but with the norm multiplied by n.
- But what's the product on $A(G)$ in this picture?

Fourier algebra

We saw that

$$
C_{r}^{*}(G) \cong \bigoplus_{\pi \in \hat{G}} \mathbb{M}_{n_{\pi}}
$$

- Thus

$$
A(G)=C_{r}^{*}(G)^{*} \cong \bigoplus_{\pi \in \hat{G}} n_{\pi} \mathbb{T}_{n_{\pi}}
$$

- Notice that here we do need to worry about the multiplicities, as we have a "sum" norm, not a "max" norm.
- To be exact, $n \mathbb{T}_{n}$ is the space \mathbb{T}_{n}, but with the norm multiplied by n.
- But what's the product on $A(G)$ in this picture?

The product

Suppose $\omega_{1} \in A(G)$ is given by a single irreducible $\pi_{1} \in \hat{G}$, say

$$
\omega_{1}(s)=\left(\pi_{1}(s) \xi_{1} \mid \eta_{1}\right) \quad\left(s \in G, \xi_{1}, \eta_{1} \in H_{\pi_{1}}\right) .
$$

Similarly π_{2}.

- Then

$$
\left(\omega_{1} \cdot \omega_{2}\right)(s)=\omega_{1}(s) \omega_{2}(s)=\left(\left(\pi_{1} \otimes \pi_{2}\right)(s) \xi_{1} \otimes \xi_{2} \mid \eta_{1} \otimes \eta_{2}\right) .
$$

- So to understand the product $\omega_{1} \cdot \omega_{2}$, we need to understand how to write $\pi_{1} \otimes \pi_{2}$ as a sum of irreducibles. This can be done using fusion rules etc.
- This is obviously complicated: I generally tend to think of $A(G)$ as being a certain commutative algebra, and do not use the representation theory picture.

The product

Suppose $\omega_{1} \in A(G)$ is given by a single irreducible $\pi_{1} \in \hat{G}$, say

$$
\omega_{1}(s)=\left(\pi_{1}(s) \xi_{1} \mid \eta_{1}\right) \quad\left(s \in G, \xi_{1}, \eta_{1} \in H_{\pi_{1}}\right) .
$$

Similarly π_{2}.

- Then

$$
\left(\omega_{1} \cdot \omega_{2}\right)(s)=\omega_{1}(s) \omega_{2}(s)=\left(\left(\pi_{1} \otimes \pi_{2}\right)(s) \xi_{1} \otimes \xi_{2} \mid \eta_{1} \otimes \eta_{2}\right) .
$$

- So to understand the product $\omega_{1} \cdot \omega_{2}$, we need to understand how to write $\pi_{1} \otimes \pi_{2}$ as a sum of irreducibles. This can be done using fusion rules eic.
- This is obviously complicated: I generally tend to think of $A(G)$ as being a certain commutative algebra, and do not use the representation theory picture.

The product

Suppose $\omega_{1} \in A(G)$ is given by a single irreducible $\pi_{1} \in \hat{G}$, say

$$
\omega_{1}(s)=\left(\pi_{1}(s) \xi_{1} \mid \eta_{1}\right) \quad\left(s \in G, \xi_{1}, \eta_{1} \in H_{\pi_{1}}\right) .
$$

Similarly π_{2}.

- Then

$$
\left(\omega_{1} \cdot \omega_{2}\right)(s)=\omega_{1}(s) \omega_{2}(s)=\left(\left(\pi_{1} \otimes \pi_{2}\right)(s) \xi_{1} \otimes \xi_{2} \mid \eta_{1} \otimes \eta_{2}\right) .
$$

- So to understand the product $\omega_{1} \cdot \omega_{2}$, we need to understand how to write $\pi_{1} \otimes \pi_{2}$ as a sum of irreducibles. This can be done using fusion rules etc.
- This is obviously complicated: I generally tend to think of $A(G)$ as being a certain commutative algebra, and do not use the representation theory picture.

The product

Suppose $\omega_{1} \in A(G)$ is given by a single irreducible $\pi_{1} \in \hat{G}$, say

$$
\omega_{1}(s)=\left(\pi_{1}(s) \xi_{1} \mid \eta_{1}\right) \quad\left(s \in G, \xi_{1}, \eta_{1} \in H_{\pi_{1}}\right)
$$

Similarly π_{2}.

- Then

$$
\left(\omega_{1} \cdot \omega_{2}\right)(s)=\omega_{1}(s) \omega_{2}(s)=\left(\left(\pi_{1} \otimes \pi_{2}\right)(s) \xi_{1} \otimes \xi_{2} \mid \eta_{1} \otimes \eta_{2}\right)
$$

- So to understand the product $\omega_{1} \cdot \omega_{2}$, we need to understand how to write $\pi_{1} \otimes \pi_{2}$ as a sum of irreducibles. This can be done using fusion rules etc.
- This is obviously complicated: I generally tend to think of $A(G)$ as being a certain commutative algebra, and do not use the representation theory picture.

Locally compact groups

A locally compact group is a locally compact (Hausdorff) topological space which is also a group, and with the group operations being continuous.
Locally compact groups are essentially characterised as being those groups which admit an invariant measure: the Haar measure:

$$
\mu(A)-\mu(s A) \quad(s \in G A \subseteq G) .
$$

- Any group with the discrete topology, and the counting measure.
- Any compact groun: $\mathbb{T}, S I(n), O(n)$ etc. Haar measure is a probability measure.
- Any Lie group: $\mathbb{R}, S L_{n}(\mathbb{R})$ etc.
- Not the unitary groun of an infinite dimensional Hilbert space.

Locally compact groups

A locally compact group is a locally compact (Hausdorff) topological space which is also a group, and with the group operations being continuous.
Locally compact groups are essentially characterised as being those groups which admit an invariant measure: the Haar measure:

$$
\mu(A)=\mu(s A) \quad(s \in G, A \subseteq G)
$$

- Any group with the discrete topology, and the counting measure.
- Any compact group: $\mathbb{T}, S U(n), O(n)$ etc. Haar measure is a probability measure.
- Any Lie group: $\mathbb{R}, S L_{n}(\mathbb{R})$ etc.
- Not the unitary group of an infinite dimensional Hilbert space.

Locally compact groups

A locally compact group is a locally compact (Hausdorff) topological space which is also a group, and with the group operations being continuous.
Locally compact groups are essentially characterised as being those groups which admit an invariant measure: the Haar measure:

$$
\mu(A)=\mu(s A) \quad(s \in G, A \subseteq G)
$$

- Any group with the discrete topology, and the counting measure.
- Any compact group: $\mathbb{T}, S U(n), O(n)$ etc. Haar measure is a probability measure.
- Any Lie group: $\mathbb{R}, S L_{n}(\mathbb{R})$ etc.
- Not the unitary group of an infinite dimensional Hilbert space.

Locally compact groups

A locally compact group is a locally compact (Hausdorff) topological space which is also a group, and with the group operations being continuous.
Locally compact groups are essentially characterised as being those groups which admit an invariant measure: the Haar measure:

$$
\mu(A)=\mu(s A) \quad(s \in G, A \subseteq G) .
$$

- Any group with the discrete topology, and the counting measure.
- Any compact group: $\mathbb{T}, S U(n), O(n)$ etc. Haar measure is a probability measure.
- Any Lie group: $\mathbb{R}, S L_{n}(\mathbb{R})$ etc.
- Not the unitary group of an infinite dimensional Hilbert space.

Locally compact groups

A locally compact group is a locally compact (Hausdorff) topological space which is also a group, and with the group operations being continuous.
Locally compact groups are essentially characterised as being those groups which admit an invariant measure: the Haar measure:

$$
\mu(A)=\mu(s A) \quad(s \in G, A \subseteq G)
$$

- Any group with the discrete topology, and the counting measure.
- Any compact group: $\mathbb{T}, S U(n), O(n)$ etc. Haar measure is a probability measure.
- Any Lie group: $\mathbb{R}, S L_{n}(\mathbb{R})$ etc.
- Not the unitary group of an infinite dimensional Hilbert space.

Locally compact groups

A locally compact group is a locally compact (Hausdorff) topological space which is also a group, and with the group operations being continuous.
Locally compact groups are essentially characterised as being those groups which admit an invariant measure: the Haar measure:

$$
\mu(A)=\mu(s A) \quad(s \in G, A \subseteq G) .
$$

- Any group with the discrete topology, and the counting measure.
- Any compact group: $\mathbb{T}, S U(n), O(n)$ etc. Haar measure is a probability measure.
- Any Lie group: $\mathbb{R}, S L_{n}(\mathbb{R})$ etc.
- Not the unitary group of an infinite dimensional Hilbert space.

Various group algebras

Let $L^{1}(G)$ be the (equivalence classes) of integrable functions on G, which becomes a Banach algebra for the convolution product:

$$
f * g(s)=\int_{G} f(t) g\left(t^{-1} s\right) d t \quad\left(f, g \in L^{1}(G), s \in G\right) .
$$

Various group algebras

Let $L^{1}(G)$ be the (equivalence classes) of integrable functions on G, which becomes a Banach algebra for the convolution product:

$$
f * g(s)=\int_{G} f(t) g\left(t^{-1} s\right) d t \quad\left(f, g \in L^{1}(G), s \in G\right) .
$$

- There is a natural representation of $L^{1}(G)$ on $L^{2}(G)$ given by left convolution: the norm closure of the image is $C_{r}^{*}(G)$, the (reduced) group C^{*}-algebra.

Various group algebras

Let $L^{1}(G)$ be the (equivalence classes) of integrable functions on G, which becomes a Banach algebra for the convolution product:

$$
f * g(s)=\int_{G} f(t) g\left(t^{-1} s\right) d t \quad\left(f, g \in L^{1}(G), s \in G\right) .
$$

- There is a natural representation of $L^{1}(G)$ on $L^{2}(G)$ given by left convolution: the norm closure of the image is $C_{r}^{*}(G)$, the (reduced) group C^{*}-algebra.
- To look at $C_{r}^{*}(G)^{*}$ would give too large an algebra.
- Instead, we take the weak operator topology closure of $L^{1}(G)$
acting on $L^{2}(G)$ - this gives $\operatorname{VN}(G)$ the group von Neumann
algebra.
- Write $\lambda(s)$ for the left translation operator given by $s \in G$.
- Then $\lambda(s) \in \operatorname{VN}(G)$, but $\lambda(s) \in C_{r}^{*}(G)$ only for discrete groups.

Various group algebras

Let $L^{1}(G)$ be the (equivalence classes) of integrable functions on G, which becomes a Banach algebra for the convolution product:

$$
f * g(s)=\int_{G} f(t) g\left(t^{-1} s\right) d t \quad\left(f, g \in L^{1}(G), s \in G\right) .
$$

- There is a natural representation of $L^{1}(G)$ on $L^{2}(G)$ given by left convolution: the norm closure of the image is $C_{r}^{*}(G)$, the (reduced) group C^{*}-algebra.
- To look at $C_{r}^{*}(G)^{*}$ would give too large an algebra.
- Instead, we take the weak operator topology closure of $L^{1}(G)$ acting on $L^{2}(G)$ - this gives $V N(G)$ the group von Neumann algebra.

Various group algebras

Let $L^{1}(G)$ be the (equivalence classes) of integrable functions on G, which becomes a Banach algebra for the convolution product:

$$
f * g(s)=\int_{G} f(t) g\left(t^{-1} s\right) d t \quad\left(f, g \in L^{1}(G), s \in G\right) .
$$

- There is a natural representation of $L^{1}(G)$ on $L^{2}(G)$ given by left convolution: the norm closure of the image is $C_{r}^{*}(G)$, the (reduced) group C^{*}-algebra.
- To look at $C_{r}^{*}(G)^{*}$ would give too large an algebra.
- Instead, we take the weak operator topology closure of $L^{1}(G)$ acting on $L^{2}(G)$ - this gives $V N(G)$ the group von Neumann algebra.
- Write $\lambda(s)$ for the left translation operator given by $s \in G$.

Various group algebras

Let $L^{1}(G)$ be the (equivalence classes) of integrable functions on G, which becomes a Banach algebra for the convolution product:

$$
f * g(s)=\int_{G} f(t) g\left(t^{-1} s\right) d t \quad\left(f, g \in L^{1}(G), s \in G\right) .
$$

- There is a natural representation of $L^{1}(G)$ on $L^{2}(G)$ given by left convolution: the norm closure of the image is $C_{r}^{*}(G)$, the (reduced) group C^{*}-algebra.
- To look at $C_{r}^{*}(G)^{*}$ would give too large an algebra.
- Instead, we take the weak operator topology closure of $L^{1}(G)$ acting on $L^{2}(G)$ - this gives $V N(G)$ the group von Neumann algebra.
- Write $\lambda(s)$ for the left translation operator given by $s \in G$.
- Then $\lambda(s) \in V N(G)$, but $\lambda(s) \in C_{r}^{*}(G)$ only for discrete groups.

The Fourier algebra

- We now restrict attention to $V N(G)_{*}$, the functionals on $V N(G)$ which are weak operator topology continuous. So we set $A(G)=V N(G)_{*}$.
- The operators $\{\lambda(s): s \in G\}$ generate $V N(G)$ for the weak operator topology. So for $\omega \in A(G)$, the values

$$
\omega^{\prime}(s)=\langle\lambda(s), \omega\rangle \quad(s \in G),
$$

completely determine ω. Hence we can think of $A(G)$ as a space of functions $G \rightarrow \mathbb{C}$.

- As before, we have $\Delta: V N(G) \rightarrow V N(G \times G)$ given by $\lambda(s) \mapsto \lambda(s) \otimes \lambda(s)$.
- The (pre)adjoint induces an associative algebra product on $A(G)$.
- As a space of functions, this is just the pointwise product. So $A(G)$ is a commutative Banach algebra.

The Fourier algebra

- We now restrict attention to $\operatorname{VN}(G)_{*}$, the functionals on $V N(G)$ which are weak operator topology continuous. So we set $A(G)=V N(G)_{*}$.
- The operators $\{\lambda(s): s \in G\}$ generate $V N(G)$ for the weak operator topology. So for $\omega \in A(G)$, the values

$$
\omega(s)=\langle\lambda(s), \omega\rangle \quad(s \in G)
$$

completely determine ω. Hence we can think of $A(G)$ as a space of functions $G \rightarrow \mathbb{C}$.

- As before, we have $\Delta: V N(G) \rightarrow V N(G \times G)$ given by
- The (pre)adjoint induces an associative algebra product on $A(G)$.
- As a space of functions, this is just the pointwise product. So $A(G)$ is a commutative Banach algebra.

The Fourier algebra

- We now restrict attention to $\operatorname{VN}(G)_{*}$, the functionals on $V N(G)$ which are weak operator topology continuous. So we set $A(G)=V N(G)_{*}$.
- The operators $\{\lambda(s): s \in G\}$ generate $V N(G)$ for the weak operator topology. So for $\omega \in A(G)$, the values

$$
\omega(s)=\langle\lambda(s), \omega\rangle \quad(s \in G)
$$

completely determine ω. Hence we can think of $A(G)$ as a space of functions $G \rightarrow \mathbb{C}$.

- As before, we have $\Delta: V N(G) \rightarrow V N(G \times G)$ given by $\lambda(s) \mapsto \lambda(s) \otimes \lambda(s)$.

The Fourier algebra

- We now restrict attention to $V N(G)_{*}$, the functionals on $V N(G)$ which are weak operator topology continuous. So we set $A(G)=V N(G)_{*}$.
- The operators $\{\lambda(s): s \in G\}$ generate $V N(G)$ for the weak operator topology. So for $\omega \in A(G)$, the values

$$
\omega(s)=\langle\lambda(s), \omega\rangle \quad(s \in G),
$$

completely determine ω. Hence we can think of $A(G)$ as a space of functions $G \rightarrow \mathbb{C}$.

- As before, we have $\Delta: V N(G) \rightarrow V N(G \times G)$ given by $\lambda(s) \mapsto \lambda(s) \otimes \lambda(s)$.
- The (pre)adjoint induces an associative algebra product on $A(G)$.

The Fourier algebra

- We now restrict attention to $V N(G)_{*}$, the functionals on $V N(G)$ which are weak operator topology continuous. So we set $A(G)=V N(G)_{*}$.
- The operators $\{\lambda(s): s \in G\}$ generate $V N(G)$ for the weak operator topology. So for $\omega \in A(G)$, the values

$$
\omega(s)=\langle\lambda(s), \omega\rangle \quad(s \in G),
$$

completely determine ω. Hence we can think of $A(G)$ as a space of functions $G \rightarrow \mathbb{C}$.

- As before, we have $\Delta: V N(G) \rightarrow V N(G \times G)$ given by $\lambda(s) \mapsto \lambda(s) \otimes \lambda(s)$.
- The (pre)adjoint induces an associative algebra product on $A(G)$.
- As a space of functions, this is just the pointwise product. So $A(G)$ is a commutative Banach algebra.

The Fourier algebra: which functions?
A bit of machinery shows that each $\omega \in A(G)$ is of the form

$$
\omega=\omega_{\xi, \eta}: \quad x \mapsto(x \xi \mid \eta) \quad(x \in V N(G)),
$$

for some $\xi, \eta \in L^{2}(G)$. (Not obvious why we don't need linear combinations etc.)

- For $s \in G$ we calculate
$\omega(s)=(\lambda(s) \xi \mid \eta)=\int_{G} \xi\left(s^{-1} t\right) \overline{\eta(t)} d t=\int_{G} \overline{\eta(t)} \check{\xi}\left(t^{-1} s\right) d t=(\bar{\eta} * \check{\xi})(s)$,
where $\check{\xi}(s)=\xi\left(s^{-1}\right)$
- So each member of $A(G)$ is the convolution of an L^{2} function with a "checked" L^{2} function.
- In particular, each member of $A(G)$ is continuous, and vanishes at infinity: $A(G) \subseteq C_{0}(G)$.
- Unless G is finite, we don't get all of $C_{0}(G)$.

The Fourier algebra: which functions?
A bit of machinery shows that each $\omega \in A(G)$ is of the form

$$
\omega=\omega_{\xi, \eta}: \quad x \mapsto(x \xi \mid \eta) \quad(x \in V N(G)),
$$

for some $\xi, \eta \in L^{2}(G)$. (Not obvious why we don't need linear combinations etc.)

- For $s \in G$ we calculate

$$
\omega(s)=(\lambda(s) \xi \mid \eta)=\int_{G} \xi\left(s^{-1} t\right) \overline{\eta(t)} d t=\int_{G} \overline{\eta(t)} \check{\xi}\left(t^{-1} s\right) d t=(\bar{\eta} * \check{\xi})(s),
$$

where $\check{\xi}(s)=\xi\left(s^{-1}\right)$.

- So each member of $A(G)$ is the convolution of an L^{2} function with a "checked" L² function.
- In particular, each member of $A(G)$ is continuous, and vanishes at infinity: $A(G) \subseteq C_{0}(G)$.
- Unless G is finite, we don't get all of $C_{0}(G)$

The Fourier algebra: which functions?

A bit of machinery shows that each $\omega \in A(G)$ is of the form

$$
\omega=\omega_{\xi, \eta}: \quad x \mapsto(x \xi \mid \eta) \quad(x \in V N(G)),
$$

for some $\xi, \eta \in L^{2}(G)$. (Not obvious why we don't need linear combinations etc.)

- For $s \in G$ we calculate

$$
\omega(s)=(\lambda(s) \xi \mid \eta)=\int_{G} \xi\left(s^{-1} t\right) \overline{\eta(t)} d t=\int_{G} \overline{\eta(t) \check{\xi}\left(t^{-1} s\right) d t=(\bar{\eta} * \check{\xi})(s), ~}
$$

where $\check{\xi}(s)=\xi\left(s^{-1}\right)$.

- So each member of $A(G)$ is the convolution of an L^{2} function with a "checked" L^{2} function.

The Fourier algebra: which functions?

A bit of machinery shows that each $\omega \in A(G)$ is of the form

$$
\omega=\omega_{\xi, \eta}: \quad x \mapsto(x \xi \mid \eta) \quad(x \in V N(G))
$$

for some $\xi, \eta \in L^{2}(G)$. (Not obvious why we don't need linear combinations etc.)

- For $s \in G$ we calculate

$$
\omega(s)=(\lambda(s) \xi \mid \eta)=\int_{G} \xi\left(s^{-1} t\right) \overline{\eta(t)} d t=\int_{G} \overline{\eta(t)} \check{\xi}\left(t^{-1} s\right) d t=(\bar{\eta} * \check{\xi})(s)
$$

where $\check{\xi}(s)=\xi\left(s^{-1}\right)$.

- So each member of $A(G)$ is the convolution of an L^{2} function with a "checked" L^{2} function.
- In particular, each member of $A(G)$ is continuous, and vanishes at infinity: $A(G) \subseteq C_{0}(G)$.

The Fourier algebra: which functions?

A bit of machinery shows that each $\omega \in A(G)$ is of the form

$$
\omega=\omega_{\xi, \eta}: \quad x \mapsto(x \xi \mid \eta) \quad(x \in V N(G))
$$

for some $\xi, \eta \in L^{2}(G)$. (Not obvious why we don't need linear combinations etc.)

- For $s \in G$ we calculate

$$
\omega(s)=(\lambda(s) \xi \mid \eta)=\int_{G} \xi\left(s^{-1} t\right) \overline{\eta(t)} d t=\int_{G} \overline{\eta(t)} \check{\xi}\left(t^{-1} s\right) d t=(\bar{\eta} * \check{\xi})(s)
$$

$$
\text { where } \check{\xi}(s)=\xi\left(s^{-1}\right)
$$

- So each member of $A(G)$ is the convolution of an L^{2} function with a "checked" L^{2} function.
- In particular, each member of $A(G)$ is continuous, and vanishes at infinity: $A(G) \subseteq C_{0}(G)$.
- Unless G is finite, we don't get all of $C_{0}(G)$.

Abelian case revisited

If G is abelian, then we have a dual group \hat{G} and the generalised Fourier transform

$$
\mathcal{F}: L^{1}(G) \rightarrow C_{0}(\hat{G}) .
$$

- Any member of $L^{1}(G)$ is the pointwise product of two L^{2} functions, and \mathcal{F} turns the pointwise product into the convolution product.
- So $A(\hat{G})$ is precisely $\mathcal{F}\left(L^{1}(G)\right)$.
- $\operatorname{Or} A(G) \cong L^{1}(\hat{G})$, as $\hat{\hat{G}} \cong G$.
- In particular,

$$
A(\mathbb{Z}) \cong L^{1}(\mathbb{T}), \quad A(\mathbb{T}) \cong L^{1}(\mathbb{Z}), \quad A(\mathbb{R}) \cong L^{1}(\mathbb{R}) .
$$

Abelian case revisited

If G is abelian, then we have a dual group \hat{G} and the generalised Fourier transform

$$
\mathcal{F}: L^{1}(G) \rightarrow C_{0}(\hat{G}) .
$$

- Any member of $L^{1}(G)$ is the pointwise product of two L^{2} functions, and \mathcal{F} turns the pointwise product into the convolution product.
- So $A(\hat{G})$ is precisely $\mathcal{F}\left(L^{1}(G)\right)$.
- $\operatorname{Or} A(G) \cong L^{1}(\hat{G})$, as $\hat{\hat{G}} \cong G$.
- In particular,

$$
A(\mathbb{Z}) \cong L^{1}(\mathbb{T}), \quad A(\mathbb{T}) \cong L^{1}(\mathbb{Z}), \quad A(\mathbb{R}) \cong L^{1}(\mathbb{R}) .
$$

Abelian case revisited

If G is abelian, then we have a dual group \hat{G} and the generalised Fourier transform

$$
\mathcal{F}: L^{1}(G) \rightarrow C_{0}(\hat{G})
$$

- Any member of $L^{1}(G)$ is the pointwise product of two L^{2} functions, and \mathcal{F} turns the pointwise product into the convolution product.
- So $A(\hat{G})$ is precisely $\mathcal{F}\left(L^{1}(G)\right)$.
- $\operatorname{Or} A(G) \cong L^{1}(\hat{G})$, as $\hat{G} \cong G$.
- In particular,

$$
A(\mathbb{Z}) \cong L^{1}(\mathbb{T}), \quad A(\mathbb{T}) \cong L^{1}(\mathbb{Z}), \quad A(\mathbb{R}) \cong L^{1}(\mathbb{R}) .
$$

Abelian case revisited

If G is abelian, then we have a dual group \hat{G} and the generalised Fourier transform

$$
\mathcal{F}: L^{1}(G) \rightarrow C_{0}(\hat{G})
$$

- Any member of $L^{1}(G)$ is the pointwise product of two L^{2} functions, and \mathcal{F} turns the pointwise product into the convolution product.
- So $A(\hat{G})$ is precisely $\mathcal{F}\left(L^{1}(G)\right)$.
- $\operatorname{Or} A(G) \cong L^{1}(\hat{G})$, as $\hat{\hat{G}} \cong G$.
- In particular,

$$
A(\mathbb{Z}) \cong L^{1}(\mathbb{T}), \quad A(\mathbb{T}) \cong L^{1}(\mathbb{Z}), \quad A(\mathbb{R}) \cong L^{1}(\mathbb{R}) .
$$

Abelian case revisited

If G is abelian, then we have a dual group \hat{G} and the generalised Fourier transform

$$
\mathcal{F}: L^{1}(G) \rightarrow C_{0}(\hat{G}) .
$$

- Any member of $L^{1}(G)$ is the pointwise product of two L^{2} functions, and \mathcal{F} turns the pointwise product into the convolution product.
- So $A(\hat{G})$ is precisely $\mathcal{F}\left(L^{1}(G)\right)$.
- $\operatorname{Or} A(G) \cong L^{1}(\hat{G})$, as $\hat{\hat{G}} \cong G$.
- In particular,

$$
A(\mathbb{Z}) \cong L^{1}(\mathbb{T}), \quad A(\mathbb{T}) \cong L^{1}(\mathbb{Z}), \quad A(\mathbb{R}) \cong L^{1}(\mathbb{R}) .
$$

Compact case

Remember that the representation theory of compact groups is very similar to that for finite groups.

- Each irreducible representation is finite dimensional, and we get the isomorphisms

- Again, the multiplication comes from tensoring irreps.
- You can do similar things for, say, semisimple Lie groups, but usually this is not productive (but see recent work of Losert on $S L_{2}(\mathbb{R})$).

Compact case

Remember that the representation theory of compact groups is very similar to that for finite groups.

- Each irreducible representation is finite dimensional, and we get the isomorphisms

$$
C_{r}^{*}(G) \cong \bigoplus_{\pi \in \hat{G}} \mathbb{M}_{n_{\pi}}, \quad V N(G) \cong \prod_{\pi \in \hat{G}} \mathbb{M}_{n_{\pi}}, \quad A(G) \cong \bigoplus_{\pi \in \hat{G}} \mathbb{T}_{n_{\pi}}
$$

- Again, the multiplication comes from tensoring irreps.
- You can do similar things for, say, semisimple Lie groups, but usually this is not productive (but see recent work of Losert on $S L_{2}(\mathbb{R})$).

Compact case

Remember that the representation theory of compact groups is very similar to that for finite groups.

- Each irreducible representation is finite dimensional, and we get the isomorphisms

$$
C_{r}^{*}(G) \cong \bigoplus_{\pi \in \hat{G}} \mathbb{M}_{n_{\pi}}, \quad V N(G) \cong \prod_{\pi \in \hat{G}} \mathbb{M}_{n_{\pi}}, \quad A(G) \cong \bigoplus_{\pi \in \hat{G}} \mathbb{T}_{n_{\pi}}
$$

- Again, the multiplication comes from tensoring irreps.
- You can do similar things for, say, semisimple Lie groups, but usually this is not productive (but see recent work of Losert on $S L_{2}(\mathbb{R})$).

Compact case

Remember that the representation theory of compact groups is very similar to that for finite groups.

- Each irreducible representation is finite dimensional, and we get the isomorphisms

$$
C_{r}^{*}(G) \cong \bigoplus_{\pi \in \hat{G}} \mathbb{M}_{n_{\pi}}, \quad V N(G) \cong \prod_{\pi \in \hat{G}} \mathbb{M}_{n_{\pi}}, \quad A(G) \cong \bigoplus_{\pi \in \hat{G}} \mathbb{T}_{n_{\pi}} .
$$

- Again, the multiplication comes from tensoring irreps.
- You can do similar things for, say, semisimple Lie groups, but usually this is not productive (but see recent work of Losert on $S L_{2}(\mathbb{R})$).

Homomorphisms

- Let G and H be finite groups. When are $A(G)$ and $A(H)$ isomorphism algebras? Well, $A(G) \cong \mathbb{C}^{G}$ and $A(H) \cong \mathbb{C}^{H}$, so $A(G) \cong A(H)$ if and only if $|G|=|H|$.
- For infinite G, there are topological obstructions. $A s A(G)$ is a commutative Banach algebra, it has a character space. Eymard showed that this is precisely G.
- So if $A(G) \cong A(H)$, then $G \cong H$ as topological spaces.
- Let's not forget the norm- so ask: when are $A(G)$ and $A(H)$ isometrically isomorphic?
- Any bijective algebra homomorphism $\theta: A(G) \rightarrow A(H)$ is of the form

$$
\theta(\omega)(h)=\omega(\tau(h))
$$

where $h: H \rightarrow G$ is continuous (Gelfand theory).

Homomorphisms

- Let G and H be finite groups. When are $A(G)$ and $A(H)$ isomorphism algebras? Well, $A(G) \cong \mathbb{C}^{G}$ and $A(H) \cong \mathbb{C}^{H}$, so $A(G) \cong A(H)$ if and only if $|G|=|H|$.
- For infinite G, there are topological obstructions. As $A(G)$ is a commutative Banach algebra, it has a character space. Eymard showed that this is precisely G.

Homomorphisms

- Let G and H be finite groups. When are $A(G)$ and $A(H)$ isomorphism algebras? Well, $A(G) \cong \mathbb{C}^{G}$ and $A(H) \cong \mathbb{C}^{H}$, so $A(G) \cong A(H)$ if and only if $|G|=|H|$.
- For infinite G, there are topological obstructions. As $A(G)$ is a commutative Banach algebra, it has a character space. Eymard showed that this is precisely G.
- So if $A(G) \cong A(H)$, then $G \cong H$ as topological spaces.
- Let's not forget the norm-so ask: when are $A(G)$ and $A(H)$ isometrically isomorphic?
- Any bijective algebra homomorphism $\theta: A(G) \rightarrow A(H)$ is of the form

$$
\theta(\omega)(h)=\omega(\tau(h)) \quad(h \in H)
$$

where $h: H \rightarrow G$ is continuous (Gelfand theory).

Homomorphisms

- Let G and H be finite groups. When are $A(G)$ and $A(H)$ isomorphism algebras? Well, $A(G) \cong \mathbb{C}^{G}$ and $A(H) \cong \mathbb{C}^{H}$, so $A(G) \cong A(H)$ if and only if $|G|=|H|$.
- For infinite G, there are topological obstructions. As $A(G)$ is a commutative Banach algebra, it has a character space. Eymard showed that this is precisely G.
- So if $A(G) \cong A(H)$, then $G \cong H$ as topological spaces.
- Let's not forget the norm- so ask: when are $A(G)$ and $A(H)$ isometrically isomorphic?
form

where $h: H \rightarrow G$ is continuous (Gelfand theory).

Homomorphisms

- Let G and H be finite groups. When are $A(G)$ and $A(H)$ isomorphism algebras? Well, $A(G) \cong \mathbb{C}^{G}$ and $A(H) \cong \mathbb{C}^{H}$, so $A(G) \cong A(H)$ if and only if $|G|=|H|$.
- For infinite G, there are topological obstructions. As $A(G)$ is a commutative Banach algebra, it has a character space. Eymard showed that this is precisely G.
- So if $A(G) \cong A(H)$, then $G \cong H$ as topological spaces.
- Let's not forget the norm- so ask: when are $A(G)$ and $A(H)$ isometrically isomorphic?
- Any bijective algebra homomorphism $\theta: A(G) \rightarrow A(H)$ is of the form

$$
\theta(\omega)(h)=\omega(\tau(h)) \quad(h \in H)
$$

where $h: H \rightarrow G$ is continuous (Gelfand theory).

Homomorphisms cont.

$$
\theta(\omega)(h)=\omega(\tau(h)) \quad(h \in H)
$$

- Walter (1972) proved that if θ is also an isometry, then τ is of the form

$$
\tau(h)=g_{1} \phi(h) \quad(h \in H)
$$

where $g_{1} \in G$ and $\phi: H \rightarrow G$ is a group (anti)homomorphism.

- Le Pham (2010) extended this in various ways. For example, if $\theta: A(G) \rightarrow A(H)$ is a contractive homomorphism, then

$$
\theta(\omega)(h)= \begin{cases}\omega\left(g_{1} \phi\left(h_{1} h\right)\right) & : h_{1} h \in \Omega, \\ 0 & : h_{1} h \notin \Omega\end{cases}
$$

Here $\Omega \subseteq H$ is an open subgroup, $g_{1} \in G, h_{1} \in H$, and again
$\phi: \Omega \rightarrow G$ is a group (anti)homomorphism.

Homomorphisms cont.

$$
\theta(\omega)(h)=\omega(\tau(h)) \quad(h \in H)
$$

- Walter (1972) proved that if θ is also an isometry, then τ is of the form

$$
\tau(h)=g_{1} \phi(h) \quad(h \in H)
$$

where $g_{1} \in G$ and $\phi: H \rightarrow G$ is a group (anti)homomorphism.

> Here $\Omega \subseteq H$ is an open subgroup, $g_{1} \in G, h_{1} \in H$, and again $\phi: \Omega \rightarrow G$ is a group (anti)homomorphism.

Homomorphisms cont.

$$
\theta(\omega)(h)=\omega(\tau(h)) \quad(h \in H),
$$

- Walter (1972) proved that if θ is also an isometry, then τ is of the form

$$
\tau(h)=g_{1} \phi(h) \quad(h \in H),
$$

where $g_{1} \in G$ and $\phi: H \rightarrow G$ is a group (anti)homomorphism.

- Le Pham (2010) extended this in various ways. For example, if $\theta: A(G) \rightarrow A(H)$ is a contractive homomorphism, then

$$
\theta(\omega)(h)= \begin{cases}\omega\left(g_{1} \phi\left(h_{1} h\right)\right) & : h_{1} h \in \Omega, \\ 0 & : h_{1} h \notin \Omega .\end{cases}
$$

Here $\Omega \subseteq H$ is an open subgroup, $g_{1} \in G, h_{1} \in H$, and again $\phi: \Omega \rightarrow G$ is a group (anti)homomorphism.

Annoying anti-homomorphisms

To remove the possibility of an anti-homomorphism, we need a more "rigid" sense of isometry.

- Given a bounded linear map $\theta: A(G) \rightarrow A(H)$, the adjoint gives a map $\theta^{*}: V N(H) \rightarrow V N(G)$.
- We identify $\mathbb{M}_{n} \otimes V N(H)$ with $n \times n$ matrices of elements of $V N(H)$. This acts naturally on $L^{2}(H) \oplus \cdots \oplus L^{2}(H)$ (n times) and so $\mathbb{M}_{n} \otimes V N(H)$ is again a C*-algebra.
- So we can ask about the norm of

- We say that θ is completely bounded if $\sup _{n}\left\|\left(\theta^{*}\right)_{n}\right\|<\infty$.
- This rules out the anti-homomorphism case.

Annoying anti-homomorphisms

To remove the possibility of an anti-homomorphism, we need a more "rigid" sense of isometry.

- Given a bounded linear map $\theta: A(G) \rightarrow A(H)$, the adjoint gives a map $\theta^{*}: V N(H) \rightarrow V N(G)$.
- We identify $\mathbb{M}_{n} \otimes V N(H)$ with $n \times n$ matrices of elements of
$V N(H)$. This acts naturally on $L^{2}(H) \oplus \cdots \oplus L^{2}(H)(n$ times) and
so $\mathbb{M}_{n} \otimes V N(H)$ is again a C^{*}-algebra.
- So we can ask about the norm of

- We say that θ is completely bounded if $\sup _{n}\left\|\left(\theta^{*}\right)_{n}\right\|<\infty$
- This rules out the anti-homomorphism case.

Annoying anti-homomorphisms

To remove the possibility of an anti-homomorphism, we need a more "rigid" sense of isometry.

- Given a bounded linear map $\theta: A(G) \rightarrow A(H)$, the adjoint gives a map $\theta^{*}: V N(H) \rightarrow V N(G)$.
- We identify $\mathbb{M}_{n} \otimes V N(H)$ with $n \times n$ matrices of elements of $V N(H)$. This acts naturally on $L^{2}(H) \oplus \cdots \oplus L^{2}(H)(n$ times $)$ and so $\mathbb{M}_{n} \otimes V N(H)$ is again a C^{*}-algebra.
- So we can ask about the norm of
- We say that θ is completely bounded if $\sup _{n}\left\|\left(\theta^{*}\right)_{n}\right\|<\infty$
- This rules out the anti-homomorphism case.

Annoying anti-homomorphisms

To remove the possibility of an anti-homomorphism, we need a more "rigid" sense of isometry.

- Given a bounded linear map $\theta: A(G) \rightarrow A(H)$, the adjoint gives a map $\theta^{*}: V N(H) \rightarrow V N(G)$.
- We identify $\mathbb{M}_{n} \otimes V N(H)$ with $n \times n$ matrices of elements of $V N(H)$. This acts naturally on $L^{2}(H) \oplus \cdots \oplus L^{2}(H)(n$ times $)$ and so $\mathbb{M}_{n} \otimes V N(H)$ is again a C^{*}-algebra.
- So we can ask about the norm of

$$
\left(\theta^{*}\right)_{n}:=\iota \otimes \theta^{*}: \mathbb{M}_{n} \otimes V N(H) \rightarrow \mathbb{M}_{n} \otimes V N(G)
$$

- We say that θ is completely bounded if $\sup _{n}\left\|\left(\theta^{*}\right)_{n}\right\|<\infty$.
- This rules out the anti-homomorphism case.

Annoying anti-homomorphisms

To remove the possibility of an anti-homomorphism, we need a more "rigid" sense of isometry.

- Given a bounded linear map $\theta: A(G) \rightarrow A(H)$, the adjoint gives a map $\theta^{*}: V N(H) \rightarrow V N(G)$.
- We identify $\mathbb{M}_{n} \otimes V N(H)$ with $n \times n$ matrices of elements of $V N(H)$. This acts naturally on $L^{2}(H) \oplus \cdots \oplus L^{2}(H)(n$ times $)$ and so $\mathbb{M}_{n} \otimes V N(H)$ is again a C^{*}-algebra.
- So we can ask about the norm of

$$
\left(\theta^{*}\right)_{n}:=\iota \otimes \theta^{*}: \mathbb{M}_{n} \otimes V N(H) \rightarrow \mathbb{M}_{n} \otimes V N(G)
$$

- We say that θ is completely bounded if $\sup _{n}\left\|\left(\theta^{*}\right)_{n}\right\|<\infty$.

Annoying anti-homomorphisms

To remove the possibility of an anti-homomorphism, we need a more "rigid" sense of isometry.

- Given a bounded linear map $\theta: A(G) \rightarrow A(H)$, the adjoint gives a map $\theta^{*}: V N(H) \rightarrow V N(G)$.
- We identify $\mathbb{M}_{n} \otimes V N(H)$ with $n \times n$ matrices of elements of $V N(H)$. This acts naturally on $L^{2}(H) \oplus \cdots \oplus L^{2}(H)(n$ times $)$ and so $\mathbb{M}_{n} \otimes V N(H)$ is again a C^{*}-algebra.
- So we can ask about the norm of

$$
\left(\theta^{*}\right)_{n}:=\iota \otimes \theta^{*}: \mathbb{M}_{n} \otimes V N(H) \rightarrow \mathbb{M}_{n} \otimes V N(G)
$$

- We say that θ is completely bounded if $\sup _{n}\left\|\left(\theta^{*}\right)_{n}\right\|<\infty$.
- This rules out the anti-homomorphism case.

A little bit of philosophy

- Recall that if G is abelian, then $A(G) \cong L^{1}(\hat{G})$.
- So even if G is not abelian, we can still think of $A(G)$ as being the algebra $L^{1}(\hat{G})$, even though \hat{G} doesn't exist. (And we saw that in the compact case, this is not insane).
- An interesting thing to do with $L^{1}(G)$ is to study homomorphisms $\theta: L^{1}(G) \rightarrow \mathcal{B}(H)$, where $\mathcal{B}(H)$ is the algebra of operators on a Hilbert space H.
- There is a one-one correspondence between such (non-degenerate) homomorphisms and representations $\pi: G \rightarrow \mathcal{B}(H)$, where

$$
\theta(f)=\int_{G} f(s) \pi(s) d s
$$

A little bit of philosophy

- Recall that if G is abelian, then $A(G) \cong L^{1}(\hat{G})$.
- So even if G is not abelian, we can still think of $A(G)$ as being the algebra $L^{1}(\hat{G})$, even though \hat{G} doesn't exist. (And we saw that in the compact case, this is not insane).
- An interesting thing to do with $L^{1}(G)$ is to study homomorphisms $\theta: L^{1}(G) \rightarrow \mathcal{B}(H)$, where $\mathcal{B}(H)$ is the algebra of operators on a Hilbert space H.
- There is a one-one correspondence between such (non-degenerate) homomorphisms and representations $\pi: G \rightarrow \mathcal{B}(H)$, where

$$
\theta(f)=\int_{G} f(s) \pi(s) d s
$$

A little bit of philosophy

- Recall that if G is abelian, then $A(G) \cong L^{1}(\hat{G})$.
- So even if G is not abelian, we can still think of $A(G)$ as being the algebra $L^{1}(\hat{G})$, even though \hat{G} doesn't exist. (And we saw that in the compact case, this is not insane).

A little bit of philosophy

- Recall that if G is abelian, then $A(G) \cong L^{1}(\hat{G})$.
- So even if G is not abelian, we can still think of $A(G)$ as being the algebra $L^{1}(\hat{G})$, even though \hat{G} doesn't exist. (And we saw that in the compact case, this is not insane).
- An interesting thing to do with $L^{1}(G)$ is to study homomorphisms $\theta: L^{1}(G) \rightarrow \mathcal{B}(H)$, where $\mathcal{B}(H)$ is the algebra of operators on a Hilbert space H.
- There is a one-one correspondence between such (non-degenerate) homomorphisms and representations $\pi: G \rightarrow \mathcal{B}(H)$, where

A little bit of philosophy

- Recall that if G is abelian, then $A(G) \cong L^{1}(\hat{G})$.
- So even if G is not abelian, we can still think of $A(G)$ as being the algebra $L^{1}(\hat{G})$, even though \hat{G} doesn't exist. (And we saw that in the compact case, this is not insane).
- An interesting thing to do with $L^{1}(G)$ is to study homomorphisms $\theta: L^{1}(G) \rightarrow \mathcal{B}(H)$, where $\mathcal{B}(H)$ is the algebra of operators on a Hilbert space H.
- There is a one-one correspondence between such (non-degenerate) homomorphisms and representations $\pi: G \rightarrow \mathcal{B}(H)$, where

$$
\theta(f)=\int_{G} f(s) \pi(s) d s
$$

Representations on a Hilbert space

- An even more interesting thing to study is $*$-homomorphisms $L^{1}(G) \rightarrow \mathcal{B}(H)$; these correspond to looking at unitary representations of G.
- If G is finite, then given any representation of G on H, we can always choose an invariant inner-product making the representation unitary.
- This corresponds to the following: if $\theta: L^{1}(G) \rightarrow \mathcal{B}(H)$ is a homomorphism, then there is an invertible $T \in \mathcal{B}(H)$ with

being a $*$-homomorphism.
- For general G, we can do this if (and only if?) G is amenable.

Representations on a Hilbert space

- An even more interesting thing to study is $*$-homomorphisms $L^{1}(G) \rightarrow \mathcal{B}(H)$; these correspond to looking at unitary representations of G.
- If G is finite, then given any representation of G on H, we can always choose an invariant inner-product making the representation unitary.

being a $*$-homomorphism.
- For general G, we can do this if (and only if?) G is amenable.

Representations on a Hilbert space

- An even more interesting thing to study is $*$-homomorphisms $L^{1}(G) \rightarrow \mathcal{B}(H)$; these correspond to looking at unitary representations of G.
- If G is finite, then given any representation of G on H, we can always choose an invariant inner-product making the representation unitary.
- This corresponds to the following: if $\theta: L^{1}(G) \rightarrow \mathcal{B}(H)$ is a homomorphism, then there is an invertible $T \in \mathcal{B}(H)$ with

$$
L^{1}(G) \rightarrow \mathcal{B}(H) ; \quad f \mapsto T^{-1} \theta(f) T
$$

being a $*$-homomorphism.

- For general G, we can do this if (and only if?) G is amenable.

Representations on a Hilbert space

- An even more interesting thing to study is $*$-homomorphisms $L^{1}(G) \rightarrow \mathcal{B}(H)$; these correspond to looking at unitary representations of G.
- If G is finite, then given any representation of G on H, we can always choose an invariant inner-product making the representation unitary.
- This corresponds to the following: if $\theta: L^{1}(G) \rightarrow \mathcal{B}(H)$ is a homomorphism, then there is an invertible $T \in \mathcal{B}(H)$ with

$$
L^{1}(G) \rightarrow \mathcal{B}(H) ; \quad f \mapsto T^{-1} \theta(f) T
$$

being a $*$-homomorphism.

- For general G, we can do this if (and only if?) G is amenable.

For the Fourier algebra

So, we might look at homomorphisms $\theta: A(G) \rightarrow \mathcal{B}(H)$.

- The involution on $A(G)$ is just pointwise conjugation of functions.
- If $\theta: A(G) \rightarrow \mathcal{B}(H)$ is a $*$-homomorphism, then you can continuously extend it to a $*$-homomorphism $C_{0}(G) \rightarrow \mathcal{B}(H)$, and such things are well-understood.
- So, we ask again: when is $\theta: A(G) \rightarrow \mathcal{B}(H)$ similar to a *-homomorphism? This seems hopeless.
- Instead, we restrict again to those θ such that the dilations

$$
\iota \otimes \theta: \mathbb{T}_{n} \otimes A(G) \rightarrow \mathbb{M}_{n} \otimes \mathcal{B}(H)
$$

are uniformly bounded in n. We say that θ is completely bounded.

For the Fourier algebra

So, we might look at homomorphisms $\theta: A(G) \rightarrow \mathcal{B}(H)$.

- The involution on $A(G)$ is just pointwise conjugation of functions.
- If $\theta: A(G) \rightarrow \mathcal{B}(H)$ is a $*$-homomorphism, then you can continuously extend it to a $*$-homomorphism $C_{0}(G) \rightarrow \mathcal{B}(H)$, and such things are well-understood.
- So, we ask again: when is $\theta: A(G) \rightarrow B(H)$ similar to a *-homomorphism? This seems hopeless.
- Instead, we restrict again to those θ such that the dilations

$$
\iota \otimes \theta: \mathbb{T}_{n} \otimes A(G) \rightarrow \mathbb{M}_{n} \otimes \mathcal{B}(H)
$$

are uniformly bounded in n. We say that θ is completely bounded.

For the Fourier algebra

So, we might look at homomorphisms $\theta: A(G) \rightarrow \mathcal{B}(H)$.

- The involution on $A(G)$ is just pointwise conjugation of functions.
- If $\theta: A(G) \rightarrow \mathcal{B}(H)$ is a $*$-homomorphism, then you can continuously extend it to a $*$-homomorphism $C_{0}(G) \rightarrow \mathcal{B}(H)$, and such things are well-understood.
- So, we ask again: when is $\theta: A(G) \rightarrow \mathcal{B}(H)$ similar to a *-homomorphism? This seems hopeless.
- Instead, we restrict again to those θ such that the dilations
are uniformly bounded in n. We say that θ is completely bounded.

For the Fourier algebra

So, we might look at homomorphisms $\theta: A(G) \rightarrow \mathcal{B}(H)$.

- The involution on $A(G)$ is just pointwise conjugation of functions.
- If $\theta: A(G) \rightarrow \mathcal{B}(H)$ is a $*$-homomorphism, then you can continuously extend it to a $*$-homomorphism $C_{0}(G) \rightarrow \mathcal{B}(H)$, and such things are well-understood.
- So, we ask again: when is $\theta: A(G) \rightarrow \mathcal{B}(H)$ similar to a *-homomorphism? This seems hopeless...
- Instead, we restrict again to those θ such that the dilations

are uniformly bounded in n. We say that θ is completely bounded.

For the Fourier algebra

So, we might look at homomorphisms $\theta: A(G) \rightarrow \mathcal{B}(H)$.

- The involution on $A(G)$ is just pointwise conjugation of functions.
- If $\theta: A(G) \rightarrow \mathcal{B}(H)$ is a $*$-homomorphism, then you can continuously extend it to a $*$-homomorphism $C_{0}(G) \rightarrow \mathcal{B}(H)$, and such things are well-understood.
- So, we ask again: when is $\theta: A(G) \rightarrow \mathcal{B}(H)$ similar to a *-homomorphism? This seems hopeless...
- Instead, we restrict again to those θ such that the dilations

$$
\iota \otimes \theta: \mathbb{T}_{n} \otimes A(G) \rightarrow \mathbb{M}_{n} \otimes \mathcal{B}(H)
$$

are uniformly bounded in n. We say that θ is completely bounded.

For the Fourier algebra cont.

Still looking at a homomorphism $\theta: A(G) \rightarrow \mathcal{B}(H)$.

- For technical reasons, introduce $\theta: A(G) \rightarrow \mathcal{B}(H)$ defined by $\check{\theta}(\omega)=\theta(\check{\omega})$. (Remember that $\check{\omega}(s)=\omega\left(s^{-1}\right)$).
- Rrannan and Samei (2010) showed that θ is similar to a *-homomorphism if, and only if, both θ and θ are completely bounded.
- Furthermore, if G is discrete (or more generally a SIN group) then you don't need to consider θ.
- Conjecture: this is true for all G.

For the Fourier algebra cont.

Still looking at a homomorphism $\theta: A(G) \rightarrow \mathcal{B}(H)$.

- For technical reasons, introduce $\check{\theta}: A(G) \rightarrow \mathcal{B}(H)$ defined by $\check{\theta}(\omega)=\theta(\breve{\omega})$. (Remember that $\left.\check{\omega}(s)=\omega\left(s^{-1}\right)\right)$.
- Brannan and Samei (2010) showed that θ is similar to a *-homomorphism if, and only if, both θ and θ are completely bounded.
- Furthermore, if G is discrete (or more generally a SIN group) then you don't need to consider $\check{\theta}$.
- Conjecture: this is true for all G.

For the Fourier algebra cont.

Still looking at a homomorphism $\theta: A(G) \rightarrow \mathcal{B}(H)$.

- For technical reasons, introduce $\check{\theta}: A(G) \rightarrow \mathcal{B}(H)$ defined by $\check{\theta}(\omega)=\theta(\breve{\omega})$. (Remember that $\left.\check{\omega}(s)=\omega\left(s^{-1}\right)\right)$.
- Brannan and Samei (2010) showed that θ is similar to a *-homomorphism if, and only if, both θ and $\check{\theta}$ are completely bounded.
- Furthermore, if G is discrete (or more generally a SIN group) then
- Conjecture: this is true for all G.

For the Fourier algebra cont.

Still looking at a homomorphism $\theta: A(G) \rightarrow \mathcal{B}(H)$.

- For technical reasons, introduce $\check{\theta}: A(G) \rightarrow \mathcal{B}(H)$ defined by $\check{\theta}(\omega)=\theta(\check{\omega})$. (Remember that $\check{\omega}(s)=\omega\left(s^{-1}\right)$).
- Brannan and Samei (2010) showed that θ is similar to a *-homomorphism if, and only if, both θ and $\check{\theta}$ are completely bounded.
- Furthermore, if G is discrete (or more generally a SIN group) then you don't need to consider $\check{\theta}$.

For the Fourier algebra cont.

Still looking at a homomorphism $\theta: A(G) \rightarrow \mathcal{B}(H)$.

- For technical reasons, introduce $\check{\theta}: A(G) \rightarrow \mathcal{B}(H)$ defined by $\check{\theta}(\omega)=\theta(\check{\omega})$. (Remember that $\check{\omega}(s)=\omega\left(s^{-1}\right)$).
- Brannan and Samei (2010) showed that θ is similar to a *-homomorphism if, and only if, both θ and $\check{\theta}$ are completely bounded.
- Furthermore, if G is discrete (or more generally a SIN group) then you don't need to consider $\check{\theta}$.
- Conjecture: this is true for all G.

