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Operator algebras

A C ∗-algebra is either:

A norm closed, self-adjoint, subalgebra A of B(H ) (algebra of

bounded operators on a Hilbert space).

A Banach algebra A with an involution ∗ with ‖a∗a‖ = ‖a‖2 for
a ∈ A.

A von Neumann algebra is either:

A SOT closed, self-adjoint, subalgebra M of B(H ).

So if (xi ) a net in M , and x ∈ B(H ), with ‖xi (ξ) − x (ξ)‖→ 0 for

ξ ∈ H , then x ∈M .

A C ∗-algebra M which is isometrically isomorphic to the dual of

some Banach space M∗.
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Trace class operators

Let T (H ) be the space of trace-class operators on H : those x ∈ B(H )

for which |x | has �nite trace, tr(|x |) <∞.

For ξ, η ∈ H let θξ,η ∈ T (H ) be the rank-one operator

θξ,η(γ) = (γ|η)ξ (γ ∈ H ).

There is a dual pairing between T (H ) and B(H ):

〈x , y〉 = tr(xy) (x ∈ B(H ), y ∈ T (H )).

Under this, B(H ) is the dual space of T (H ).

Under this, θξ,η induces the \vector functional" ωξ,η on B(H ):

〈x ,ωξ,η〉 = tr(xθξ,η) = (η|x (ξ)) (x ∈ B(H )).
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Preduals
We often write B(H )∗ for T (H ) as T (H ) is the predual of B(H ).

Given a von Neumann algebra M ⊆ B(H ), that M is SOT closed

means that. . .

M is closed in B(H ) for the weak∗-topology induced by B(H )∗.

Equivalently, M = (⊥M )⊥ where

⊥M = {ω ∈ B(H )∗ : 〈x ,ω〉 = 0 (x ∈M )}.

Equivalently (Hahn-Banach) the quotient M∗ = B(H )∗/
⊥M is the

predual of M : (
B(H )∗/

⊥M
)∗

= (⊥M )⊥ = M .

Conversely, if M is a C ∗-algebra with a predual M∗, a GNS type

argument shows that there is H with M ⊆ B(H ) and

M∗ ∼= B(H )∗/
⊥M .
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Kaplansky Density

Theorem (Kaplansky)

Let M be a von Neumann algebra, and A ⊆M be a C ∗-algebra

which is weak∗-dense in M. Then the unit ball of A is weak∗-dense

in the unit ball of M.
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How could this fail?

Consider a Hilbert space H with orthonormal basis (en). Think of

x ∈ B(H ) as an in�nite matrix (xij ). Let ω be a state on B(H ) which

annihilates all compact operators. Finally, set

X = {x ∈ B(H ) : 2x11 = ω(x )}.

Claim

The weak∗-closure of X equals all of B(H ).

Sketch.

The compacts are weak∗-dense in B(H ), so approximate x ∈ B(H ) by

a compact. Then �ddle what happens to the (1, 1) matrix entry, by

adding a multiple of the identity, to get inside X .
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How could this fail, cont.

X = {x ∈ B(H ) : 2x11 = ω(x )}.

If x is in the unit ball of X then 2|x11| = |ω(x )| ≤ ‖x‖ ≤ 1 (as ω is

a state). So |x11| ≤ 1/2.

As evaluating a matrix entry is weak∗-continuous, any x in the

weak∗-closure of the unit ball of X has |x11| ≤ 1/2.

Thus the unit ball of X is not weak∗-dense in the unit ball of

B(H ).

But there is some sort of norm control. Q: Is this necessary?
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Algebra example
For any subspace Y ⊆ B(H ) let

SY =
{(α x

0 α

)
: α ∈ C, x ∈ Y

}
⊆ B(H ⊕H ) = M2(B(H )).

This is a subalgebra, but not self-adjoint.

The weak∗-closure of SY is SY , where Y is the weak∗-closure of

Y in B(H ).

So SX is weak∗-dense in SB(H ).

If

(
α x

0 α

)
is in the unit ball of SX then ‖x‖ ≤ 1. And so

|x11| ≤ 1/2.

So the weak∗-closure of the unit ball of SX does not contain(
0 1

0 0

)
, for example.

Matthew Daws (UCLan) Aut groups Glasgow, May 2019 9 / 31



Outline

1 Operator algebras

2 One parameter automorphism groups

3 Interlude: Motivation

4 Kaplansky density for automorphism groups

Matthew Daws (UCLan) Aut groups Glasgow, May 2019 10 / 31



Automorphism groups

De�nition

Let E be a Banach space. A one-parameter group of isometries of E is

a family (αt )t∈R with:

Each αt is a contraction in B(E);

α0 = 1;

αt+s = αt ◦ αs for s , t ∈ R.

Then α−t ◦ αt = αt ◦ α−t = α0 = 1 so each αt is a bijective isometry.

Say that (αt ) is strongly-continuous or a C0-group if

lim
t→0
‖αt (x ) − x‖ = 0 (x ∈ E).

Equivalently, R→ E , t 7→ αt (x ) is (norm) continuous.
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Examples

Let E = H a Hilbert space, so that each αt is a unitary on H .

Theorem (Stone)

There is an (unbounded) self-adjoint operator T with

αt = exp(iTt) for t ∈ R.

Let T ∈Mn be self-adjoint, so ut = exp(iTt) forms a 1-parameter

unitary group on Cn . For x ∈Mn de�ne

αt (x ) = utxu−t = e iTtxe−iTt (x ∈Mn).

Each αt is an isometry for the operator norm.

(αt ) is a 1-parameter group.

Each αt is a ∗-automorphism of the algebra Mn .
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Examples cont.

Consider C0(R), the C ∗-algebra of continuous functions f : R→ C
with lim|t |→∞ f (t) = 0.

De�ne αt (f ) to be the function s 7→ f (s − t).

Then (αt ) is a 1-parameter group of ∗-automorphisms of C0(R).
Let L∞(R) be the von Neumann algebra of (equivalence classes) of

(essentially) bounded measurable functions f : R→ C.
De�ne αt (f ) to be the function s 7→ f (s − t).

Then (αt ) is a 1-parameter group of ∗-automorphisms of L∞(R),
continuous in the weak∗ sense.

Notice that C0(R) is weak∗-dense in L∞(R), and that the

automorphism groups are compatible with this inclusion.
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Analytic generators: Holomorphic functions

Let E be a Banach space, D ⊆ C a domain, and f : D → E a function.

The following are equivalent:

f is analytic in the sense that for each α ∈ D there is an

absolutely convergence power series for f , near α:

f (z ) =
∑
n≥0

an(z − α)n |z − α| < r .

f is holomorphic, in the sense that there is F ⊆ E∗ norming, with

D → C; z 7→ φ(f (z )) is di�erentiable, for each φ ∈ F .
Here norming means that

‖x‖ = sup{|φ(x )| : φ ∈ F } (x ∈ E).

In particular, \weakly holomorphic" or \weak∗-holomorphic" imply

\norm analytic".
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Analytic generators: Regular functions

Given α ∈ C let

S(α) =
{
z ∈ C :

0 ≤ Im(z ) ≤ Im(α) if Im(α) ≥ 0

0 ≥ Im(z ) ≥ Im(α) if Im(α) ≤ 0

}
.

That is, the closed horizontal strip bounded by R and R+ α.

A function f : S(α)→ E is regular if f is continuous, analytic in the

interior of S(α), and bounded on R and R+ α:

M := sup
t∈R

max
(
‖f (t)‖, ‖f (α+ t)‖

)
<∞.

The 3-Lines Theorem shows that then ‖f (z )‖ ≤M for all z ∈ S(α).
Some link with complex interpolation?
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Analytic generators

Given (αt ), a 1-parameter group on E , and z ∈ C, de�ne an operator

D(αz )→ E by

x ∈ D(αz ) when there is f : S(z )→ E regular with

f (t) = αt (x ) (t ∈ R).

Then we set αz (x ) = f (z ).

Morera's Theorem and the Reection Principle imply that such an

f is unique. So αz is well-de�ned.

Think of αz as an \analytic extension" of the mapping t 7→ αt (x ).

Can show that D(αz ) is dense in E and that αz is closed.

Then α−i is the analytic generator of (αt ).
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Examples

When (αt ) is a continuous unitary group on a Hilbert space H , with

αt = exp(iTt), then

α−i = exp(T ).

De�ne exp(T ) by functional calculus. The equality means with

equality of domains. (Of course formally obvious; but the LHS and RHS have

di�erent de�nitions.)

If (αt ) on Mn is

αt (x ) = utxu−t = e iTtxe−iTt ,

then

α−i (x ) = eTxe−T = PxP−1,

where P = eT is the analytic generator of (ut ).
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Some properties

αz is closed in the sense that the graph

G(αz ) =
{
(x , αz (x )) : x ∈ D(αz )

}
⊆ E ⊕ E

is closed.

Recall how to compose two unbounded operators

T : D(T )→ E ,S : D(S)→ E :

D(ST ) = {x ∈ D(T ) : T (x ) ∈ D(S)}; ST : D(ST ) 3 x 7→ S(T (x )).

Then S = T means G(S) = G(T ); and S ⊆ T means G(S) ⊆ G(T ).

As closed operators, we have that

αt ◦ αz = αz ◦ αt = αt+z
If z ,w lie on the same side of the real axis, then αzαw = αz+w

In general, αzαw ⊆ αz+w .
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Examples, cont.

αt (f )(s) = f (s − t) (s , t ∈ R, f ∈ C0(R)).

Let f ∈ D(α−i );

Let F : S(−i)→ C0(R) be the associated regular function.

De�ne g : S(i)→ C by g(z ) = F (−z )(0).

Then g(t) = F (−t)(0) = α−t (f )(0) = f (t).

Also g is regular.

Can reverse this: given regular g : S(i)→ C then de�ne

F : S(−i)→ C0(R) by F (z )(t) = g(t − z ), so that F becomes a

C0(R)-valued regular function.

So f itself analytically extends to S(i), and F (−i) is this extension of

f , evaluated on R+ i .

(Somehow like a Hardy space. . . )
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Some properties: C ∗-algebra case

Now suppose E = A is a C∗-algebra and each αt is a ∗-automorphism.

Given a , b ∈ D(αz ) with associated regular functions

Fa ,Fb : S(z )→ A

we can pointwise multiply to obtain

F : S(z )→ A; w 7→ Fa(w)Fb(w).

F is regular (local power series expansion).

F (t) = Fa(t)Fb(t) = αt (a)αt (b) = αt (ab) for t ∈ R.
So ab ∈ D(αz ) with αz (ab) = F (z ) = αz (a)αz (b).

Equivalently, we see that the graph G(αz ) is a subalgebra of A⊕A.
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Some properties: C ∗-algebra case (cont.)

Given a ∈ D(α−i ) with regular F : S(−i)→ A de�ne

F ? : S(−i)→ A; w 7→ F (w − i)∗.

That is, use the involution on A.

F ? is regular (local power series expansion).

F ?(t) = F (t − i)∗ = (αtα−i (a))
∗ = αt (α−i (a)

∗) for t ∈ R.
F ?(−i) = F (0)∗ = a∗

So α−i (a)
∗ ∈ D(α−i ) and α−i (α−i (a)

∗) = a∗.

Equivalently (a , b) ∈ G(α−i ) =⇒ (b∗, a∗) ∈ G(α−i ). So G(α−i ) is a

∗-algebra, but for this twisted involution.
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4 Kaplansky density for automorphism groups
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Locally compact quantum groups

The Operator algebraic approach to Quantum Groups uses C ∗ and von

Neumann algebras to generalise the notion of a locally compact group,

and Pontryagin duality.

Write G for the \abstract quantum group" and L∞(G) and C0(G)

for the associated algebras.

The correct notion of the \group inverse" here is the antipode S ,

which in interesting examples turns out to be unbounded.

Can \polar decompose" S = Rτ−i/2 where R is the unitary

antipode (and anti-∗-automorphism), and. . .

(τt ) is the scaling group, a 1-parameter group of ∗-automorphisms

of L∞(G).

S2 = τ−i .

Furthermore, S , R and (τt ) all drop to C0(G) which is weak∗-dense in

L∞(G).
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Von Neumann setting

Each αt is normal, and for x ∈M , the orbit map R →M ; t 7→ αt (x )

is weak∗-continuous.

Form αz in the same way, but we only require a weak∗-regular

extension.

(But weak∗-holomorphic implies norm analytic. The extension to

the boundary is only weak∗-continuous).

Then G(αz ) is weak∗-closed.
Still G(αz ) is an algebra, and G(α−i ) is a ∗-algebra. (Harder to
prove, as the product is only separately continuous now.)
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Setup

We will suppose we have:

a C ∗-algebra A which is weak∗-dense in a von Neumann algebra

M ;

A (strongly-continuous) 1-parameter ∗-automorphism group (αAt )

on A, which extends to a (weak∗-continuous) 1-parameter

∗-automorphism group (αMt ) on M .

So we can consider:

αA−i a norm-closed, norm-densely de�ned operator on A,

αM−i a weak∗-closed, weak∗-densely de�ned operator on M .

How are these related?
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Graphs

Almost by de�nition, we have that αM−i extends α
A
−i , which means that

G(αA−i ) ⊆ G(αM−i ),

under the obvious inclusions A⊕A ⊆M ⊕M .

In fact, G(αA−i ) = G(αM−i ) ∩ (A⊕A).

One can show that actually

G(αA−i ) is weak∗ dense in G(αM−i ).

In other words, αA−i is a (weak∗) core for αM−i .
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Kaplansky

Theorem

The unit ball of G(αA−i ) is weak∗-dense in the unit ball of G(αM−i ).

To be concrete, this means that given x ∈ D(αM−i ) with

‖x‖ ≤ 1 and ‖αM−i (x )‖ ≤ 1,

there is a net (aj ) in D(αA−i ) with aj → x and αA−i (aj )→ αM−i (x )

weak∗, and with

‖aj ‖ ≤ 1 and ‖αA−i (aj )‖ ≤ 1.
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Sketch of proof

The key idea is von Neumann algebraic:

Using Kaplansky density for A ⊆M we see that A norms the

predual M∗.

Equivalently, the induced map M∗ → A∗ (given by restricting

functions in M∗ to A ⊆M ) is an isometry.

The resulting subspace of A∗ is an A-bimodule, and so there is a

central projection z ∈ A∗∗ with A∗z = M∗.

Thus A∗∗z ∼= M .

We now consider G(αA−i )∗∗ ⊆ A∗∗ ⊕A∗∗. One can carefully show that

G(αM−i ) ∼= G(αA−i )∗∗(z ⊕ z ) and G(αM−i ) ⊆ G(αA−i )∗∗.
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Sketch of proof

The key idea is von Neumann algebraic:
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Sketch of proof, cont.

G(αM−i ) ∼= G(αA−i )∗∗(z ⊕ z ) ⊆ G(αA−i )∗∗.

Given (x , y) ∈ G(αM−i ) with ‖x‖ ≤ 1, ‖y‖ ≤ 1,

But then we can regard G(αM−i ) as a subset of G(αA−i )∗∗.
So there are (a∗∗, b∗∗) ∈ G(αA−i )∗∗ with a∗∗z = a∗∗, b∗∗z = b∗∗ and

(a∗∗, b∗∗) corresponds to (x , y).

By Hahn-Banach (\Goldstine theorem") there is a net (aj , bj ) in

G(αA−i ) converging to (a∗∗, b∗∗), with norm control: ‖aj ‖ ≤ 1 and

‖bj ‖ ≤ 1.

Check the topologies agree, so that (aj , bj )→ (x , y) weak∗ as

required.
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Open question

Swap things about:

The adjoints of (αAt ) give rise to a weak∗-continuous 1-parameter

isometry group on A∗.

The pre-adjoints of (αMt ) give rise to a norm-continuous

1-parameter isometry group on M∗.

We have the isometric inclusion M∗ → A∗ which leads to

G(αM∗
−i ) ⊆ G(α

A∗
−i ),

which is weak∗-dense.

Does Kaplansky Density hold for this?
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