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Operator algebras

A C*-algebra is either:

@ A norm closed, self-adjoint, subalgebra A of B(H) (algebra of
bounded operators on a Hilbert space).

e A Banach algebra A with an involution * with ||a*a|| = ||a|? for
a € A
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Operator algebras

A C*-algebra is either:

@ A norm closed, self-adjoint, subalgebra A of B(H) (algebra of
bounded operators on a Hilbert space).

e A Banach algebra A with an involution * with ||a*a|| = ||a|? for
acA

A yon Neumann algebra is either:

@ A SOT closed, self-adjoint, subalgebra M of B(H).
So if (z;) a net in M, and z € B(H), with ||z;(§) — z(&)|| — 0 for
&€ H,thenz € M.

o A C*-algebra M which is isometrically isomorphic to the dual of
some Banach space M,.
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Trace class operators

Let 7 (H) be the space of trace-class operators on H: those z € B(H)
for which |z| has finite trace, tr(jz|) < co.

Matthew Daws (UCLan) Aut groups Glasgow, May 2019 4 /31



Trace class operators

Let 7 (H) be the space of trace-class operators on H: those z € B(H)
for which |z| has finite trace, tr(jz|) < co.
For &,m € H let 6;,, € T(H) be the rank-one operator

Oen(y) =(ymE (v e H).
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Trace class operators

Let 7 (H) be the space of trace-class operators on H: those z € B(H)
for which |z| has finite trace, tr(jz|) < co.

For &,m € H let 6;,, € T(H) be the rank-one operator

Oen(y) =(¥YMmE& (v e H).

There is a dual pairing between 7 (H) and B(H):

(z,y) =tr(zy)  (z€B(H),y e T(H)).

@ Under this, B(H) is the dual space of T (H).

e Under this, 6;, induces the “vector functional” w;, on B(H):

(@ywen) =tr(20ey) = (lz(E))  (z € B(H)).

Matthew Daws (UCLan) Aut groups

Glasgow, May 2019 4 /31



Preduals
o We often write B(H ), for 7 (H) as T (H) is the predual of B(H).
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@ Given a von Neumann algebra M C B(H), that M is SOT closed
means that. ..

@ M is closed in B(H) for the weak*-topology induced by B(H ),.
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Preduals

o We often write B(H ), for 7 (H) as T (H) is the predual of B(H).

@ Given a von Neumann algebra M C B(H), that M is SOT closed
means that. ..

@ M is closed in B(H) for the weak*-topology induced by B(H ),.

e Equivalently, M = (- M)' where

M ={weB(H),: (z,w)=0(z € M).
o Equivalently (Hahn-Banach) the quotient M, = B(H),/* M is the

predual of M:
(B(H)./"M)" = (*M)* = M.
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Preduals
o We often write B(H ), for 7 (H) as T (H) is the predual of B(H).
@ Given a von Neumann algebra M C B(H), that M is SOT closed
means that. ..
@ M is closed in B(H) for the weak*-topology induced by B(H ),.
e Equivalently, M = (- M)' where

M ={weB(H),: (z,w)=0(z € M).

o Equivalently (Hahn-Banach) the quotient M, = B(H),/* M is the
predual of M:

(B(H)./"M)" = (*M)* = M.

o Conversely, if M is a C'*-algebra with a predual M,, a GNS type
argument shows that there is H with M C B(H) and
M, =B(H),/tM.
Glasgow, May 2019  5/31



Kaplansky Density

Theorem (Kaplansky)

Let M be a von Neumann algebra, and A C M be a C*-algebra

which 1s weak*-dense in M. Then the unit ball of A is weak*-dense
wn the unit ball of M.
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How could this fail?

Consider a Hilbert space H with orthonormal basis (e,). Think of
z € B(H) as an infinite matrix (z;;). Let w be a state on B(H) which
annihilates all compact operators. Finally, set

X ={z e B(H):2x; =w(z)}

Claim
The weak*-closure of X equals all of B(H).

Sketch.

The compacts are weak*-dense in B(H), so approximate z € B(H) by
a compact. Then fiddle what happens to the (1,1) matrix entry, by
adding a multiple of the identity, to get inside X. O

v
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How could this fail, cont.

X ={z e B(H):2r;; = w(z)}

o If z is in the unit ball of X then 2|z;1| = |w(z)| < |z|| <1 (as w is
a state). So |z11| < 1/2.

o As evaluating a matrix entry is weak*-continuous, any « in the
weak*-closure of the unit ball of X has |z;1| < 1/2.

@ Thus the unit ball of X is not weak*-dense in the unit ball of
B(H).
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How could this fail, cont.

X ={z e B(H):2r;; = w(z)}

o If z is in the unit ball of X then 2|z;1| = |w(z)| < |z|| <1 (as w is
a state). So |z11| < 1/2.

o As evaluating a matrix entry is weak*-continuous, any « in the
weak*-closure of the unit ball of X has |z;1| < 1/2.

@ Thus the unit ball of X is not weak*-dense in the unit ball of
B(H).

@ But there is some sort of norm control. Q: Is this necessary?

Matthew Daws (UCLan) Aut groups Glasgow, May 2019 8 /31



Algebra example
For any subspace Y C B(H) let

sy:{ X :oceC,aceY}QB(H@H):MZ(B(H)).
0 o

o This is a subalgebra, but not self-adjoint.

@ The weak*-closure of Sy is Sy, where Y is the weak*-closure of
Y in B(H).

@ So Sx is weak™-dense in Sp(g)-
o If (‘(’)‘ Z’;> is in the unit ball of Sx then ||z < 1. And so
|y | < 1/2.

@ So the weak*-closure of the unit ball of Sx does not contain

01 for example
0 0) ple.
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Outline

e One parameter automorphism groups
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Automorphism groups

Definition
Let E be a Banach space. A one-parameter group of isometries of F is
a family (o)ter with:

@ Fach «; is a contraction in B(E);
e g =1;

@ X5 = Xz 0 s for s,t € R.

Then ot ;o x: = o x_y = &g = 1 s0 each «; is a bijective isometry.
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Automorphism groups

Definition
Let E be a Banach space. A one-parameter group of isometries of F is
a family (o)ter with:

@ Fach «; is a contraction in B(E);
e g =1;

@ X5 = Xz 0 s for s,t € R.

Then ot ;o x: = o x_y = &g = 1 s0 each «; is a bijective isometry.
Say that () is strongly-continuous or a Cy-group if

lim ||a¢(z) —z|| =0 (z € B).
t—0

Equivalently, R — E,t — oq(z) is (norm) continuous.
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Examples

Let E = H a Hilbert space, so that each «; is a unitary on H.
Theorem (Stone)

There 1s an (unbounded) self-adjoint operator T with
oy = exp(eTt) for t € R.

Matthew Daws (UCLan) Aut groups Glasgow, May 2019 12 /31



Examples

Let E = H a Hilbert space, so that each «; is a unitary on H.
Theorem (Stone)

There 1s an (unbounded) self-adjoint operator T with
oy = exp(eTt) for t € R.

Let T € M, be self-adjoint, so u; = exp(+T%) forms a 1-parameter
unitary group on C". For z € M,, define

at(z) = wzu_y = e Ttge Tt (z € M,).

o Each «; is an isometry for the operator norm.
@ (o) is a 1-parameter group.

o Each oy is a x-automorphism of the algebra M,.
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Examples cont.

Consider Cy(R), the C*-algebra of continuous functions f : R — C

@ Define o (f) to be the function s — f(s — %).

@ Then (o) is a 1-parameter group of x-automorphisms of Cy(R).
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Examples cont.

Consider Cy(R), the C*-algebra of continuous functions f : R — C

@ Define o (f) to be the function s — f(s — %).
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Let L°°(R) be the von Neumann algebra of (equivalence classes) of
(essentially) bounded measurable functions f : R — C.
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Examples cont.

Consider Cy(R), the C*-algebra of continuous functions f : R — C

@ Define o (f) to be the function s — f(s — %).
@ Then (o) is a 1-parameter group of x-automorphisms of Cy(R).

Let L°°(R) be the von Neumann algebra of (equivalence classes) of
(essentially) bounded measurable functions f : R — C.

@ Define o;(f) to be the function s — f(s — %).

e Then (o) is a 1-parameter group of x-automorphisms of L*°(R),
continuous in the weak™ sense.

Notice that Cp(R) is weak*-dense in L°°(R), and that the
automorphism groups are compatible with this inclusion.
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Analytic generators: Holomorphic functions

Let E be a Banach space, D C C a domain, and f : D — E a function.
The following are equivalent:

o f is analytic in the sense that for each o € D there is an
absolutely convergence power series for f, near o:

f(z):Zan(z—oc)” lz —of < 7.

n>0

o f is holomorphic, in the sense that there is /' C E* norming, with
D — C;z — o(f(2)) is differentiable, for each ¢ € F.

Here norming means that

|z|| =sup{ldp(z)l: p € F}  (z € B).
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Analytic generators: Holomorphic functions

Let E be a Banach space, D C C a domain, and f : D — E a function.
The following are equivalent:

o f is analytic in the sense that for each o € D there is an
absolutely convergence power series for f, near o:

f(z):Zan(z—oc)” lz —of < 7.

n>0

o f is holomorphic, in the sense that there is /' C E* norming, with
D — C;z — o(f(2)) is differentiable, for each ¢ € F.

Here norming means that

|z|| =sup{ldp(z)l: p € F}  (z € B).

In particular, “weakly holomorphic” or “weak*-holomorphic” imply
“norm analytic”.
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Analytic generators: Regular functions

Given o € C let

_ 0<Im(z) <Im(a) if Im(xx) >0
Sla) = {z €C: 0>1Im(z) >Im(«) if Im(a) < 0}'

That is, the closed horizontal strip bounded by R and R + «.
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Analytic generators: Regular functions

Given o € C let

_ 0<Im(z) <Im(x) if Im(x)>0
Sla) = {z €C: 0>Im(z) >Im(«) if Im(x) < 0}'

That is, the closed horizontal strip bounded by R and R + «.
A function f : S(a) — E is regular if f is continuous, analytic in the
interior of S(«), and bounded on R and R + o

M = supmax (|| (£)], | (& + )]]) < oc.
teR
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Analytic generators: Regular functions

Given o € C let

_ 0<Im(z) <Im(x) if Im(x)>0
Sla) = {z €C: 0>Im(z) >Im(«) if Im(x) < 0}'

That is, the closed horizontal strip bounded by R and R + «.
A function f : S(a) — E is regular if f is continuous, analytic in the
interior of S(«), and bounded on R and R + o

M = supmax (|| (£)], | (& + )]]) < oc.
teR

The 3-Lines Theorem shows that then ||f(z)|| < M for all z € S(«).
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Analytic generators: Regular functions

Given o € C let

_ 0<Im(z) <Im(x) if Im(x)>0
Sla) = {z €C: 0>Im(z) >Im(«) if Im(x) < 0}'

That is, the closed horizontal strip bounded by R and R + «.
A function f : S(a) — E is regular if f is continuous, analytic in the
interior of S(«), and bounded on R and R + o

M = supmax (|| (£)], | (& + )]]) < oc.
teR

The 3-Lines Theorem shows that then ||f(z)|| < M for all z € S(«).
Some link with complex interpolation?
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Analytic generators

Given («4), a 1-parameter group on E, and z € C, define an operator
D(a,) — E by

z € D(«,) when there is f : S(2) — E regular with
f(t) = oi(z) (2 €R).

Then we set o, (z) = f(2).
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@ Morera’s Theorem and the Reflection Principle imply that such an
f is unique. So «, is well-defined.
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Analytic generators

Given («4), a 1-parameter group on E, and z € C, define an operator
D(a,) — E by

z € D(«,) when there is f : S(2) — E regular with
f(t) = oi(z) (2 €R).

Then we set o, (z) = f(2).

@ Morera’s Theorem and the Reflection Principle imply that such an
f is unique. So «, is well-defined.

e Think of «, as an “analytic extension” of the mapping ¢ — o(z).
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Analytic generators

Given («4), a 1-parameter group on E, and z € C, define an operator
D(a,) — E by

z € D(«,) when there is f : S(2) — E regular with
f(t) = oi(z) (2 €R).

Then we set o, (z) = f(2).

@ Morera’s Theorem and the Reflection Principle imply that such an
f is unique. So «, is well-defined.

e Think of «, as an “analytic extension” of the mapping ¢ — o(z).
o Can show that D(«,) is dense in E and that o, is closed.

@ Then «_; is the analytic generator of (o).

Matthew Daws (UCLan) Aut groups Glasgow, May 2019 16 / 31



Examples

When (o) is a continuous unitary group on a Hilbert space H, with
¢ = exp(¢Tt), then

o_; =exp(T).

Define exp(T') by functional calculus. The equality means with

equality of domains. (Of course formally obvious; but the LHS and RHS have
different definitions.)
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Examples

When (o) is a continuous unitary group on a Hilbert space H, with
¢ = exp(¢Tt), then
o_; =exp(T).

Define exp(T') by functional calculus. The equality means with
equality of domains. (Of course formally obvious; but the LHS and RHS have
different definitions.)

If (o) on M, is

o () = wpzu_y = e Tge Tt

then
oa_(z)=eTze T = PeP71,

where P = e7 is the analytic generator of (u;).
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Some properties

«, is closed in the sense that the graph
g(ocz) = {(.’B,Oéz(fli)) S D(o‘z)} CEDE

1s closed.
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Some properties
«, is closed in the sense that the graph
Glay) = {(.’D,Oéz(fli)) S D(o‘z)} CEQE

is closed.
Recall how to compose two unbounded operators
T:D(T)— E,S:D(S)—> E:

D(ST)={z e D(T): T(z)e D(S)}; ST:D(ST)>z+— S(T(z)).

Then S = T means G(S) =G(T); and S C T means G(S) C G(T).
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Some properties

o is closed in the sense that the graph
g(fxz) = {(:D,OCZ({IJ)) S D(o‘z)} CEDE

is closed.
Recall how to compose two unbounded operators
T:D(T)— E,S:D(S)—> E:

D(ST)={z e D(T): T(z)e D(S)}; ST:D(ST)>z+— S(T(z)).

Then S = T means G(S) =G(T); and S C T means G(S) C G(T).
As closed operators, we have that

@ Xt Oy = Xz O Kt = K¢tz
o If z, w lie on the same side of the real axis, then o, 0, = X, 44

o In general, o,y C 0Xzpry-
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Examples, cont.
x(f)(s)=f(s—1t)  (s,t €R,f e Co(R)).

o Let f € D(ox,);
o Let F: S(—1) — Cy(R) be the associated regular function.
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Examples, cont.
x(f)(s)=f(s—1t)  (s,t €R,f e Co(R)).

o Let f € D(ox,);
o Let F: S(—1) — Cy(R) be the associated regular function.
@ Define g: S(2) - Cby g(z) = F(—2)(0).

o Then g(¢) = F(—¢)(0) = a—¢(f)(0) = f(2).
@ Also g is regular.
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Examples, cont.
x(f)(s)=f(s—1t)  (s,t €R,f e Co(R)).

o Let f € D(ox,);

o Let F: S(—1) — Cy(R) be the associated regular function.
@ Define g: S(2) - Cby g(z) = F(—2)(0).

o Then g(t) = F(—t)(0) = ac¢(f)(0) = f(2).

@ Also g is regular.

o Can reverse this: given regular g : S(z) — C then define
F:S5(—1) = Co(R) by F(z)(t) = g(t — z), so that F becomes a
Co(IR)-valued regular function.
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Examples, cont.

x(fl(s)=F(s—2) (5,2 €R,f € Co(R)).

Let f € D(ax_;);

Let F:S5(—12) — Cy(R) be the associated regular function.
Define g: S(z) — C by g(z) = F(—=2)(0).

Then g(¢) = F(—t)(0) = ac¢(f)(0) = f(2).

Also g is regular.

o Can reverse this: given regular g : S(z) — C then define
F:S5(—1) = Co(R) by F(z)(t) = g(t — z), so that F becomes a
Co(IR)-valued regular function.

So f itself analytically extends to S(z), and F(—1) is this extension of
f, evaluated on R + 1.
(Somehow like a Hardy space...)

Matthew Daws (UCLan) Aut groups Glasgow, May 2019 19 /31



Some properties: C*-algebra case

Now suppose F = A is a C*-algebra and each oy is a *x-automorphism.
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Some properties: C*-algebra case

Now suppose F = A is a C*-algebra and each oy is a *x-automorphism.
Given a,b € D(«,) with associated regular functions
Fo,,F,:5(z) 0 A

we can pointwise multiply to obtain

F:8(2z)— A4, ww— F,(w)Fy(w).
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Some properties: C*-algebra case
Now suppose F = A is a C*-algebra and each oy is a *x-automorphism.
Given a,b € D(«,) with associated regular functions
Fo,,F,:5(z) 0 A
we can pointwise multiply to obtain
F:8(2z)— A4, ww— F,(w)Fy(w).

e F is regular (local power series expansion).
@ F(t)=F,(t)Fp(t) = o¢(a)o(b) = ¢ (ab) for t € R.
@ S0 ab € D(«,) with o, (ab) = F(z) = a,(a)o,(b).
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Some properties: C*-algebra case

Now suppose F = A is a C*-algebra and each oy is a *x-automorphism.
Given a,b € D(«,) with associated regular functions

Fo,,F,:5(z) 0 A

we can pointwise multiply to obtain
F:8(2z)— A4, ww— F,(w)Fy(w).

e F is regular (local power series expansion).

@ F(t)=F,(t)Fp(t) = o¢(a)o(b) = ¢ (ab) for t € R.

@ S0 ab € D(«,) with o, (ab) = F(z) = a,(a)o,(b).
Equivalently, we see that the graph G(«,) is a subalgebra of A ® A.

Matthew Daws (UCLan) Aut groups Glasgow, May 2019 20 /31



Some properties: C*-algebra case (cont.)

Given a € D(x_;) with regular F : S(—2) — A define
F*:8(—1) = A;, ww— F(w—1)".

That is, use the involution on A.
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Some properties: C*-algebra case (cont.)

Given a € D(x_;) with regular F : S(—2) — A define
F*:8(—1) = A;, ww— F(w—1)".

That is, use the involution on A.
@ F* is regular (local power series expansion).
o F*(t)=F(t—1)*" = (rex_i(a))* = o¢(cx_;(a)*) for ¢t € R.
@ F*(—i)=F(0)* =a*
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Some properties: C*-algebra case (cont.)

Given a € D(x_;) with regular F : S(—2) — A define
F*:8(—1)— 4, ww— F(w—1)".

That is, use the involution on A.
@ F* is regular (local power series expansion).
o F*(t)=F(t—1)*" = (rex_i(a))* = o¢(cx_;(a)*) for ¢t € R.
@ F*(—i)=F(0)* =a*

So a_;(a)* € D(x_;) and o_;(x_;(a)*) = a*.
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Some properties: C*-algebra case (cont.)

Given a € D(x_;) with regular F : S(—2) — A define
F*:8(—1)— 4, ww— F(w—1)".

That is, use the involution on A.
@ F* is regular (local power series expansion).
o F*(t)=F(t—1)*" = (rex_i(a))* = o¢(cx_;(a)*) for ¢t € R.
@ F*(—i)=F(0)* =a*

So ax_;(a)* € D(x_;) and oc_;(x_;(a)*) = a*.

Equivalently (a,b) € G(x_;) = (b*,a*) € G(x_;). So G(x_;) is a
x-algebra, but for this twisted involution.

Matthew Daws (UCLan) Aut groups Glasgow, May 2019 21 /31



Outline

© Interlude: Motivation
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Locally compact quantum groups

The Operator algebraic approach to Quantum Groups uses C* and von

Neumann algebras to generalise the notion of a locally compact group,
and Pontryagin duality.
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@ Can “polar decompose” S = Rt_;/; where R is the unitary
antipode (and anti-+-automorphism), and. ..

o (71¢) is the scaling group, a 1-parameter group of *-automorphisms
of L*(G).

Matthew Daws (UCLan) Aut groups Glasgow, May 2019 23 /31



Locally compact quantum groups

The Operator algebraic approach to Quantum Groups uses C* and von
Neumann algebras to generalise the notion of a locally compact group,
and Pontryagin duality.

o Write G for the “abstract quantum group” and L*°(G) and Cy(G)
for the associated algebras.

@ The correct notion of the “group inverse” here is the antipode S,
which in interesting examples turns out to be unbounded.

@ Can “polar decompose” S = Rt_;/; where R is the unitary
antipode (and anti-+-automorphism), and. ..

o (71¢) is the scaling group, a 1-parameter group of *-automorphisms
of L*(G).

(] Sz =T_;.
Furthermore, S, R and (t;) all drop to Cy(G) which is weak*-dense in
L>(G).
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Von Neumann setting

Each «; is normal, and for z € M, the orbit map R — M; t+— oy(z)
is weak*-continuous.
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Von Neumann setting

Each «; is normal, and for z € M, the orbit map R — M; t+— oy(z)
is weak*-continuous.

o Form o, in the same way, but we only require a weak*-regular
extension.

o (But weak*-holomorphic implies norm analytic. The extension to
the boundary is only weak*-continuous).

@ Then G(w,) is weak*-closed.

o Still G(«,) is an algebra, and G(«_;) is a x-algebra. (Harder to
prove, as the product is only separately continuous now.)
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Setup

We will suppose we have:
@ a C*-algebra A which is weak*-dense in a von Neumann algebra
M;
o A (strongly-continuous) 1-parameter *-automorphism group (o)

on A, which extends to a (weak*-continuous) 1-parameter
*-automorphism group () on M.
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Setup

We will suppose we have:
@ a C*-algebra A which is weak*-dense in a von Neumann algebra
M;
o A (strongly-continuous) 1-parameter *-automorphism group (o)

on A, which extends to a (weak*-continuous) 1-parameter
*-automorphism group () on M.

So we can consider:

ocfi a norm-closed, norm-densely defined operator on A,

oM a weak*-closed, weak*-densely defined operator on M.

How are these related?
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Graphs

Almost by definition, we have that &«

' extends o”,, which means that

Glat) C Gal),

under the obvious inclusions A AC M & M.
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Graphs

Almost by definition, we have that o eztends o, which means that

Glat) C Gal),

under the obvious inclusions A AC M & M.
e In fact, G(a?,) =G(aM)N (A @ A).
One can show that actually

g(aﬁ‘i) is weak* dense in G(a).

In other words, o, is a (weak*) core for o,
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Kaplansky

Theorem

The unit ball of G(a#,) is weak*-dense in the unit ball of G(oM). J

To be concrete, this means that given z € D(a™) with
e <1 and [[oa(2)] <1,

there is a net (a;) in D(ocfi) with a; — = and cxfi(a,j) — ocﬂ/[i(:z:)
weak*, and with

laj|l <1 and [o?;(a)] < 1.
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Sketch of proof

The key idea is von Neumann algebraic:

o Using Kaplansky density for A C M we see that A norms the
predual M,.

Matthew Daws (UCLan) Aut groups Glasgow, May 2019 29 /31



Sketch of proof

The key idea is von Neumann algebraic:

o Using Kaplansky density for A C M we see that A norms the
predual M,.

o Equivalently, the induced map M, — A* (given by restricting
functions in M, to A C M) is an isometry.

Matthew Daws (UCLan) Aut groups Glasgow, May 2019 29 /31



Sketch of proof

The key idea is von Neumann algebraic:

o Using Kaplansky density for A C M we see that A norms the
predual M,.

o Equivalently, the induced map M, — A* (given by restricting
functions in M, to A C M) is an isometry.

@ The resulting subspace of A* is an A-bimodule, and so there is a
central projection z € A™ with A*z = M,.

Matthew Daws (UCLan) Aut groups Glasgow, May 2019 29 /31



Sketch of proof

The key idea is von Neumann algebraic:

o Using Kaplansky density for A C M we see that A norms the
predual M,.

o Equivalently, the induced map M, — A* (given by restricting
functions in M, to A C M) is an isometry.

@ The resulting subspace of A* is an A-bimodule, and so there is a
central projection z € A™ with A*z = M,.

@ Thus A™z = M.

Matthew Daws (UCLan) Aut groups Glasgow, May 2019 29 /31



Sketch of proof

The key idea is von Neumann algebraic:

o Using Kaplansky density for A C M we see that A norms the
predual M,.

o Equivalently, the induced map M, — A* (given by restricting
functions in M, to A C M) is an isometry.

@ The resulting subspace of A* is an A-bimodule, and so there is a
central projection z € A™ with A*z = M,.

@ Thus A™z = M.

We now consider G(a#,)** C A*™* @ A**. One can carefully show that

GloM) = G(a,)™ (2 @ 2) and G(a) C G(ah))*.
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Sketch of proof, cont.

Glo) = Glat))™(z @ 2) C Gla) ™.

e Given (z,y) € G(aM) with ||z| < 1,|y| < 1,
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Sketch of proof, cont.

Glo) = Glat))™(z @ 2) C Gla) ™.

o Given (z,y) € g(od{.) with ||z|| < 1,||y| < 1,

e But then we can regard G(a™) as a subset of Q(ocfi)

kK
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Sketch of proof, cont.

Glo) = Glat))™(z @ 2) C Gla) ™.

e Given (z,y) € G(a™

—1

) with [|lz[| <1, [ly[| < 1,

o But then we can regard G(a™) as a subset of Q(ocfi)**.

@ So there are (a**, b**) € Q(ocfi)** with a™*2z = a™*, b**2z = b™* and
(a**, b**) corresponds to (z,y).
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Sketch of proof, cont.

G(o) = G(at)) ™ (z @ 2) C G(a?)™
e Given (z,y) € G(a™

o But then we can regard G(a™) as a subset of Glah )

@ So there are (a**, b**) € G(a? ;)" with a**2 = @™, ™2z = b™* and
(a**, b**) corresponds to (z,y).

) with ||z]] < 1,y < 1,

i

e By Hahn-Banach (“Goldstine theorem”) there is a net (a;, b;) in
Q’(ocfi) converging to (a**, b**), with norm control: ||a;|| <1 and
16;]] < 1.

Matthew Daws (UCLan) Aut groups Glasgow, May 2019 30/31



Sketch of proof, cont.

G(o) = G(at)) ™ (z @ 2) C G(a?)™
e Given (z,y) € G(a™

o But then we can regard G(a™) as a subset of Glah )

@ So there are (a**, b**) € G(a? ;)" with a**2 = @™, ™2z = b™* and
(a**, b**) corresponds to (z,y).

) with ||z]] < 1,y < 1,

i

e By Hahn-Banach (“Goldstine theorem”) there is a net (a;, b;) in
G(at) converging to (a**, b**), with norm control: ||a;|| <1 and
15;] < 1.

o Check the topologies agree, so that (a;,b;) — (z,y) weak™ as
required.
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Open question

Swap things about:

e The adjoints of («f') give rise to a weak*-continuous 1-parameter
isometry group on A*.

o The pre-adjoints of (a}) give rise to a norm-continuous
1-parameter isometry group on M,.
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Open question

Swap things about:

e The adjoints of («f') give rise to a weak*-continuous 1-parameter
isometry group on A*.

o The pre-adjoints of (a}) give rise to a norm-continuous
1-parameter isometry group on M,.

We have the isometric inclusion M, — A* which leads to
GloM) C glat),

which is weak*-dense.
Does Kaplansky Density hold for this?

Matthew Daws (UCLan) Aut groups Glasgow, May 2019 &Ll // @i
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